
Marcel Dekker, Inc. New York • Basel
TM

ROTATING
MACHINERY
VIBRATION

FROM ANALYSIS TO TROUBLESHOOTING

MAURICE L. ADAMS, JR.
Case Western Reserve University

Cleveland, Ohio

Copyright © 2001 Marcel Dekker, Inc.



ISBN: 0-8247-0258-1

This book is printed on acid-free paper.

Headquarters
Marcel Dekker, Inc.
270 Madison Avenue, New York, NY 10016
tel: 212-696-9000; fax: 212-685-4540

Eastern Hemisphere Distribution
Marcel Dekker AG
Hutgasse 4, Postfach 812, CH-4001 Basel, Switzerland
tel: 41-61-261-8482; fax: 41-61-261-8896

World Wide Web:
http://www.dekker.com

The publisher offers discounts on this book when ordered in bulk quantities. For more
information, write to Special Sales/Professional Marketing at the headquarters address
above.

Copyright © 2001 by Marcel Dekker, Inc. All Rights Reserved.

Neither this book nor any part may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, microfilming and recording, or
by any information storage and retrieval system, without permission in writing from the
publisher.

Current printing (last digit):
10 9 8 7 6 5 4 3 2 1

PRINTED IN THE UNITED STATES OF AMERICA

Copyright © 2001 Marcel Dekker, Inc.

http://www.dekker.com


MECHANICAL ENGINEERING
A Series of Textbooks and Reference Books

Founding Editor

L. L. Faulkner
Columbus Division, Battelle Memorial Institute

and Department of Mechanical Engineering
The Ohio State University

Columbus, Ohio

1. Spring Designer's Handbook, Harold Carlson
2. Computer-Aided Graphics and Design, Daniel L. Ryan
3. Lubrication Fundamentals, J. George Wills
4. Solar Engineering for Domestic Buildings, William A. Himmelman
5. Applied Engineering Mechanics: Statics and Dynamics, G. Boothroyd and

C. Poli
6. Centrifugal Pump Clinic, Igor J. Karassik
7. Computer-Aided Kinetics for Machine Design, Daniel L. Ryan
8. Plastics Products Design Handbook, Part A: Materials and Components; Part

B: Processes and Design for Processes, edited by Edward Miller
9. Turbomachinery: Basic Theory and Applications, Earl Logan, Jr.

10. Vibrations of Shells and Plates, Werner Soedel
11. Flat and Corrugated Diaphragm Design Handbook, Mario Di Giovanni
12. Practical Stress Analysis in Engineering Design, Alexander Blake
13. An Introduction to the Design and Behavior of Bolted Joints, John H.

Bickford
14. Optimal Engineering Design: Principles and Applications, James N. Siddall
15. Spring Manufacturing Handbook, Harold Carlson
16. Industrial Noise Control: Fundamentals and Applications, edited by Lewis H.

Bell
17. Gears and Their Vibration: A Basic Approach to Understanding Gear Noise,

J. Derek Smith
18. Chains for Power Transmission and Material Handling: Design and Appli-

cations Handbook, American Chain Association
19. Corrosion and Corrosion Protection Handbook, edited by Philip A.

Schweitzer
20. Gear Drive Systems: Design and Application, Peter Lynwander
21. Controlling In-Plant Airborne Contaminants: Systems Design and Cal-

culations, John D. Constance
22. CAD/CAM Systems Planning and Implementation, Charles S. Knox
23. Probabilistic Engineering Design: Principles and Applications, James N.

Siddall
24. Traction Drives: Selection and Application, Frederick W. Heilich III and

Eugene E. Shube
25. Finite Element Methods: An Introduction, Ronald L. Huston and Chris E.

Passerello

Copyright © 2001 Marcel Dekker, Inc.



26. Mechanical Fastening of Plastics: An Engineering Handbook, Brayton Lincoln,
Kenneth J. Gomes, and James F. Braden

27. Lubrication in Practice: Second Edition, edited by W. S. Robertson
28. Principles of Automated Drafting, Daniel L. Ryan
29. Practical Seal Design, edited by Leonard J. Martini
30. Engineering Documentation for CAD/CAM Applications, Charles S. Knox
31. Design Dimensioning with Computer Graphics Applications, Jerome C.

Lange
32. Mechanism Analysis: Simplified Graphical and Analytical Techniques, Lyndon

O. Barton
33. CAD/CAM Systems: Justification, Implementation, Productivity Measurement,

Edward J. Preston, George W. Crawford, and Mark E. Coticchia
34. Steam Plant Calculations Manual, V. Ganapathy
35. Design Assurance for Engineers and Managers, John A. Burgess
36. Heat Transfer Fluids and Systems for Process and Energy Applications,

Jasbir Singh
37. Potential Flows: Computer Graphic Solutions, Robert H. Kirchhoff
38. Computer-Aided Graphics and Design: Second Edition, Daniel L. Ryan
39. Electronically Controlled Proportional Valves: Selection and Application,

Michael J. Tonyan, edited by Tobi Goldoftas
40. Pressure Gauge Handbook, AMETEK, U.S. Gauge Division, edited by Philip

W. Harland
41. Fabric Filtration for Combustion Sources: Fundamentals and Basic Tech-

nology, R. P. Donovan
42. Design of Mechanical Joints, Alexander Blake
43. CAD/CAM Dictionary, Edward J. Preston, George W. Crawford, and Mark

E. Coticchia
44. Machinery Adhesives for Locking, Retaining, and Sealing, Girard S. Haviland
45. Couplings and Joints: Design, Selection, and Application, Jon R. Mancuso
46. Shaft Alignment Handbook, John Piotrowski
47. BASIC Programs for Steam Plant Engineers: Boilers, Combustion, Fluid

Flow, and Heat Transfer, V. Ganapathy
48. Solving Mechanical Design Problems with Computer Graphics, Jerome C.

Lange
49. Plastics Gearing: Selection and Application, Clifford E. Adams
50. Clutches and Brakes: Design and Selection, William C. Orthwein
51. Transducers in Mechanical and Electronic Design, Harry L. Trietley
52. Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenom-

ena, edited by Lawrence E. Murr, Karl P. Staudhammer, and Marc A.
Meyers

53. Magnesium Products Design, Robert S. Busk
54. How to Integrate CAD/CAM Systems: Management and Technology, William

D. Engelke
55. Cam Design and Manufacture: Second Edition; with cam design software

for the IBM PC and compatibles, disk included, Preben W. Jensen
56. Solid-State AC Motor Controls: Selection and Application, Sylvester Campbell
57. Fundamentals of Robotics, David D. Ardayfio
58. Belt Selection and Application for Engineers, edited by Wallace D. Erickson
59. Developing Three-Dimensional CAD Software with the IBM PC, C. Stan Wei
60. Organizing Data for CIM Applications, Charles S. Knox, with contributions

by Thomas C. Boos, Ross S. Culverhouse, and Paul F. Muchnicki

Copyright © 2001 Marcel Dekker, Inc.



61. Computer-Aided Simulation in Railway Dynamics, by Rao V. Dukkipati and
Joseph R. Amyot

62. Fiber-Reinforced Composites: Materials, Manufacturing, and Design, P. K.
Mallick

63. Photoelectric Sensors and Controls: Selection and Application, Scott M.
Juds

64. Finite Element Analysis with Personal Computers, Edward R. Champion,
Jr., and J. Michael Ensminger

65. Ultrasonics: Fundamentals, Technology, Applications: Second Edition,
Revised and Expanded, Dale Ensminger

66. Applied Finite Element Modeling: Practical Problem Solving for Engineers,
Jeffrey M. Steele

67. Measurement and Instrumentation in Engineering: Principles and Basic
Laboratory Experiments, Francis S. Tse and Ivan E. Morse

68. Centrifugal Pump Clinic: Second Edition, Revised and Expanded, Igor J.
Karassik

69. Practical Stress Analysis in Engineering Design: Second Edition, Revised
and Expanded, Alexander Blake

70. An Introduction to the Design and Behavior of Bolted Joints: Second Edition,
Revised and Expanded, John H. Bickford

71. High Vacuum Technology: A Practical Guide, Marsbed H. Hablanian
72. Pressure Sensors: Selection and Application, Duane Tandeske
73. Zinc Handbook: Properties, Processing, and Use in Design, Frank Porter
74. Thermal Fatigue of Metals, Andrzej Weronski and Tadeusz Hejwowski
75. Classical and Modern Mechanisms for Engineers and Inventors, Preben W.

Jensen
76. Handbook of Electronic Package Design, edited by Michael Pecht
77. Shock-Wave and High-Strain-Rate Phenomena in Materials, edited by Marc

A. Meyers, Lawrence E. Murr, and Karl P. Staudhammer
78. Industrial Refrigeration: Principles, Design and Applications, P. C. Koelet
79. Applied Combustion, Eugene L. Keating
80. Engine Oils and Automotive Lubrication, edited by Wilfried J. Bartz
81. Mechanism Analysis: Simplified and Graphical Techniques, Second Edition,

Revised and Expanded, Lyndon O. Barton
82. Fundamental Fluid Mechanics for the Practicing Engineer, James W.

Murdock
83. Fiber-Reinforced Composites: Materials, Manufacturing, and Design, Second

Edition, Revised and Expanded, P. K. Mallick
84. Numerical Methods for Engineering Applications, Edward R. Champion, Jr.
85. Turbomachinery: Basic Theory and Applications, Second Edition, Revised

and Expanded, Earl Logan, Jr.
86. Vibrations of Shells and Plates: Second Edition, Revised and Expanded,

Werner Soedel
87. Steam Plant Calculations Manual: Second Edition, Revised and Ex panded,

V. Ganapathy
88. Industrial Noise Control: Fundamentals and Applications, Second Edition,

Revised and Expanded, Lewis H. Bell and Douglas H. Bell
89. Finite Elements: Their Design and Performance, Richard H. MacNeal
90. Mechanical Properties of Polymers and Composites: Second Edition, Re-

vised and Expanded, Lawrence E. Nielsen and Robert F. Landel
91. Mechanical Wear Prediction and Prevention, Raymond G. Bayer

Copyright © 2001 Marcel Dekker, Inc.



92. Mechanical Power Transmission Components, edited by David W. South
and Jon R. Mancuso

93. Handbook of Turbomachinery, edited by Earl Logan, Jr.
94. Engineering Documentation Control Practices and Procedures, Ray E.

Monahan
95. Refractory Linings Thermomechanical Design and Applications, Charles A.

Schacht
96. Geometric Dimensioning and Tolerancing: Applications and Techniques for

Use in Design, Manufacturing, and Inspection, James D. Meadows
97. An Introduction to the Design and Behavior of Bolted Joints: Third Edition,

Revised and Expanded, John H. Bickford
98. Shaft Alignment Handbook: Second Edition, Revised and Expanded, John

Piotrowski
99. Computer-Aided Design of Polymer-Matrix Composite Structures, edited by

Suong Van Hoa
100. Friction Science and Technology, Peter J. Blau
101. Introduction to Plastics and Composites: Mechanical Properties and Engi-

neering Applications, Edward Miller
102. Practical Fracture Mechanics in Design, Alexander Blake
103. Pump Characteristics and Applications, Michael W. Volk
104. Optical Principles and Technology for Engineers, James E. Stewart
105. Optimizing the Shape of Mechanical Elements and Structures, A. A. Seireg

and Jorge Rodriguez
106. Kinematics and Dynamics of Machinery, Vladimír Stejskal and Michael

Valáðek
107. Shaft Seals for Dynamic Applications, Les Horve
108. Reliability-Based Mechanical Design, edited by Thomas A. Cruse
109. Mechanical Fastening, Joining, and Assembly, James A. Speck
110. Turbomachinery Fluid Dynamics and Heat Transfer, edited by Chunill Hah
111. High-Vacuum Technology: A Practical Guide, Second Edition, Revised and

Expanded, Marsbed H. Hablanian
112. Geometric Dimensioning and Tolerancing: Workbook and Answerbook,

James D. Meadows
113. Handbook of Materials Selection for Engineering Applications, edited by G.

T. Murray
114. Handbook of Thermoplastic Piping System Design, Thomas Sixsmith and

Reinhard Hanselka
115. Practical Guide to Finite Elements: A Solid Mechanics Approach, Steven M.

Lepi
116. Applied Computational Fluid Dynamics, edited by Vijay K. Garg
117. Fluid Sealing Technology, Heinz K. Muller and Bernard S. Nau
118. Friction and Lubrication in Mechanical Design, A. A. Seireg
119. Influence Functions and Matrices, Yuri A. Melnikov
120. Mechanical Analysis of Electronic Packaging Systems, Stephen A.

McKeown
121. Couplings and Joints: Design, Selection, and Application, Second Edition,

Revised and Expanded, Jon R. Mancuso
122. Thermodynamics: Processes and Applications, Earl Logan, Jr.
123. Gear Noise and Vibration, J. Derek Smith
124. Practical Fluid Mechanics for Engineering Applications, John J. Bloomer
125. Handbook of Hydraulic Fluid Technology, edited by George E. Totten
126. Heat Exchanger Design Handbook, T. Kuppan



127. Designing for Product Sound Quality, Richard H. Lyon
128. Probability Applications in Mechanical Design, Franklin E. Fisher and Joy R.

Fisher
129. Nickel Alloys, edited by Ulrich Heubner
130. Rotating Machinery Vibration: Problem Analysis and Troubleshooting,

Maurice L. Adams, Jr.
131. Formulas for Dynamic Analysis, Ronald L. Huston and C. Q. Liu
132. Handbook of Machinery Dynamics, Lynn L. Faulkner and Earl Logan, Jr.
133. Rapid Prototyping Technology: Selection and Application, Kenneth G.

Cooper
134. Reciprocating Machinery Dynamics: Design and Analysis, Abdulla S.

Rangwala
135. Maintenance Excellence: Optimizing Equipment Life-Cycle Decisions, edi-

ted by John D. Campbell and Andrew K. S. Jardine
136. Practical Guide to Industrial Boiler Systems, Ralph L. Vandagriff
137. Lubrication Fundamentals: Second Edition, Revised and Expanded, D. M.

Pirro and A. A. Wessol
138. Mechanical Life Cycle Handbook: Good Environmental Design and Manu-

facturing, edited by Mahendra S. Hundal
139. Micromachining of Engineering Materials, edited by Joseph McGeough
140. Control Strategies for Dynamic Systems: Design and Implementation, John

H. Lumkes, Jr.
141. Practical Guide to Pressure Vessel Manufacturing, Sunil Pullarcot
142. Nondestructive Evaluation: Theory, Techniques, and Applications, edited by

Peter J. Shull
143. Diesel Engine Engineering: Thermodynamics, Dynamics, Design, and

Control, Andrei Makartchouk
144. Handbook of Machine Tool Analysis, Ioan D. Marinescu, Constantin Ispas,

and Dan Boboc
145. Implementing Concurrent Engineering in Small Companies, Susan Carlson

Skalak
146. Practical Guide to the Packaging of Electronics: Thermal and Mechanical

Design and Analysis, Ali Jamnia
147. Bearing Design in Machinery: Engineering Tribology and Lubrication,

Avraham Harnoy
148. Mechanical Reliability Improvement: Probability and Statistics for Experi-

mental Testing, R. E. Little
149. Industrial Boilers and Heat Recovery Steam Generators: Design, Ap-

plications, and Calculations, V. Ganapathy
150. The CAD Guidebook: A Basic Manual for Understanding and Improving

Computer-Aided Design, Stephen J. Schoonmaker
151. Industrial Noise Control and Acoustics, Randall F. Barron
152. Mechanical Properties of Engineered Materials, Wolé Soboyejo
153. Reliability Verification, Testing, and Analysis in Engineering Design, Gary S.

Wasserman
154. Fundamental Mechanics of Fluids: Third Edition, I. G. Currie
155. Intermediate Heat Transfer, Kau-Fui Vincent Wong
156. HVAC Water Chillers and Cooling Towers: Fundamentals, Application, and

Operation, Herbert W. Stanford III



Additional Volumes in Preparation

Handbook of Turbomachinery: Second Edition, Revised and Expanded, Earl
Logan, Jr., and Ramendra Roy

Progressing Cavity Pumps, Downhole Pumps, and Mudmotors, Lev Nelik

Gear Noise and Vibration: Second Edition, Revised and Expanded, J. Derek
Smith

Piping and Pipeline Engineering: Design, Construction, Maintenance,
Integrity, and Repair, George A. Antaki

Turbomachinery: Design and Theory: Rama S. Gorla and Aijaz Ahmed
Khan

Mechanical Engineering Software

Spring Design with an IBM PC, Al Dietrich

Mechanical Design Failure Analysis: With Failure Analysis System Software
for the IBM PC, David G. Ullman

Copyright © 2001 Marcel Dekker, Inc.



Dedication

i

This book is dedicated to my longtime friend and professional colleague Elemer
Makay, who passed away in April 1996. To those in power plants, who knew Dr.
Makay as “Doc,” his impact as the master troubleshooter of power plant pumps is
possibly unrivaled in any other branch of rotating machinery. Troubleshooting
was his life’s work. His grasp of engineering fundamentals rivaled that of the best
academics, while his “nuts-and-bolts” savvy of machinery rivaled that of the best
shop master mechanics. I doubt that I will ever see another troubleshooter of his
caliber.

THE FIRST OUTING OF A WORLD-CLASS
TROUBLESHOOTER

I met Dr. Elemer Makay shortly after his arrival at the Franklin Institute Research
Laboratories (FIRL) in 1969, at which time he was starting a new section called
Rotating Machinery. I had been at FIRL (Philadelphia) for only two years, so we
both had at least one thing in common—we were both recent “intruders” into this
high-pressure dog-eat-dog organization in which individual senior staff survived
solely on outside contract funds they could secure.

Because of some common elements in our respective previous industrial ex-
periences, we were initially drawn together out of a mutual sense of professional
interests. It quickly became obvious that we had a lot more in common, and we
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soon developed into lifelong allies. We solidified our alliance and deep friendship
over the next two years. I left FIRL in July 1971 to work for Westinghouse’s Cor-
porate R & D Center near Pittsburgh.

A significant event occurred in April 1971. A representative of Northern
States Power (NSP) in Minneapolis, having read one of Elemer’s early articles on
feed water pumps, contacted him for technical assistance in dealing with a quite
nasty feed pump problem at their new Monticello Nuclear Power Plant. I urged El-
emer to act quickly on this great opportunity to be the utility company’s expert
against the pump vendor. Elemer was initially reluctant because he had been that
vendor’s pump hydraulics expert before coming to FIRL, and his departure from
the vendor’s employ was not on the warmest of terms with the management, to put
it mildly.

It was easy for me to push him on this. I had nothing to fear of the vendor’s
reaction if Elemer became involved on NSP’s behalf. He knew quite well why the
pumps sold to NSP were not well suited to the application, which was basic in-
formation that the pump manufacturer was apparently not sharing with NSP. Af-
ter a long lunch to discuss NSP’s initial request, Elemer and I returned to our re-
spective offices.

Not long after lunch, our secretary was searching for Elemer to take a “very
important  long-distance call from some company in Minnesota.” I told her to
transfer the call to my phone, at which time I “dealt myself in” and told the per-
son that Elemer and I could make their 7:00 pm urgent meeting that day at NSP
Corporate Offices. I then arranged for two air tickets to Minneapolis and $200
cash for each of us. I handed Elemer his ticket and $200, and told him my wife
was meeting us at the airport with some changes of clothes. For a few moments,
Elemer was speechless, a rare event for him.

This was Elemer’s first outing as what he was to eventually be known—the
world’s leading troubleshooter for power plant pumps. Over the next 25 years, a
year never went by without Elemer’s and my reliving that NSP day many times
over and enjoying it a little more each time.

Elemer went on single-handedly to clean up the power plant pump industry.
Naturally, when a single individual successfully takes a whole industry to task for
its shortcomings, he or she will accumulate some detractors. Elemer’s detractors
were primarily management individuals in the pump companies, but they faded
into obscurity as Elemer became a legend.

Elemer’s articles and papers are studied and applied by pump designers and
researchers worldwide. He credited his success to his having the “largest labora-
tory in the world, from the Atlantic to the Pacific,” i.e., the entire U.S. electric util-
ity industry. In 1992, Elemer received the highest honor for a pump technologist,
the ASME Worthington Award. Elemer has left his mark on his profession to an
extent that few individuals ever achieve.
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Preface

v

Every spinning rotor has some vibration, at least a once-per-revolution frequency
component, because it is of course impossible to make any rotor perfectly mass bal-
anced. Experience has provided guidelines for quantifying approximate comfort-
able safe upper limits for allowable vibration levels on virtually all types of rotat-
ing machinery. That such limits are crucial to machine durability, reliability, and
life is rarely disputed. However, the appropriate magnitude of such vibration lim-
its for specific machinery is often disputed, the vendor’s limit usually being signif-
icantly higher than a prudent customer’s wishes. Final payment for a new machine
is occasionally put on hold pending the resolution of the machine’s failure to oper-
ate below the vibration upper limits prescribed in the purchase specifications.

The mechanics of rotating machinery vibration is an interesting subject with
considerable technical depth and breadth. Many industries rely heavily on reliable
trouble-free operation of rotating machinery, e.g., power generation; petrochemi-
cal process; manufacturing; land, sea, and air transportation; heating and air con-
ditioning; aerospace; computer disk drives; textiles; home appliances; and various
military systems. However, the level of basic understanding and competence on
the subject of rotating machinery vibration varies greatly among the various af-
fected industries. In my opinion, all industries reliant upon rotating machinery
would benefit significantly from a strengthening of their in-house competence on
the subject of rotating machinery vibration. This book’s mission is to foster an un-
derstanding of rotating machinery vibration in both industry and academia.
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Even with the best of design practices and most effective methods of avoid-
ance, many rotor vibration causes are so subtle and pervasive that incidents of ex-
cessive vibration in need of solutions continue to occur. Thus, a major task for the
vibrations engineer is diagnosis and correction. To that end, this book comprises
four sequential parts.

Part 1, Primer on Rotor Vibration, is a group of three chapters that develop
the fundamentals of rotor vibration, starting with basic vibration concepts, fol-
lowed by lateral rotor vibration and torsional rotor vibration principles and prob-
lem formulations.

Part 2, Rotor Dynamic Analyses, is a set of three chapters focused on the
general-purpose lateral rotor vibration PC-based code supplied with this book.
This code, developed in my group at Case Western Reserve University, is based
on the finite-element approach explained in Part 1. Major topics are calculation of
rotor unbalance response, calculation of self-excited instability vibration thresh-
olds, bearing and seal dynamic properties, and turbomachinery impeller and blade
effects of rotor vibration. In addition to their essential role in the total mission of
this book, Parts 1 and 2 form the basis of the author’s graduate-level course in ro-
tor vibration. In that context, Parts 1 and 2 provide an in-depth treatment of rotor
vibration design analysis methods.

Part 3, Monitoring and Diagnostics, consists of three chapters on measure-
ments of rotor vibration and how to use the measurements to identify and diagnose
problems in actual rotating machinery. Signal analysis methods and experience-
based guidelines are provided. Approaches are given on how to use measurements
in combination with computer model analyses for optimal diagnosis and solution
of rotor vibration problems.

Part 4, Troubleshooting Case Studies, is a group of three chapters devoted
to rotor vibration troubleshooting case studies and topics. Major problem topics
covered include high sensitivity to rotor unbalance, self-excited vibration, vertical
machines, rub-induced thermal bows, loose parts, seismic and shock inputs, para-
metric excitation, and rotor balancing.

The main objectives of this book are to cover all the major rotor vibration
topics in a unified presentation and to be much more than just a how-to “cook-
book” on solving rotating machinery vibration problems. These objectives are ad-
dressed by providing depth and breadth to governing fundamental principles plus
a background in modern measurement and computational tools for rotor vibration
design analyses and troubleshooting. In all engineering problem-solving endeav-
ors, the surest way to success is to gain physical insight into the important topics
involved in the problem, and that axiom is especially true in the field of rotating
machinery vibration. It is my hope that this book will aid those seeking to gain
such insight.

Maurice L. Adams, Jr.

Copyright © 2001 Marcel Dekker, Inc.



Acknowledgments

vii

I am unusually fortunate in having worked for several expert-caliber individuals dur-
ing my 14 years of industrial employment prior to entering academia in 1977. I here
acknowledge those individuals, some of whom have unfortunately passed away.

In the mid-1960s, my work in rotor dynamics began at Worthington Corpora-
tion’s Advanced Products Division (APD) in Harrison, NJ. There I worked under two
highly capable European-bred engineers, Chief Engineer Walter K. Jekat (German)
and his assistant John P. Naegeli (Swiss). John Naegeli later returned to Switzerland
and eventually became general manager of Sulzer’s Turbo-Compressor Division and
later general manager of their Pump Division. My first assignment at APD was basi-
cally to be “thrown into the deep end” of a new turbomachinery development for the
U.S. Navy that even today would be considered highly challenging. That new prod-
uct comprised a 42,000 rpm rotor having an overhung centrifugal air compressor im-
peller at one end and an overhung single-stage impulse steam turbine powering the
rotor from the other end. The two journal bearings and the double-acting thrust bear-
ing were all hybrid hydrodynamic-hydrostatic fluid-film bearings with water as the
lubricant and running quite into the turbulence regime. Worthington subsequently
sold several of these units over a period of many years. While I was at APD, my in-
terest in and knowledge of centrifugal pumps grew considerably through my frequent
contacts with the APD general manager, Igor Karassik, the world’s most prolific
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Hagg were all professionally enriching. At Westinghouse, I was given the lead
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early 1977. Last but not least, my PhD thesis advisor at Pitt, Professor Andras
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students, both undergraduate and graduate, from whom I continue to learn every
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1

Vibration Concepts and Methods

1. THE ONE-DEGREE-OF-FREEDOM MODEL

The mass-spring-damper model, shown in Fig. 1, is the starting point for under-
standing mechanical vibrations. A thorough understanding of this most elemen-
tary vibration model and its full range of vibration characteristics is absolutely es-
sential to a comprehensive and insightful study of the rotating machinery vibration
field. The fundamental physical law governing all vibration phenomena is New-
ton’s second law, which in its most commonly used form says that the sum of the
forces acting upon an object is equal to its mass times its acceleration. Force and
acceleration are both vectors, so Newton’s second law, written in its general form,
yields a vector equation. For the one-degree-of-freedom (DOF) system, this re-
duces to a scalar equation, as follows.

F � ma (1)

F � sum of forces acting upon body
m � mass of body
a � acceleration of body

For the system in Fig. 1, F � ma yields its differential equation of motion, as fol-
lows.

mẍ � cẋ � kx � ƒ(t) (2)

For the system in Fig. 1, the forces acting upon the mass include the exter-
nally applied time-dependent force, ƒ(t), plus the spring and damper motion–de-
pendent connection forces, �kx and �cẋ. Here, the minus signs account for the
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spring force resisting displacement (x) in either direction from the equilibrium po-
sition and the damper force resisting velocity (ẋ) in either direction. The weight
(mg) and static deflection force (k�st) that the weight causes in the spring cancel
each other. Equations of motion are generally written about the static equilibrium
position state and then need not contain weight and weight-balancing spring de-
flection forces.

1.1. Assumption of Linearity

In the model of Eq. (2), as in most vibration analysis models, spring and damper
connection forces are assumed to be linear with (proportional to) their respective
driving parameters, i.e., displacement (x) across the spring and velocity (ẋ) across
the damper. These forces are therefore related to their respective driving parame-
ters by proportionality factors, stiffness “k” for the spring and “c” for the damper.
Linearity is a simplifying assumption that permeates most vibration analyses be-
cause the equations of motion are then made linear, even though real systems are
never completely linear. Fortunately, the assumption of linearity leads to adequate
answers in most vibration engineering analyses and simplifies considerably the
tasks of making calculations and understanding what is calculated. Some special-
ized large-amplitude rotor vibration problems justify treating nonlinear effects,
e.g., large rotor unbalance such as from turbine blade loss, shock and seismic
base-motion excitations, rotor rub-impact phenomena, and instability vibration
limit cycles. These topics are treated in subsequent sections of this book.

1.2. Unforced System

The solution for the motion of the unforced one-degree-of-freedom system is im-
portant in its own right but specifically important in laying the groundwork to
study self-excited instability rotor vibrations. If the system is considered to be un-
forced, then ƒ(t) � 0 and Eq. (2) becomes the following.

mẍ � cẋ � kx � 0 (3)

FIGURE 1 One-degree-of-freedom linear spring-mass-damper model.
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This is a second-order homogeneous ordinary differential equation. To solve for
x(t) from Eq. (3), one needs to specify the two initial conditions, x(0) and ẋ(0). As-
suming k and c are both positive, three categories of solutions can result from Eq.
(3), (a) underdamped, (b) critically damped, and (c) overdamped. These are just
the traditional labels used to describe the three distinct types of roots and the cor-
responding three motion categories that Eq. (3) can potentially yield when k and
c are both positive. Substituting the known solution form (Ce�t) into Eq. (3) and
then canceling out the solution form yields the following quadratic equation for its
roots (eigenvalues) and leads to the equation for the extracted two roots, �1,2, as
follows.

m�2 � c� � k � 0

�1,2 � � �
2
c
m
� � ����2

c�m
���

2

� �� ���
m
k
����

(4)

The three categories of root types possible from Eq. (4) are listed as follows.

1. Underdamped, (c/2m)2 � (k/m), complex conjugate roots, �1,2 � 	 �
i
d

2. Critically damped, (c/2m)2 � (k/m), equal real roots, �1,2 � 	
3. Overdamped, (c/2m)2 � (k/m), real roots, �1,2 � 	 � �

The well-known x(t) time signals for these three solution categories are illustrated
in Fig. 2 along with the undamped system (i.e., c � 0). In most mechanical sys-
tems, the important vibration characteristics are contained in modes with so-called
underdamped roots, as is certainly the case for rotor dynamical systems. The gen-

FIGURE 2 Motion types for the unforced one-degree-of-freedom system.
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eral expression for the motion of the unforced underdamped system is commonly
expressed in any one of the following four forms.

