
FROM DEVS TO FORMAL
METHODS: A CATEGORICAL

APPROACH

D. E. STEVENSON, CLEMSON UNIVERSITY, 442
R. C. EDWARDS HALL, DEPARTMENT OF

COMPUTER SCIENCE, CLEMSON UNIVERSITY,
CLEMSON, SC 29634-1906

STEVE‘CS.CLEMSON.EDU

Abstract. The DEVS formalism de-
veloped by Zeigler and Sarjoughian is
extended by the use of category theory.
Several functors are needed to produce
the correct categories. Verification and
validation is modeled by adjunction and
the information-gap approach to uncer-
tainty.

Keywords. Simulation, DEVS, Category The-
ory, Information-Gap Uncertainty

1. Motivation

Two conclusions from the Foundations ’02
workshop [12] were that (1) the formalisms of
Zeigler, et al. [17] and Sarjoughian et al. [13]
(collectively referred to as ZS) is the most widely
held formalism by the community represented at
the workshop and (2) there is a need for more
formal methods to support the development of
models and simulations.

The ZS formalism has some roots in gen-
eral systems theory (GST) as developed by Klir
[9, 8, 10] and many others and is based on a dy-
namical systems theory vocabulary. ZS posits
algebraic concepts between specification levels,
behavior, states, and components. ZS relies on
compositionally closed systems of components.
The concepts form a natural tie-in with category-
theoretic concepts [1, 3, 4, 5, 6, 11].

The history of science and engineering is
replete with stories of great advances occurring
after notions are examined by new methods for

This work was partially supported by the Shodor Com-
putational Science Fund funded by the Shodor Education
Foundation, Inc., Durham, NC and NSF Grant DUE-
0127488.

formulation; for example, Hamilton’s develop-
ment of quaternions revolutionized physics. My
intent is to explore DEVS through category the-
ory with the goal of developing formal methods
for modeling and simulation.

The goal is to transform the development
framework (ZS) to a logical framework. In or-
der to utilize ZS as a basis for formal meth-
ods, I must show how ZS can be translated to
a it is to a formal system (one with axioms and
rules of inference) in an acceptable meta-system.
This makes modeling and simulation accessible
to mathematicians and theoretical computer sci-
entists by translating discipline dependent con-
cepts into a broader setting. Reasoning occurs
in topoi (singular topos) that form algebraic set-
tings for logic and computation. Verification,
validation, and accreditation can be approached
as reasoning and as an adjunction. I develop my
framework as described in [16].

My goal is to identify category-theoretic
concepts that directly support ZS. These con-
cepts will be used to guide research into devel-
oping formal methods for VV&A. In Section 2 I
discuss concepts of the ZS framework and intro-
duce categories related to the specification lev-
els with the identification of possible categories.
Section 3 presents an overview of the category
theoretic concepts used in this paper. Section 4
describes the categorical formulation.

2. ZS Formalism

The fundamental objects of study is the
system. Systems have inner structure and ex-
hibit external behavior. In the system theo-
retic framework, system structure can be mod-
eled as state transition systems and system be-
havior can be represented by input/output rela-
tionships. Furthermore, systems can be modeled
as components that are coupled compositionally.

ZS suggest that systems theory focuses on
three fundamental questions:

SA Systems analysis: the system is given
and its behavioral characteristics must
be determined.

SS Systems synthesis: the behavior is given,
a set of components and rules are given

1

and the system must be constructed to
match the behavior.

SI System inference: the system is given
and we must infer its structure from its
behavior.

Engineers study these classical systems theory
problems, although a very small, informal poll
of scientists shows they are not familiar with
the terminology. I outlined in [15] why I be-
lieve modeling and simulation (M&S) goes be-
yond systems theories. For M&S, there are at
least three more fundamental problems:

SR Systems representation: a system can be
represented in many ways. The manner
in which the system is represented often
determines how well the system can be
utilized.

SVR Systems verification: verification of a
system definition is the determination of
veracity with respect to rules and con-
ventions.

SVA System validation or accreditation: val-
idation or accreditation of a system de-
termines how the system fits into the real
world.

Actually, accreditation spans verification and
validation since its goal is to certify a particu-
lar use.