�
sin(
dt � 
s

�) or sin(
dt � 
s
�)

�x(t) � Xeat OR (5)
cos(
dt � 
c

�) or cos(
dt � 
c
�)

X single-peak amplitude of exponential decay envelope at t � 0


d � �
	2
n	�	 		2	, damped natural frequency

phase angle, 
s
� � �
s

� � 
c
� � 90°, and 
c

� � �
c
� yield same signal

	 � �c/2m, real part of eigenvalue for underdamped system

n � �k/	m	, undamped natural frequency
i � ��	1	

1.3. Self-Excited Dynamic-Instability Vibrations

The unforced underdamped system’s solution, as expressed in Eq. (5), provides a
convenient way to introduce the concept of vibrations caused by dynamic insta-
bility. In many standard treatments of vibration theory, it is tacitly assumed that c
� 0. However, the concept of negative damping is a convenient way to model
some dynamic interactions that tap an available energy source, modulating the
tapped energy to produce so-called self-excited vibration.

Using the typical (later shown) multi-degree-of-freedom models employed
to analyze rotor-dynamical systems, design computations are performed to deter-
mine operating conditions at which self-excited vibrations are predicted. These
analyses essentially are a search for zones of operation within which the real part
(	) of any of the system’s eigenvalues becomes positive. It is usually one of the
rotor-bearing system’s lower frequency corotational-orbit-direction vibration
modes, at a natural frequency less than the spin speed frequency, whose eigen-
value real part becomes positive. That mode’s transient response is basically the
same as would be the response for the 1-DOF system of Eq. (3) with c � 0 and c2

� 4km, which produces 	 � 0, a positive real part for the two complex conjugate
roots of Eq. (4). As Fig. 3 shows, this is the classic self-excited vibration case, ex-
hibiting a vibratory motion with an exponential growth envelope, as opposed to
the exponential decay envelope (for c � 0) shown in Fig. 2. The widely accepted
fact that safe reliable operation of rotating machinery must preclude such dynam-
ical instabilities from zones of operation can already be appreciated just from the
graph shown in Fig. 3.

1.4. Steady-State Sinusoidally Forced Systems

If the system is dynamically stable (c � 0), i.e., the natural mode is positively
damped as illustrated in Fig. 2, then long-term vibration can persist only as the re-
sult of some long-term forcing mechanism. In rotating machinery, the one long-
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term forcing mechanism that is always present is the residual mass unbalance dis-
tribution in the rotor, and that can never be completely eliminated. Rotor mass un-
balances are modeled by equivalent forces fixed in the rotor, in other words, a
group of rotor-synchronous rotating loads each with a specified magnitude and
phase angle locating it relative to a common angular reference point (key phaser)
fixed on the rotor. When viewed from a fixed radial direction, the projected com-
ponent of such a rotating unbalance force varies sinusoidally in time at the rotor
spin frequency. Without preempting the subsequent treatment in this book of the
important topic of rotor unbalance, suffice it to say that there is a considerable
similarity between the unbalance-driven vibration of a rotor and the steady-state
response of the 1-DOF system described by Eq. (2) with ƒ(t) � F0 sin(
 t � �).
Equation (2) then becomes the following.

mẍ � cẋ � kx � F0 sin(
 t � �) (6)

F0 � force magnitude
� � force phase angle

 � forcing frequency

It is helpful at this point to recall the relevant terminology from the mathe-
matics of differential equations, with reference to the solution for Eq. (2). Because
this is a linear differential equation, its total solution can be obtained by a linear
superposition or adding of two component solutions, the homogeneous solution
and the particular solution. For the unforced system, embodied in Eq. (3), the ho-
mogeneous solution is the total solution, because ƒ(t) � 0 yields a zero particular
solution. For any nonzero ƒ(t), unless the initial conditions, x(0) and x˙(0), are
specifically chosen to start the system on the steady-state solution, there will be a
start-up transient portion of the motion that for stable systems will die out as time

FIGURE 3 Initial growth of dynamical instability from an initial disturbance.
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progresses. That start-up transient is contained in the homogeneous solution, i.e.,
Fig. 2. The steady-state long-term motion is contained in the particular solution.

Rotating machinery designers and troubleshooters are concerned with long-
term-exposure vibration levels, because of material fatigue considerations, and are
concerned with maximum peak vibration amplitudes passing through forced res-
onances within the operating zones. It is therefore only the steady-state solution,
such as of Eq. (6), that is most commonly extracted. Because this system is linear,
only the frequency(s) in ƒ(t) will be present in the steady-state (particular) solu-
tion. Thus the solution of Eq. (6) can be expressed in any of the following four
steady-state solution forms, with phase angle as given for Eq. (5) for each to rep-
resent the same signal.

�sin(
t � 
s
�) or sin(
t � 
s

�)
x(t) � X cos(
t � 
c

�) or cos(
t � 
c
�)� (7)

The steady-state single-peak vibration amplitude (X) and its phase angle relative
to the force (let � � 0) are solvable as functions of the sinusoidally varying force
magnitude (F0) and frequency (
), mass (m), spring stiffness (k), and damper co-
efficient (c) values. This can be presented in the standard normalized form shown
in Fig. 4.

1.5. Undamped Natural Frequency: An Accurate
Approximation

Because of the modest amounts of damping typical of most mechanical systems,
the undamped model provides good answers for natural frequencies in most situ-
ations. Figure 4 shows that the natural frequency of the 1-DOF model is the fre-
quency at which an excitation force produces maximum vibration (i.e., a forced
resonance) and is thus important. As shown in a subsequent topic of this chapter
(Modal Decomposition), each natural mode of an undamped multi-DOF model is
exactly equivalent to an undamped 1-DOF model. Therefore, the accurate ap-
proximation now shown for the 1-DOF model is usually applicable to the impor-
tant modes of multi-DOF models.

The ratio (�) of damping to critical damping (frequently referenced as a per-
centage; e.g., � � 0.1 is “10% damping”) is derivable as follows. Shown with Eq.
(4), the defined condition for “critically damped” is (c/2m)2 � (k/m), which yields
c � 2�km	 � cc, the “critical damping.” Therefore, the damping ratio, defined as
� � c/cc, can be expressed as follows.

� � (8)

With Eqs. (4) and (5), the following were defined: 
n � �k/	m	 (undamped natu-
ral frequency), 	 � �c/2m (real part of eigenvalue for underdamped system), and

c
�
2�km	
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d � �
	2
n	�	 		2	 (damped natural frequency). Using these expressions with Eq.

(8) for the damping ratio (�) leads directly to the following formula for the
damped natural frequency.


d � 
n�1	 �	 �	2	 (9)

This well-known important formula clearly shows just how well the undamped
natural frequency approximates the damped natural frequency for typical appli-
cations. For example, a generous damping estimate for most potentially resonant
mechanical system modes is 10 to 20% of critical damping (� � 0.1 to 0.2). Sub-
stituting the values � � 0.1 and 0.2 into Eq. (9) gives 
d � 0.995
n for 10%
damping and 
d � 0.98 
n for 20% damping, i.e., 0.5% error and 2% error, re-
spectively. For the even smaller damping ratio values typical of many structures,
the approximation just gets better. A fundamentally important and powerful di-
chotomy, applicable to the important modes of many mechanical and structural vi-

FIGURE 4 One-degree-of-freedom steady-state response to a sinusoidal force.

(a) X/(F0 /k) vs. 
 /
n; (b) 
 vs. 
/
n, � � 1 at critically damped.
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bratory systems, becomes clear in the context of this accurate approximation: A
natural frequency is only slightly lowered by the damping, but the peak vibration
caused by an excitation force at the natural frequency is overwhelmingly lowered
by the damping. Figure 4 clearly shows all this.

1.6. The One-Degree-of-Freedom Model as an
Approximation

Equation (2) is an exact mathematical model for the system schematically illus-
trated in Fig. 1. However, real-world vibratory systems do not look like this clas-
sic 1-DOF picture, but in many cases it adequately approximates them for the pur-
poses of engineering analyses. An appreciation for this is essential for one to make
the connection between the mathematical models and the real devices that the
models are employed to analyze.

One of many important examples is the concentrated mass (m) supported at
the free end of a uniform cantilever beam (length L, bending moment of inertia I,
Young’s modulus E) as shown in Fig. 5a. If the concentrated mass has consider-
ably more mass than the beam, one may reasonably assume the beam to be mass-
less, at least for the purpose of analyzing vibratory motions at the system’s lowest
natural frequency transverse mode. One can thereby adequately approximate the
fundamental mode by a 1-DOF model. For small transverse static deflections (xst)
at the free end of the cantilever beam resulting from a transverse static load (Fst)
at its free end, the equivalent spring stiffness is obtained directly from the can-
tilever beam’s static deflection formula. This leads directly to the equivalent 1-
DOF undamped-system equation of motion, from which its undamped natural fre-
quency (
n) is extracted, as follows.

xst � �
F
3
s

E
tL

I

3

� (beam deflection formula) and Fst � kxst � k � �
F
xs

s

t

t
� � �

3
L
E
3
I

�

FIGURE 5 Two examples treated as linear 1-DOF models. (a) Cantilever beam
with a concentrated end mass; (b) simple pendulum.
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Then,

mẍ � ��
3
L
E
3
I

�� x � 0 �
n � ��
m
k
�� � ��

m

3�E

L�I
3

�� (10)

In this example, the primary approximation is that the beam is massless. The sec-
ondary approximation is that deflections are small enough so that simple linear
beam theory provides a good approximation of beam deflection.

A second important example is illustrated in Fig. 5b, the simple planar pen-
dulum having a mass (m) concentrated at the free end of a rigid link of negligible
mass and length (L). The appropriate form of Newton’s second law for motion
about the fixed pivot point of this model is M � J�̈, where M is the sum of mo-
ments about the pivot point “o,” J (equal to mL2 here) is the mass moment of in-
ertia about the pivot point, and � is the single motion coordinate for this 1-DOF
system. The instantaneous sum of moments about pivot point “o” consists only of
that from the gravitational force mg on the concentrated mass, as follows (minus
sign because M is always opposite �).

M � �mgL sin � � mL2�̈ � mgL sin � � 0

Dividing by mL2 gives the following motion equation.

�̈ � ��
L
g

�� sin � � 0 (11)

This equation of motion is obviously nonlinear. However, for small motions (� �
1), sin � 
 �, so it can be linearized as an approximation as follows.

�̈ � ��
L
g

�� � � 0 � 
n � ��
L
g

�� (12)

In this last example, the primary approximation is that the motion is small.
The secondary approximation is that the pendulum has all its mass concentrated
at its free end. Note that the stiffness or restoring force effect in this model is not
from a spring but from gravity. It is essential to make simplifying approximations
in all vibration models in order to have feasible engineering analyses. It is, how-
ever, also essential to understand the practical limitations of those approxima-
tions, to avoid producing analysis results that are highly inaccurate or, worse, do
not even make physical sense.

2. MULTI-DEGREE-OF-FREEDOM MODELS

It is conventional practice to model rotor dynamical systems with multi-degree-
of-freedom models, usually by utilizing standard finite-element procedures. To
apply and understand such models comfortably, it is helpful to consider first
somewhat simpler models having more than one degree of freedom.
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The number of degrees of freedom of a dynamical system is the number
of kinematically independent spatial coordinates required to specify uniquely
and totally any position state the system can have. Consequently, with F � ma
the governing physical principle, this DOF number is also equal to the number
of second-order ordinary differential equations (ODEs) required to characterize
the system mathematically. Clearly, the 1-DOF system shown in Fig. 1 is con-
sistent with this general rule, i.e., one spatial coordinate (x) and one ODE, Eq.
(2), to characterize the system mathematically. The 2-DOF system is the next
logical step to study.

2.1. Two-Degree-of-Freedom Models

As shown in the previous section, even the 1-DOF model can provide usable en-
gineering answers when certain simplifying assumptions are justified. It is
surely correct to infer that the 2-DOF model can provide usable engineering an-
swers over a considerably broader range of problems than the 1-DOF model.
Also, first understanding the 2-DOF model is the best approach to tackling the
subject of multi-DOF models. Figure 6 shows a common 2-DOF model. With
the aid of the ever-important free-body diagrams, application of F � ma indi-
vidually to each mass yields the following two equations of motion for this
model.

m1ẍ1 � (c � c1)ẋ1 � (k � k1)x1 � cẋ2 � kx2 � ƒ1(t)

m2ẍ2 � (c � c2) ẋ2 � (k � k2)x2 � cẋ1 � kx1 � ƒ2(t)
(13)

FIGURE 6 A two-degree-of-freedom model.
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With two or more DOFs, it is quite useful to write the equations of motion in ma-
trix form, as follows for Eqs. (13).

� � �ẍ1

ẍ2
� � � �

� �ẋ1

ẋ2
� � � � �x1

x2� � � �
(14)

For a multi-DOF system with an arbitrary number of DOFs, the motion equations
are typically written in the following condensed matrix notation.

[M]{ẍ} � [C]{ẋ} � [K]{x} � {ƒ(t)} (15)

[M] � mass matrix
[C] � damping matrix
[K] � stiffness matrix

Note that all three matrices in Eq. (14) are symmetric, a property exhaustively
treated in Sec. 4 of Chapter 2. Also note that Eqs. (13) are coupled through dis-
placements and velocities but not accelerations. This is easily observable when the
motion equations are in matrix form, Eq. (14), noting that the mass matrix has ze-
ros for the off-diagonal terms whereas the stiffness and damping matrices do not.
Coupling means that these two differential equations are not independent and thus
are solvable only as a simultaneous pair. The stiffness and damping coupling of
the two motion equations clearly reflects the physical model (Fig. 6), as the two
masses are connected to each other by a spring (k) and a damper (c).

Figure 7 shows a second 2-DOF example, the planar double compound pen-
dulum, which demonstrates acceleration (inertia) coupling. This example is also
utilized here to introduce the well-known Lagrange equations, an alternative ap-

ƒ1(t)
ƒ2(t)

�k
k � k2

k � k1

�k

�c
c � c2

c � c1

�c
0

m2

m1

0

FIGURE 7 A planar double compound pendulum with concentrated masses.
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proach to applying F � ma directly as done in all the previous examples. The La-
grange approach does not utilize the free-body diagrams that are virtually manda-
tory when applying F � ma directly.

The Lagrange equations are derived directly from F � ma and therefore em-
body the same physical principle. Their derivation can be found in virtually any
modern second-level text on dynamics or vibrations, and they are expressible as
follows.

�
d
d
t
� ��

�
�
q
T
˙i
�� � �

�
�
q
T

i
� � �

�
�
q
V

i
� � Qi i � 1, 2, . . ., nDOF (16)

The qi’s and q̇i’s are the generalized coordinates and velocities, respectively, T is
the kinetic energy, V is the potential energy, and the Qi’s are the generalized forces.
Generalized coordinates can be either straight-line displacements (e.g., x, y, z) or
angular displacements (e.g., �x, �y, �z). Thus, a generalized force associated with a
straight-line displacement will in fact have units of force, whereas a generalized
force associated with an angular displacement will have units of moment or torque.
Here, kinetic energy can be a function of both generalized coordinates and veloc-
ities, whereas potential energy is a function of generalized coordinates only, i.e., T
� T(q̇i, qi) and V � V(qi). Obtaining the two equations of motion for the 2-DOF
double compound pendulum (Fig. 7) is summarized as follows.
Kinetic energy:

T � �
1
2

�m1�2
1 � �

1
2

�m2�2
2 (17)

Here, �1 and �2 are the speeds of m1 and m2, respectively, and their squares work
out to the following.

�2
1 � L2

1�̇2
1

�2
2 � L2

1�̇2
1 � L2

2�̇2
2 � 2L1L2�̇1�̇2 (cos �1 cos �2 � sin �1 sin �2)

Potential energy:

V � m1gL1(1 � cos �1) � m2g[L1(1 � cos �1) � L2(1 � cos �2)] (18)

Substituting the T and V expressions into the Lagrange equations (q1 � �1 and q2

� �2) leads to the two equations of motion for the double compound pendulum
model shown in Fig. 7. These two motion equations are nonlinear just as shown
in Eq. (11) for the simple pendulum. Therefore, they can be linearized for small
motions (�1 � 1 and �2 � 1) in the same manner as Eq. (12) was obtained from
Eq. (11), to obtain the following.

� � ��̈1

�̈2
�

� � � ��1

�2� � �0
0�

(19)
0

m2gL2

(m1 � m2)gL1

0

m2L1L2

m2L2
2

(m1 � m2)L2
1

m2L1L2
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Because Eqs. (19) are written in matrix form, it is clear from the mass matrix and
the zeros in the stiffness matrix that this model has acceleration (inertia) coupling
but not displacement coupling. Also, the stiffnesses or generalized restoring
forces (moments) in this model are not from springs but from gravity, just as in the
simple pendulum model illustrated in Fig. 5b. Damping was not included in this
model. As in the previous example, the matrices in Eq. (19) for this example are
symmetric, as they must be.

2.2. Matrix Bandwidth and Zeros

The 4-DOF model in Fig. 8 has a characteristic common for models of many
types of vibratory structures, such as many rotor vibration models, namely nar-
row-bandwidth matrices. Specifically, this system’s mass matrix is diagonal
(i.e., only its diagonal elements are nonzero) and its stiffness matrix is tridiago-
nal (i.e., only its central three diagonals are nonzero), as shown in Fig. 8. Obvi-
ously, a model’s matrices are essentially its equations of motion. For this model,
the diagonal nature of the mass matrix reflects that the model has no inertia cou-
pling, in contrast to the model in Fig. 7. For rotors, as shown in Chapter 2, the
lumped mass approach gives a diagonal mass matrix, in contrast to the so-called
distributed mass and consistent mass approaches, which are preferred to the
lumped mass approach since they yield better model resolution accuracy. That
is, they require a smaller number of degrees of freedom or finite elements (i.e.,

FIGURE 8 A four-degree-of-freedom lumped-mass model.
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smaller matrices) to get the same model resolution accuracy. Both the dis-
tributed mass and consistent mass models yield multidiagonal mass matrices.
Unlike the lumped mass model shown in Fig. 8, they embody a first-order ac-
count of inertia coupling between adjacent masses in the model and thus better
resolution accuracy. As in the previous examples, the matrices for the model in
Fig. 8 are symmetric, as they must be.

Rotors are essentially beams, albeit circular beams. In rotor vibration mod-
els, rotors are typically sectioned (discretized) using circular-bar finite elements,
with the local radial and angular displacement coordinates numbered sequen-
tially according to axial location along the rotor. Lateral rotor vibration models
therefore will have narrow-bandwidth motion equation matrices when the rotor
model is connected directly to ground through each bearing’s equivalent stiff-
ness and damping elements, without intervening bearing masses and without
connections between the bearings other than through the rotor. This is the most
typical lateral rotor vibration model. However, when more elaborate bearing
support structure models are employed, the total system’s motion equation ma-
trices are generally not of narrow bandwidth, with the resulting bandwidth de-
pending on the coordinate numbering sequence implemented in the specific
computer code. Even then, the model’s matrices still contain mostly zeros; i.e.,
most finite elements are connected in the model only to a limited number of
their neighboring finite elements.

Similarly, torsional rotor vibration models have narrow-bandwidth motion
equation matrices (typically tridiagonal) for single rotational drive lines. How-
ever, for two or more shafts connected, for example, by gears, the matrices will
most likely not be of narrow bandwidth, as shown in Chapter 3, but the matrices
will still contain mostly zeros.

The topic of matrix bandwidth and zeros becomes a significant computa-
tional consideration for systems having very large numbers of degrees of freedom.
That is, with large models (large number of DOFs) one has very large matrices in
which most of the elements are filled with zeros, causing computer memory and
computations to be unnecessarily taxed by multiplying and storing lots of zeros.
Special measures are typically employed in modern computational schemes to cir-
cumvent this. Fortunately, rotor vibration models do not generally have such a
large number of DOFs to require such special measures, especially in light of the
enormous and continuing increases in PC and workstation memory and computa-
tional speed. Matrix bandwidth is simply a result of how the motion equations are
sequentially ordered or numbered. So even for the simple 4-DOF model in Fig. 8,
the bandwidth could be maximized just by reordering the equations accordingly,
e.g., {x1, x4, x2, x3} instead of {x1, x2, x3, x4}. General-purpose finite-element com-
puter codes often have user-optional algorithms for matrix bandwidth minimiza-
tion, where the user-supplied displacement coordinates are automatically renum-
bered for this purpose.
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2.3. Standard Rotor Vibration Analyses

Achieving good models for rotor vibration analyses of many single-span two-
bearing rotors may require models with as many as 100 DOFs. For a multispan ro-
tor model of a complete large steam-powered turbogenerator, models of 300 to
500 DOFs are typically deemed necessary to characterize the system accurately.
Obtaining the important vibration characteristics of a machine or structure from
large DOF models is not nearly as daunting as one might initially think, because
of the following axiom. Rarely is it necessary in engineering vibration analyses
to solve the model’s governing equations of motion in their totality. For example,
lateral rotor vibration analyses generally entail no more than the following three
categories.

1. Natural frequencies (damped or undamped) and corresponding mode
shapes

2. Self-excited vibration threshold speeds, frequencies, and mode shapes
3. Vibration over full speed range due to specified rotor mass unbalances

None of these three categories of analyses actually entails obtaining the general
solution for the model’s coupled differential equations of motion. That is, the
needed computational results can be extracted from the model’s equations of mo-
tion without having to obtain their general solution, as detailed later.

In the next section, basic topics important to these standard vibration anal-
yses are covered. Extraction of natural frequencies and mode shapes and insta-
bility threshold speeds are both embedded in the classic eigenvalue-eigenvector
mathematics problem associated with linear vibratory systems. Specifically, the
extraction of natural frequencies and corresponding mode shapes for multi-DOF
models is explained. Standard algorithms used for these analyses are treated in
later chapters. Steady-state rotor unbalance vibration is simply an extension of
the 1-DOF Eq. (7).

3. MODES, EXCITATION, AND STABILITY OF MULTI-DOF
MODELS

Linear vibration models are typically categorized as either undamped or damped.
Although all real systems have some damping, the important vibration character-
istics are usually contained in the “lightest damped” modes, well within the so-
called underdamped zone [defined in Sec. 1 in connection with Eq. (4)]. As a con-
sequence, an undamped model can usually provide adequate assessment of
natural frequencies and corresponding mode shapes, with simpler computations
and easier to visualize results than with damping included. Moreover, with mod-
ern computational schemes such as finite-element methods, most structures with
defined geometry and material linear elastic properties can be well modeled inso-
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far as inertia and elastic characteristics are concerned; i.e., mass and stiffness ma-
trices adequate for vibration modeling purposes are usually obtainable. Con-
versely, the job of characterizing a structure’s damping properties is often an elu-
sive task, relying more on experience, testing, and sometimes rough
approximation. Therefore, when analyzing the influence of structural variables on
natural frequencies and mode shapes, it usually makes more sense to analyze the
system using the undamped model of the structure.

In stark contrast, when analyzing the steady-state peak vibration amplitude
at a forced resonance or the threshold location of a self-excited vibration (dy-
namic instability), damping is an absolutely essential ingredient in the analyses.
For example, as Fig. 4 clearly shows, the nearer the forcing frequency approaches
the natural or resonance frequency, the more important is the influence of damp-
ing. Obviously, what allows an excitation force to pass slowly through or “sit at”
a natural frequency without potentially damaging the machine or structure is the
damping present in the system!

3.1. Modal Decomposition

Each natural mode of an undamped model is exactly equivalent to an undamped
1-DOF model and is mathematically decoupled from the model’s other natural
modes, as observed when the motion equations are transformed into what are
called the modal coordinates. Such a coordinate transformation is similar and
mathematically equivalent to observing material stress components at a point in
the principal coordinate system, wherein decoupling appears, i.e., all the shear
stresses disappear and the normal stresses are the principal stresses. Similarly,
when an undamped multi-DOF model’s equations of motion are transformed into
their modal coordinates, the mass and stiffness matrices both become diagonal
matrices (i.e., all zeros except for their main diagonal elements). In other words,
the equations of motion become decoupled when they are transformed from the
physical space into the modal space, as now explained.

Equations of motion for free (unforced) and undamped multi-DOF models
can be compactly expressed in matrix form as follows, where the qi ‘s are the pre-
viously defined generalized coordinates (Sec. 2).

[M]{q̈} � [K ]{q} � {0} (20)

For a specified set of initial conditions, {q(0)} and {q̇(0)}, this set of equations is
guaranteed a unique solution by virtue of applicable theorems from differential
equation theory, provided the [M] and [K] are both positive definite matrices.
Therefore, if a solution is found by any means, it must be the solution. Histori-
cally, the approach that has guided the successful solution to many problems in
mechanics has been the use of good physical insight to provide the correct guess
of the solution form. Such is the case for the solution to Eqs. (20).
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The vibratory displacement in a multi-DOF model is a function of both time
and location in the model. The correct guess here is that the complete solution can
be composed of superimposed contributory solutions, each being expressible as the
product of a time function, s(t), multiplied by a spatial function of the coordinates,
{u}, i.e., the classic separation of variables method. This is expressible as follows.

qi(t) � uis(t), i � 1, 2, . . . , N � number of DOF (21)

Substituting Eq. (21) into Eqs. (20) yields the following equations.

[M]{u}s̈(t) � [K ]{u}s(t) � {0} (22)

Each of these N equations (i � 1, 2, . . . , N) can be expressed as

∑
N

j�1
Mijujs̈(t) � ∑

N

j�1
Kijujs(t) � 0 (23)

and rearranged to have a function of time only on one side of the equation and a
function of location only on the other side of the equation, as follows.

� �
s

s

¨

(

(

t

t

)

)
� � (24)

Following the usual argument of the separation of variables method, for a time-
only function to be equal to a location-only function they must both equal the same
constant (say 
2), positive in this case. A positive constant gives harmonic mo-
tions in time, physically consistent with having finite energy in a conservative
model and contrary to the exponential solutions a negative constant gives. The fol-
lowing equations are thereby obtained.

s̈(t) � 
2s(t) � 0 (25)

∑
N

j�1

(Kij � 
2 Mij)uj � 0, i � 1, 2, . . . , N (26)

Equation (25) has the same form as the equation of motion for an unforced
and undamped 1-DOF model, i.e., same as Eq. (3) with c � 0. Therefore, the so-
lution of Eq. (25) can be surmised directly from Eq. (5) as follows.

�sin(
t � 
s
�) or sin(
t � 
s

�) �s(t) � X
cos(
t � 
c

�) or cos(
t � 
c
�)

(27)

Any of the four Eq. (27) forms can be used to represent the same harmonic signal,
so the following form is arbitrarily selected here.

s(t) � X cos(
t � 
) (28)

∑N

j�1
Kijuj

��
∑N

j�1
Mijuj
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Equation (28) indicates a harmonic motion with all the coordinates having the
same frequency and the same phase angle. The information to determine the spe-
cific frequencies at which the model will satisfy such a harmonic motion is con-
tained in Eqs. (26), which are a set of N linear homogeneous algebraic equations
in the N unknown uj. Determining the values of 
2 that provide nontrivial solu-
tions to Eqs. (26) is the classic characteristic value or eigenvalue problem. The
trivial solution (all uj’s zero) is a static equilibrium state. Equations (26) can be
compactly shown in matrix form as follows.

[K � 
2 M]{u} � {0} (29)

From linear algebra it is known that for a nontrivial solution of Eqs. (29) the de-
terminant of equation coefficients must be equal to zero, as follows.

D � | K � 
2 M | � 0 (30)

Expanding D, the characteristic determinant, yields an Nth-order polynomial
equation in 
2, usually referred to as the frequency or characteristic equation,
which has N roots (eigenvalues) for 
2. These eigenvalues are real numbers be-
cause [M] and [K ] are symmetric and are positive because [M] and [K ] are posi-
tive definite matrices. Virtually any modern text devoted just to vibration theory
will contain an expanded treatment of modal decomposition and rigorously de-
velop its quite useful properties, which are only summarized here.

The N roots of Eq. (30) each provide a positive natural frequency, 
j ( j �
1, 2, . . ., N), for one of the model’s N natural modes. These undamped natural fre-
quencies are typically ordered by relative magnitude, as follows.


1 � 
2 ����� 
N

Each 
2
p root of Eq. (30), when substituted back into Eqs. (29), leads to a solution

for the corresponding eigenvector, {up}. But since Eqs. (29) are homogeneous (all
right-hand sides are zero), each {up} is determined only to an arbitrary multiplier.
That is, if {up} is a solution with 
2

p, then a{up} is also a solution, where a is an
arbitrary positive or negative real number. Each eigenvector (modal vector) thus
contains the mode shape, i.e., the relative magnitudes of all the physical coordi-
nates (qi, i � 1, 2, . . ., N ) for a specific natural mode. To plot a mode shape, one
usually scales the modal vector by dividing all translation displacement elements
by the largest, thus maintaining their relative proportion on a 0-to-1 plot.

It can be rigorously shown that each modal vector of an N-DOF model is or-
thogonal (with either mass or stiffness matrix as the weighting matrix) to all the
other modal vectors, in an N-dimensional vector space. This is somewhat the same
way the x, y, and z axes of a three-dimensional Cartesian coordinate space are or-
thogonal. Consequently, the total set of modal vectors forms a complete orthogo-
nal set of N vectors in the N-dimensional vector space that contains all possible
displacement states of the model. Thus, any instantaneous position state of a
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model can be expressed as an instantaneous linear superposition of the contribu-
tions from all of its natural modes. In other words, the so-called modal coordi-
nates, {�(t)}, contain the amount of each natural mode’s contribution to the in-
stantaneous position state, {q(t)}. This property of the modal vectors can be
expressed by the following linear transformation, where the N � N modal matrix,
[U], is formed using each one of the N � 1 modal vectors as one of its columns.

{q(t)} � [U]{�(t)} (31)

Here it is convenient to scale each of the modal vectors as follows (T denotes
transpose).

{up}T [M]{up} � 1 (32)

Then the resulting modal matrix, [U], will satisfy the following equation.

[U ]T[M][U ] � [I] (33)

[I ] is the identity matrix, i.e., one on each main diagonal element and zeros else-
where. Equation (33) is actually a linear transformation of the mass matrix into
modal coordinates, with the modal vectors scaled (normalized) so that all the
modal masses are equal to 1. Applying the identical transformation on the stiff-
ness matrix also produces a diagonal matrix, with each main diagonal element
equal to one of the eigenvalues, 
j

2, as follows.

[U ]T[K ][U] � [
2
ij] (34)

Here, the array [
2
ij] is defined similar to the Kronecker delta, as follows.


2
ij � �
j

2, i � j

0, i � j (35)

Substituting the linear transformation of Eq. (31) into the original equations
of motion, Eqs. (20), and then premultiplying the result by [U ]T yield the follow-
ing result.

[U]T [M][U]{�¨(t)} � [U]T [K][U]{�(t)} � 0 (36)

Utilizing in Eqs. (36), (33) and (34), which express the modal vectors’ orthogo-
nality property, shows that the equations of motion are decoupled in the modal co-
ordinate space. Accordingly, Eq. (36) becomes the following.

{�̈ (t)} � [
2
ij]{�(t)} � 0 (37)

Equation (37) clearly shows that each natural mode is equivalent to an undamped
1-DOF model. Each natural mode’s response to a set of initial conditions is there-
fore of the same form as for the undamped 1-DOF model, as follows.

�p(t) � Ap cos(
pt � 
p) (38)
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Consequently, utilizing the linear superposition of the contributions from all the
model’s natural modes, the motion of a free undamped multi-DOF system is ex-
pressible as follows, where the Ap’s are the single-peak amplitudes of each of the
modes.

{q(t)} � ∑
N

p�1
Ap{up} cos(
pt � 
p)

or

{q(t)} � [U]{Ap cos(
pt � 
p)} (39)

3.2. Modal Damping

A major role of damping is to dissipate vibration energy that would otherwise lead
to intolerably high vibration amplitudes at forced resonances or allow self-excited
vibration phenomena to occur. As already shown for the 1-DOF model, a natural
frequency is only slightly lowered by the damping, but the peak vibration caused
by an excitation force at the natural frequency is overwhelmingly lowered by the
damping. This also applies to multi-DOF models, as clearly suggested by the
modal damping approach now presented.

Modeling a structure’s damping properties is often an elusive task, relying
more on experience, testing, and sometimes rough approximation. An actual
damping mechanism may be fundamentally quite nonlinear, e.g., Coulomb rub-
bing friction. But to maintain a linear model, the dissipated vibration energy
mechanism must be modeled by drag forces proportional to the velocity differ-
ences across the various damper elements in the model, such as shown in Figs. 1
and 6. Viscous damping is a natural embodiment of the linear damping (drag
force) model. Good answers for forced-resonance vibration amplitudes and in-
stability thresholds can usually be obtained when the energy per cycle dissipated
by the actual system is commensurate with the model, even if the actual damping
mechanism is nonlinear while the damping model is linear.

For a multi-DOF model, one convenient way to incorporate damping in the
model is on a mode-by-mode basis. This is an optimum modeling procedure in
light of modern test techniques that provide equivalent linear damping ratios, �j �
(c/cc)j, for each of the prevalent modes excited in testing. Thus, appropriate damp-
ing can be incorporated in the model by adding it to each relevant mode in the
model coordinate system. Accordingly, Eq. (37) is augmented as follows.

{�̈(t)} � 2[�i
j]{�̇(t)} � [
2
ij]{�(t)} � 0 (40)

Here, �i
j is a diagonal array defined similarly to the Kronecker delta, as follows.

�i
j � ��j
j, i � j
0, i � j

(41)
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The often used 1-DOF version of Eq. (40) is obtained by dividing Eq. (3) by m and
using the definition for � given in Eq. (8), to give ẍ � 2�
nẋ � 
2

nx � 0.
Mathematically, an N-DOF model has N modes. However, the discrete

model (e.g., finite-element model) should have the DOF number, N, be several
(e.g., 10 more or less) times the mode number, n, of the actual system’s highest
frequency mode of importance. This assumes usual mode numbering, by ascend-
ing frequency, i.e., 
1 � 
2 ����� 
n ����� 
N. The underlying objective is for
the discrete model to characterize adequately the actual continuous media system
in the frequency range up to some 
n. At frequencies progressively higher than 
n,
the characteristics of the model and those of the actual system progressively di-
verge. The desired number of important modes will depend on the nature of the
problem analysis. For example, to analyze forced resonances, one hopefully
knows the actual maximum excitation-force frequency, 
max. As a rule, all modes
within and somewhat above the excitation frequency range (i.e., 
n � 
max)
should be included, even though some of these modes may be of less importance
than others.

Consider an application in which an actual system has been tested, provid-
ing damping ratio data for the lowest frequency n modes. The first n elements (j
� 1, 2, . . ., n � N) of the N � N diagonal modal damping matrix will each con-
tain its own value, �j
j. The modal damping matrix will otherwise consist of ze-
ros, and thus the value is modified from Eq. (41) as follows.

�i
j �

�j
j, i � j � n
0, i � j � n
0, i � j

(42)

With each jth mode having its own decoupled equation of motion in modal coor-
dinates, the previously stated equivalence between the damped 1-DOF model and
relevant modes of a multi-DOF model is thus shown, as follows.

�̈ j � 2�j
j�̇ j � 
j
2�j � 0 (43)

The equations of motion in the physical coordinates are then as follows.

[M ]{q̈} � [Cm]{q̇} � [K ]{q} � {0} (44)

The elements 2�j
j form a diagonal matrix in modal coordinates to incor-
porate the mode-by-mode damping model. Consequently, the transformation to
physical coordinates to obtain [Cm ] is simply the inverse of the transformation that
diagonalizes [M] and [K ], as shown in the following equation.

[Cm ] � [UT ]�1[2�i
j][U ]�1 (45)

[Cm] is symmetric, but it is not a diagonal matrix because it interconnects the gen-
eralized velocities as needed to impose mode-by-mode damping. Consequently,
its bandwidth could potentially be as large as 2N � 1, even if nonzero �j
j are used

�
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only for the lowest n � N modes. Element values in the modal-based damping ma-
trix may not benefit from the luxury of a good test on the actual system, particu-
larly if the actual system has not yet been built. More often, modal damping is es-
timated from experience and previous damping data.

Unlike [Cm ], an arbitrary damping matrix, [C ], is not diagonalized by the
transformation that diagonalizes [M ] and [K ]. There is an older approach called
proportional damping that postulates a damping matrix, [Cp], in the physical co-
ordinate system proportional to a linear combination of [M ] and [K ], i.e., [Cp] �
a[M ] � b[K ]. This is done simply so that [Cp] is diagonalized by the transforma-
tion into modal coordinates. Here, a and b are real numbers with appropriate di-
mensional units. Available before modern modal test methods, the proportional
damping approach provides a damping model that also preserves decoupling in
modal coordinates. However, compared with the modal damping approach, pro-
portional damping is not as directly related to a mode-by-mode inclusion of damp-
ing. A mathematically precise statement is that proportional damping is necessary
but not sufficient to ensure modal damping.

3.3. Forced Systems Decoupled in Modal Coordinates

This important topic is shown by adding a system of external time-dependent
forces to either the modally damped model of Eqs. (44) or the undamped model of
Eqs. (20), i.e., [C ] � [0], both of which are contained within the following equa-
tion.

[M ]{q̈} � [Cm ]{q̇} � [K ]{q} � {ƒ(t)} (46)

Because the modal vectors span the vector space of all possible model displace-
ment states, modal decomposition is applicable to forced systems as well. Clearly,
transformation of Eqs. (46) into the modal coordinate system provides the fol-
lowing equivalent decoupled set of equations.

{�̈(t)} � 2[�i
j]{�̇(t)} � [
2
ij ]{�(t)} � [U ]T{ƒ(t)} (47)

Here, the vector of modal forces is {�(t)} � [U ]T{ƒ(t)}. This shows that each
modal force, �i(t), is a linear combination of all the physical forces, ƒj(t). And the
contribution of each physical force to �i(t) is in proportion to the modal matrix el-
ement Uji (or Uij

T ), which is called the participation factor of the jth physical co-
ordinate for the ith mode.

As an important example, Eq. (47) shows that a physical harmonic force
having a particular mode’s natural frequency will produce its maximum resonance
vibration effect if applied in the physical coordinate having that mode’s largest
participation factor. Conversely, if the same harmonic force is applied in a phys-
ical coordinate with a zero participation factor (called a nodal point for that
mode), the force’s contribution to that mode’s vibration will be zero. This exam-
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ple is particularly relevant to rotor balancing problems; i.e., not only is the rotor
unbalance magnitude important but so is its axial location.

3.4. Harmonic Excitation of Linear Multi-DOF Models

The most frequently performed type of vibration analysis is the steady-state re-
sponse from harmonic excitation forces. Various single-frequency solutions at
different frequencies can be superimposed to obtain a simultaneous multifre-
quency steady-state solution, provided the model is linear. Also, using the single-
frequency case, the frequency can be varied over the desired range in a given ap-
plication. Thus, the formulation and solution for the single-frequency case is the
basic building block for most vibration analyses. The generic governing equation
for this case can be expressed as follows, where [C] is arbitrary, i.e., not neces-
sarily modal based.

[M ]{ẍ} � [C ]{ẋ} � [K]{x} � {Fjei(
t��j)} (48)

Here, x is used as the generalized coordinate symbol, and the harmonic forcing
functions have individual magnitudes, Fj, and phase angles, �j. However, because
they have a common excitation frequency, 
, it is convenient to represent each
harmonic excitation force as a planar vector rotating counterclockwise (ccw) at 

(radians/second) in the complex plane, i.e., the exponential complex form. The
right-hand side of Eq. (48) is the standard notation for this representation, where
i � ��	1	. The instantaneous projection of each planar vector onto the real axis
of the complex plane is the instantaneous physical value of the corresponding si-
nusoidal time-varying scalar force component.

Equation (48) is the multi-DOF version of the 1-DOF model representation
in Eq. (6) whose steady-state solution (the so-called particular solution) is har-
monic, Eq. (7). For the multi-DOF Eq. (48), the steady-state solution is also har-
monic and shown as follows using the exponential complex form.

xj � Xjei(
t�
j) (49)

Here, Xj is the single-peak amplitude of the jth coordinate’s harmonic motion at
frequency 
 and phase angle 
j. Substituting this known solution form, Eq. (49),
into the equations of motion, Eq. (48), and then dividing through by ei
t yield the
following simultaneous set of complex algebraic equations.

[�
2M � i
C � K ]{Xjei
j} � {Fjei�j} (50)

In this set of equations, the knowns (inputs) are the model’s M, C, and K matrices,
the excitation forcing frequency (
), and the magnitude (Fj) and phase angle (�j)
for each of the excitation forces. The unknowns (outputs) are the single-peak am-
plitude (Xj) and phase angle (
j) for each jth physical motion coordinate of the
model.
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3.5. Dynamic Instability: The Complex Eigenvalue Problem

Consider the unforced general multi-DOF linear model, expressed as follows.

[M]{ẍ} � [C ]{ẋ} � [K ]{x} � {0} (51)

As explained in Chapter 2, the stiffness and damping coefficients for model ele-
ments that dynamically “connect” the rotor to the rest of the model (e.g., bearings,
squeeze-film dampers, and seals) are often nonsymmetric arrays, especially the
stiffness coefficients for journal bearings. Also, the gyroscopic effects of rotor-
mounted disklike masses add skew-symmetric element pairs to the model’s [C]
matrix. No restrictions are made here on [K ], [C ] or [M ]. Solutions of Eqs. (51)
have the following form.

{x} � {X}e�t where, � � 	 � i
 (52)

For rotor vibration analyses, interest is focused on machine operating zones
wherein dynamic instability (self-excited vibration) is predicted to occur. In par-
ticular, the boundary location of such an operating zone is usually what is sought.
With this objective in mind, it is important first to understand the relationship be-
tween the eigenvalue type of a specific mode and the mode’s characteristics or
motion properties. The eigenvalues (�’s) for each mode can be of a variety of fun-
damental types, each type denoting a specific property, similar to the 1-DOF
model in Sec. 1.

Table 1 provides a complete list of eigenvalue types and corresponding
mode motion properties. Referring to Fig. 2, Sec. 1, the underdamped and over-
damped categories 2 and 5 in Table 1 respectively, are just like their 1-DOF coun-
terparts. Thus, when category 5 has the smallest absolute value | 	 | for which 

� 0, that corresponds to the 1-DOF critically damped case. Furthermore, category
1 is like the 1-DOF (c � 0) undamped case. Category 3 corresponds to the 1-DOF

TABLE 1 Eigenvalue Categories and Associated Types of Unforced Motion

Eigenvalue Mode motion:
category �( t ) � Aeat cos(
t � 
)

1. 	 � 0, 
 � 0
2. 	 � 0, 
 � 0
3. 	 � 0, 
 � 0
4. 	 � 0, 
 � 0
5. 	 � 0, 
 � 0

6. 	 � 0, 
 � 0

Zero damped, steady-state sinusoidal motion
Underdamped, sinusoidal, exponential decay
Negatively damped, sinusoidal, exponential growth
So-called rigid-body mode, constant momentum
Overdampled, nonoscillatory, exponential decay
a. Negatively damped more than “critical” amount
b. Statistically unstable
Nonoscillatory exponential growth
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negatively damped (c � 0) case illustrated in Fig. 3. Categories 4 and 6 were not
explicitly discussed in Sec. 1, but each of these also has a 1-DOF counterpart. For
category 4 the 1-DOF model has k � 0 and c � 0, giving mẍ � 0 (momentum is
conserved). For category 6, recalling that � � c/(2�km	 ) and 
2

n � k/m for the 1-
DOF model clearly � � 0 with �2 � 1 corresponds to 6(a), and k � 0 corresponds
to 6(b).

The usual analysis application concerning self-excited rotor vibration is to
predict the limits or boundaries of safe operating conditions, i.e., to predict dy-
namic instability thresholds. In Table 1, a prediction of such a threshold corre-
sponds to finding the parameter boundary (usually rotor spin speed or machine
power output) where the system makes a transition from category 2 (positively
damped) to category 3 (negatively damped). Exactly on such a transition bound-
ary, the mode in question is in category 1 (zero damped).

Equations (51) are a set of N second-order ordinary differential equations
(i.e., N DOFs). The usual approach to formulating the associated eigenvalue prob-
lem entails first transforming Eqs. (51) into an equivalent set of 2N first-order
equations. To that end, the following associated vectors are defined,

{y} � {ẋ} � {ẏ} � {ẍ} and {z} � � � � {ż} � � �
so that Eqs. (51) are transformed into the following.

� � {ż} � � � {z} � {0} (53)

Naturally, Eqs. (51) and Eqs. (53) have solutions of the same form, i.e., Eq. (52),
as follows.

{z} � {Z}e�t where � � 	 � i
 (54)

A 2N � 2N matrix [A] defined as

[A] � � ��1 � � (55)

converts Eqs. (53) to the following.

{ż} � [A]{z} � {0} (56)

Substituting Eq. (54) into Eq. (56) and dividing the result by e�t yields the fol-
lowing complex eigenvalue problem.

[A � I�] {Z} � {0} (57)

Here, [I ] is the identity matrix. For the general multi-DOF models, the eigenval-
ues, �j, and associated eigenvectors, {Z}j, can be complex. This is in contrast to
the real eigenvalues and real eigenvectors for the undamped models treated ear-

[0]
[K]

[�M]
[0]

[M]
[C]

[0]
[M]

[0]
[K]

[�M]
[0]

[M]
[C]

[0]
[M]

{ẏ}
{ẋ}

{y}
{x}
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lier in this section. To solve both the real eigenvalue problem presented earlier and
the complex eigenvalue problem covered here, modern computational methods
are readily available. Application of these methods is covered in subsequent 
chapters.

4. SUMMARY

This chapter is intended as a comprehensive primer on basic vibration concepts
and methods. In that context, it has general application beyond the book’s primary
subject, rotating machinery. But the main purpose of this chapter is to provide a
basic vibration fundamentals resource to draw upon in the remainder of the book.
Therefore, throughout this chapter frequent reference is made to connect a specific
vibration topic to some aspect of rotating machinery vibration.

For anyone wishing a more detailed presentation of the material presented
in this chapter, there are several excellent texts devoted entirely to vibration. The
two listed here have both been used as required texts in courses the author teaches
at Case Western Reserve University and are highly recommended.
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2

Lateral Rotor Vibration Analysis Models

1. INTRODUCTION

Lateral rotor vibration (LRV) is radial-plane orbital motion of the rotor spin axis.
Transverse rotor vibration is used synonymously for LRV. Figure 1 shows a
sketch of a complete steam turbine-generator rotor (minus turbine blades) and a
sample of its computed LRV vibration orbits, shown grossly enlarged. Actual
LRV orbits are typically only a few thousandths of an inch across (a few hun-
dredths of a millimeter). LRV is an important design consideration in many types
of rotating machinery, particularly turboelectrical machines such as steam and
combustion gas turbine-generator sets, compressors, pumps, gas turbine jet en-
gines, turbochargers, and electric motors. Thus, LRV affect several major indus-
tries.

Usually, but not always, the potential for rotor dynamic beam-bending-
type deflections significantly contributes to the LRV characteristics. The signif-
icance of LRV rotor bending increases with bearing-to-rotor stiffness ratio and
with rotor spin speed. Consequently, in some rotating machines with a low op-
erating speed and/or low bearing-to-rotor stiffness ratio, the LRV is essentially
of a rigid rotor vibrating in flexible bearings or supports. The opposite case (i.e.,
a flexible rotor in essentially rigid bearings) is also possible but rotor dynami-
cally less desirable, because it lacks some vibratory motion at the bearings
which often provides that essential ingredient, damping, to keep vibration am-
plitudes at resonance conditions within tolerable levels. For the same reason, it
is generally undesirable to have journal bearings located at nodal points of im-
portant potentially resonant modes; i.e., the squeeze-film damping capacity of a
bearing cannot dissipate vibration energy without some vibratory motion across
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it. Figure 1 shows a case with significant participation of both rotor bending and
relative motion at the bearings. This is the most interesting and challenging LRV
category to analyze.

A rotor’s flexibility and mass distributions and its bearings’ flexibilities
combined with its maximum spin speed essentially determine whether or not
residual rotor unbalance can produce forced LRV resonance. That is, these fac-
tors determine whether the rotor-bearing system has one or more lateral natural
frequency modes below the operating speed. If so, then the rotor must pass
through the speed(s) (called “critical speed(s)”) where the residual mass unbal-
ances act as once-per-revolution (synchronous) harmonic forces to excite the
one or more natural frequencies the rotor speed traverses when accelerating to
operating speed and when coasting down. Resonant mode shapes at critical
speeds are also determined by the same rotor and bearing properties. Many types
of modern rotating machinery are designed to operate above one or more (some-
times several) critical speeds because of demands for compact high-performance
machines.

When one or more critical speeds are to be traversed, LRV analyses are re-
quired at the design stage of a rotating machine. These analyses generally include
computations to ensure that the machine is not inadvertently designed to run con-
tinuously at or near a critical speed. These analyses should also include computed
unbalance rotor vibration levels over the entire speed range to ensure that the ro-
tor-bearing system is adequately damped to pass safely through the critical speeds
within the operating speed range. Furthermore, these analyses should include dy-
namic stability computations to ensure that there are no self-excited vibration
modes within the combined ranges of operating speed and output of the machine.
Lastly, if LRV rotor bending significantly contributes to the critical speeds’ mode
shapes, then the rotor must be balanced using one of the proven flexible rotor bal-
ancing procedures (e.g., influence coefficient method), which are more compli-
cated than the simpler two-plane rigid-rotor balancing procedure. Providing an in-

FIGURE 1 LRV example; vibration orbits show rotor dynamic flexibility.
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FIGURE 1 LRV example; vibration orbits show rotor dynamic flexibility.



troductory appreciation for all this is the objective of Table 1, which somewhat
simplistically subdivides the degree of LRV complexity into three categories. The
three categories in Table 1 could be further delineated, as made clear in subse-
quent chapters, with the aid of the applicable first principles covered in the re-
maining sections of this chapter.

Chapter 3 deals with torsional rotor vibration (TRV), which involves tor-
sional twisting of the rotor. In single-rotor drive lines it is rare for there to exist
significant dynamic coupling between the lateral and torsional rotor vibration
characteristics. Consequently, these two types of rotor vibration, while potentially
coexisting to significant degrees in the same rotor, practically do not significantly
interact. There are a few exceptions to this, e.g., high-speed refrigerant centrifu-
gal compressors for high-capacity refrigeration and air-conditioning systems.
Such compressor units are typically composed of two parallel rotor dynamically
flexible shafts coupled by a two-gear single-stage speed increaser. In that specific
type of rotating machinery, the gear teeth forces provide a potential mechanism
for coupling the lateral and torsional rotor vibration characteristics. Even in that
exceptional application, such lateral-torsional coupling is generally not factored
into design analyses. Near the end of Chapter 3, subsequent to the coverage of ap-
plicable first principles for both LRV and TRV, Table 1 is presented to show some
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Max. speed below 80% of lowest critical speed

Max. speed is near lowest critical speed or above one
or two critical speeds, but bearings are sufficiently soft
that critical-speed modes are rigid body-like.

Example Mode Shapes of Rigid-Body
Critical Speeds

Max. speed near or above one or two more critical
speeds and rotor flexing is a significant part of
critical-speed mode
shapes.

Example Mode Shapes of Bending
Critical Speeds

Two-plane low-speed rigid-body balancing is all that
is required. No elaborate analyses required.

Must calculate critical speed(s) to avoid continuous
operation at or near a critical speed. Recommend
analysis prediction of vibration amplitudes at critical
speeds versus amount of available damping. Should
also check for self-excited instability rotor vibration.
Two-plane low-speed rigid-body balancing is adequate
because rotor dynamic flexibility is not significant.

Same recommendations as category 2, except that
it will probably be necessary to perform multiplane
flexible-rotor balancing at speeds up to maximum
operating speed because of the importance of bending
critical speeds (see Sec. 10, Chapter 12).

System category Design considerationsNo

1

3

2

TABLE 1 The Three Elementary LRV Complexity Categories
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quite interesting and important contrasts between LRV and TRV that are not fre-
quently articulated and thus not widely appreciated.

2. SIMPLE LINEAR MODELS

2.1. Point-Mass 2-DOF Model

The simplest LRV model that can encompass radial-plane orbital rotor motion has
two degrees of freedom (DOF), as shown in Fig. 2. In this model, the rotor point
mass (m) is allowed to translate in a radial x-y plane. It is connected to ground
through linear springs and dampers and may be excited by time-varying radial
force components such as the rotating force (mass unbalance) shown. The two
equations of motion for this model with the shown rotating excitation force are
easily derived from F � ma to obtain the following.

mẍ � cxẋ � kxx � Fo cos 
t

mÿ � cyẏ � kyy � Fo sin 
t
(1)

Here, the springs and dampers can be used to include radially isotropic
shaft flexibility in series with bearing parallel flexibility and damping. Note that
in this model, the x-motion and y-motion are decoupled; i.e., the two motion
equations are decoupled. However, if the x-y axes are not chosen aligned with
the springs and dampers as shown, the equations become coupled, even though
the model is “physically” unchanged in an alternative x-y orientation. Therefore,
the x-y physical coordinates shown in Fig. 2 are also the modal coordinates for
this model. Naturally, if a model can be configured in a set of physical coordi-
nates that yield completely decoupled motion equations, then those physical co-
ordinates are also the model’s modal coordinates. For most vibration models,
LRV or otherwise, this is not possible. If the conditions kx � ky � k and cx �

FIGURE 2 Simplest LRV model that can handle radial-plane orbital motion.
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cy � c are imposed, then the model is isotropic, which means the x-y coordinate
system can then be rotated to a different orientation in its plane with no change
to the motion equations. Therefore, such an isotropic model remains decoupled
and the physical coordinates are its modal coordinates in any x-y orientation.
Thus, for the isotropic model the radial stiffness, k, is the same in any radial di-
rection, as is the radial damping, c.

Many types of radial bearings and seals have fluid dynamical features that
produce significant and important LRV cross-coupling between orthogonal radial
directions. A more generalized version of the simple 2-DOF model in Fig. 2 can
incorporate such cross-coupling, as shown in the following two coupled equa-
tions, written in matrix form.

� � �ẍ
ÿ� � � � �ẋ

ẏ� � � � �x
y� � � � (2)

As shown in considerably more detail later in this chapter and in Chapter 5, such
2 � 2 [cij ] and [kij ] matrices for bearings and seals are extremely important in-
puts for many LRV analyses and have been the focus of extensive research to
improve the accuracy for quantifying their matrix coefficients. In general, these
coefficient matrices for bearings and seals cannot be simultaneously diagonal-
ized in a single x-y coordinate system, in contrast to the model shown in Fig. 2.
In fact, as explained later in this chapter, the bearing and seal stiffness coeffi-
cient matrices are often nonsymmetric and their damping coefficient matrices
may also be nonsymmetric when certain fluid dynamical factors are significant
(e.g., fluid inertia).

2.2. Jeffcott Rotor Model

A centrally mounted disk on a slender flexible uniform shaft constitutes the
model employed by H. H. Jeffcott [Philos Mag. 6(37), 1919], to analyze the lat-
eral vibration of shafts in the neighborhood of the (lowest) critical speed. Figure
3a is a lateral planar view of this model and Fig. 3b is its extension to include
bearing flexibility. If the concentrated disk mass, m, in these two models is
treated strictly as a point mass, then both of these models fall within the 2-DOF
model in Fig. 2 and bearing damping can likewise be added in parallel with the
bearing stiffness shown in Fig. 3b. However, if x and y angular displacements
(�x and �y) and mass moments of inertia (IT and IP) of the disk about its center
are included, then the Fig. 3 models have 4 DOF; i.e., the generalized coordi-
nates for the disk are then x, y, �x, �y. If the disk is centered between two iden-
tical half-shafts (same length, diameter, and material) and both modified-Jeff-
cott-model bearings are identical with symmetric stiffness coefficients as in the
model of Fig. 2, then the 4-DOF models (undamped) are somewhat simpler than
they would otherwise be. That is, there is no coupling through the [M] and
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kxy

kyy

kxx

kyx

cxy

cyy

cxx

cyx

0
m

m
0

Copyright © 2001 Marcel Dekker, Inc.



[K] matrices, as shown in the following equations of motion which are then ap-
plicable.

� � � � � � �� �
� � � � � � � �

(3)

IT � disk transverse inertia
IP � disk polar inertia
Kx � x � moment stiffness
Ky � y � moment stiffness
Mx � x � applied moment on disk
My � y � applied moment on disk

 � rotor spin velocity

Although damping has been omitted from the model represented in Eqs. (3),
there still appears a [C ] matrix multiplying the velocity vector, albeit 14 of the 16
elements in [C ] are zero. The two nonzero elements in the [C ] matrix of Eqs. (3)
embody the so-called gyroscopic effect of the disk, which shows up as skew-sym-
metric components of [C ]. As more fully explained later in this chapter, the gyro-
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FIGURE 3 Jeffcott rotor model. (a) Jeffcott model; (b) modified Jeffcott model
with bearing flexibility.
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scopic effect is conservative (i.e., it is an inertia effect and thus dissipates no en-
ergy) even though it “resides” in the [C ] matrix. Note that the gyroscopic effect
couples the �x and �y motions.

For the simply supported Jeffcott rotor model, Fig. 3a, the four (diagonal)
nonzero stiffness matrix elements in Eqs. (3) describe the flexible shaft’s radially
isotropic force and moment response to the disk’s four coordinates (x, y, �x, �y).
For the modified Jeffcott model, Fig. 3b, the stiffness elements in Eqs. (3) contain
the combination of the isotropic rotor flexibility in series with the bearings’ sym-
metric flexibilities (falls into category 3 in Table 1). Equations (3) can be applied
to the model in Fig. 3b whether the shaft is flexible or completely rigid. Thus, in
that rigid-shaft flexible-bearing case, the stiffness elements in Eqs. (3) describe
only the flexibility of the bearings (category 2 in Table 1).

Slightly less simple versions of the models in Fig. 3 arise when the disk is
allowed to be located off center or the two half-shafts are not identical in every
respect; i.e., the equations of motion are then more coupled. Similarly, for a disk
located outboard of the bearing span on an “overhung” extension of the shaft,
the model is also not as simple as that described by Eqs. (3). Early rotor vibra-
tion analysts such as Jeffcott, being without the yet-to-be-invented digital com-
puter, resorted out of necessity to a variety of such models in designing the ma-
chines for the rapid electrification and industrialization during the first part of
the 20th century. Such simple models are still quite useful in honing the rotor
vibration specialist’s understanding and insights and are exhaustively covered in
several texts devoted to rotor vibration theory (see Bibliography at the end of
this chapter).

Here, it is expedient to move from the classic simple LRV models just sum-
marized to modern finite-element models for multibearing flexible rotors having
general mass and flexibility properties. That transition step is covered in the next
topic, the simple nontrivial LRV model, an 8-DOF system whose equations of mo-
tion can be written on a single page even though it contains all the generic features
of general LRV models.

2.3. Simple Nontrivial Model

Even if one understands the underlying physical principles embedded in a com-
putationally intensive engineering analysis computer code, it is still somewhat of
a “black box” to all except the individual(s) who wrote the code. In that vein, the
equations of motion for a multi-DOF system are essentially contained in the ele-
ments of the model’s [M ], [C ], and [K ] matrices, which are “constructed and
housed inside the computer” during computation. Therefore, prior to presenting
the formulation and development of the RDA (rotor dynamic analysis) finite-ele-
ment (FE) PC software supplied with this book, the complete equations of motion
are here rigorously developed for a simple nontrivial 8-DOF LRV model using
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both the Lagrange and direct F � ma approaches. This 8-DOF model is illustrated
in Fig. 4 and contains the following features of general-purpose multi-DOF LRV
models.

Dynamic bending of the shaft in two mutually perpendicular lateral planes.
Two completely general dynamically linear bearings.
Three concentrated masses separated by flexible shafting.
The central concentrated mass also has transverse and polar (gyroscopic)

moments of inertia and associated angular coordinates.