Classical systems theory is primarily in-
terested in problems SA and SS. In this con-
text, the fundamental operations are decompo-
sition for SA and composition for SS. But for
VV&A, the issue is SI and the three other prob-
lems: SR, SVR, and SVA.

The ZS program specifies five specifica-
tion categories in a hierarchy:

H1 Observational Frame. The observational
frame specifies the resolution of the sys-
tem: the variables, how the variables are
measured with respect to accuracy and
the time base.

H2 I/O Behavior. The time-indexed data
collected from system observations as tu-
ples. I take H2 to a category in or pre-
sentation, where we will use the symbol
Beh for behavior

H3 I/O Function. The I/O function includes
knowledge of the initial state. Given this

initial state, the input stimulus produces
a unique output.

H4 State Transition. Given a state and an
input, the state transition system pro-
duces output state(s). I take H4 as a
category that I denote ST

H5 Coupled Component. Components are
subsystems with their own behavior and
the rules under which they may be com-
posed. H5 is taken as a category that
denoted CC
The last fundamental concept of system

specification to describe is the concept of a mor-
phism. The ZS program defines morphisms in
terms of the specification hierarchy above.

3. Category Theoretic Approach

What does category theory have to do
with ZS or formal methods?

Formal methods are mathematical ap-
proaches to software and system development
which support the rigorous specification, design
and verification of computer systems. The use
of notations and languages with a defined math-
ematical meaning enable specifications, (state-
ments of what the proposed system should do)
to be expressed unambiguously. Because they
are formal mathematical structures there must
be underlying formal (axiomatic) theories. Cur-
rent formal methods are concerned with the ver-
ification but not validation. Using the concept
first proposed in [16], we classify the verification
direction as covariant functor and the validation
direction as contravariant.

Category theory becomes a tool to un-
derstand the development process as a series
of transformations. In order to be useful, for-
mal methods must be able to represent complex
structures as well as convert various viewpoints.
By extending ZS into this structure, we have a
complete mechanism for describing systems and
then reasoning about them.

The ZS approach strongly suggests cate-
gory theory, with its emphasis on morphisms, as
a natural formalization setting. Category the-
ory also played a role in development of General
Systems Theory, primarily by Goguen [3, 4, 5, 6].
The usefulness of the categorical approach is that
it links ZS and system theory on the one hand to

2

abstract algebra, logic, and theoretical computer
science on the other.

3.1. Basic Categories. A category C consists
of objects obC and arrows arC. There is no fixed
notion of what the objects are; they could be sets
or algebras or logics or data structures. The ar-
rows are transformations, either as functions or
morphisms. To give a concrete example, the cat-
egory Set has sets as objects and total functions
between sets as arrows.

For ZS, there are several obvious cate-
gories: Sys, the category of systems; Beh, the
category of behaviors; ST , the category of state-
transitions; and CC, the category of component-
coupling systems. Com has obCom as compo-
nents, while if a, b are components, then there is
an arrow from a to b, denoted a → b, if com-
ponent a can be transformed into component
b. Beh objects might be different forms for dis-
playing the behaviors and the the arrows would
be morphisms that preserve the structure but
change the way the behavior is written down.

We can algebraically operate on cate-
gories to form new categories in a way that mimic
sets: products (Cartesian products) and co-prod-
ucts (disjoint unions). For example the category
Com×Beh would pair every possible component
with every possible behavior.

3.2. Functors. Functors map one category to
another. A functor maps the objects of the do-
main category to the objects of the codomain
category and maps the morphisms of the domain
to the codomain. Functors transform mathemat-
ical structures while, in general, preserving some
properties. A compiler is a functor which trans-
forms algorithms written in one form (the higher
level language) to algorithms written in another
form (machine language) while preserving cor-
rectness. In the context of the paper, the levels
of specifications are converted by functors be-
cause there may be a change is structure at each
level. For example,

H1 H2//

could be a change in structure because math-
ematical conditions are imposed or there could
be a preservation of structure.

I take the natural development direction
as covariant arrows. A contravariant functor

produces the opposite category Cop. If f : A → B
then fop : B → A. The category Cop has the
same objects as C but has arrows as the oppo-
sites. The opposite category captures the con-
cept of duality while the opposite arrows capture
inverse.