In most vibration modeling, such as with FE formulations, the actual con-
tinuous media system is discretized. This means the governing partial differential
equation (PDE) embodying the applicable physical principle(s) of the continuous
media structure is approximated by a set of ordinary differential equations
(ODEs). The more pieces into which the structure is subdivided, the larger the
number of ODEs (equal to the number of DOFs) and the more accurately they ap-
proximate the governing PDE. The fundamental reason for doing this is that gen-
eral solutions to most governing PDEs are obtainable only for the simplest geo-
metric shapes. The underlying objective is to discretize the system into a sufficient
number of DOFs to characterize adequately the actual continuous media system

FIGURE 4 Simple nontrivial 8-DOF model for LRV.
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in the frequency range up to some 
n, the highest natural frequency of interest for
the system being analyzed. At frequencies progressively higher than 
n, the char-
acteristics of the discrete model and those of the actual system progressively di-
verge. The practical application details of these considerations are covered in Part
2 of this book.

The system in Fig. 4 is discretized here into three lumped masses. The two
end masses (m1 and m3) are allowed only planar displacements in x and y, while
the central mass (m2) is allowed both x and y displacements plus x and y angu-
lar displacements, �x and �y. With this model, the two flexible half-shafts can be
either treated as massless or subdivided into lumped masses that are combined
with the concentrated masses at mass stations 1, 2, and 3. The usual way to do
this is to subdivide each shaft section into two equal-axial-length sections,
adding the left-half’s mass to the left station and the right-half’s mass to the
right station.

The equations of motion for the system in Fig. 4 are first derived using two
different variations of the Lagrange approach, followed by the direct F � ma ap-
proach. The two different Lagrange derivations presented differ only as follows:
(a) treating the gyroscopic effect as a reaction moment upon the disk using rigid-
body rotational dynamics or (b) treating the gyroscopic effect by including the
disk’s spin-velocity kinetic energy within the total system kinetic energy function,
T. The second of these two Lagrange avenues is a bit more demanding to follow
than the first because it requires using the so-called Euler angles to define the
disk’s angular coordinates. For each of the approaches used here, the starting point
is the rotor beam-deflection model consistent with the half-shafts’ bending mo-
ment boundary conditions (i.e., bending moment � curvature) and the eight gen-
eralized coordinates employed. This deflection model is shown in Fig. 5, where
deflections are shown greatly exaggerated.

2.3.1. Lagrange Approach (a)

Referring back in Sec. 2 of Chapter 1 to the description of the Lagrange equations,
they can be expressed as

�
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�
�
q
V

i
� � Qi, i � 1, 2, . . ., nDOF (4)

where T and V are the kinetic and potential energy functions respectively, and qi

and Qi are the generalized coordinates and generalized forces, respectively. In this
derivation, the left-hand side of Eqs. (4) is used to develop the rotor model mass
and stiffness matrices. The bearings’ stiffness and damping components as well as
the rotor disk’s gyroscopic moment are treated as generalized forces and thus
brought into the equations of motion on the right-hand side of Eqs. (4).

For a beam in bending, the potential energy can be derived by integrating
the strain energy over the length of the beam. Linear beam theory is used here, so
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the bending strain energy in two planes (x-z and y-z) can be linearly superimposed,
as follows.

V � 
2L

0
�
M2

xz

2
�

EI
M2

yz
� dz (5)

Mxz � bending moment in x-z plane � EIx�
Myz � bending moment in y-z plane � EIy�

36 Chapter 2

FIGURE 5 Rotor beam-deflection model for 8-DOF system, with all generalized
coordinates shown in their respective positive directions. (a) Shows beam de-
flection, slope, and curvature in y-z plane. (b) Shows x-z deflection only, but
slope and curvature similar to those in (a).
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E � Young’s modulus of the shaft material
I � bending area moment of inertia for the two uniform diameter half-shafts

As evident from Fig. 5, a linear bending curvature function satisfies the
two zero-moment end-boundary conditions (at z � 0 and z � 2L) and its discon-
tinuity at z � L provides an instantaneous moment difference across the disk
consistent with the disk’s instantaneous dynamics. Because of the discontinuity,
the integration indicated in Eq. (5) must be performed in two pieces, z � 0 to L
and z � L to 2L. Accordingly, each half-shaft has three generalized coordinates
(two translations and one angular displacement) to specify its deflection curve
in the x-z plane and likewise in the y-z plane. Therefore, deflection functions
with three coefficients and linearly varying second derivatives (i.e., curvatures)
are required. Thus, a third-order polynomial can be used, but that has four
coefficients, so one term must be omitted. The second-order term is omitted
because the zero-order term is needed to retain x and y rigid-body translations
and the first-order term is needed to retain x and y rigid-body rotations. The
following expressions follow from those requirements. First, the left half-shaft is
treated.

z � 0 to L Boundary conditions

x � az3 � bz � c x(0) � x1 � c

x� � 3az2 � b x(L) � x2 � aL3 � bL � x1

x� � 6az x�(L) � �y � 3aL2 � b

�x, �y �� 1 � tan �x 
 �x and tan �y 
 �y

From the preceding simultaneous equations with boundary conditions utilized at
z � 0 and z � L, the coefficient a is determined and results in the following ex-
pression for x-z plane curvature.

x� � �
L
3
3� (x1 � x2 � �xL) z, z � 0 to L (6)

Similarly, the y-z plane curvature over z � 0 to L is determined to be the follow-
ing.

y� � �
L
3
3� (y1 � y2 � �xL) z, z � 0 to L (7)

For the right half-shaft, the same polynomial form is used for beam deflection as
for the left half-shaft except that (2L � z) must be put in place of z, as follows.

z � L to 2L Boundary conditions

x � a(2L � z)3 � b(2L � z) � c x(2L) � x3 � c

x� � �3a(2L � z)2 � b x(L) � x2 � aL3 � bL � x3

x� � 6a(2L � z) x�(L) � �y � �3aL2 � b
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From these simultaneous equations with the boundary conditions utilized (at z �
L and z � 2L), the coefficient a is determined and results in the following expres-
sion for x-z plane curvature.

x� � �
L
3
3� (x3 � x2 � �yL)(2L � z ), z � L to 2L (8)

Similarly, the y-z plane curvature over z � L to 2L is determined to be the fol-
lowing.

y� � �
L
3
3� (y3 � y2 � �xL)(2L � z), z � L to 2L (9)

The curvature expressions from Eqs. (6)–(9) are used for the bending moment in
the integration of strain energy expressed in Eq. (5) (i.e., Mxz � EIx� and Myz �
EIy� from linear beam theory). Because of the curvature discontinuity at z � L, the
integral for strain energy must be split into two pieces, as follows.

V � �
E
2
I
� �


L

0
[(x�)2 � (y�)2] dz � 
2L

L
[(x�)2 � ( y�)2] dz� (10)

There are obvious mathematical steps left out at this point in the interest of
space. The expression obtained for potential energy is given as follows.

V � �
3
2
E
L3

I
� (x2

1 � 2x2
2 � x2

3 � 2x1x2 � 2x2x3

� 2x1�yL � 2x3�yL � 2�y
2L2 � y2

1 � 2y2
2 (11)

� y2
3 � 2y1y2 � 2y2y3 � 2y1�xL � 2y3�xL � 2�x

2L2)

In this approach, the gyroscopic effect is treated as an external moment upon
the disk, so expressing the kinetic energy is a relatively simple step because the
disk’s spin velocity is not included in T. Kinetic energies for m1 and m3 are just �

1
2

�

m1�2
1 and �

1
2

� m3�2
3, respectively. For the disk (m2), kinetic energy (Tdisk) can be ex-

pressed as the sum of its mass center’s translational kinetic energy (Tcg) plus its
rotational kinetic energy (Trot) about the mass center. The kinetic energy function
is thus given as follows.

T � �
1
2

� [m1(ẋ2
1 � ẏ2

1) � m2(ẋ2
2 � ẏ2

2) � IT(�̇x
2 � �̇y

2) � m3(ẋ2
3 � ẏ2

3)]

IT � ��
1
4

� m2R2 and IP � �
1
2

� m2R2 (12)

The generalized forces for the bearings are perturbations from static equi-
librium and treated as linear displacement and velocity-dependent forces, ex-
pressible for each bearing as follows.

ƒx
(n) � �kxx

(n) x � kxy
(n) y � cxx

(n) ẋ � cxy
(n) ẏ

ƒy
(n) � �kyx

(n) x � kyy
(n) y � cyx

(n) ẋ � cyy
(n) ẏ

(13)

n � bearing number � 1, 2.
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Treating the gyroscopic effect in this approach simply employs the follow-
ing embodiment of Newton’s second law for rotation of a rigid body.

H��̇� M�� (14)

Equation (14) says that the instantaneous time rate of change of the rigid body’s
angular momentum (H��) is equal to the sum of the instantaneous moments (M��)
upon the rigid body, both (H��) and (M��) being referenced to the same base point
(the disk’s center of gravity is used). Here, H�� � îIT�̇x � ĵIT�̇y � k̂IP
 is the an-
gular momentum, with the spin velocity (
) held constant. To have the mass mo-
ment-of-inertia components time invariant, the (x, y, z) unit base vectors (î, ĵ, k̂)
are defined to precess with the disk’s axis of symmetry (i.e., spin axis) at an an-
gular velocity ���� î�̇x � ĵ�̇y. Because the (î, ĵ, k̂)  triad rotates at the precession
velocity (���), the total inertial time rate of change of the rigid body’s angular mo-
mentum (H��) is expressed as follows.

H�� � H��̇
� � ��� � H�� (15)

Using the chain rule for differentiating a product, H��̇
� � îIT�̈x � ĵIT�̈y is the

portion of H��̇ obtained by differentiating �̇x and �̇y and ���� H�� is the portion
obtained by differentiating the rotating base vectors (î, ĵ,k̂). The disk’s angular
motion displacements (�x, �y � 1) are assumed very small, therefore the precess-
ing triad (î, ĵ,k̂) has virtually the same orientation as the nonrotating x-y-z coordi-
nate system. Thus, a vector referenced to the precessing (î, ĵ,k̂) system has virtu-
ally the same x-y-z scalar components in the nonprecessing (î, ĵ, k̂) system.
Equation (14) then yields the following expressions for the x and y moment
components that must be applied to the disk to make it undergo its x and y angu-
lar motions.

Mx � IT�̈x � IP
�̇y Mx � IP
�̇y � IT�̈x

rearranged to (16)
My � IT�̈y � IP
�̇x My � IP
�̇x � IT�̈y

The IT acceleration terms in Eqs. (16) are included via the Lagrange kinetic en-
ergy function (T ), Eq. (12). However, the IP terms are not, and these are the gyro-
scopic inertia components, which are here rearranged to the left side of the equa-
tions, as shown, to appear as moment components (fictitious) applied to the disk.
The gyroscopic moment components that are “applied” to the disk as generalized
forces in Eqs. (4) are then as follows.

Mgyro,x � �IP
�̇y

Mgyro,y � � IP
�̇x (17)

Equations (11) and (12) for V and T, respectively, as well as Eqs. (13) for
bearing dynamic force components upon m1 and m3 and Eqs. (17) for gyroscopic
moment components upon the disk are all applied in Eqs. (4), the Lagrange equa-
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tions. In the interest of space, the clearly indicated mathematical steps are omitted
at this point. The derived eight equations of motion for the model shown in Fig. 4
are presented in matrix form as follows.

�

� �
3
L
E
3
I

�  (18)

� {R}

k	ij
(n) � �

3
L
E

3

I
� kij

(n)

{R} � vector of time-varying forces and moments applied upon the system

In Eq. (18) the {mq̈} vector shown takes advantage of multiplying the diag-
onal mass matrix (all zeros except on the main diagonal) by the acceleration vec-
tor, thus compressing the space needed to write the full equations of motion. Prop-
erly applied, these equations of motion for the 8-DOF model are a reasonable
approximation for the first and possibly second natural frequency modes of an ax-
ially symmetric rotor on two dynamically linear bearings, especially if most of the
rotor mass is located near the rotor’s axial center between the bearings. It is also
a worthy model on which to “benchmark” a general-purpose linear LRV computer

x1
y1



x2

y2

�x�y

x3
y3

0 
0 
0 

�1 
L 
0 

k	xy
(2) 

(1 � k	yy
(2))

0
0

�1
0
0

�L
(1 � k	xx

(2))
k	yx

(2)

L
0
0
0
0

2L2

�L
0

0
�L
0
0

2L2

0
0
L

0
�1
0
2
0
0
0

�1

�1
0
2
0
0
0

�1
0

k	xy
(1)

(1 � k	yy
(1))

0
�1
�L
0
0
0

(1 � k	xx
(1))

    k	yx
(1)

    �1
      0
      0
      L
      0
      0

ẋ1
ẏ1



ẋ2

ẏ2

�̇x�̇yẋ3
ẏ3

0 
0 
0 
0 
0 
0 

cxy
(2)

cyy
(2)

0
0
0
0
0
0

cxx
(2)

cyx
(2)

0
0
0
0

IP

0
0
0

0
0
0
0
0

�IP

0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

cxy
(1)

cyy
(1)

0
0
0
0
0
0

cxx
(1)

cyx
(1)

 0
 0
 0
 0
 0
 0

m1ẍ1m1ÿ1


m2ẍ2

m2ÿ2

IT�̈x IT�̈y m3ẍ3
m3ÿ3
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code. More important, this model’s equations of motion lay out for detailed
scrutiny all the elements of the motion equation matrices, on slightly over half a
page, for an 8-DOF model that has all the generic features of general multi-DOF
LRV models. One can thereby gain insight into the computations that take place
when a general-purpose LRV code is used.

2.3.2. Lagrange Approach (b)

This approach differs from the previous Lagrange approach only in how the gy-
roscopic moment is derived, so only that facet is shown here. Specifically, the is-
sue is the portion of the disk’s rotational kinetic energy (Trot) due to its spin ve-
locity. Using a coordinate system with its origin at the disk’s mass center and its
axes aligned with principal inertia axes through the disk’s mass center, the disk’s
kinetic energy due to rotation can be expressed as follows.

Trot � �
1
2

�(Ixx
x
2 � Iyy
y

2 � Izz
z
2) (19)

However, this expression cannot be directly used in the kinetic energy function (T)
for the Lagrange equations because 
x, 
y, and 
z are not the time derivatives of
any three angular coordinates, respectively, that could specify the disk’s angular
position. The angular orientation of any rigid body can, however, be prescribed by
three angles, the so-called Euler angles. Then the first time derivatives of these
three angles provide angular velocity components applicable to Trot for the La-
grange equations. Although this approach can be applied to any rigid body, the ap-
plication here is somewhat simplified because Ixx � Iyy � IT and �x, �y � 1.

The three Euler angles are applied in a specified order that follows. (î, ĵ,k̂)
is a mass-center principal-inertia triad corresponding to an x-y-z principal-inertia
coordinate system fixed in the disk at its center. When all the Euler angles are
zero, (î, ĵ,k̂) aligns with a nonrotating triad (Î,Ĵ,K̂).

To record the three sequential steps of orthogonal transformation produced
by the three sequential Euler angles, it is helpful to give a specific identity to the
(î, ĵ,k̂) triad for each of the four orientations it occupies, from start to finish, in un-
dergoing the three Euler angles. These identities are given along with each Euler
angle specified. It is also quite helpful at this point for the reader to sketch iso-
metrically each of the four x-y-z coordinate-system angular orientations, using a
common origin.

Initial state (all Euler angles are zero): (î, ĵ,k̂) aligns with (Î,Ĵ,K̂).
First Euler angle, Rotate disk �y about the y-axis (i.e., î,k̂ about ĵ � Ĵ ),

(î, ĵ,k̂) moves to (î�, ĵ�,k̂�), where ĵ� � ĵ � Ĵ.
Second Euler angle: Rotate disk �x about the x-axis (i.e., ĵ�,k̂� about î�),

(î�, ĵ�,k̂�) moves to (î �, ĵ�,k̂�), where î� � î�.
Third Euler angle: Rotate the disk 
 about the z-axis (i.e., î�, ĵ� about k̂�),

( î�, ĵ�,k̂� ) moves to (î, ĵ,k̂), where k̂� � k̂.
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The following angular velocity vector for the disk is now specified in com-
ponents that are legitimate for use in the Lagrange approach because each veloc-
ity component is the first time derivative of a generalized coordinate.


��total � �̇yĴ � �̇xî� � 
k̂


 � 
 (20)

The remaining step is to transform Ĵ and î� in Eq. (20) into their (î, ĵ,k̂)  compo-
nents to obtain the disk’s angular velocity components in a principal-inertia x-y-z
coordinate system. This is accomplished simply by using the following associated
direction-cosine orthogonal transformations.

� � � � � � �

� � � � � � �
,
� � � � � � �

Multiplying these three orthogonal matrices together according to the proper Eu-
ler angle sequence yields an equation of the following form.

� � � [R
 ] [R�x] [R�y] � � (22)

The product of the three orthogonal transformation matrices in Eq. (22) is also an
orthogonal matrix, embodying the total orthogonal transformation from the initial
state to the end state orientation following application of the three Euler angles,
and it can be expressed as follows.

[R ] � [R
 ] [R�x] [R�y] (23)

As an orthogonal matrix, [R] has an inverse equal to its transpose. Therefore, the
Ĵ unit vector in Eq. (20) is obtained from the second equation of the following
three,

� � � [R ]T � � (24)

to obtain the following expression for Ĵ.

Ĵ � (sin 
 cos �x)î � (cos 
 cos �x)ĵ � (sin �x)k̂ (25)

î
ĵ
k̂

Î
Ĵ
K̂

Î
Ĵ
K̂

î
ĵ
k̂

î �
ĵ�
k̂�

0
0
1

sin 

cos 


0

cos 

�sin 


0

î
ĵ
k̂

î�
ĵ�
k̂�

0
sin �x

cos �x

0
cos �x

�sin �x

1
0
0

î �
ĵ�
k̂�

Î
Ĵ
K̂

�sin �y

0
cos �y

0
1
0

cos �y

0
sin �y

î�
ĵ�
k̂�
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Since î� � î�, inverting the third of Eqs. (21) yields the following.

î� � î cos 
 � ĵ sin 
 (26)

Substituting Eqs. (25) and (26) into Eq. (20) produces the following result.


��� (�̇y sin 
 cos �x � �̇x cos 
)î

� (�̇y cos 
 cos �x � �̇x sin 
)ĵ � (��̇y sin �x � 
)k̂
(27)

Equation (27) provides the proper components for 
x, 
y, and 
z to insert into Eq.
(19) for the disk’s rotational kinetic energy, Trot, as follows.

Trot � �
1
2

� IT (
x
2 � 
y

2) � �
1
2

� IP
z
2 � �

1
2

�[IT(�̇y sin 
 cos �x � �̇x cos 
)2

� IT(�̇y cos 
 cos �x � �̇x sin 
)2 � IP(��˙y sin �x � 
)2] (28)

Simplifications utilizing cos �x 
 1, sin �x 
 �x, and sin2 �x � sin �x then yield the
following expression for the disk’s rotational kinetic energy.

Trot � �
1
2

� [IT(�̇x
2 � �̇y

2) � IP(
2 � 2
�̇y�x)] (29)

A potential point of confusion is avoided here if one realizes that �x and �y

are both very small and are applied in the Euler angle sequence ahead of 
, which
is not small (
 � 
t). Thus, �̇x and �̇y are directed along axes that are basically
aligned with the nonrotating inertial x-y coordinates, not those spinning with the
disk. As with the Lagrange approach (a), the disk’s total kinetic energy is ex-
pressible as the sum of the mass-center kinetic energy plus the rotational kinetic
energy as follows.

Tdisk � Tcg � Trot (30)

The total system kinetic energy is thus expressible for this Lagrange approach by
the following equation.

T � �
1
2

� [m1(ẋ2
1 � ẏ2

1) � m2(ẋ2
2 � ẏ2

2)

� IT(�̇x
2 � �̇y

2) � IP(
2 � 2
�̇y�x) � m3(ẋ2
3 � ẏ2

3)]
(31)

Equation (31) differs from its Lagrange approach (a) counterpart, Eq. (12), only
by its IP term, which contains the disk’s gyroscopic effect.

The potential energy formulation and bearing dynamic force expressions
used here are identical to those in Lagrange approach (a), Eqs. (11) and (13), re-
spectively. However, here the gyroscopic effect is contained within the kinetic en-
ergy function in Eq. (31). Therefore, Eqs. (17) used in Lagrange approach (a) for
gyroscopic moment components upon the disk are not applicable here. Imple-
menting the clearly indicated mathematical steps implicit in Eqs. (4), this ap-
proach yields the same eight equations given by Eqs. (18).
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2.3.3. Direct F � ma Approach

In this approach, the sum of x-forces and the sum of y-forces on m1, m2, and m3

equated to their respective mq̈ terms yield six of the eight motion equations. The
sum of x-moments and the sum of y-moments on the disk equated to their respec-
tive IT�̈ terms yield the other two motion equations. This can be summarized as
follows.

Bearing forces and gyroscopic moment are taken directly from Eqs. (13)
and (17), respectively. Thus, only the beam-deflection reaction forces and mo-
ments need developing here, and these can be derived using superposition of the
two cases in Fig. 6. All reaction force and moment components due to x and y
translations with �x and �y both zero are obtained using the cantilever beam end-
loaded case in Fig. 6a. Likewise, all reaction force and moment components due
to �x and �y with x and y translations both zero are obtained using the simply sup-
ported beam with an end moment, i.e., the case with a � L in Fig. 6b. Superim-
posing these two cases provides all the beam reaction force and moment compo-
nents due to all eight displacements, and these are summarized as follows.

Beam-deflection reaction force and moment components

ƒ1x � �
3
L
E
3
I

� (�x1 � x2 � �yL) M2x � �
3
L
E
3
I

� (y1L � 2�xL2 � y3L)

ƒ1y � �
3
L
E
3
I

� (�y1 � y2 � �xL) M2y � �
3
L
E
3
I

� (�x1L � 2�yL2 � x3L)

(32)
ƒ2x � �

3
L
E
3
I

� (x1 � 2x2 � x3) ƒ3x � �
3
L
E
3
I

� (x2 � x3 � �yL)

ƒ2y � �
3
L
E
3
I

� (y1 � 2y2 � y3) ƒ3y � �
3
L
E
3
I

� (y2 � y3 � �xL)

The eight equations of motion are constructed from F � ma and M � I�̈ uti-
lizing Eqs. (13) for bearing forces, Eqs. (17) for gyroscopic moments, and Eqs.
(32) for beam-bending force and moment reactions, as follows.

m1ẍ1 � ƒ1x � ƒx
(1) IT�̈x � M2x � Mgyro,x

m1ÿ1 � ƒ1y � ƒy
(1) IT�̈y � M2y � Mgyro,y

(33)
m2ẍ2 � ƒ2x m3ẍ3 � ƒ3x � ƒx

(2)

m2ÿ2 � ƒ2y m3ÿ3 � ƒ3y � ƒy
(2)

Substituting the appropriate expressions from Eqs. (13), (17), and (32) into Eqs.
(33) yields the 8-DOF model’s equations of motion given in Eqs. (18).

Equations (18) have been derived here using three somewhat different ap-
proaches. However, all three approaches are based on Newton’s second law and
thus must yield the same result. The following two listed 8-DOF configurations
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are obvious variations on the Fig. 4 model that could serve as appropriate home-
work assignments within the context of a course in rotor vibration.

Variations on 8-DOF model

Modified Fig. 4 configuration with two half-shafts’ L and EI different
Disk placed on overhung extension of shaft outboard of the two bearings

Adding a second disk produces a family of 12-DOF models that could also be sim-
ilarly developed for learning purposes and can be summarized in the following
four cases.

Variations on two-disk 12-DOF model

Two disks symmetrically between two bearings and three identical shaft
pieces

Two disks nonsymmetrically between two bearings, three different shaft
pieces

One disk between two bearings, one disk overhung outboard of bearings
Two disks overhung outboard of two bearings at opposite ends of rotor

To reiterate, the primary value of these 8-DOF and 12-DOF models is as
learning tools to provide modeling and first-principles insight to the rotating ma-
chinery vibration practitioner or student. Use of these models as design or trou-
bleshooting tools is ill advised because modern PC-based software, such as that
provided with this book, is far more versatile and accurate.
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The right-hand side of Eqs. (18), {R}, is strictly for time-dependent forcing
functions and viewed as being externally applied to the system. No specific ex-
amples of {R} were needed to develop the three derivations of Eqs. (18), but two
important cases are now delineated, (a) eigenvalue value extraction and (b)
steady-state unbalance response. For eigenvalue extraction, such as performed in
searching for operating zones where dynamic instability (self-excited vibration) is
predicted, {R} � 0 can be used because {R} does not enter into that mathemati-
cal process (see Sec. 3.5 in Chapter 1). For an unbalance response example, so-
called static unbalance and dynamic unbalance are simultaneously applied on the
8-DOF model’s disk, as shown in Fig. 7. An unbalance is modeled by its equiva-
lent centrifugal force.

Here, the static unbalance mass is chosen as the angular reference point (key
phaser) on the rotor and 
 (90° for case illustrated in Fig. 7) is the phase angle be-
tween ms and the rotating moment produced by the two 180° out-of-phase md dy-
namic unbalance masses. Equations (18) then have the right-hand side {R} shown
in the following equations.

[M]{q̈} � [C]{q̇} � [K ]{q} � 
2 � � (34)

The four zeros in {R} reflect no unbalances at the two bearing stations.

3. FORMULATIONS FOR RDA SOFTWARE

The vibration fundamentals covered in Chapter 1 plus the foregoing sections of
this chapter provide ample background to follow the development of the govern-
ing formulations for the RDA code. RDA is a user-friendly PC-based user-inter-

0
0

msrs cos 
t
msrs sin 
t

mdrdl cos(
t � 
)
mdrdl sin(
t � 
)

0
0
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active software package that is structured on the finite-element method. It was de-
veloped in the Rotor Dynamics Laboratory at Case Western Reserve University to
handle the complete complement of linear lateral rotor vibration analyses, and it
is supplied with this book. In this section, the focus is on formulation, solution,
and computation aspects of the RDA code. In Part 2 of this book (Chapters 4, 5,
and 6), the focus shifts to the use of RDA in problem solving.

3.1. Basic Rotor Finite Element

Development of the RDA model starts with the basic rotor finite-element build-
ing block, which comprises two disks (or any M, IT, IP) connected by a beam of
uniform circular cross section (shaft), as shown in Fig. 8. For the rotor finite
element shown in Fig. 8, the following two lists summarize its elementary
parameters.

Shaft element properties

Mass, M (s) ��
�s!(d2

o

4
�

g
di

2) L
�

Transverse inertia at center of gravity (c.g.), IT
(s) � �

1
1
2
� M (s) �3 ��d

2
o �

4
di

2

�� � L2�
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Polar inertia, IP
(s) � �

1
2

� M (s) ��d
2
o �

4
di

2

��
(35a)

Area moment of inertia, I � �
!(d4

o

6
�

4
di

4)
�

Modulus of elasticity, E

where

do�shaft outer diameter (OD)
di�shaft inner diameter (ID) (optional concentric hole)
L�shaft length
�s�shaft weight density
g�gravity constant

The formulas for concentrated disk masses are essentially the same as for the shaft
element and thus listed here as follows.

Concentrated disk mass properties
Any axially symmetric mass specified by its M, IT, and IP can be used, e.g., cou-
plings, impellers, gears.

Mass, M (d) ��
�d!(D

4

2
o

g
� DI

2 )l
�

Transverse inertia at c.g., IT
(d) � �

1
1
2
� M (d) �3 ��D

2
o �

4
Di

2

�� � l2� (35b)

Polar Inertia, IP
(d) � �

1
2

� M (d) ��D
2
o �

4
Di

2

��
where

Do
(d)�disk OD

Di
(d)�disk ID (concentric hole)

l�disk axial thickness
�d�disk weight density

As shown in Fig. 8, each mass station has four DOFs: x, y, �x, and �y. Thus,
with �x and �y coordinates included at every mass station, beam-bending trans-
verse rotary inertia, an effect of increased importance for higher frequency bend-
ing modes, is included. In addition, therefore, either an optional concentrated
point mass or concentrated disk mass (or other axially symmetric mass) can be
added at each mass station after the complete rotor matrices are assembled from
all the individual shaft element matrices.

The programmed steps in building the RDA equations of motion for arbitrary
model configurations are essentially the encoding of the [M ], [C], and [K ] matri-
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ces, as well as the right-hand-side column of applied forces, {R}. These matrices
are essentially the discrete model’s equations of motion. Using the basic rotor fi-
nite-element building block shown in Fig. 8, the total system stiffness and damp-
ing matrices are single-option paths, in contrast to the mass matrix, which has three
options, lumped mass, distributed mass, and consistent mass discretizations. For
most rotor vibration models, the consistent and distributed mass formulations pro-
vide significantly better model resolution accuracy (i.e., converge with fewer finite
elements or DOFs) than the lumped mass formulation. Furthermore, based on the
author’s experience, the consistent mass model seems to be marginally better for
rotors than the distributed mass model. RDA is coded to allow the user to select any
of these three mass models. Although the consistent mass model is usually the pre-
ferred option, it is occasionally informative to be able to switch easily between
these three mass models to study model convergence characteristics parametri-
cally, that is, to study whether a selected number of rotor elements is adequate for
the needs of a particular analysis. The three mass-matrix options are covered here
first, followed by the stiffness and gyroscopic matrices.

3.2. Shaft Element Lumped Mass Matrix

In this approach, it is assumed that the shaft element’s mass is lumped at the ele-
ment’s two end points according to static weight-equilibrating forces at the ele-
ment end points. For the uniform diameter shaft element programmed into RDA,
this means lumping half the shaft element’s mass at each of the mass stations at
the two ends of the element. Implicit in this approximation is a step change in the
shaft element’s lateral (radial) acceleration at its axial midpoint. In other words,
the actual continuous axial variation in radial acceleration is approximated by a
series of small discrete step changes. Similarly, half the beam element’s transverse
moment of inertia is transferred to each of its two ends points using the parallel-
axis theorem, as follows.

ITi � �
1
1
2
� ��

M
2

(s)

�� �3 ��d
2
o �

4
di

2

�� � ��
L
2

��2� � �
M

2

(s)

� ��
L
4

��2
(36)

With the coordinate vector ordering {x1, y1, �x1, �y1, x2, y2, �x2, �y2} employed, the
shaft element lumped mass matrix is then as follows.

[M]l
i � � � (37)

0
0
0
0
0
0
0
ITi

0
0
0
0
0
0
ITi

0

0
0
0
0
0

�
1
2

� Mi
(s)

0
0

0
0
0
0

�
1
2

� Mi
(s)

0
0
0

0
0
0
ITi

0
0
0
0

0
0
ITi

0
0
0
0
0

0
�
1
2

� Mi
(s)

0
0
0
0
0
0

�
1
2

� Mi
(s)

0
0
0
0
0
0
0
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3.3. Shaft Element Distributed Mass Matrix

The underlying assumption for the distributed mass formulation is that the shaft
element’s lateral acceleration varies linearly in the axial direction, a logical first-
order improvement over the axial step-change approximation implicit in the
lumped mass formulation. An axial linear variation of lateral acceleration requires
that the element’s lateral velocity also varies linearly in the axial direction. The
derivation here considers two adjacent mass stations, as shown in Fig. 9, to for-
mulate the linear variation of lateral velocity.

The linear variation of x-velocity is expressed as follows.

ẋ � ẋl � �
L
1

i
� (ẋi�1 � ẋi)z (38)

The x-direction derivation is shown here, but the y-direction derivation is identi-
cal. The x-translation kinetic energy of a shaft element can thus be expressed as
follows (similar for y-translation kinetic energy).

Ti
(x) � �

1
2

� �
M
L

i
(

i

s)

� 
L1

0
ẋ2 dz (39)

Substituting Eq. (38) into (39) and integrating yields the portion of the total sys-
tem’s kinetic energy function needed to extract the shaft element’s lateral accel-
eration terms associated with the xi and xi�1 Lagrange equations of motion. That
leads to the following two results.

�
d
d
t
� ��

�
�
x
T
˙i
�� � �

1
3

� Mi
(s) ẍi � �

1
6

� Mi
(s) ẍi�1

�
d
d
t
� ���x

�
˙i

T
�1
�� � �

1
6

� Mi
(s) ẍi � �

1
3

� Mi
(s) ẍi�1

(40)

Because the beam element transverse rotary inertia effect is secondary to its
lateral mass acceleration effect, the shaft element transverse rotary inertia is in-
cluded here as already shown for the lumped mass formulation, Eqs. (36). That is,
the beam element transverse moment of inertia is not “distributed” in the manner
just derived for the lateral mass acceleration components. With the coordinate
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vector ordering {x1, y1, �x1, �y1, x2, y2, �x2, �y2} employed, the shaft element’s dis-
tributed mass matrix thus obtained is as follows.

[M]i
d � � � (41)

3.4. Shaft Element Consistent Mass Matrix

When the spatial distribution of acceleration (and therefore velocity) in a finite el-
ement is formulated with the same shape function as static deflection, it is referred
to as the consistent mass approach. The shaft element in Fig. 8 is postulated to be
a uniform cross section beam in bending. Thus, its static beam deflection can be
expressed as cubic functions in the x-z and y-z planes as follows (z referenced to
left mass station, as shown in Fig. 9).

"(z) � az3 � bz2 � cz � d (42)

A general state of shaft element deflection in a plane (x-z or y-z) can be ex-
pressed as a linear superposition of four cases, each having a unity displacement
for one of the four generalized coordinates in the plane with zero displacement for
the other three coordinates in the plane. These four cases are specified by the fol-
lowing tabulated sets of boundary conditions.

Correspondence Between "j, "�j and Rotor Element Coordinates

x-z plane → x1 �y1 x2 �y2

y-z plane → y1 ��x1 y2 ��x2

Case 1: "1(0) � 1 "�1(0) � 0 "1 (L) � 0 "�1 (L) � 0
Case 2: "2 (0) � 0 "�2 (0) � 1 "2 (L) � 0 "�2 (L) � 0
Case 3: "3 (0) � 0 "�3 (0) � 0 "3 (L) � 1 "�3 (L) � 0
Case 4: "4 (0) � 0 "�4 (0) � 0 "4 (L) � 0 "�4 (L) � 1

Substituting each of the preceding four boundary condition sets into Eq. (42) and
solving in each case for the four coefficients in Eq. (42) yield the following four
deflection shape functions.

"1(z) � 1 � 3 ��
L
z
��2

� 2 ��
L
z
��3

"2(z) � z � 2 �
z
L

2

� � �
L

z3

2�

"3(z) � 3 ��
L
z
��2

� 2 ��
L
z
��3

"4 � �
z
L

2

� ��
L
z
� � 1�

(43)
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0
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0
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The general state of shaft element deflection can be expressed as follows.

x � x1"1 (z) � �y1"2 (z) � x2"3 (z) � �y2"4 (z)

y � y1"1 (z) � �x1"2 (z) � y2"3 (z) � �x2"4 (z)
(44)

Thus, the general state of shaft element velocity can be expressed as follows.

ẋ � ẋ1"1 (z) � �̇y1 "2 (z) � ẋ2 "3 (z) � �̇y2 "4 (z)

ẏ � ẏ1"1 (z) � �̇x1 "2 (z) � ẏ2 "3 (z) � �̇x2 "4 (z)
(45)

The total shaft element kinetic energy is derived by substituting Eqs. (45)
into the following equation.

Ti � �
1
2

� �
M
L

i
(

i

s)

� 
Li

0
(ẋ2 � ẏ2) dz (46)

The element consistent mass matrix is obtained by substituting the integrated re-
sult from Eq. (46) into the acceleration portion for each of the eight Lagrange
equations for the shaft element, as follows.

�
d
d
t
� ��

�

�

q
T
˙r

i
�� � [Mrs ]i

c {q̈s}, r � 1, 2, . . ., 8 (47)

With {q̈s} � {ẍ1, ÿ1, �̈x1, �̈y1, ẍ2, ÿ2, �̈x2, �̈y2}, the shaft element consistent mass
matrix thus obtained is as follows.

[M ]i
c � �

M
42

t
(

0

s)

� �
(48)

�
�13 Li

0
0

�3 Li
2

�22 Li

0
0

4 Li
2

0
13 Li

0
0
0

22 Li

4 Li
2

0

0
54
0
0
0

156
22 Li

0

54
0
0

13 Li

156
0
0

�22 Li

22 Li

0
0

4 Li
2

13 Li

0
0

�3 Li
2

0
�22 Li

4Li
2

0
0
0
0
0

0
156

�22 Li

0
0
54

13 Li

0

156
0
0

22 Li

54
0
0

�13 Li
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3.5. Shaft Element Stiffness Matrix

Borrowing from Eq. (5), the potential energy for the shaft element in bending can
be expressed as follows.

Vi � �
1
2

� EiIi 
Li

0
[(x �)2 � (y�)2] dz (49)

Substituting Eqs. (44) into (49) provides the shaft element Vi as a function of the
element’s eight generalized coordinates, similar to the detailed development of Eq.
(11) for the 8-DOF simple nontrivial model. The element stiffness matrix is ob-
tained by substituting the integrated result from Eq. (49) into the potential energy
term for each of the eight Lagrange equations for the shaft element, as follows.

�
�

�

V
qr

i
� � [Krs ]i {qs}, r � 1,2,. . .,8 (50)

With {qs} � {x1, y1, �x1, �y1, x2, y2, �x2, �y2}, the element stiffness matrix thus ob-
tained is as follows.

[K]i � �
2

L

E

i
3
lIi
� � � (51)

3.6. Shaft Element Gyroscopic Matrix

Half the shaft element’s polar moment of inertia, IP
(s), is transferred to each of its

two ends points. Utilizing Eq. (17), the shaft element’s gyroscopic matrix is ac-
cordingly given by the following.

[G]i
s � � � (52)

IP1 � �
1
2

� IP
(s) � �

1
4

� M(s) ��d2
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4
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��
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6
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3.7. Addition of Nonstructural Mass and Inertia to Rotor
Element

Nonstructural mass is added mass and inertia, lumped at mass stations, that does
not contribute to element flexibility. The rotor element in Fig. 8 shows a concen-
trated disk at each end. A concentrated disk (M (d), IP

(d) and IT
(d)) may be added at

any rotor mass station. For a purely concentrated nonstructural point mass, IP
(d) �

IT
(d) � 0. Because construction of the complete matrices for the rotor alone (next

topic) overlays the element matrices at their connection stations, nonstructural
mass and inertia are added to the left mass station of each element prior to that
overlay of element matrices, as reflected in the following equations. The excep-
tion is the far right rotor station, where nonstructural mass is added to the right
station.

Complete element mass matrix � [M ]i � [[M ]l
i or [M ]i

d or [M ]i
c ]

� � � (53)

Complete element gyroscopic matrix � [G]i
s

� � � (54)

3.8. Matrices for Complete Free-Free Rotor

The [M], [C], and [K] matrices for the complete free-free rotor (i.e., free of con-
nections to ground and free of external forces) are assembled by linking all the
corresponding individual rotor-element matrices. The right mass station of each
rotor element is overlaid on the left mass station of its immediate right neighbor.

0
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0
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0
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Thus, the total number of rotor mass stations (NST) is equal to the total number of
rotor elements (NEL) plus one. The total number of rotor DOFs is four times NST.

NST � NEL � 1

NRDOF � 4NST
(55)

Accordingly, the rotor matrices are expressible as follows.

�M1 � 

 �M2 � 
 �M3 � 

[M]R �  �  (56)
 � 

 � 
 �MNEL�

NRDOF � NRDOF

�G1 � 

 �G2 � 
 �G3 � 

[C]R �  �  (57)
 � 

 � 
 �GNEL�

NRDOF � NRDOF

�K1 � 

 �K2 � 
 �K3 � 

[K]R �  �  (58)
 � 

 � 
 �KNEL�

NRDOF � NRDOF
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Note that the free-free rotor damping matrix contains only the shaft gyroscopic
terms. As further explained in Sec. 4, although the gyroscopic effect is embedded
in [C ], it is not really “damping” in the energy dissipation sense. It is an inertia ef-
fect and therefore energy conservative.

3.9. Radial-Bearing and Bearing-Support Models

The RDA code is configured so that inputs for a radial-bearing stiffness and damp-
ing model, such as illustrated in Fig. 2, may be applied at any rotor model mass
station. In a complete model, at least two radial bearings are needed to provide
stiffness connections between the rotor and the inertial reference frame (ground),
because the rotor has two static equilibrium conditions for the x-z plane and two
for the y-z plane. That is, it is necessary to have rotor-to-ground stiffness connec-
tions for at least two x-coordinates and two y-coordinates for there to exist a static
equilibrium state to which the computed linear-model vibrations are referenced.
The strictly mathematical statement of this is that the total model’s stiffness ma-
trix [K ] must be nonsingular, which it would not be if at least the minimum re-
quired number of to-ground stiffness connections were not incorporated. The ob-
vious practical way of viewing this is that a minimum of two radial bearings is
required to confine a rotor to its prescribed rotational centerline within the ma-
chine; otherwise, “look out!”

Not surprisingly, the most typical rotor-bearing configuration has two radial
bearings, but large steam turbine-generator sets may have 10 or more journal bear-
ings on one continuous flexible rotor. For most LRV computer models, one typi-
cally uses 10 to 20 rotor-model mass stations between adjacent bearings. Bearing
rotor dynamic properties present probably the biggest challenge in undertaking
LRV analyses because the bearing “inputs” (stiffness and damping coefficients),
while very important to the accuracy of computed results, inherently have a high
degree of uncertainty. Chapter 5 of this book is devoted entirely to bearing and
seal rotor dynamic inputs. Although bearings and seals are different machine ele-
ments, both are included in LRV analysis models in the same manner, i.e., as ra-
dial connections between the rotor and the inertial reference frame. In contrast to
bearings, seals often need fluid-inertia effects incorporated in the rotor-to-ground
connection model, as detailed in Chapter 5. Here, the focus is on how bearing ro-
tor-to-ground stiffness and damping connections are incorporated in the matrices
for the complete equations of motion.

The x and y components of the total radial force (F
→

) exerted upon the rotor
from a bearing can be separated into static-equilibrium and dynamic-deviation
parts, as follows.

Fx � �Wx � ƒx and Fy � �Wy � ƒy (59)

Wx and Wy are the x and y components, respectively, of the static load (W
→

) exerted
upon the bearing, whereas ƒx and ƒy are the x and y components, respectively, of
the dynamic deviation of total bearing force exerted upon the rotor. This is illus-
trated by the vector diagram in Fig. 10.
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Fluid-film journal bearings provide the most typical example with which to
explain the inclusion of radial bearing dynamic compliance in linear LRV analy-
ses. As fully developed in Chapter 5, the dynamic-deviation interactive force be-
tween a bearing and its rotating journal can be described as a continuous function
of journal-to-bearing position and velocity components. This assumes that lubri-
cant viscosity effects are dominant and lubricant fluid inertia effects are negligi-
ble; otherwise, journal-to-bearing acceleration component effects should also be
included. A continuous function also having continuous derivatives to any order
can be expanded in a Taylor series. Therefore, relative to the static equilibrium
state, the x and y components of the dynamic deviation of bearing force upon the
rotor can be expressed as follows (under static equilibrium, F

→
� W

→
� 0).

Fx � Wx � fx ��
∂
∂
F
x
x� x � �

∂
∂
F
ẋ
x� ẋ � �

∂
∂
F
y
x� y � �

∂
∂
F
ẏ
x� ẏ � (higher order terms)

(60)

Fy � Wy � fy ��
∂
∂
F
x
y� x � �

∂
∂
F
ẋ
y� ẋ � �

∂
∂
F
y
y� y � �

∂
∂
F
ẏ
y� ẏ � (higher order terms)

where Fx � Fx (x,y,ẋ,ẏ) and Fy � Fy (x,y,ẋ,ẏ) and x and y are referenced relative
to the static equilibrium position, as shown in Fig. 10. It is postulated that vibra-
tion signal amplitudes (x,y,ẋ,ẏ) are sufficiently small for the “higher order terms”

0

0
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in Eqs. (60) to be vanishingly small compared with the linear terms. Thus, only
the linear terms are retained. Essentially, this is how all linear vibration models are
justified, because all real systems have some nonlinearity.

Fortunately, the assumption of linearity leads to adequate answers in most
vibration engineering analyses and simplifies considerably the tasks of making
calculations and understanding what is calculated. Some specialized large-am-
plitude rotor vibration problems justify treating nonlinear effects, e.g., large ro-
tor unbalance such as from turbine blade loss, shock and seismic base-motion
excitations, rotor rub-impact phenomena, and self-excited vibration limit cycles.
These topics are described at the end of this chapter in Sec. 5. With the “higher
order” terms dropped, it is convenient to put Eqs. (60) into the following matrix
form.

� � � � � � � � � � � � � (61)

kij � ��Fi/�xj and cij � ��Fi/�ẋj are the eight bearing stiffness and damping
coefficients. In general, these coefficient matrices for bearings and seals cannot
be simultaneously diagonalized in a single x-y coordinate system, in contrast to
the model shown in Fig. 2. In fact, the bearing and seal stiffness coefficient ma-
trices are often nonsymmetric and their damping coefficient matrices may also
be nonsymmetric when certain fluid dynamical factors are significant (e.g., fluid
inertia). Such nonsymmetries are somewhat of an anomaly within the broader
field of linear vibration analysis but are quite the usual circumstance in rotor dy-
namics. These nonsymmetries mathematically embody important physical as-
pects of rotor dynamical systems, which are explained in some depth in Sec. 4.
The minus signs in Eqs. (61) stem from definitions of the stiffness and damping
coefficients that are based on two implicit assumptions: (a) a springlike stiffness
restoring force resisting radial displacement from the equilibrium position and
(b) a damping drag force resisting radial-plane velocity. This is identical to the
sign convention shown at the beginning of Chapter 1 for the 1-DOF spring-
mass-damper system.

The most commonly used option in bearing LRV models is to “connect”
the rotor to ground directly through the bearing stiffness and damping coeffi-
cients, and that is quite appropriate when very stiff bearing support structures
are involved. In that case, bearing coefficients embody exclusively the bearing’s
own dynamic characteristics. Conversely, when the bearing support structure’s
flexibility is not negligible, the bearing coefficients should be modified to in-
corporate the support structure’s compliance or additional DOFs should be
added to the complete system to include appropriate modeling for the support
structure. RDA is configured with two options: (a) bearing coefficients connect
rotor directly to ground, and (b) bearing coefficients connect to an intermediate

ẋ
ẏ

cxy

cyy

cxx

cyx

x
y

kxy

kyy

kxx

kyx

ƒx

ƒy
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mass, which then connects to ground through its own x and y stiffness and
damping coefficients. This second option, referred to here as the 2-DOF bear-
ing pedestal model, adds two DOFs to the complete system for each bearing on
which it is used. Figure 2, previously introduced to illustrate a simple point-mass
model, alternatively provides an adequate schematic illustration of the 2-DOF
bearing pedestal model. One may visualize a rotating journal inside a concentric
hole of the mass illustrated in Fig. 2. Both RDA bearing-support options are
now shown.

3.9.1. Bearing Coefficients Connect Rotor Directly to Ground

As observed in Sec. 2, Eqs. (18), for the 8-DOF model’s equations of motion,
handling this option is quite simple. That is, the bearing stiffness and damping
coefficients are just added to their respective rotor mass station’s x or y
components within the total rotor [K ]R and [C ]R matrices. The total system
stiffness matrix is thus described as follows. [K ] � [K ]R � [K ]B, where [K ]B �
NRDOF � NRDOF matrix containing all the bearing stiffness coefficients in their
proper locations. This is shown as follows for the embedding of a bearing within
[K ].

[K]{q} � � � � � � � (62)

Similarly, [C] � [C]R � [C]B, where [C]B � NRDOF � NRDOF matrix containing
all the bearing damping coefficients in their proper locations.

[C]{q̇} � �   � �   � � �, (63)

n � bearing no. � 1, 2, …, NB, [M] � [M]R (64)

For this option, the total number of degrees of freedom is NDOF � NRDOF. The
eight-coefficient bearing model does not include any acceleration effects, thus
[M ] � [M]R. At least two bearings must have nonzero principal values for their
[kij

(n)] for the total model stiffness matrix [K ] to be nonsingular, which is a re-
quirement fully explained at the beginning of this subsection.
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ẋ
ẏ
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3.9.2. Bearing Coefficients Connect to an Intermediate Mass

The total system [M ], [C], and [K ] matrices with no bearing pedestals in the
model, Eqs. (62)–(64), are split after the coordinates of each station where a 2-
DOF bearing pedestal is located to insert the additional two rows and two columns
containing the corresponding matrix coefficients for the two additional degrees of
freedom. This is easy to demonstrate by showing the following expressions for the
example of adding a 2-DOF bearing pedestal model only to a bearing at rotor sta-
tion No. 1.




�4 � 4� � � �4 � NRDOF�   


[M] �

� � � � � � 


(65)



�NRDOF � 4� � � �NRDOF � NRDOF�


Pedestal-expanded [C] and [K] matrices must be formulated to account for the
bearing [kij

(n)] and [cij
(n)] stiffness and damping coefficients being driven by the dif-

ferences between rotor and bearing pedestal displacement and velocity compo-
nents, respectively. The [2 � 4] and [4 � 2] off-diagonal coefficient arrays shown
within the following two equations accomplish that.



�4 � 4� � � �4 � NRDOF�


[C] �


� � � � � �





�NRDOF � 4� � � �NRDOF � NRDOF�



(66)
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

�4 � 4� � � �4 � NRDOF�


[K] � 

� � � � � �





�NRDOF � 4� � � �NRDOF � NRDOF�



(67)

For this example, {q} � {x1, y1, �1x, �1y, xB,1x, yB,1y, x2, y2, �2x, �2y, . . .} is the gen-
eralized coordinate vector. Note the additional two coordinates added at the end
of the station 1 rotor coordinates.

MB
(n),x and MB

(n),y are the nth bearing pedestal’s x and y modal masses, re-
spectively. [C(n)

B,ij]2�2 and [K(n)
B,ij]2�2 are the nth bearing pedestal’s damping and

stiffness connection-to-ground coefficients, respectively. The total number of sys-
tem degrees of freedom is equal to the rotor degrees of freedom (NRDOF) plus two
times the number of bearing pedestals (NP) employed in the model, where NP � NB.

NDOF � NRDOF � 2NP (68)

3.10. Completed RDA Model Equations of Motion

The complete RDA NDOF equations of motion can now be written in the compact
matrix form introduced in Eq. (15) (Chapter 1). All the analysis options available
within the RDA code have one of two {ƒ(t)} right-hand sides as follows: {ƒ(t)} �
{0} for eigenvalue analyses (e.g., instability searches), and

� � � 
2 � � (69)

at rotor stations with unbalance inputs, for steady-state unbalance response.

4. INSIGHTS INTO LINEAR LATERAL ROTOR VIBRATIONS

Successful rotating machinery developments need reliable analyses to predict vi-
bration performance. Predictive analyses can also be an invaluable tool in trou-
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bleshooting vibration problems in existing machinery. Present computerized rotor
vibration analyses provide many software options in this regard, such as the RDA
code supplied with this book. Equally important, but frequently overlooked and
not well understood, are the basic physical insights, which can easily be obscured
in the presence of enormous computational power. Basic physical insights are es-
sential for one to understand, explain, and apply what advanced analyses predict.
This section relates important physical characteristics for lateral rotor vibration to
the mathematical structure of the governing equations of motion. The centerpiece
here is the decomposition of the equation-of-motion matrices into their symmet-
ric and skew-symmetric parts and the relation of those parts to the conservative
and nonconservative forces of rotor dynamical systems.

It has been recognized for quite some time that, aside from journal bearings,
other fluid annuli such as sealing clearances and even complete turbomachinery
stages produce rotor dynamically significant interactive rotor-stator forces. These
forces must be adequately characterized and included in many rotor vibration
analyses if reliable prediction and understanding of machinery vibration are to be
realized. The most complete rotor-stator interactive linear radial force model cur-
rently in wide use is shown in the following equation, which can be referred to Fig.
10 and its associated nomenclature.

� � � �� � � � � � � � � � � � � � (70)

kij � ��Fl/�xj, cij � ��Fi/�ẋj, and mij � ��Fi/�ẍj are defined at static equilib-
rium and have an orthogonal transformation property of the Cartesian second-rank
tensor; i.e., they are second-rank tensors just like stress. Chapter 5 provides a more
in-depth treatment of how these stiffness, damping, and virtual mass (inertia) co-
efficients are determined. At this point, suffice it to say that first-principle-based
computations as well as some highly challenging experimental approaches are uti-
lized to quantify these rotor dynamic coefficients, because they are crucial to
meaningful rotor vibration analyses.

4.1. Systems with Nonsymmetric Matrices

The decomposition of any n � n matrix [A] into its symmetric (“s”) and skew-sym-
metric (“ss”) parts is an elementary technique of matrix algebra, as follows.

[Aij ] � �
1
2

� [Aij � Aji ] � �
1
2

� [Aij � Aji ] � [As
ij ] � [Aij

ss ] (71)

where [As
ij ] � �

1
2

� [Aij � Aji ] and [Aij
ss ] � �

1
2

� [Aij � Aji ]

giving [As
ij ] � [As

ij ]T and [Aij
ss ] � �[Aij

ss ]T

As shown in Eqs. (71), the symmetric part of [A] is equal to its own transpose (“T”,
i.e., interchange of rows and columns), whereas its skew-symmetric part is equal
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to minus its own transpose. This matrix decomposition technique can therefore be
applied to any of the square matrices associated with the equations of motion for
LRV. Clearly, if an n � n matrix is symmetric to begin with, its skew-symmetric
part is zero and this matrix decomposition does not accomplish anything. Al-
though most linearized vibration models have symmetric [M ], [C ], and [K] ma-
trices, LRV models typically have some nonsymmetries. There are compelling
physical reasons to justify that the 2 � 2 interaction-force gradient coefficient ma-
trices [kij] and [cij] defined in Eq. (70) can be nonsymmetric and, conversely, that
the 2 � 2 array [mij] should be symmetric. Furthermore, as already shown for
spinning rotors in Eqs. (17), the gyroscopic moment effect manifests itself in the
motion equations as a skew-symmetric additive to the [C] matrix, e.g., Eqs. (18),
(52), and (54). In a series of papers some years ago, listed in the Bibliography at
the end of this chapter, the author related the somewhat unique nonsymmetric
structure of rotor-bearing dynamics equation-of-motion matrices to certain phys-
ical characteristics of these systems. The main points of those papers are treated
in the remainder of this section.

The complete linear LRV equations of motion can be compactly expressed
in standard matrix form as follows.

[M ]{q̈} � [C ]{q̇} � [K ]{q} � {ƒ(t)} (72)

First, the matrices in this equation are decomposed into their symmetric and skew-
symmetric parts as

[K ] � [Ks ] � [Kss ], [C ] � [Cs ] � [Css ], [M] � [Ms] � [Mss] (73)

where the decompositions in Eqs. (73) are defined by Eqs. (71). The fundamental
demonstration is to show that these decompositions amount to a separation of dy-
namical effects into energy conservative and energy nonconservative parts. That
[Ks ] is conservative, [Cs] is nonconservative, and [Ms ] is conservative can auto-
matically be accepted, as they are the standard symmetric stiffness, damping, and
mass matrices, respectively. [Css ] is handled here first because there is a similar-
ity in the treatments of [Kss] and [Mss].

Attention is first on some 2 � 2 submatrix within the [Css ] matrix that con-
tains [cij

ss], the skew-symmetric part of [cij] for a radial bearing, seal, or other fluid-
containing confine between rotor and nonrotating member. The incremental work
dw (i.e., force times incremental displacement) done on the rotor by the [cij

ss] terms
at any point on any orbital path (refer to journal center orbital trajectory shown in
Fig. 10) is expressible as follows.

dw � �[cij
ss]� �{dx dy} (74)

where [cij
ss] �� �css

xy

0
0

�css
xy

ẋ
ẏ
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Performing the indicated multiplications in Eq. (74) and substituting dx � ẋ dt and
dy � ẏ dt yields the following result.

dw � �css
xy (ẋẏ � ẏẋ) dt � 0 (75)

This result simply reflects that the force vector here is always perpendicular to its
associated velocity vector, and thus no work (or power) is transmitted. Similarly,
focusing on some 2 � 2 submatrix within the [Css] matrix that contains a pair of
gyroscopic moment terms, as provided in Eqs. (17), the identical proof applies to
the gyroscopic moment effects, shown as follows.

dw � �� � � � {d�x d�y}

� �� � � � {�̇x �̇y} dt � 0 (76)

The gyroscopic moment vector is perpendicular to its associated angular veloc-
ity vector, and thus no work (or power) is transmitted. The skew-symmetric part
of the total system [C ] matrix thus embodies only conservative force fields and
is therefore not really damping in the energy dissipation or addition sense, in
contrast to the symmetric part of [C], which embodies only nonconservative
forces.

Turning attention to the skew-symmetric part of [K ], consider some 2 � 2
submatrix within the [Kss] matrix that contains [kss

ij ], the skew-symmetric part of
[kij] for a radial bearing, seal, or other fluid-containing confine between rotor and
nonrotating member. The incremental work done by the [kij

ss ] terms on any point
on any orbital trajectory is expressible as follows.

dw � �� �� �{dx dy} � �kss
xy y dx � kss

xy x dy � ƒx dx � ƒy dy

� �
�

�

ƒ
y
x

� � � kss
xy and �

�

�

ƒ
x
y

� � kss
xy

(77)

Obviously, �ƒx /�y � �ƒy /�x, that is, dw here is not an exact differential, so the
[kij

ss ] energy transferred over any portion of a trajectory between two points 
A and B is path dependent, and thus the force field is nonconservative. The
skew-symmetric part of the total system [K ] matrix thus embodies only
nonconservative force fields and is therefore not really stiffness in the energy
conservative sense, in contrast to the symmetric part of [K ], which embodies
only conservative forces. An additional interesting insight is obtained here by
formulating the net energy-per-cycle exchange from the [kij

ss ] terms (see
Fig. 11).

Ecyc � � dw � �kss
xy � (y dx � x dy) (78)
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Splitting the integral in Eq. (78) into two line integrals between points A and B
and integrating the dy terms by parts yield the following result.

Ecyc � 2kss
xy 
xB

xA

(y2 � y1) dx (79)

The integral in Eq. (79) is clearly the orbit area. Typically, kss
xy � 0 for journal

bearings, seals, and other rotor-stator fluid annuli, even complete centrifugal
pump stages. Thus, the kss

xy effect represents negative damping for forward (coro-
tational) orbits and positive damping for backward (counterrotational) orbits.
Only for orbits where the integral in Eq. (79) is zero will the net exchange of en-
ergy per cycle be zero. One such example is a straight-line cyclic orbit. Another
example is a “figure 8” orbit comprising a positive area and a negative area of
equal magnitudes.

The complete nonconservative radial interaction force vector {P} on the ro-
tor at a journal bearing, for example, is thus embodied only in the symmetric part
[cs

ij ] and the skew-symmetric part [kij
ss ] and expressible as follows (actually, cs

xx �
cxx and cs

yy � cyy).

� � � � � �� � � � �� � (80)

The parametric equations, x � X sin (�t � 
x) with y � Y sin(�t � 
y), are used
here to specify a harmonic rotor orbit for the purpose of formulating the energy
imparted to the rotor per cycle of harmonic motion, as follows.

Ecyc � � (Px dx � Py dy) � 
2!/�

0
(Pxẋ dt � Pyẏ dt)

� �!{�[cs
xx X2 � 2cs

xy XY cos(
x � 
y)

� cs
yy Y2] � 2kss

xy XY sin(
x � 
y)} (81)
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FIGURE 11 Any periodic orbit of rotor relative to nonrotating member.
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By casting in the x-y orientation of the principal coordinates of [cs
ij ], the cs

xy term
in Eq. (81) disappears, yielding the following result, which is optimum for an ex-
planation of rotor dynamical instability self-excited vibration.