3.3. Topoi. Topoi embody many of the proper-
ties of topologies and sets. From sets they collect
concepts like initial objects (null sets) and termi-
nal objects (closures). A topos is guaranteed to
have certain functions, called exponentials, prod-
ucts, and co-products. The existence of prod-
ucts and co-products gives rise to concepts of se-
quence, limits, and co-limits. Operationally, the
idea of subset is the same as the equalizers and
quotients (partitions) as coequalizers.

A necessary concept relating to a topos is
that of a subobject classifier, signified Ω. The
subobject classifiers play the role of boolean val-
ues. The term subobject classifier arises from the
manner in which the concept of subset arises in
topoi. In the category Set, we would symbolize

Y ⊆ X as X
⊆ // Ω. Ω has a minimal struc-

ture somewhat looser than Boolean algbra called
Heyting algebra.

I interpret H4 and H5 to be specifications
and not the total of all possible implementations.
This latter concept is captured in the concept
of free algebras. Therefore, H4 // ST and
H5 // CC represent functors from the speci-
fication to the category of state-transition sys-
tems and component-coupling systems, respec-
tively. These two functors are realizability func-
tors [11]. The concept of realizability is central
to automata (a fundamental concept in ZS).

4. Development

Let Sys be the category whose objects
are anything that anyone designates as a system.
Not all the objects need have mathematical mod-
els: certainly the human brain is a system but
we do not currently have accepted mathemati-
cal models of thinking processes. A model for
a system is generally not considered to be the
system itself but to have been derived from ob-
servations at resolution; therefore, we need an
Obs category, the categorical equivalent of H1,
and a morphism Sys // Obs. The Obs are
further manipulated through a discovery process

3

into Beh, the category of behaviors equivalent to
H2. H3, H4, and H5 should be isomorphic cate-
gories the are various representations of what we
normally call the conceptual model (See 4.1). I
define the conceptual model as the category Con
defined by

(1)

Beh

CC

Insight

��?
??

??
??

??
??

?Beh STSI // ST

CC

SS

����
��

��
��

��
��

The meaning of diagram 1 is that the three cat-
egories are interrelated.

Finally, any of the theoretical statements
can be mapped to a simulator, which is an object
is Eff. The running of the simulator produces
a category of values Obs′ that can be compared
with Obs as described in [16]. The whole process
can be visualized by

Sys Obs
resolution// Obs Con

discovery// Con Eff
program//

Eff Obs′
verification//

At a minimum, the verification functor must pre-
serve the initial observations.

4.1. Formal Treatment of Verification and
Validation. In [16], I develop a framework
within the current understanding of the phi-
losophy of science that characterize model-
ing. The approach recognizes two distinct at-
tributes of a model: correspondence and co-
herence. There are three subconcepts to co-
herence: logical coherence (verification); infer-
ential coherence (soundness, consistency, and
metrics/measurements); and explanation (rele-
vance). Verification is a question of either testing
(science) or proof (mathematics).

Validation is characterized in [16] as the
coherent fit of model with current knowledge or
inferential coherence. The overarching consider-
ation is that models should be lawful:

• Objects in theories are idealizations.
• There can be inferred entities; i. e., items

that occur in the model whose physical
existence are not observed.

• Theoretical postulates are given to con-
ceptually connect objects. These postu-
lates can take the form of definitions, ax-
ioms, or rules of inference.

All three of these considerations must be vali-
dated: they must correspond to the appropri-
ate system attributes. Validation is contravari-
ant because the question of validation starts with
the observed/computed values and these identify
a particular system. Coherence requires topoi to
work in that were provided above: Observations,
models, and simulations.

[16] also describes the formal languages
involved in theories: a logical language Ll, a
theoretical language LT , and an observational
language Lo. The set of all possible statements
T = (Ll + LT)∗ is what one normally calls the
“language” of the science or engineering disci-
pline. The semantics of T is the functor from T
to L∗

o.
Finally, what needs to be a topos? Scien-

tists and engineers typically reason about obser-
vations (via statistics). T is symbolic (logical)
so it too is a topos. If T is too complex to solve
system problems analytically, then a simulator is
needed.

The fundamental algebraic view I take is
the following: (1) any possible observation can
be reproduced (validation) and (2) any produced
output can be associated with a real system (ver-
ification).