Ecyc � �![�(cp
xx X2 � cp

yy Y2) � 2kss
xy XY sin(
x � 
y)] (82)

Because [kij
ss ] is an isotropic tensor, its coefficients are invariant to orthog-

onal transformation, i.e., do not change in transformation to the principal coordi-
nates of [cs

ij ]. Furthermore, �, cp
xx, cp

yy, kss
xy, X, and Y are all positive in the normal

circumstance. For corotational orbits the difference in phase angles satisfies
sin(
x � 
y) � 0, and conversely for counterrotational orbits sin(
x � 
y) � 0.
For a straight-line orbit, which is neither forward nor backward whirl, 
x � 
y so
sin(
x � 
y) � 0, yielding zero destabilizing energy input to the rotor from the kss

xy

effect. From Eq. (82) one thus sees the presence of positive and negative damping
effects for any forward whirling motion. Typically, as rotor speed increases, the
kss

xy effect becomes progressively stronger in comparison with the cs
ij (squeeze-film

damping) effect. At the instability threshold speed, the two effects exactly balance
on an energy-per-cycle basis, and � is the natural frequency of the rotor-bearing
resonant mode which is on the threshold of “self-excitation.” From Eq. (82) it
therefore becomes clear why this type of instability always produces a self-excited
orbital vibration with forward whirl (corotational orbit), because the kss

xy term ac-
tually adds positive damping to a backward whirl. It also becomes clear why the
instability mechanism usually excites the lowest frequency forward-whirl mode,
because the energy dissipated per cycle by the velocity-proportional drag force is
also proportional to �, but the energy input per cycle from the kss

xy destabilizing ef-
fect is not proportional to �. In other words, the faster an orbit is traversed, the
greater the energy dissipation per cycle by the drag force. However, the energy in-
put per cycle from thekss

xy destabilizing effect is proportional only to orbit area, not
how fast the orbit is traversed. Consequently, as rotor speed is increased, the first
mode to be “attacked” by instability is usually the lowest frequency forward-whirl
mode.

Harmonic motion is also employed to investigate the mss
xy effect. The net en-

ergy per cycle imparted to the rotor by such a skew-symmetric additive to the mass
matrix is accordingly formulated similarly to Eq. (78), as follows.

Ecyc � �mss
xy � (ÿ dx � ẍ dy) � �2mss

xy � (y dx � x dy) (83)

The factor (��2) comes from twice differentiating the sinusoidal functions for x
and y to get ẍ and ÿ, respectively. With reference to Fig. 11, utilizing the same
steps on Eq. (83) as in going from Eq. (78) to (79), the following result is obtained.

Ecyc � �2�2mss
xy 
xB

xA

(y2 � y1) dx (84)
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It is clear from Eq. (84) that an mss
xy effect would be nonconservative, simi-

lar to the kss
xy effect, but differing by the multiplier (��2). For mss

xy � 0, such a
skew-symmetric additive to an otherwise symmetric mass matrix would therefore
“attack” one of the highest frequency backward-whirl modes of a rotor-bearing
system and drive it into a self-excited vibration. Even if mss

xy were very small (pos-
itive or negative), the �2 multiplier would seek a high-enough-frequency natural
mode in the actual continuous media rotor system spectrum to overpower any ve-
locity-proportional drag-force damping effect, which has only an � multiplier. No
such very high-frequency backward whirl (mss

xy � 0) or forward whirl (mss
xy � 0)

instability has ever been documented for any type of machinery. Thus, it must be
concluded that mss

xy � 0 is consistent with physical reality. In other words, the mass
matrix should be symmetric to be consistent with real machinery. An important
directive of this conclusion is the following: For laboratory experimental results
from bearings, seals, or other fluid-containing confines between rotor and nonro-
tating member, schemes for fitting measured data to linear models such as Eq. (70)
should constrain [mij] to symmetry.

Even with symmetry imposed on [mij], the model in Eq. (70) still has 11 co-
efficients (instead of 12), which must be obtained either from quite involved com-
putational fluid mechanics analyses or from quite specialized and expensive ex-
perimental efforts, as more fully described in Chapter 5. Thus, any justifiable
simplification of the Eq. (70) model that reduces the number of its coefficients is
highly desirable. For conventional oil-film journal bearings, the justified simplifi-
cation is to discount the lubricant’s fluid inertia effects, which automatically re-
duces the number of coefficients to eight. For seals and other rotor-stator fluid
confines that behave more like rotationally symmetric flows than do bearings, the
isotropic model is employed as described in the next subsection.

4.2. The Isotropic Model

The underlying assumptions for the isotropic model are that (a) the rotating and
nonrotating members forming an annular fluid-filled gap are concentric; (b) the
annular gap has geometric variations, if any, in the axial direction only; and (c) the
inlet flow boundary conditions are rotationally symmetric. As a consequence, it is
assumed that the rotor orbital vibrations impose only small dynamic perturbations
upon an otherwise rotationally symmetric primary steady flow field within the an-
nular gap. Rotational symmetry requires that the kij, cij, and mij coefficients in Eq.
(70) be invariant to orthogonal transformation, i.e., have the same values in all ori-
entations of the radial plane x-y coordinate system. It is relevant to mention here
that kij, cij, and mij are coefficients of single-point second-rank tensors, just like
stress and rigid-body mass moment of inertia, which is not typically so in the
broader class of linear vibration model matrices. Thus, for the case of rotationally
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symmetric flow, these tensors are isotropic. This justifies that Eq. (70) can be sim-
plified to the following form for the isotropic model.

� � � �� � � � � � � � � � � � � � (85)

Clearly, the isotropic assumption by itself reduces the number of coeffi-
cients to six. However, the constraint of symmetry on mij developed in the previ-
ous subsection means that mss � 0, so in fact only five coefficients are required for
the isotropic model. The major limitation of the isotropic model is that it does not
accommodate nonzero rotor-to-stator static eccentricities or other rotational
asymmetries between rotor and stator. Thus, this model would be physically in-
consistent for journal bearings because they derive their static load capacity from
significant static eccentricity ratios. However, it is widely applied for seals and
other rotor-stator fluid confines but not for journal bearings.

The isotropic model lends itself to an insightful visualization of how the lin-
ear interaction force model separates its single force vector into the distinct parts
delineated by the model. Such an illustration using the full anisotropic model of
Eq. (70) would be too complicated to be as insight provoking as Fig. 12, which is
based on the isotropic model. The force vector directions shown in Fig. 12 are for
the six coefficients of the isotopic model all assumed to be positive, and all brack-
ets are omitted from the indicated matrix multiplications. Although it has already
been established that mss � 0, Fig. 12 shows a component that would be present
if mss � 0 to illustrate its nonconservative nature.

Figure 12 visually embodies all the major points provided thus far in this
section, and more. First, note that the all the kij and mij force parts are in the
same directions for both forward and backward whirl, whereas the cij force parts
are all direction reversed between the forward and backward whirl cases. The
case of circular whirl is easiest to visualize, with all force parts being either tan-
gent or perpendicular to the path at the instantaneous position. Note that the
symmetric stiffness part provides a centering force for ks � 0 and would thus
represent a decentering force for ks � 0. The cs force part is opposite the in-
stantaneous orbit velocity in both orbit direction cases and thus always provides
a drag force for cs � 0. The css � 0 force part provides a centering force for
forward whirl and a decentering force for backward whirl, thus imposing a gy-
roscopic-like effect that tends to bifurcate the system natural frequency spectrum
along higher frequency forward-whirl branches and lower frequency backward-
whirl branches. The kss � 0 force part, being tangent to the path and in the ve-
locity direction for forward whirl, thus provides an energy (power) input to for-
ward-whirl rotor orbital motion and is thus a destabilizing influence for
forward-whirl modes, as previously described. Similarly, the mss � 0 force part,
which should actually be omitted from models, would impose a destabilizing en-
ergy input to backward-whirl rotor orbits.

ẍ
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Parts (c) and (d) of Fig. 12 show force part delineation for the more general
case of elliptical orbits. A general harmonic orbit is an ellipse; thus circular orbits
result only when X � Y with 
x � 
y � !/2 radians or 90°. For elliptical orbits,
the relationship of each force part to a physical effect is the same as just described
for circular orbits. However, the picture is slightly more complicated to visualize.
Both force parts cs and css are still tangent and perpendicular to the path, respec-
tively. However, all the stiffness and inertia parts (ks, kss, ms, and mss) are either
colinear or perpendicular to the instantaneous position vector of the journal cen-
ter relative to the static equilibrium point, as shown. Only where the trajectory
crosses the major and minor axes of the orbital ellipse are all force parts either tan-
gent or perpendicular to the path.

4.3. Physically Consistent Models

Allowing a bearing [cij] matrix to be nonsymmetric without including a compan-
ion symmetric [mij] matrix can falsify the predicted natural frequency spectrum of
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FIGURE 12 Force components delineated by the symmetric/skew-symmetric
decomposition of the kij, cij, and mij coefficient matrices for the isotropic model.
(a) Circular orbit, forward whirl; (b) circular orbit, backward whirl; (c) elliptical or-
bit, forward whirl; (d) elliptical orbit, backward whirl.
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the rotor-bearing system because it would constitute a physically inconsistent or
incomplete model for inertia of the fluid within an annular gap. This would be com-
parable to treating a concentrated rotor disk by including its polar moment of iner-
tia but excluding its transverse moment of inertia. It is equally valid to argue the
same way regarding the bearing [kij] matrix. That is, a nonsymmetric [kij] without
its companion symmetric [cij] in the model would provide a destabilizing influence
without the companion stabilizing influence to counter it, i.e., a physically incon-
sistent nonconservative characteristic. These two arguments, combined with the
earlier argument that the [mij] matrix must be symmetric to be consistent with phys-
ical reality, suggest the following axiom: The coefficient matrix of the highest or-
der term for an interactive rotor force should be symmetric to avoid physical in-
consistencies in the model. So if only [kij] coefficients are included in a model, such
as to evaluate undamped natural frequencies, only the symmetric part of the [kij]
coefficient matrices should be included. Likewise, if the [mij] (symmetric) inertia
effects are excluded for an interactive rotor force, as typical for oil-film journal
bearings, then its [cij] coefficient matrix should include only its symmetric part in
the model. In fact, as shown in Chapter 5, computational determinations for jour-
nal-bearing stiffness and damping coefficients based on the Reynolds lubrication
equation yield symmetric damping coefficients, as should be expected, because the
Reynolds equation is based on purely viscous flow with all fluid inertia effects
omitted. That is, any skew-symmetric part of a [cij] coefficient matrix must repre-
sent an inertia effect because it embodies a conservative force field.

4.4. Bearing and Seal Model with Combined Radial and
Misalignment Motions

A shortcoming of the rotor-stator radial interaction force model in Eq. (70) is its
lack of an account of angular misalignment motions between the rotor and stator
centerlines. Figure 13 illustrates the case of simultaneous radial and misalignment
motions.
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FIGURE 13 Radial bearing/seal radial and misalignment coordinates.
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For bearings and seals, misalignment motion effects naturally become more
important the larger the length-to-diameter ratio. There are always practical limi-
tations on just how close to “perfection” any engineering analysis model can be.
Researchers in the field are still working to obtain more accurate and diversified
coefficient inputs for the Eq. (70) model. For angular misalignment motion effects
to be included in the model, it would require the [kij], [cij], and [mij] coefficient
matrices each to be 4 � 4 instead of only 2 � 2, because the local generalized co-
ordinates then include {x,y,�x, �y} instead of only {x, y}. Consequently, the num-
ber of coefficients would increase by a factor of four, as shown in Eq. (86) for such
a model. Along practical lines of argument, it is hoped that optimum designs have
minimal static and dynamic misalignment effects. Although the definitive pro-
nouncement on such effects may not yet have been rendered, other uncertainties
such as from the manufacturing tolerances affecting journal bearing clearance are
more significant and prevalent, as shown in Chapter 5.

� � � �� � � � � � �� �
�� � � �

(86)

The model in Eq. (86) has both a radial force vector and a radial moment vector,
thus spawning 48 coefficients, as shown. The author feels that is sufficient reason
to move to a different topic at this point!

5. NONLINEAR DYNAMICS OF FLEXIBLE MULTIBEARING
ROTORS

The vast majority of lateral rotor vibration analyses justifiably utilize linear mod-
els. However, for postulated operating conditions that yield large vibration ampli-
tudes, linear models do not give realistic predictions of rotor vibrations and the at-
tendant dynamic forces because of the significant dynamic nonlinearities
controlling the phenomena of such operating conditions. Virtually any condition
that causes a significantly high vibration level will invariably be accompanied by
significant dynamic nonlinearity. When the journal vibration orbit fills up a sub-
stantial portion of a bearing or seal radial clearance, the corresponding interactive
rotor-stator force is no longer well approximated by the truncated Taylor series
linear model introduced in Eqs. (60) with Fig. 10.
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ẋ
ẏ
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5.1. Large-Amplitude Vibration Sources That Yield
Nonlinear Effects

Well-recognized operating conditions, albeit out of the ordinary, that cause large
rotor-to-bearing vibration orbits include the following.

Very large rotor unbalance, e.g., sudden detachment loss of large turbine or
fan blades at running speed

Rotor-bearing self-excited orbital vibration limit cycles
Explosive detonation (shock) near underwater naval vessels
Unbalance-driven resonance at an inadequately damped critical speed
Resonance buildup resulting from earthquakes

When phenomena causing such large vibrations occur, the following additional
rotor dynamic nonlinear phenomenon is likely to be produced in the process.

Rotor-to-stator rub impacting

Rub-impact phenomena can also result from other initiating factors such as mis-
alignment and differential thermal growths and/or distortions. In such cases, the
influence of a rub-impact condition may or may not by itself lead to high vibra-
tion levels, but it is likely to inject a significant nonlinear dynamic effect into the
system.

Where risk assessments warrant, the added cost of performing appropriate
nonlinear rotor dynamic analyses to evaluate properly potential failure modes as-
sociated with such unusually large vibration events is a prudent investment. How-
ever, such analyses are more likely to be performed only after a catastrophic fail-
ure occurs, to “do battle” in the resulting “contest” to determine who was at fault
and consequently who must pay. The author spearheaded some of the early efforts
in this problem area in the 1970s while at the Westinghouse Corporate R & D Cen-
ter near Pittsburgh. A primary paper by the author stemming from that work is in-
cluded in the Bibliography at the end of this chapter (see Ref. 13).

In all but a few classic 1-DOF nonlinear models, to make computational
predictions of dynamic response when one or more nonlinear effects are incor-
porated in the model requires that the equations of motion be numerically inte-
grated marching forward in time. This means that the parameter “time” in the
motion equations is subdivided into many very small but finite “slices,” and
within each of these time slices, the force model associated with a particular
nonlinear effect is linearized or at least held constant. This is quite similar to
drawing a curved line by joining many short straight-line segments; as the length
of each straight-line segment gets smaller and smaller, their visual effect be-
comes the curved line. Various numerical integration schemes are available for
this purpose, and with the advent of high-speed digital computers, such analyses
first became feasible in the 1960s but were quite expensive. Subsequently, with
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the evolution of modern PCs and workstations, at least the computational costs
of such analyses are now negligible.

5.2. Journal Bearing Nonlinear Dynamic Effects

Fluid-film journal bearings are a prominent component where dynamic nonlin-
earity can play a controlling role in rotor vibration when the journal-to-bearing or-
bital vibration amplitude becomes a substantial portion of the bearing clearance
circle. When that is the case, the linear model introduced in Eqs. (60) fails to pro-
vide realistic rotor dynamic predictions, as explained at the beginning of this sec-
tion. As detailed in Chapter 5, computation of the fluid-film separating force that
keeps the journal from making contact with the bearing starts by solving the lu-
bricant pressure distribution within the separating film. The film’s pressure dis-
tribution is computed by solving the partial differential equation known as the
Reynolds lubrication equation, for which other types of CPU intensive numerical
computations are required (e.g., finite difference, finite element). Performing a
numerical time marching integration of the motion equations for a rotor supported
by fluid-film journal bearings requires that the fluid-film bearing forces be re-
computed at each time step of the time marching computation. Thus, the fluid-film
pressure distributions at each journal bearing must be recomputed at each time
step. Therefore, depending on the level of approximation used in solving the
Reynolds equation, it can be quite CPU intensive to perform a time marching in-
tegration of the motion equations for a rotor supported by fluid-film journal bear-
ings. For an instantaneous journal-to-bearing {x, y, ẋ, ẏ}, the x and y components
of fluid-film force upon the journal are computed by integrating the instantaneous
x and y projections of the film pressure distribution on the journal surface, as ex-
pressed by the following equation.

� � � �R 
L/2

�L/2

2!

0
p(�,z,t) � � d� dz (87)

Referring to Fig. 10, Wx and Wy are the x and y components, respectively, of the
static load vector W

→
acting on the bearing. Thus, �Wx and �Wy are the corre-

sponding static reaction load components acting on the journal. Just as in linear
LRV models, it is convenient in nonlinear analyses to formulate the equations of
motion relative to the static equilibrium state. In so formulating the nonlinear lat-
eral rotor vibration motion equations, the journal static loads (�Wx and �Wy) are
moved to the right-hand side of Eq. (87), leaving {ƒx, ƒy} as the instantaneous
nonequilibrium dynamic force on the journal.

The photographs in Fig. 14 show some of the aftermath from two catas-
trophic failures of large steam turbogenerators in the 1970s. These failures both
occurred without warning and totally destroyed the machines. The author is fa-
miliar with other similar massive failures. Miraculously, in none of the several

cos �
sin �

ƒx � Wx

ƒy � Wy
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FIGURE 14 Photographs from two catastrophic failures in the 1970s of large
600 MW steam turbine-generator sets. Using nonlinear rotor dynamic response
computations, failures could be potentially traced to the large unbalance from
loss of one or more large low-pressure turbine blades at running speed, cou-
pled with the behavior of fixed-arc journal bearings during large unbalance.
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such failures with which the author has become familiar have any serious personal
injuries or loss of life occurred, although the potential for such personal mishap is
surely quite possible in such events. The two early failures in the 1970s led to the
author’s work in developing computerized analyses to research the vibration re-
sponse when very large rotor mass unbalance is imposed on a multibearing flex-
ible rotor. For in-depth treatment of computational methods and results for non-
linear lateral rotor vibration, six papers listed in the Bibliography at the end of this
chapter are suggested: Refs. 13–18. Some of the author’s results for large mass
unbalance are presented here.

The rotor illustrated in Fig. 15 is the low-pressure (LP) turbine rotor portion
of a 700 megawatt (MW) 3600 rpm steam turbogenerator unit. It was used to re-
search computationally the nonlinear vibrations resulting from unusually large
mass unbalance. Using methods presented in Sec. 3 in Chapters 1 and 2, the free-
free rotor’s undamped natural frequencies and corresponding planar mode shapes
were determined from a finite-element model. All static and dynamic forces act-
ing on the rotor are applied on the free-free model as “external forces” including
nonlinear forces, e.g., bearing static and dynamic loads, unbalances, gyroscopic
moments, and weight. This approach is detailed in Adams (1980) and supple-
mented in the other associated papers referenced. The computation essentially en-
tails solving the rotor response as a transient motion, numerically integrating for-
ward in time for a sufficiently large number of shaft revolutions until a
steady-state or motion envelope is determined.

Steady-state large unbalance results for the rotor in Fig. 15 are shown in Fig.
16a for the rotor supported in standard fixed-arc journal bearings and Fig. 16b for
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FIGURE 15 LP rotor portion of a 3600 rpm 700 MW steam turbine.
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the rotor supported in pivoted-pad journal bearings. In both of these cases, it is as-
sumed that one-half of a complete last-stage turbine blade detaches at 3600 rpm.
This is equivalent to a 100,000 pound corotational 3600 cpm rotating load im-
posed at the last-stage blade row where the lost blade piece is postulated to sepa-
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FIGURE 16 (a) Steady-state periodic response at bearing nearest the unbal-
ance with force magnitude of 100,000 pounds, rotor supported on two identi-
cal fixed-arc journal bearings modeled after the actual rotor’s two journal bear-
ings. Timing marks at each one-half revolution, i.e., three revolutions shown. (b)
Steady-state periodic response at bearing nearest the unbalance with force
magnitude of 100,000 pounds, rotor supported on two identical four-pad piv-
oted-pad bearings with the gravity load directed between bottom two pads.
Bearings have same film diameter, length, and clearance as the actual fixed-arc
bearings. Timing mark each one-half revolution, i.e., three revolutions shown.

(a)
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rate from the rotor. As a point of magnitude reference, this LP turbine rotor weighs
approximately 85,000 pounds. Figure 16 shows four orbitlike plots as follows.

Journal-to-bearing orbit normalized by radial clearance
Total bearing motion (see bearing pedestal model near end of Sec. 3)
Total journal motion
Total fluid-film force transmitted to bearing

The normalized journal-to-bearing orbit is simply the journal motion minus the
bearing motion divided by the bearing radial clearance. For the cylindrical journal
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FIGURE 16 (continued)

(b)
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bearing of Fig. 16a, this clearance envelope is thus a circle of unity radius. In con-
trast, for the pivoted four-pad journal bearing of Fig. 16b, the clearance envelope
is a square of side equal to two. Prerequisite to presenting a detailed explanation
of these results are the companion steady-state vibration and dynamic force am-
plitude results presented in Fig. 17 for unbalance conditions from 0 to 100,000
pounds imposed at the same last-stage blade row of the same nonlinear model.

An informative transition between 30,000 and 40,000 pounds unbalance is
shown in Fig. 17, from essentially a linear behavior, through a classic nonlinear
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FIGURE 17 Comparison of partial-arc and pivoted-pad journal bearing vibra-
tion control capabilities under large unbalance operating conditions of an LP
steam turbine rotor at 3600 rpm; steady-state journal motion and transmitted
peak dynamic bearing force over a range of unbalance magnitudes (data points
mark computed simulation cases).
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jump phenomenon, and into a quite nonlinear dynamic motion detailed by the re-
sults in Fig. 16 for a 100,000 pound unbalance force. The explanation for the re-
sults in Figs. 16 and 17 can be secured to well-established knowledge of fixed-arc
and pivoted-pad journal bearings concerning instability self-excited vibrations.
The x-y signals displayed in Fig. 16a and b contain sequentially numbered timing
marks for each one-half rotor revolution time interval at 3600 rpm. The observed
steady-state motions therefore require three revolutions to complete one vibration
cycle for both cases shown in Fig. 16. Thus, these steady-state motions both fall
into the category of a period 3 motion because they both contain a �

1
3

� subharmonic
frequency component along with a once-per-revolution (synchronous) compo-
nent. But these two cases are clearly in stark contrast to each other.

With the partial-arc bearings, Fig. 16a, steady-state motion is dominated by
the �

1
3

� subharmonic component and the journal motion virtually fills up the entire
bearing clearance circle. However, in the second case, which employs a tilting-
pad bearing model, the �

1
3

� subharmonic component is somewhat less than the syn-
chronous component and the journal motion is confined to the lower portion of the
bearing clearance envelope. As is clear from Fig. 17, with partial-arc bearings,
motion undergoes a nonlinear jump phenomenon as unbalance magnitude is in-
creased. With pivoted-pad bearings, a nonlinear jump phenomenon is not ob-
tained. This contrast is even more clear when the motions are transformed into the
frequency domain, as provided by fast Fourier Transform (FFT) in Fig. 18. The
journal-to-bearing trajectories in these two cases provided the instantaneous lu-
bricant minimum film thickness. For the partial-arc case, a smallest computed
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FIGURE 18 FFT of peak-to-peak journal vibration displacement amplitudes.
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transient minimum film thickness of 0.1 mil (0.0001 inch) was obtained, surely in-
dicating that hard journal-on-bearing rubbing would occur and as a consequence
seriously degrade the bearings’ catastrophe containment abilities. For the pivoted-
pad case, a smallest computed transient minimum film thickness of 2 mils (0.002
inch) was obtained, indicating a much higher probability of maintaining bearing
(film) integrity throughout such a large vibration event, especially considering
that the pivoted pads are also inherently self-aligning.

The comparative results collectively shown by Figs. 16, 17, and 18 show a
phenomenon that is probably possible for most such machines that operate only
marginally below the threshold speed for the bearing-induced self-excited rotor
vibration commonly called oil whip. That is, with fixed-arc journal bearings and
a large mass unbalance above some critical level (between 30,000 and 40,000
pounds for the simulated case here) a very large subharmonic resonance is a strong
possibility.

In linear systems, the steady-state response to harmonic excitation forces
can contain only the frequencies of the sinusoidal driving forces, as can be rig-
orously shown from the basic mathematics of differential equations. However,
in nonlinear systems, the response to sinusoidal driving forces has many more
possibilities, including periodic motion (possibly with subharmonics and/or su-
perharmonics), quasi-periodic motion (two or more noninteger related harmon-
ics), and chaos motion. Here, as the rotor mass unbalance is progressively in-
creased, the journal bearing forces become progressively more nonlinear, thus
increasing the opportunity for dynamic behavior that deviates in some way from
the limited behavior allowed for linear systems. Such LP turbines typically have
a fundamental corotational mode that is in the frequency vicinity of one-third the
3600 rpm rotational frequency. This mode typically has adequate damping to be
passed through routinely as a critical speed at approximately 1100 to 1300 rpm.
However, up at 3600 rpm the speed-dependent destabilizing effect (kss

xy) of the
fixed-arc bearings upon this mode places the rotor-bearing system only
marginally below the instability threshold speed, as dissected in Sec. 4. There-
fore, what is indicated by the results in Fig. 16a is that the progressively in-
creased bearing nonlinearity allows some energy to “flow” into the lightly
damped �

1
3

� subharmonic, whose amplitude then adds to the overall vibration level
and to the degree of bearing nonlinearity, thus increasing further the propensity
for energy to flow into the �

1
3

� subharmonic, and so on. This synergistic mecha-
nism manifests itself as the nonlinear jump in vibration and dynamic force
shown in Fig. 17. In other words, it is consistent with other well-known dynamic
features of rotor-bearing systems.

Because of the emergence of strong nonlinearity in such a sequence of
events, an exact integer match (e.g., 3:1 in this case) between the forcing fre-
quency and the linearized subharmonic mode is not needed for this scenario to
occur.
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Pivoted-pad journal bearings have long been recognized as not producing
the destabilizing influence of fixed-arc journal bearings. The four-pad bearing
modeled in these simulations has a symmetric stiffness coefficient matrix, consis-
tent with its recognized inherent stability. Therefore, the case with pivoted-pad
bearings gives results consistent with the prior explanation for the high-amplitude
subharmonic resonance exhibited with fixed-arc bearings. That is, the inherent
characteristic of the pivoted-pad type of journal bearing that makes it far more
stable than fixed-arc bearings also makes it far less susceptible to potentially
catastrophic levels of subharmonic resonance under large unbalance conditions.
If the static bearing load vector is subtracted from the total bearing force, the dy-
namic bearing force transmissibility is approximately 4 for the results in Fig. 16a
and 1 for the results in Fig. 16b. Thus, the pivoted-pad bearing’s superiority in this
context is again manifest, in a 4:1 reduction in dynamic forces transmitted to the
bearing support structure, the last line of defense.

6. SUMMARY

Chapter 2 is the “backbone” of this book. The fundamental formulations and ba-
sic physical insight foundations for lateral rotor vibration are presented. The fo-
cus is primarily on the construction of linear analysis models. However, the last
section on nonlinear effects should sensitize the troubleshooter to the fact that all
real systems have some nonlinearity. Therefore, one should not expect even the
best linear models to portray all the vibration features that might be obtained from
vibration measurements on actual machinery or even on laboratory test rigs.
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3

Torsional Rotor Vibration Analysis Models

1. INTRODUCTION

Torsional rotor vibration (TRV) is angular vibratory twisting of a rotor about its
centerline superimposed on its angular spin velocity. TRV analysis is not needed
for many types of rotating machinery, particularly machines with a single uncou-
pled rotor. Many single-drive-line rotors are stiff enough in torsion so that tor-
sional natural frequencies are sufficiently high to avoid forced resonance by the
time-varying torque components transmitted in the rotor. Notable exceptions are
the quite long rigidly coupled rotors in modern large steam turbine-generator sets,
examined later in this chapter. When single rotors are coupled together, the possi-
bility is greater for excitation of coupled-system torsional natural frequency
modes. Coupling of single rotors in this context can also be through standard so-
called flexible couplings connecting coaxial rotors and/or through gears. In most
coupled drive trains, it is the characteristics of the couplings, gear trains, and elec-
tric motors or generators that instigate torsional rotor vibration problems.

It is typical for dynamic coupling between the torsional and lateral rotor vi-
bration characteristics to be discounted. The generally accepted thinking is that
while potentially coexisting to significant degrees in the same rotor(s), TRV and
LRV do not significantly interact in most machinery types. There are a few ex-
ceptions to this as noted at the end of Sec. 1 in Chapter 2.

As previously summarized in Table 1, Chapter 2, LRV is always an impor-
tant consideration for virtually all types of rotating machinery. Conversely, TRV
is often not an important consideration for many machinery types, especially ma-
chines with single uncoupled rotors as previously noted. Consequently, TRV has
not received as much attention in engineering publications as LRV. Of the eight
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rotor dynamics books listed in the Bibliography in Chapter 2, only one (Vance,
1988) covers torsional rotor vibration. This is a measure of the extent to which ro-
tor dynamics technologists have focused on the admittedly much better funded
topics within the lateral rotor vibration category. For rotating machinery products
for which TRV considerations are now part of standard design analyses, dramatic
past failures were often involved in TRV receiving its deserved recognition.

Unlike typical LRV modes, TRV modes are usually quite lightly damped.
For example, the significant squeeze-film damping inherently provided to LRV
modes by fluid-film journal bearings and/or squeeze-film dampers does not help
damp TRV modes because the TRV modes are nearly uncoupled from the LRV
modes in most cases. With very little damping, excitation of a TRV mode can
readily lead to a serious machine failure without warning. Because TRV modes
are usually uncoupled from LRV modes, TRV modes can be continuously or in-
termittently undergoing large-amplitude forced resonance without the machine
exhibiting any readily monitored or outward signs of distress or “shaking.” That
is, there is no sign of distress until the shaft suddenly fails from a through-propa-
gated fatigue-initiated crack as a consequence of vibration-caused material fa-
tigue. When a machine specified to have, say, a 40-year design life experiences
such a failure after, say, 6 months in-service, one strong competing conclusion is
the following: some discounted phenomenon (such as TRV) had in fact become
significant to the product. Some notable examples of TRV “earning” its deserved
recognition as an important design consideration involve synchronous and early
frequency-inverter variable-speed induction electric motor drives. In both of
these cases, pulsating motor torque is the source of excitation.

As described in the book by Vance (2), the start-up of a large power syn-
chronous electric motor produces a pulsating torque with a frequency that changes
from twice the line frequency at start, down to zero at synchronous operating
speed. The peak-to-peak magnitude of the torque pulsation varies with speed and
motor design but is often larger than the average torque. Any TRV mode with a
natural frequency in the zero to twice-line-frequency range is therefore potentially
vulnerable to large-amplitude excitation during the start-up transient. In a worst-
case scenario, a number of large single rotors are coupled (tandem, parallel, or
other), yielding some coupled-system low natural frequencies, and a large total ro-
tary inertia for a relatively long start-up exposure time to forced resonances. In an
application in which such a machine must undergo a number of start-stop cycles
each day, a shaft or other drive-line failure within 6 months of service is likely.
Synchronous motor–powered drive trains are just one important example in which
the rotor system must be analyzed at the design stage to avoid such TRV-initiated
failures. Special couplings that provide TRV damping, or act as torsional low-pass
filters, and other design approaches are used. Successful use of such approaches
requires careful analyses; thus the major thrust of this chapter is to present the for-
mulation of TRV models for such analyses.
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2. ROTOR-BASED SPINNING REFERENCE FRAMES

To visualize TRV, properly, one must consider that the relatively small torsion-
twisting angular velocities of TRV are superimposed on the considerably larger
rotor spin velocity. That is, the TRV angular displacements, velocities, and accel-
erations are referenced to a rotating (noninertial) reference frame that rotates at
the spin velocity. However, TRV equations of motion are generally derived as
though the coordinate system is not rotating. Why this produces proper motion
equations warrants a fundamental explanation. As developed in Chapter 2, the rate
of change of a rigid body’s angular momentum vector, prescribed in a coordinate
system rotating at ���, is given by Eq. (15) in Chapter 2. The same form of equa-
tion applies to time differentiation of any vector prescribed in a rotating reference
frame. The instantaneous total angular velocity (�̇��i

T) at a rotor mass station is the
sum of the instantaneous TRV velocity (�̇��i) plus the instantaneous rotor spin ve-
locity (
��), as follows.

�̇��i
T � �̇��i � 
�� (1)

Thus, the inertial angular acceleration at a rotor station is as follows.

(2)

The spin and TRV velocity vectors are coaxial; thus their cross product is zero, as
indicated in Eq. (2). Furthermore, for most TRV analysis purposes, rotor spin ac-
celeration (
̇) is taken as zero, i.e., 
 
 constant, so �̈i

T � �̈i. Inertial angular ac-
celeration vectors for TRV can then be given as follows.

�̈�i � (�̈�i)
 (3)

That TRV equations of motion are derived as though the rotor is not spinning
about its axis is thus shown to be valid.

3. SINGLE UNCOUPLED ROTOR

Although TRV analysis is not needed for many single-rotor drive lines, there are
notable exceptions such as large steam turbine-generator sets. Furthermore, the
single uncoupled rotor model is the basic analysis-model building block for the
general category of coupled rotors. It is thus logical to begin TRV model devel-
opment at the single-rotor level. Chapter 1 provides the essential vibration con-
cepts and methods to follow the presentations in this chapter. Also, the develop-
ments on LRV analysis models presented in Chapter 2 have many similarities to
the TRV model developments presented in this chapter. In particular, TRV equa-

�̈i
��T � �̈i

�� � 
��̇� (�̈i
��)
 � 
�� � �̇��i � 
��̇i

0
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tions of motion are systematically assembled in matrix form based on standard fi-
nite-element procedures, combining both structural (i.e., flexible) and nonstruc-
tural (i.e., lumped) mass contributions.

As explained in Secs. 1 and 3 of Chapter 1, undamped models are accurate
for prediction of natural frequencies in most mechanical systems. Because most
TRV systems are quite lightly damped, these prior arguments are especially valid
for TRV models. Thus, the focus here is on developing undamped models. The
TRV rotor model in Fig. 1 shows a number of rigid disks, each with a flexible tor-
sional shaft connection to its immediate neighbors but no connections to ground.
As shown, this model therefore has one so-called rigid-body mode about the rotor
axis and its twisting modes must each conserve angular momentum about the ro-
tor axis. For configurations where the driver (e.g., electric motor, turbine) and/or
the driven component (e.g., pump, compressor, fan) provides only relatively low
torsional stiffness connections to ground, a free-free TRV model such as that in
Fig. 1 may be appropriate. However, in some applications the interactive torsional
stiffness of the driver and/or the driven components cannot be neglected in mak-
ing accurate predictions for natural frequencies and mode shapes. For example,
with a variable-speed electric motor drive having high-gain feedback speed con-
trol, the effective rotor-to-ground torsional stiffness effect at the motor may be
quite significant.

Vance (2) describes the relation of feedback speed control to TRV. Stabil-
ity analysis of the speed controller should couple the TRV differential equations
of motion to the differential equations of state for the controller (see last topic in
Sec. 3 of Chapter 1). Such a stability analysis will determine whether or not the
controller gain must be reduced to avoid TRV–controller system dynamic insta-
bilities that could potentially excite one or more of the rotor system’s many lightly
damped torsional vibration modes. Although long recognized, this is now a timely
point to emphasize because of the significantly increasing trend to use variable-
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FIGURE 1 Multielement TRV model for a single-shaft rotor.
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speed motors with feedback speed control. This trend is fostered by the introduc-
tion of many new types of variable-speed electric motors utilizing microprocessor
speedcontrollers.

Assemblage of the mass and stiffness matrices for a single rotor such as in
Fig. 1 follows the same approach used in Chapter 2 for LRV analysis models. The
basic TRV finite element used here has the same geometric features as its LRV
counterpart shown in Fig. 8 of Chapter 2. However, the TRV model is postulated
with torsional “twistability,” not the beam-bending flexibility of the LRV model.
The basic TRV finite element is shown in Fig. 2 and is composed of a uniform-di-
ameter shaft element connecting two rigid disks.

3.1. Lumped and Distributed Mass Matrices

As shown in Fig. 2, the basic TRV finite element has only two degrees of freedom
and is thus simpler than its 8-DOF LRV counterpart shown in Fig. 8 of Chapter 2.
Both the lumped mass and distributed mass shaft element matrices are presented
here. The consistent mass matrix for the 2-DOF element in Fig. 2 is the same as
its distributed mass matrix. This is because the shaft element’s torsional deflec-
tion is a linear (shape) function of axial position between its two end point stations
and thus is consistent with the piecewise linear variation of acceleration implicit
in the distributed mass formulation.

3.1.1. Lumped Mass Matrix

In this approach, it is assumed that for each uniform-diameter shaft element, half
its polar moment of inertia, I (s), is lumped at each of the element’s two end points
(stations). Implicit in this approximation is an incremental step change in angular
acceleration for each shaft element at its axial midpoint. That is, the continuous
axial variation in angular acceleration is approximated by a series of small discrete
step changes. A concentrated (nonstructural) polar moment of inertia, I (d), may be
optionally added at any rotor station as appropriate to model gears, couplings, im-
pellers, turbine disks, pulleys, flywheels, thrust-bearing collars, nonstiffening mo-
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tor and generator rotor components, etc. The complete single-rotor (“sr”) lumped
(“l”) mass matrix is thus a diagonal matrix, as follows.

(4)

N � number of rotor stations � number of DOFs � number of elements 
� 1

Subscript on I(s) � element number
Subscript on I(d) � station number

3.1.2. Distributed Mass Matrix

As similarly explained in Sec. 3 of Chapter 2 for LRV models, the underlying as-
sumption here is that the angular acceleration of each shaft element about its axis
varies linearly over its own length. Therefore, model resolution accuracy is better
with the distributed mass formulation than with the lumped mass formulation. The
better the model resolution accuracy, the smaller the number of finite elements (or
DOFs) needed to characterize accurately the relevant modes of the actual contin-
uous media system using a discrete model. Consistent with the assumption that an-
gular acceleration varies linearly between rotor stations, the angular velocity must
also vary linearly between rotor stations. The instantaneous TRV kinetic energy
stored in the ith single shaft element can be formulated from the integration of ki-
netic energy distributed over the ith element’s length, similar to Eq. (39) of Chap-
ter 2 for LRV radial velocity components, as follows.

Ti
(s) � �
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� �
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0
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)2 dz (5)

Substituting a linearly varying �̇ and 
 � constant into Eq. (5) yields the ith shaft
element’s torsional kinetic energy terms associated with the �i and �i�1 Lagrange
equations for the ith and (i � 1)st rotor stations. That yields the following results
consistent with Eq. (2) (i.e., 
 � constant, 
̇ � 0).
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• • •

• • •
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[U]sr =
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The complete single-rotor distributed mass matrix is thus a tridiagonal matrix, as
follows. Note the optional I(d) at each station, just as in Eq. (4).
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• • •

• • •

N � N

[M ] sr =
d

1
3–I1

( s)� I1
( d)

1
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( s)� I2
( s)� I2

( d)1
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( s) 1
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i�1
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6–I ( s)  N�1

1
3–I (s) �IN

( s)
N�1

Polar moment-of-inertia formulas for shaft elements and concentrated disks are
the same as given at the beginning of Sec. 3 of Chapter 2 for LRV models.

3.2 Stiffness Matrix

The TRV stiffness matrix [K ]ff for a free-free single rotor, such as shown in Fig.
1, is quite simple to formulate. It is the torsional equivalent of the type of transla-
tional system shown in Fig. 8 of Chapter 1. That is, each rotor mass station has
elastic coupling only to its immediate neighbors. Therefore, the single-rotor TRV
stiffness matrix, shown as follows, is tridiagonal just as shown for the system in
Fig. 8 of Chapter 1.

(7)

–K1K1

–K1 K1 � K2 –K2

   –Ki Ki � Ki �1 –Ki �1

–KN�2 KN�2 � KN�1 –KN�1

[K]ff =

• • •

• • •

–KN�1         KN�1

N � N

Subscript on K � element number.

3.2.1. Shaft Element Torsional Stiffness

K � �
!(d4

o

3
�

2L
di

4)G
�

do�outside diameter
di�inside diameter (optional concentric hole)

(8)
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L�element length
G�element material modulus of rigidity

The term “free-free” refers to a model that is both free of external forces or
torques and free of connections to the inertial frame of reference. The free-free ro-
tor stiffness matrix given in Eq. (8) is a singular matrix because it contains no tor-
sional stiffness connections to the inertial frame of reference. Therefore, a com-
plete model obtained by combining the stiffness matrix of Eq. (8) with either the
lumped or distributed mass matrix in Eqs. (4) and (5), respectively, is a system
with one rigid-body mode (refer to Table 1 in Chapter 1, case 4). All the general-
ized coordinates, velocities, and accelerations here (i.e., �i, �̇i, �̈i) are coaxial; thus
the model is one-dimensional even though it is multi-DOF. That is why it has only
one rigid-body mode and why only one rigid or stiffness connection to the inertial
frame of reference, added at a single mass station, is required to make the stiffness
matrix nonsingular. With the addition of one or more connections to ground, the
model will not have a rigid-body mode. By comparison, general LRV models
(Chapter 2) have four dimensions of motion, (x, y, �x, and �y). LRV models thus
can have as many as four rigid-body modes (two in the x-z plane and two in the y-
z plane) if the rotor is completely unconnected to ground. Thus, for an LRV stiff-
ness matrix to be nonsingular there must be a minimum of two stiffness connec-
tions in the x-z plane plus two in the y-z plane, i.e., like having a minimum of two
radial bearings. This aspect of LRV models is discussed in Sec. 3.9 of Chapter 2.

The general single-rotor TRV stiffness matrix [K]sr is the sum of the free-
free stiffness matrix [K]ff and a diagonal matrix [K]c containing the optional one
or more stiffness connections to the inertial frame, as follows. A rigid connection
to the inertial frame has no DOF at the connection point.

(9)

Equations of motion for the undamped single-rotor model are then as follows.

[M]sr {�̈} � [K]sr {�} � {�(t)} (10)

K1
(c)

K2
(c)

Ki
(c)

K (c)
N�1

K (c)
N

[K ] c =

[K ] sr = [K ] ff � [K ] c

• • •

• • •
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Here, {� (t)} contains any externally applied time-dependent torque compo-
nents, such as to model synchronous generators of turbogenerators during severe
electrical disturbances (e.g., high-speed reclosure of circuit breakers after fault
clearing of transmission lines leaving power stations). Of course, to compute the
undamped natural frequencies and corresponding mode shapes, only the mass and
stiffness matrices are utilized.

4. COUPLED ROTORS

The single-rotor mass and stiffness matrices developed in the previous section
form the basic model building blocks for TRV coupled-rotor models. One of the
many advantages of assembling the equations of motion in matrix form is the ease
with which modeled substructures can be joined to assemble the complete equa-
tions of motion of a multisubstructure system.

Coaxial same-speed coupled rotor configurations are the simplest TRV
coupled-rotor models to assemble and are treated here first. Model construction
for a broader category of coupled-rotor TRV systems has additional inherent com-
plexities stemming from the following three features.

Coupled rotors may have speed ratios other than 1:1.
Torsional coupling may be either rigid (e.g., gears) or flexible (e.g., belt).
System may be branched instead of unbranched.

An understanding of these complexities can be obtained by following the formu-
lation details of their TRV model constructions, which are presented subsequently
in this section. The handling of these complexities is simplified by the fact that
correct TRV equations of motion can be derived as though the rotors are not spin-
ning, as shown in Sec. 2, Eq. (3), that is, modeled as though the coupled-rotor ma-
chine is not running.

4.1. Coaxial Same-Speed Coupled Rotors

This is a quite common configuration category, and the most typical case involves
two single rotors joined by a so-called flexible coupling. Assembling the mass and
stiffness matrices for this case is quite simple, as shown by the following equa-
tions. The total mass matrix can be expressed as follows.

[M] � � � (11)

Usually, a flexible coupling can be adequately modeled by two concentrated po-
lar moments of inertia connected by a torsional spring stiffness. The two concen-
trated coupling inertias (I1

(c) and I2
(c)) are added as concentrated inertias to the last

[0]
[M2]sr

[M1]sr

[0]
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diagonal element of [M1]sr and the first diagonal element of [M2]sr, respectively.
To assemble the total stiffness matrix, the equivalent torsional spring stiffness K(c)

of the coupling is used to join the respective single-rotor stiffness matrices of the
two rotors, as follows.

(12)

The complete equations of motion for two coaxially coupled rotors are then ex-
pressible in the same matrix format as Eq. (10), i.e., [M ]{�̈} � [K ]{�} � {�(t)}.
For three or more simply connected same-speed flexible-coupled rotors, the pro-
cess is taken to its natural extension.

4.2. Unbranched Systems with Rigid and Flexible
Connections

For rotors coupled by gears, the appropriate model for TRV coupling could be
flexible or rigid, depending on the particulars of a given application. When the
gear teeth contact and gear wheel combined equivalent torsional stiffness is much
greater than other torsional stiffnesses in the system, it is best to model the geared
connection as rigid to avoid any computational inaccuracies stemming from large
disparities in connecting stiffnesses. The configuration shown in Fig. 3 contains
both a geared connection and a pulley-belt connection of a three-shaft assembly.
Although the shafts shown are mutually parallel, that is not a restriction for TRV
models developed here.

The configuration shown in Fig. 3 is categorized as an unbranched sys-
tem. The full impact of this designation is fully clarified in the next subsection,
which treats branched systems. Whether a TRV system is branched or un-
branched made a great deal of difference in computer programming complexity
when older solution algorithms (e.g., transfer matrix method) were used. With
the modern finite-element-based matrix approaches used exclusively in this
book, additional programming complexities with branched systems are not
nearly as significant as with the older algorithmic methods that were better
matched to the relatively limited memory of early generation computers. A cou-
pled-rotor TRV system is defined here as unbranched when each of the coupled
rotors in the drive train is connected to the next or previous rotor only at its two

[K] =
[K1]sr � [Kc]2 � 2

=
[0]

[0]

[K2]sr

K (c)

–K (c)

K (1)
ij

K (2)
ij

–K (c)

K (c)

2 � 2
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end stations (i.e., first or last), is not connected to more than one rotor at either
end station, and is not connected to the same rotor at both end stations. When
that is the case, the stiffness matrix for the coupled system is tridiagonal, just
like the individual rotor stiffness matrices. The simplest example of this is the
stiffness matrix for coaxial same-speed coupled rotors, Eq. (12), which is tridi-
agonal. The system in Fig. 3 also clearly fits the definition of an unbranched
TRV system and is used here to show the formulation for TRV equation-of-mo-
tion matrices of arbitrary-speed-ratio rotors with rigid and flexible unbranched
connections.

4.2.1. Rigid Connections

The gear set of the system in Fig. 3 will be assumed to be torsionally much stiffer
than other torsional flexibilities of the system and thus taken as perfectly rigid.
The TRV angular displacements of the two gears are then constrained to have the
same ratio as the nominal speed ratio of the two-gear set. Thus, one equation of
motion must be eliminated either from rotor 1 (last station) or rotor 2 (first sta-
tion). Here the equation of motion for the first station of rotor 2 is absorbed into
the equation of motion for last station of rotor 1. The concentrated inertia of the
rotor 2 gear is thus transferred to the rotor 1 station with the mating gear. Defin-
ing n21 as the speed ratio of rotor 2 to rotor 1 and �i,j as the ith angular coordinate
of the jth rotor, the TRV angular coordinate of the rotor 2 gear is expressed in
terms of the rotor 1 gear’s coordinate, as follows. Note the opposite positive sense
for �i,2, Fig. 3.

�1,2 � n21�N1,1 (13)
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FIGURE 3 Unbranched three-rotor system with a gear set and a pulley-belt set.
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N1 � number of stations on rotor 1 � station number rotor 1’s last station. The
TRV kinetic energy of the two rigidly coupled gears is thus expressible as follows.

T12
gears

� �
1
2

� I(d)
N1

,1�̇2
N1

,1 � �
1
2

� I (d)
1,2 �̇2

1,2 � �
1
2

� (I (d)
N1,1 � n2

21I (d)
1,2 )�̇2

N1,1 (14)

Ii,j
(d) � nonstructural concentrated inertia for the ith station of the jth rotor.

The combined TRV nonstructural inertia of the two gears is thus lumped in
the motion equation for station N1 of rotor 1 as follows.

�
d
d
t
� ����
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�̇
1

N

2
ge

1

a
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rs

�� � (I(d)
N1,1 � n2

21I(d)
1,2)�̈N1,1 (15)

As previously detailed in Sec. 3, shaft element structural mass is included
using either the lumped mass or the distributed mass approach. For the lumped
mass approach, the shaft element connecting the rotor 2 first and second stations
has half its inertia lumped at the last station of rotor 1 (with the n2

21 multiplier) and
half its inertia lumped at the rotor 2 second station. For the distributed mass ap-
proach (in TRV, same as consistent mass approach), the shaft element kinetic en-
ergy is integrated along the first shaft element of rotor 2 as similarly shown in Eqs.
(5) and (6). That is, postulating a linear variation of angular velocity along the
shaft element and substituting from Eq. (13) for �1,2 yield the following equation
for the TRV kinetic energy of shaft element 1 of rotor 2.

T (s)
1,2 � �

I
6

(s)
1,2
� (n2

21�̇2
N1,1 � n21�̇N1,1�̇2,2 � �̇2

2,2 ) (16)

The following equation-of-motion distributed mass inertia contributions of this
shaft element to the stations that bound it are accordingly obtained.
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(17)

I i,j
(s) � structural inertia for the ith shaft element of the jth rotor.

Postulating a rigid connection between the two gears in Fig. 3 eliminates
one DOF (i.e., the first station of rotor 2). The corresponding detailed formula-
tions needed to merge the rotor 1 and rotor 2 mass matrices are contained in Eqs.
(13) through (17). Merging the rotor 1 and rotor 2 stiffness matrices must also in-
corporate the same elimination of one DOF. Specifically, shaft element 1 of rotor
2 becomes a direct torsional stiffness between the last station of rotor 1 and the
second station of rotor 2. This stiffness connection is almost as though these two
stations were adjacent to each other on the same rotor, except for the speed-ratio
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effect. The easiest way to formulate the details for merging rotor 1 and rotor 2
stiffness matrices is to use the potential energy term of the Lagrange formulation
for the equations of motion, as follows [see Eq. (50) in Chapter 2].

V1,2 � �
1
2

� K1,2 (�1,2 � �2,2)2 (18)

Vi,j � TRV potential energy stored in ith shaft element of the jth rotor.
Ki,j � Torsional stiffness of the ith shaft element of the jth rotor.

Substituting from Eq. (13) for �1,2 into Eq. (18) thus leads to the following terms
for merging rotor 1 and rotor 2 stiffness matrices.
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�
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�2

1

,

,

2

2
� � K1,2 (�n21�N1,1 � �2,2)

(19)

Before implementing the terms for connecting rotor 1 to rotor 2, the detailed for-
mulations for connecting rotor 2 to rotor 3 are first developed so that the mass and
stiffness matrices for the complete system of Fig. 3 can be assembled in one final
step.

4.2.2. Flexible Connections

The pulley-belt set in Fig. 3 connecting rotor 2 to rotor 3 is assumed to be a flexi-
ble connection and thus no DOF is eliminated, contrary to the rigid connection
case. A flexible connection does not entail modifications to the mass matrix of ei-
ther of the two flexibly connected rotors. Only the stiffness of the belt must be
added to the formulation to model the flexible connection. It is assumed that both
straight spans of the belt connecting the two pulleys are in tension, and thus both
spans are assumed to have the same tensile stiffness, kb, and their TRV stiffness
effects are additive like two springs in parallel. The easiest way to formulate the
merging rotor 2 and rotor 3 stiffness matrices is to use the potential energy term
of the Lagrange formulation as shown in Eq. (50) in Chapter 2. To model gear-set
flexibility, replace 2kb with pitch-line kg and define Rj as the ith pitch radius, not
the jth pulley radius.

Vb � �
1
2

� (2kb)(�N2,2R2 � �1,3R3)2

� kb (�2
N2,2R2

2 � 2�N2,2�1,3R2R3 � �2
1,3R2

3)
(20)
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(21)
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Rj � pulley radius for the jth rotor
Vb � TRV potential energy in belt
N2�number of stations on rotor 2 � station number rotor 2’s last station.

At this point, all components needed to write the equations of motion for the TRV
system in Fig. 3 are ready for implementation.

4.2.3. Complete Equations of Motion

For the individual rotors, the distributed mass approach is used here simply be-
cause it is better than the lumped mass approach, as discussed earlier. Thus, Eq.
(7) is applied for construction of the three single-rotor mass matrices, [M1],
[M2], and [M3]. Equation (9) is used to construct the three single-rotor stiffness
matrices [K1], [K2], and [K3], adding any to-ground flexible connections to the
free-free TRV stiffness matrices from Eq. (8). At this point, constructing the to-
tal system mass and stiffness matrices entails only catenating the single-rotor
matrices and implementing the already developed modifications to the matrices
dictated by the rigid and flexible connections. Employing modifications ex-
tracted from Eqs. (15) and (17), [M1] is augmented as follows. Superscript “rc”
refers to rigid connection.
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[M *
1 ] � [M1] � [M1

r  c], where [M1
r  c] �

N1 � N1

n 2
2  1I

(d) � –n 2
2  1I

(s)1
3 1,21,2

All elements in [M1
r  c] are zero except element (N1, N1).

(22)

Eliminating its first row and first column, [M2] is reduced to [M*2]. The com-
plete system mass matrix can be assembled at this point, catenating [M*1], [M*2],
and [M*3] and adding the cross-coupling terms contained in Eqs. (17), as follows:

 
  (23)[M] � 




N � N

Subscript “cc” refers to cross-coupling.

� M*1�
Mcc

Mcc

� M*2�
�M3�
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MN1�N1�1 � MN1�1, N1 � �
1
6

� n21I (s)
1,2 � Mcc, N � N1 � (N2 � 1) � N3

The complete system stiffness matrix [K] is similarly constructed.
Employing modifications extracted from Eqs. (19), [K1] is augmented as
follows.

Eliminating its first row and first column, [K2] is reduced to [K#
2], which is

augmented to form [K*2] as follows. Superscript “fc” refers to flexible connection.

[K3] is augmented to form [K*3] as follows.

[K*
3] � [K3] � [K3

fc], where [Kf
c] �

2kbR3
2

N3 � N3

All elements in [K3
fc] are zero except element (1,l).

[K *
2 ] � [K#

2 ] � [K3
rc], where [K3

rc] �

N *
2 � N  *2

2kb          R 2
2

All elements in  [K2
rc] are zero except element (N *

2, N *
2). N *

2 � N2�1.

2

[K *
1 ] � [K1] � [K3

rc], where [K3
rc] �

n 2
2  1K12

N1 � N1

All elements in [K3
rc] are zero except element (N1, N1).1
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The complete system stiffnes matrix can be assembled at this point, cate-
nating [K*1 ], [K*2], and [K*3 ] and adding the cross-coupling terms contained in
Eqs. (19) and (21), as follows.

[K] �

(27)

N � N

Kcc
1,2 � �n21K1,2 Extracted from Eqs. (19)

Kcc
2,3 � �2KbR2R3 Extracted from Eqs. (21)

The complete TRV equations of motion for the system in Fig. 3 are thus ex-
pressible in the same matrix format as Eq. (10), i.e., [M]{�̈} � [K]{�} � {�(t)}.
The [M] and [K] matrices here are tridiagonal, which is consistent with the desig-
nation of unbranched. The formulations developed here are readily applicable to
any unbranched TRV system of coupled rotors.

4.3. Branched Systems with Rigid and Flexible
Connections

The system shown in Fig. 4 bears a close similarity to the system in Fig. 3, except
that its gear set and pulley set are located inboard of their respective rotor ends,
each of these connections thus making it a branched system. Its [M] and [K] ma-
trices are therefore not tridiagonal, as now shown.

Constructing mass and stiffness matrices for the system in Fig. 4 follows
the procedures of the previous subsection for unbranched systems. For the
individual rotors, the distributed mass approach is again used, applying Eq. (7)
for construction of the single-rotor mass matrices, [M1], [M2], and [M3]. Also,
Eq. (9) is again used to construct the single-rotor stiffness matrices [K1], [K2],
and [K3], adding any to-ground flexible connections to the free-free TRV stiff-
ness matrices from Eq. (8). Using the standard substructuring approach pre-
viously applied here to unbranched systems, constructing the [M] and [K]
matrices for the system in Fig. 4 is only slightly more involved than for the sys-
tem in Fig. 3.







� K*1�
K1,2

cc
K1,2

cc

� K*2�
K2,3

cc
K2,3

cc

�K3�





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4.3.1. Rigid Connections

The two gears joining rotor 1 to rotor 2 are assumed here to be a perfectly rigid
torsional connection between the two rotors. Accordingly, the equation of motion
for the rotor 2 gear station (NG2) is absorbed into the equation of motion for the
rotor 1 gear station (NG1), with the eliminated rotor 2 gear DOF (�NG2,2) expressed
by the constant speed ratio (n21) times the rotor 1 gear coordinate (�NG1,1), as fol-
lows (n21 � 
2 /
1).

�NG2,2 � n21�NG1,1 (28)

Similarly to Eq. (14), the TRV kinetic energy of the two rigidly coupled gears is
thus expressible as follows.

T 12
gears

� �
1
2

� I (d)
NG1,1�̇2

NG1,1 � �
1
2

� I (d)
NG2,1�̇2

NG2,1� �
1
2

� (I (d)
NG1,1 � n2

21I (d)
NG2,2)�̇2

NG1,1 (29)

The combined TRV nonstructural inertia of the two gears is thus lumped in the
motion equation for station NG1 of rotor 1 as follows.

�
d
d
t
� ���

�

�

T
˙N

1

G

2
gea

1,

r

1

s

�� � (I (d)
NG1,1 � n2

21I (d)
NG2,2)�̈NG1,1 (30)

Using the distributed mass approach, the TRV kinetic energy of the rotor 2 shaft
element just to the left of rotor-2�s station NG2 and that of the element just right of
station NG2 are derived as follows, similarly to Eq. (16).

T (s)
NG2�1,2 � �

I (s)
NG

6
2�1,2
� (n2

21�̇2
NG1,1 � n21�̇NG1,1�̇NG2�1,2 � �̇2

NG2�1,2)

T (s)
NG2�2,2 � �

I (s)
NG

6
2�2,2
� (n2

21�̇2
NG1,1 � n21�̇NG1,1�̇NG2�1,2 � �̇2

NG2�1,2)

(31)
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The following distributed mass matrix contributions of these two rotor 2 shaft el-
ements are thus obtained, similarly to Eqs. (17).

�
d
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� ��

�T

��
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˙
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N

)
NG

G

2�

1,1

1,2
�� � �

1
3

� n2
21I (s)

NG2�1,2�̈NG1,1 � �
1
6

� n21I (s)
NG2�1,2�̈NG2�1,2
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2
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(32)
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,
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1
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1
3

� I (s)
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Equations (30) and (32) contain all the terms needed to merge the rotor 1 and ro-
tor 2 mass matrices.

The following formulation details for merging rotor 1 and rotor 2 stiffness
matrices are developed using the potential energy term of the Lagrange formula-
tion, the same procedure as used to develop Eqs. (18) and (19).

VNG2�1,2 � �
1
2

� KNG2�1,2(�NG2,2 � �NG2�1,2)2

VNG2,2 � �
1
2

� KNG2,2(�NG2�1,2 � �NG2,2)2
(33)

Substituting from Eq. (28) for �NG2,2 into Eq. (33) thus leads to the following terms
for merging rotor 1 and rotor 2 stiffness matrices.

�
�V

��

N

N

G2

G

�

1,

1

1

,2
� � KNG2�1,2 (n2
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2
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�

1

1
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,

2

2
� � KNG2�1,2 (�n21�NG1,1 � �NG2�1,2)

(34)
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4.3.2. Flexible Connection

As a torsionally flexible connection between rotor 2’s station NP2 and rotor 3’s sta-
tion NP3, the pulley-belt set in Fig. 4 needs no corresponding modifications to the
mass matrix of either of the two rotors. Following the same procedure as used to
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develop Eqs. (20) and (21), the formulation details for merging the rotor 2 and ro-
tor 3 stiffness matrices are as follows.