There are three basic concepts needed to
develop verification systems: logic, algebra, and
topology. Logic describes truth in the abstract
while algebra describes truth in the concrete. Se-
mantics (the meaning of formal statements) is
represented as functors from the syntactic (log-
ical) language to the concrete application (al-
gebra). Topology naturally enters through the
concept of consistency, which requires the idea
of subsets. The three can be linked isomorphi-
cally and then these can be generalize to include
topoi [7]. The generalization of logical systems,
then, are topoi.

4.2. Verification, Validation, and Accredi-
tation. In mathematics, terms like verification
and validation are called notions. Notions are
concepts that must be formalized in a particular

4

theory to gain meaning. For example, the glos-
sary entry for verification at the DMSO web site
is a notion whereas a statement, say in system
theory, like “a model M is verified if and only if
Theorem X is satisfied” is more what we seek.

How the notions of verification, valida-
tion, and accreditation defined in an algebraic
approach? Suppose system S is in obSys and
that has truly linear behavior (slope and origin).
Let model M be in obCon and that is linear lin-
ear function with the correct slope and origin.
We want (S, M) to be verified, validated, and ac-
creditable at any level because M correctly pre-
dicts S’s behavior and the modeling process cor-
rectly described S. This is the essence of the al-
gebraic view: equality defined by the two maps.
In words, “A validated verified model produces
the system and the verified validated system pro-
duces the model.”

Sys Con
validation// Con Sys

verification//

Con Sys
verification// Sys Con

validation//

In category theory, such a structure is an adjunc-
tion, although there is more technical require-
ments than just the two functors.

If, on the other hand, S requires an infi-
nite series to correctly describe its behavior, the
map from S to obCon is one-to-many, based on
such things as resolution level and the number
coefficients. This system has multiple degrees of
freedom based on the “correctness” of the coef-
ficients in the series. We now have uncertainty
(the number and value of the coefficients). More
and more observations can be made with the pos-
sibility of recovering the coefficient values. Re-
gardless, we always have an approximation if S
truly requires an infinite number of coefficients.
For these reasons other reasons develop in [16], I
view VV&A as a type of risk analysis problem.

The solution reached intuitively in [16] is
developed theoretically in Ben-Haim [2]. An im-
portant theoretical advantage from Ben-Haim is
that the development demands a topos. The di-
rect break with conventional risk analysis is the
view that analysis must be driven by available
information. In other words, the decision maker
needs a model of uncertainty. The information-
gap approach is a non-probabilistic approach

arising from uncertainty considerations in the
engineering and sciences such as uncertain dy-
namical systems going back to 1973 [14]. This
formulation falls into the basic approach in this
paper. Ben-Haim defines uncertainty in terms
of nesting of sets that are defined by an uncer-
tainty parameter α. Such a formulation includes
uncertainty parameters that are probabilities. A
simple example shows the approach.

Recall our example of the system S with
model M where S requires an infinite series but
M has only a finite series. In a mathematical
context we would say that M approximates S
and would consider the convergence of the two
series. In conventional terminology, we are ask-
ing about limits. Let s(x) be the true descrip-
tion for a vector of parameters x and m(x̂) be the
model function for its parameterization x̂, where
x̂ is the approximation to the parameters as de-
veloped, say, through statistical methods. The
information gap model of uncertainty for this can
be defined by

U(α, m) = {s(x) : |s(x)−m(x̂)| ≤ α}
The categorical analogue of [2] is that models of
uncertainty should be at least a partial order in
the category of partial orders POSet.

The information-gap formulation makes
clear that virtually any concept that can be
made into a partial order can be used to model
uncertainty, including probabilistic models and
numerical approximations. Returning to the
decision-theoretic concepts in [16], the decision
makers in any given instance must develop their
own models of uncertainty; the decisions are
make based on the various αs chosen.

5. Conclusion

I have presented a description of the
DEVS framework in a category-theoretic setting.
We only gain a slight amount of abstraction by
considering H1–H5 as categories directly but do
gain in abstraction as we move H4 and H5 to the
the categories ST and CC, respectively. Some
of the ramifications of considering the categori-
cal version were discussed. One new concept is
the inclusion of the in information-gap model of
uncertainty. The concept allows us to consider
reasoning with uncertainty in a non-probabilistic
setting.

5

While I take the ZS framework as the fun-
damental the further two disciplines are apart
the harder it is to see analogies. Category the-
oretic developments can be used as a communi-
cation medium between M&S areas. The value
of the categorical approach is not to supplant
ZS but to discover what should be of universal
concern and present those concerns to the com-
munities that can bring knowledge to bear. For
example, how much of the theory required to ver-
ify numerical solution of a differential equation
describing the flight of a missile is applicable to a
war-gaming simulation with no such mathemat-
ics of this type may occur?

The focus on functors and uncertainty
rather than development can be illustrated by
the following situation. The move from H1 to
H2 is often by statistical regression techniques;
i. e., imposing a model on the observations.
What we then must consider is a category of
possible models. Let Lin be the category of lin-
ear models and N on be the category of There
are decided differences between linear and non-
linear regression models and the eventual model
development. It is easy to formulate a question
categorically:

Lin

N on

?

��?
??

??
??

??
??

?

Obs

Lin

lin

����
��

��
��

��
��
Obs

N on

non

��

The relationship between Lin and N on is injec-
tive (monomorphic); Lin is an approximation of
N on. There must be a sequence of non-linear
models based on (thinking formal power series)
the degree of the models. Approximation is a
form of uncertainty and this nesting is the cen-
terpiece of the information-gap approach.

It is clear that this development has only
begun. The obvious next step is to put detail
into the characterization.

References

[1] M. A. Arbib and E. G. Manes. Machines in a cat-
egory: An expository introduction. SIAM Review,
16:163–192, 1974.

[2] Yakov Ben-Haim. Information-Gap Decision Theory.
Academic Press, Sep. 2001.

[3] J. A. Goguen. Mathematical representation of hier-
archically organized systems. In E. Attinger, editor,
Global Systems Dynamics, pages 112–128. S. Karger,
Basel, 1971.

[4] J. A. Goguen. Categorical foundations of general sys-
tems theory. In F. Pichler and R. Trappl, editors, Ad-
vances in Cybernetics and Systems Research, pages
121–130. Transcripta Books, London, 1973.

[5] J. A. Goguen. Objects. International Journal of Gen-
eral Systems, 1(4):237–243, 1975.

[6] J. A. Goguen and Suzanna Ginaldi. A categorical ap-
proach to general systems theory. In Applied General
Systems Research, pages 257–270. Plenum, 1978.

[7] R. Goldblatt. Topoi: The Categorial Analysis of
Logic. North-Holland, 1984.

[8] George Klir. Trends in General Systems Theory.
Wiley-Interscience, 1972.

[9] George J. Klir. An Approach to General Systems
Theory. Van Nostrand Reinhold, 1969.

[10] George J. Klir. Archtecture of Systems Problem
Solving. Plenum Press, 1985. ISBN 0-306-42867-3.
QA295.K55 1985.

[11] E. G. Manes, editor. Category Theory Applied to
Computation and Control. Springer Verlag, 1975.
Proccedings of the First International Symposium,
San Francisco, February 25–26, 1974.

[12] Dale K. Pace, D. E. Stevenson, and Simone Young-
blood, editors. Foundations ’02: Foundations of Ver-
ification and Validation for the 21st Century, Octo-
ber 22–23, 2003, Laurel Maryland, San Diego, CA,
2003. Society for Computer Simulation.

[13] Hessam S. Sarjoughian and Francois E. Cellier. Dis-
crete Event Modeling and Simulation Technologies:
A Tapestry of Systems and Ai-Based Theories and
Methodologies. Springer Verlag, June 2001.

[14] Fred C. Schweppe. Uncertain Dynamic Systems.
Prentice-Hall, 1973.

[15] D. E. Stevenson. Interdisciplinary knowledge for edu-
cation in modeling and simulation. In Proc. of SCSC
’02, San Diego, CA, 14–18 Jul. 2002, San Diego, CA,
2002. Society for Computer Simulation. CD Version
has no page numbers.

[16] D. E. Stevenson. The Michelson-Morley experiment
as a case study in validation. Computers in Science
and Engineering, pages 40–51, Nov-Dec 2002.

[17] Bernard P. Zeigler, Herbert Praehofer, and Tag Gon
Kim. Theory of Modeling and Simulation: Integrat-
ing Discrete Event and Continuous Complex Dy-
namic Systems. Academic Press, 2nd edition, Jan-
uary 2000.

6