Vb � �
1
2

� (2kb)(�NP2,2R2 � �NP3,3R3)2

� kb(�2
NP2,2R2

2 � 2�NP2,2�NP3,3R2R3 � �2
NP3,3R2

3)
(35)

�
��

�

N

V

P

b

2,2
� � 2kb(�NP2,2R2

2 � �NP3,3R2R3)

(36)

�
��

�

N

V

P

b

3,3
� � 2kb(��NP2,2R2R3 � �NP3,3R2

3)

As explained at Eq. (20), this formulation is applicable to flexible gear sets. At this
point, all components needed to write the equations of motion for the TRV system
in Fig. 4 are ready for implementation.

4.3.3. Complete Equations of Motion

Assembling [M] and [K ] for the complete system in Fig. 4 follows the same pro-
cedures as used in the previous subsection for unbranched systems. The main dif-
ference from branched systems is that the matrices of the respective coupled ro-
tors are not just catenated with tridiagonal splicing. With branched systems, the
catenated matrices are instead spliced at their respective intermediate connection
coordinates, so the bandwidths of [M] and [K ] are not limited to being tridiago-
nal. Directions for the attendant matrix bookkeeping are clearly indicated by Eqs.
(30), (32), and (34) for rigid connections between rotors and Eqs. (36) for flexible
connections between rotors. In the interest of space, the complete [M] and [K ] ma-
trices for the system in Fig. 4 are not written here.

5. EXAMPLES

5.1. High-Capacity Fan for Large Altitude Wind Tunnel

The large two-stage fan illustrated in Fig. 5 has an overall length of 64 m (210 ft)
and requires several thousand horsepower from its two electric drive motors to
operate at capacity. This machine fits into the previously designated TRV cate-
gory of coaxial same-speed coupled rotors. The drive-motor portion of this ma-
chine is constructed with an extended shaft length adjacent to each motor so that
the two motor stators can easily be moved horizontally to expose motor internals
for inspection and service. This need to provide unobstructed space adjacent to
each motor, as shown in Fig. 5, adds considerably to the motor shaft overall
length. This complete turbomachine is substantially longer but of substantially
less power and torque (i.e., smaller diameter shafting) than typical large steam tur-
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FIGURE 5 Altitude wind tunnel high-capacity two-stage fan.
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bogenerator sets. These factors combine to produce a quite torsionally flexible ro-
tor, giving rise to the highest potential for serious TRV resonance problems that
must be addressed at the design stage for the machine to operate successfully.

Because this fan powers an altitude wind tunnel, the internal air pressure of
the wind tunnel, and therefore of the fan, is controlled to pressures below outside
ambient pressure. Close inspection of the fan portion of this machine reveals that
the drive shaft passes into the fan–wind tunnel envelope within a coaxial nonro-
tating cylindrical section that is internally vented to the outside ambient pressure.
The fan shaft and its bearings are thus at outside ambient pressure. Controlled-
leakage dynamic seals are therefore located on the fan-blade hubs, requiring axi-
ally accurate positioning of the seal parts on the rotor with respect to close-prox-
imity nonrotating seal components. As a consequence, the fan and the motor
shafts each have their own double-acting oil-film axial thrust bearing and the two
shafts are connected by a 3-m “floating shaft” with couplings that allow enough
free axial relative displacement between fan and motor shafts to accommodate dif-
ferential thermal expansion or other such relative movements. The central of three
oil-film radial bearings on the fan shaft also houses the double-acting oil-film
thrust bearing. Being located axially close to the two fan-blade rows, this thrust
bearing provides the required axially accurate positioning of the fan rotor with re-
spect to the controlled-leakage dynamic seals at the fan-blade hubs. The motor
shaft’s double-acting oil-film thrust bearing is housed with the motor-shaft oil-
film radial bearing closest to the fan shaft.

The torsionally soft floating-shaft connection between the motor and fan ro-
tors essentially also provides a TRV low-pass filter that isolates the two rotors in-
sofar as most important TRV modes are concerned. This does not in any way
lessen the need for extensive TRV design analyses for this machine, but it does
isolate any significant motor-produced torque pulsations from “infesting” the fan
rotor and any of its lightly damped fan-blade natural-frequency modes. Both the
motor and the fan rotors must be analyzed in their own right to determine the pos-
sibilities for TRV forced resonances from torque pulsations and the correspond-
ing potential need for TRV damping to be designed into one or more of the five
shaft couplings.

5.2. Four-Square Gear Tester

This is a well-known type of machine in the gear industry used for testing high-
torque capacity gears. The basic principle is quite simple. Two gear sets of the
same speed ratio and pitch diameters are mounted on two parallel shafts as illus-
trated in Fig. 6. One of the shafts or one of the gear-to-shaft mountings is made so
that its torsional characteristic is relatively quite flexible. The gears are meshed
with a prescribed prewist in the torsionally flexible component, thereby “locking
in” a prescribed test torque that the two gear sets apply against each other. The
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torque and power required of the drive motor are then only what are needed to ac-
commodate the relatively small nonrecoverable power losses in the gears, shaft
bearings, couplings, seals, windage, etc. Clearly, this type of test machine elimi-
nates the large expense of a drive motor with torque and power ratings of the
gears. Only one of the gear sets needs to be the tested gears; the other gear set may
be viewed as the energy regenerative set, designed to the machine’s maximum ca-
pacity.

The configuration in Fig. 6 is clearly a TRV branched system. The pri-
mary need for TRV design analyses of this type of machine stems from the low
torsional stiffness inherent in its basic operating principle. The drive motor is
most likely of a controlled variable-speed type and may inherently produce
torque pulsations. Also, as mentioned in the introductory comments of this chap-
ter, if the speed controller employs speed feedback, then the differential equa-
tions of state for the motor controller should be coupled to the TRV equations
of motion of the rotor system to analyze the potential for instability-type self-ex-
cited TRV. Furthermore, geometric inaccuracies are inherent in all gear sets and
are a potential source of resonance excitation of TRV modes. It is likely that a
special coupling with prescribed damping characteristics is a prudent component
for such a machine as a preventive measure against any of these potentially se-
rious TRV problems.

Because of the potential use of a torsionally flexible gear-to-shaft mounting
for a four-square gear tester, a proper modeling formulation for TRV-flexible gear
sets is reiterated here. The modeling formulations given in Eqs. (21) and (36) were
derived using the flexible pulley-belt connection of the unbranched and branched
configurations in Figs. 3 and 4, respectively. These equations also provide the
proper formulation for gear sets deemed flexible instead of rigid, as stated in the
previous section. To model a TRV-flexible gear set, the factor 2kb in Eqs. (21) and
(36) is replaced with kg, the equivalent tangential translation stiffness of the gear
set. This is illustrated in Fig. 7.
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FIGURE 6 Conceptual illustration of a four-square gear tester.
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5.3. Large Steam Turbogenerator Sets

Modern single-drive-line large steam turbogenerators (TGs) are in the power
range of approximately 300 to 800 MW. The rotor shown in Fig. 1 of Chapter 2 is
for a unit in the lower half of this power range because it has only one low-pres-
sure (LP) turbine, whereas the largest single-drive-line units typically have two or
even three LPs. Single-boiler cross-compound configurations as large as 1300
MW are in service but are actually two 650 MW side-by-side drive lines, having
an HP � 2LPs � generator/exciter on one rotor and an IP � 2LPs � generator/ex-
citer on the second rotor, with interconnecting steam lines (for further description,
see Sec. 2 in Chapter 11).

The primary TRV problems concerning large TG units are the high alter-
nating stresses caused by transient TRV that occurs as a result of the electrical
connection transients associated with power-line transmission interruption and
restoration. Weather storms, severe lightning, and malfunctions of protective sys-
tems are the prominent causes of these harmful interactions between the electrical
and mechanical systems due to the switching procedures used to restore the net-
work transmission lines. Faced with the possibility of system collapse (i.e., major
regional blackout), the power generation industry desires increased switching
speeds. This runs counter to the turbogenerator manufacturers’ efforts to minimize
the problem of cumulative fatigue damage accrued at critical rotor locations in
each such transient disturbance. There are several categories of electrical network
disturbances including the following most prominent ones: (a) transmission line
switching, (b) high-speed reclosing (HSR) of circuit breakers after fault clearing
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on transmission lines leaving power stations, (c) single-phase operation that pro-
duces alternating torques at twice synchronous frequency, (d) out-of-phase syn-
chronization, (e) generator terminal faults, and (f) full load trips.

A comprehensive set of TRV analyses are reported by Maghraoui (1) (see
Bibliography at the end of this chapter), whose 93-DOF TRV model for an actual
800 MW single-drive-line TG is shown here in Fig. 8 (illustration not to scale).
The turbine section of the TG unit modeled is similar to that illustrated in Fig. 9
except for the rigid couplings. The primary focus of Maghraoui’s work is to model
and compute transient TRV for a high-speed reclosure (HSR) event on the 800
MW unit modeled in Fig. 8. In that work, the model is used to extract accurately
the eight lowest frequency undamped modes (i.e., natural frequencies and corre-
sponding mode shapes). Using these modes, the TRV transient response through
a typical HSR event is computed by superimposing the contributions of all the in-
cluded modes, using the methods given in Sec. 3 of Chapter 1. Maghraoui gives a
comprehensive bibliography on the overall topic of electrical network distur-
bances, from which the following formula is obtained for electrically imposed
generator torque fluctuations caused by various transient electrical disturbances,
such as those previously listed.

TE � A0 � A1e�	1t cos(
0t � �1) � A2e�	2t cos(2
0t � �2)

� A3e�	3t cos(
nt � �3)
(37)
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FIGURE 8 Layout for 93-DOF model of 800 MW, 3600 rpm turbogenerator.
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FIGURE 9 Turbine section of an 800 MW, 3600 rpm Turbogenerator (generator not shown).
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The system’s synchronous frequency is given by 
0. Appropriate input values of
disturbance electromechanical frequency (
n), the phase angles (�j), the damping
exponents (	j), and amplitude coefficients (Aj) are tabulated by Maghraoui for
successful and unsuccessful high-speed reclosure from mild to severe conditions.

6. SUMMARY

Table 1 summarizes interesting and important contrasts between TRV and LRV.
Precluding drivelines of reciprocating machinery, Torsional rotor vibration
(TRV) is often not an important consideration in many rotating machinery types,
especially machines with single uncoupled rotors. However, in contrast to lateral
rotor vibration (LRV) modes, TRV modes are nearly always very lightly damped
unless special design measures are taken, such as a flexible coupling with TRV
damping capacity. Therefore, if torque fluctuations with a substantial frequency
content of one or more TRV modes are present, shaft failure from material fatigue
can readily occur after only a relatively short time period of machine operation.
Because TRV modes are usually uncoupled from LRV modes, TRV modes can be
continuously or intermittently undergoing large-amplitude forced resonance with-
out the machine exhibiting any readily monitored or outward signs of distress or
“shaking.” The first sign of distress may be the occurrence of a material fa-
tigue–initiated shaft failure. When single rotors are coupled together, the possi-
bility is greater for excitation of coupled-system torsional natural frequency
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TABLE 1 Contrasting Characteristics of TRV and LRV in Single Rotors

Lateral rotor vibration Torsional rotor vibration

Always important consideration.
Resonant modes are usually

sufficiently damped by bearings,
seals, etc.

More difficult to model accurately
and simulate computationally
because of the uncertainties in
rotor-dynamic properties of
bearings and seals.

Easy to measure and monitor, thus
does not become dangerously
excessive with no warning, making
LRV monitoring of rotating
machinery now common.

Often not important consideration.
Modes are very lightly damped, so

resonance avoidance is a “must.”

Relatively easty to model and
simulate accurately because of
decoupling from LRV modes.

Can become excessive with no
obvious outward symptoms or
readily monitored motion. First
sign of trouble can be failure of the
shaft from material fatigue.
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modes. In most coupled drive trains, it is the characteristics of the couplings, gear
trains, and electric motors or generators that instigate TRV problems.

Although rotating-machinery TRV problems are less amenable to monitor-
ing and early detection than LRV problems, TRV characteristics can generally be
more accurately modeled for predictive analyses than LRV. This is because TRV
is usually uncoupled from the characteristics (i.e., bearings, seals, and other rotor-
casing interactions) that make LRV model-based predictions more uncertain and
challenging to perform. Furthermore, because TRV modes of primary importance
(i.e., those in the lower frequency range of the system) are almost always quite
lightly damped, accurate prediction of TRV natural frequencies and correspond-
ing mode shapes is further enhanced. That is, the actual system’s TRV character-
istics are essentially embodied in its model’s mass and stiffness matrices, which
are accurately extractable from the detailed rotor geometry through the modern fi-
nite-element modeling procedures developed and explained in this chapter.

The primary focus of this book and its subsequent chapters is LRV. So to
make this chapter on TRV more “stand-alone” than its LRV counterpart (Chapter
2), Sec. 5 on TRV examples has been included in this chapter.
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4

RDA Code for Lateral Rotor Vibration
Analyses

1. GETTING STARTED

The RDA (rotor dynamic analysis) Fortran computer code is a general-purpose
tool for linear rotor vibration analyses. It is developed on the finite-element for-
mulations derived in Chapter 2, Sec. 3. First written for use on early generation
PCs (e.g., XT), it was thus limited to fairly simple rotor-bearing configuration
models with 10 or less mass stations (40 DOFs or less) because of the memory
limitations of early PCs. RDA was initially written to simulate rotor-bearing sys-
tems as part of research efforts on active control of rotor vibration in the author’s
group at Case Western Reserve University (CWRU). Validation tests and other
background information for RDA are provided by Maghraoui (3) in his PhD dis-
sertation (see Bibliography at the end of this chapter). RDA has been distributed
and used by the author in machinery dynamics courses and student research pro-
jects at CWRU for over 10 years and in professional short courses in the United
States and Europe.

A newer version of RDA, assembled with a Fortran compiler optimized for
Pentium PCs, is supplied with this book. The compiled code included here, which
runs in a DOS environment, has been dimensioned to accommodate up to 99 ro-
tor mass stations (396-DOF rotor), making it suitable for virtually any single-
drive-line rotor-bearing system, including large steam turbogenerator rotors as
subsequently demonstrated in Part 4. The author now uses this newer RDA as the
primary rotor vibration analysis tool for troubleshooting work in plants as well as
research. Dr. Maghraoui (Duke Engineering Services, Charlotte, NC) has devel-
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oped a Windows version of RDA with a graphical user interface that is available
directly from him.

As demonstrated in this chapter, RDA is a user-interactive code and thus
does not utilize the batch-mode input approach typical of older computer codes
written in the era of older mainframe computers. RDA has interactive input and
output selection menus, each with several options. Not all these options are
demonstrated here. Only the ones that are the most expedient for design or trou-
bleshooting applications are demonstrated. In the Windows version, input and
output options are significantly revised.

Many quite useful PC codes were developed to run in the DOS environment
prior to the introduction of Windows. The RDA executable code (RDA99.exe),
contained on the diskette supplied with this book, is but one example. The DOS
operating system, developed for first-generation PCs and the forerunner of Win-
dows, has therefore naturally been retained as an application within Windows.
Early versions of Windows are actually an application within DOS. RDA99.exe
will execute successfully on any Pentium PC as a DOS application within Windows.

Within the DOS operation mode, RDA99 is accessed simply by entering the
appropriate drive and folder, e.g., by entering c:\rda if RDA99.exe is located in
the folder rda on drive c:. Execution is then initiated simply by entering RDA99.
The monitor then displays the following main menu.

ROTOR DYNAMICS ANALYSIS

Main Menu

1. Solve the Undamped Eigenvalue Problem Only
2. Solve for Damped Eigenvalues Only
3. Solve Both Damped and Undamped Eigenvalue Problems
4. Perform a Stability Analysis of the System
5. Obtain the Steady-State Unbalance Response
6. Active Control Simulation
7. Data Curve Fitting by Cubic Spline
8. Exit

Choose Option �1–8� . . .

All the MAIN MENU options are covered in Maghraoui (3). When accessed
by entering its number, each displays the DATA MENU, from which the INPUT
OPTIONS menu is accessed. Vibration specialists may wish to use options 1, 2,
and 3 of the MAIN MENU to construct maps of eigenvalues as functions of rotor
spin speed, and these are demonstrated in Maghraoui (1989). Options 6 and 7 may
be ignored. MAIN MENU options 4 and 5 are the most important and useful ones.
Therefore, the detailed instructions covered in this chapter are focused exclusively

112 Chapter 4

Copyright © 2001 Marcel Dekker, Inc.



on options 4 and 5. A new user of RDA should explore the various options in all
the menus.

2. UNBALANCE STEADY-STATE RESPONSE
COMPUTATIONS

Referring to Eq. (69) in Chapter 2, a synchronous (i.e., at rotor-speed frequency)
corotational rotating radial force may be appended to any rotor model mass sta-
tion to simulate the effect of a mass unbalance at that mass station. Thus, with an
analysis algorithm such as contained in the RDA code, virtually any realistic ro-
tor unbalance distribution can be accordingly postulated and the resulting steady-
state vibration at all rotor mass stations computed. The standard algorithm for this
is the solution of the corresponding set of simultaneous complex algebraic equa-
tions, Eqs. (50) in Chapter 1, for the particular set of inputs. From the MAIN
MENU, enter number 5. The monitor then displays the following menu.

To initiate input for a case, enter option 1 from the preceding DATA MENU. The
monitor then displays the following input options.

IMPORTANT

Input file must
reside in the
same directory
as rad99

INPUT OPTIONS

1. File Input
2. Keyboard Input
3. Check Directory
4. Return to Previous Menu

Choose Option �1–4� . . .

DATA MENU

1. Input/Read Data
2. Print Data on the Screen
3. Save Data in a File
4. Edit Data
5. Run Main Menu Option
6. Return to Main Menu

Choose Option �1–6� . . .
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For a completely new model, the INPUT OPTIONS menu would appear
to indicate that option 2 is the only route because no previously saved input file
would yet exist in the rda directory for the model to be run. In fact, for a com-
pletely new model there are actually two options, 1 and 2. For a simple model
with a relatively small number of mass stations and bearings, the Keyboard In-
put route (option 2) is a satisfactory option that any new RDA user should try
out just to be familiar with it. As shown subsequently, the user is prompted at
each step of the Keyboard Input option. The drawback of this option is that al-
though it does recover and appropriately prompt interactively for many types of
inadvertent keyboard errors, it does not recover from all types of keyboards er-
rors. With such an unrecoverable error occurrence, one may make corrections by
accessing option 4 (Edit Data) at the completion of the Keyboard Input cycle.
However, for large DOF models, the optimum input route for a new model is to
create the new input file using a full-screen editor, (e.g., Notepad) outside the
RDA environment, employing RDA’s own output format allocations for saving
an input file.

Once an input file already exists for the model in the rda99 directory, the
File Input (option 1) is naturally used. Entering number 1 from the INPUT OP-
TIONS menu, the monitor prompts for the input file name. When the input file
name is entered, the monitor returns to the DATA MENU, from which option 5 is
entered if the named input file is ready to run. However, a comprehensive analy-
sis almost always entails computing several different operating cases, e.g., differ-
ent unbalance conditions, different speed range and speed increments, different
bearing properties. Thus, if, as usual, the named input file is to be modified before
executing the run, the user again has two options. First, option 4 on the DATA
MENU may be accessed. Or, as previously recommended for creating large new
input files, input file modifications are more conveniently implemented using a
full-screen editor outside the RDA environment. If the input file modifications are
fairly short, Edit Data (option 4) is a reasonable route and, when accessed, dis-
plays the EDITOR OPTIONS menu of 16 different user options, each specific to
the type of modification to be made. When accessed, each of these options on the
EDITOR OPTIONS menu prompts the user for the information necessary to im-
plement the desired input file changes. In the interest of space, these will not be
individually covered here. In fact, the author practically never uses the EDITOR
OPTIONS menu, preferring the previously indicated full-screen editor route.

In matters of rotor unbalance analysis and rotor balancing procedures, a
number of parameters need precise clarification, most notably a clear explanation
of phase angle and direction of rotation. However, before covering such clarifi-
cations, some simple examples are worked through to acclimate the new RDA
user on how to get started in running RDA. Input and output files for all shown ex-
amples are included on the RDA diskette so that users can readily check their own
input/output work.
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2.1. Three-Mass Rotor Model with Two Bearings and One
Disk

The simple nontrivial 8-DOF model illustrated in Fig. 4 of Chapter 2 consists of
two identical rotor elements, giving three mass stations, with one concentrated
disk mass at the middle mass station. Furthermore, it has a radial bearing at each
end, both modeled with the standard eight-coefficient linear bearing model intro-
duced by Eq. (2) of Chapter 2 and further explained in Sec. 3.9 of that chapter. An
example with numerical inputs for this model is employed here to give the new
user an expedient first exercise in using RDA to compute unbalance response.
RDA includes transverse moment of inertia not only for specified disks but also
automatically for every shaft element, as detailed in Sec. 3 of Chapter 2. There-
fore, the RDA equivalent model to that in Fig. 4, Chapter 2, has 12 DOF, since
each of the three mass stations has 4 DOF. Employing the user menu and input
prompts explained thus far in this chapter, the following model data are used to
construct an input file from the Keyboard Input option.

Input Title: 3-mass, 1-disk, 2-bearing sample No. 1
Number of Stations: 3
Number of Disks: 1
Number of Bearings: 2
Number of Pedestals: 0
Number of Extra Weights: 0
Modulus of Elasticity and Weight Density: 30000000. (psi) 0.285 (lb/in3)

Shaft Element Data: OD ID Length Inertia Weight

“Element No. 1” 0.5 (in) 0.0 (in) 10. (in) 0.0 (lb s2/in) 0.0 (lb)
“Element No. 2” 0.5 (in) 0.0 (in) 10. (in) 0.0 (lb s2/in) 0.0 (lb)

Typically, shaft element Inertia and Weight are input as “zero,” as in this exam-
ple, and RDA calculates them from dimensions and input Weight Density. Input
of “nonzero” values overrides the RDA calculated ones.

Disk Data: Station No. OD ID Length Weight IP IT

Disk #1 2 5.0 (in) 0.5 (in) 1.0 (in) 0.0 0.0 0.0

Similarly, disk Weight (lb), IP, and IT (lb in2) are typically input as “zero” and
RDA calculates them from disk dimensions and the default Weight Density input.
For components that are not disklike (e.g., impellers, couplings), appropriate
“nonzero” Weight, IP, and IT values may be input instead, with zero inputs for the
disk OD, ID, and Length.
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Bearing Data: Bearing No. Station No. Weight

“#1” 1 0.0
“#2” 3 0.0

Typically, bearing Weight is also input as “zero.” For a rolling-element bearing,
the added weight of the inner raceway on the shaft may be input here as a nonzero
bearing weight. However, the same effect may alternatively be incorporated in the
model using the Extra Weights option.

Bearing Properties Speed Dependent Y/N? N
Bearing Stiffness and Damping Coefficients:

Bearing No. 1 �2

K

00
xx

0. (lb/in)� �
K
0.

x

0
y

� �5

C

.0
xx

(lb s/in)� �
C
0.

x

0
y

�

�
K
0.

y

0
x

� �2

K

00
yy

0. (lb/in)� �
C
0.

y

0
x

� �5

C

.0
xx

(lb s/in)�

Bearing No. 2 �2

K

00
xx

0. (lb/in)� �
K
0.

x

0
y

� �5

C

.0
xx

(lb s/in)� �
C
0.

x

0
y

�

�
K
0.

y

0
x

� �2

K

00
xx

0. (lb/in)� �
C
0.

y

0
x

� �5

C

.0
xx

(lb s/in)�

Unbalance Data: Station No. Amplitude (lb-in) Phase Angle (deg)

1 0.0 0.0
2 0.005 0.0
3 0.0 0.0

At this point, RDA returns the user to the DATA MENU, where option 3 is en-
tered to save the input file just created using the Keyboard Input option, and the
user is again returned to the DATA MENU. At that point, option 5, Run Main
Menu Option, may be entered to execute the run. However, one may first wish to
check the input file by entering option 2, Print Data on the Screen, and if input er-
rors are detected, enter option 4, Edit Data, to access the EDITOR OPTIONS.
Corrections to the input file may also be made outside RDA using a full-screen ed-
itor on the saved input file.

Upon entering option 5, Run Main Menu Option, a PLOT OPTIONS output
menu is displayed with several self-explanatory options, and the new RDA user
may choose to explore all of them. Option 11, which produces a complete labeled
input/output file but no plots, is chosen here. After an output option is entered, the
user is prompted for the following.
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Input Speed Range Data for Unbalance Response:
Enter Input Starting Speed (rpm) 100.
Enter Input Ending Speed (rpm) 2100.
Enter Input Speed Increment (rpm) 200.

Shaft Mass Model Options:
1. Lumped Mass
2. Distributed Mass
3. Consistent Mass

The Consistent Mass option is usually the preferred choice and is chosen here, i.e.,
enter 3. For any given rotor, curious users may compare model resolution accu-
racy or convergence of these three options by varying the number of shaft ele-
ments.

The last prompt is to specify the “output file name.” When the file name
(e.g., sample01.out) is entered, RDA executes the run to completion. If output op-
tion 11 is specified, the complete labeled output information may be viewed by
opening the output file in a full-screen editor such as Notepad. The following ab-
breviated output does not include the input review and does not show response for
station 3 because it is the same as station 1 due to symmetry. Unbalance at station
2 has �2 � 0 and is thus a reference signal.

Response of rotor station No. 1

X-direction Y-direction

Speed AMPL. PHASE AMPL. PHASE
RPM MILS DEG. MILS DEG.

100.0 .000 �1.5 .000 �91.5
300.0 .003 �4.5 .003 �94.5
500.0 .010 �7.6 .010 �97.6
700.0 .021 �10.7 .021 �100.7
900.0 .040 �13.9 .040 �103.9

1100.0 .073 �17.6 .073 �107.6
1300.0 .143 �22.2 .143 �112.2
1500.0 .360 �31.0 .360 �121.0
1700.0 1.897 �129.6 1.897 140.4
1900.0 .440 167.5 .440 77.5
2100.0 .264 160.0 .264 70.0

Max. Amplitudes of Station 1 Occurred at:
1700.0 RPM for X-direction with 1.9 MILS and a Phase of �129.6 DEG.
1700.0 RPM for Y-direction with 1.9 MILS and a Phase of 140.4 DEG.
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Response of rotor station No. 2

X-direction Y-direction

Speed AMPL. PHASE AMPL. PHASE
RPM MILS DEG. MILS DEG.

100.0 .003 �.2 .003 �90.2
300.0 .027 �.6 .027 �90.6
500.0 .080 �1.0 .080 �91.0
700.0 .173 �1.5 .173 �91.5
900.0 .331 �2.2 .331 �92.2

1100.0 .615 �3.3 .615 �93.3
1300.0 1.212 �5.5 1.212 �95.5
1500.0 3.080 �11.9 3.080 �101.9
1700.0 16.388 �108.1 16.388 161.9
1900.0 3.843 �168.7 3.843 101.3
2100.0 2.327 �174.0 2.327 96.0

Max. Amplitudes of Station 2 Occurred at:
1700.0 RPM for X-direction with 16. MILS and a Phase of �108.1 DEG.
1700.0 RPM for Y-direction with 16. MILS and a Phase of 161.9 DEG.

RDA output tabulates single-peak vibration amplitudes in thousandths of
an inch (mils) for both x and y directions. The abbreviated output here clearly
shows a first (i.e., lowest) critical speed near 1700 rpm where the synchronous
unbalance vibration amplitude passes through a maximum value as a function of
rotor speed. Comparing results at the bearings (station 1 results same as 3) with
results at the disk (station 2) shows that the rotor undergoes a significant relative
amount of bending vibration at the critical speed. With RDA it is quite easy to
“zoom in” on the critical speed by using a finer speed increment (resolution) in or-
der to capture it and its maximum value accurately. For this sample, simply repeat
the run (using the saved input file) with a start speed and end speed inputs near
1700 rpm and a significantly reduced speed increment, as demonstrated with the
following inputs.

Input Speed Range Data for Unbalance Response
Enter Input Starting Speed (rpm) 1600.
Enter Input Ending Speed (rpm) 1800.
Enter Input Speed Increment (rpm) 20.

Output for this revised speed range and increment is tabulated for station 2 as fol-
lows. It shows that the critical-speed peak is between 1680 and 1700 rpm. One
could zoom in further.
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Response of rotor station No. 2

X-direction Y-direction

Speed AMPL. PHASE AMPL. PHASE
RPM MILS DEG. MILS DEG.

1600.0 6.785 �25.0 6.785 �115.0
1620.0 8.474 �31.3 8.474 �121.3
1640.0 10.880 �41.1 10.880 �131.1
1660.0 14.062 �57.0 14.062 �147.0
1680.0 16.795 �81.0 16.795 �171.0
1700.0 16.388 �108.1 16.388 161.9
1720.0 13.580 �129.0 13.580 141.0
1740.0 10.856 �142.2 10.856 127.8
1760.0 8.848 �150.5 8.848 119.5
1780.0 7.421 �155.9 7.421 114.1
1800.0 6.385 �159.8 6.385 110.2

Max. Amplitudes of Station 2 Occurred at:
1680.0 RPM for X-direction with 17. MILS and a Phase of �81.0 DEG.
1680.0 RPM for Y-direction with 17. MILS and a Phase of �171.0 DEG.

In this simple example, the bearing inputs are all radially isotropic (see Sec.
4, Chapter 2) and thus the rotor vibration orbits are circular. This is indicated by
the x and y vibration amplitudes being equal and 90° out of phase (x leading y,
therefore forward whirl). With one or more anisotropic bearings, the rotor orbits
are ellipses.

2.2. Phase Angle Explanation and Direction of Rotation

Before demonstrating additional sample cases, the phase angle convention em-
ployed in RDA is given a careful explanation at this point because of the confu-
sion and errors that frequently occur in general where rotor vibration phase angles
are involved. Confusion concerning rotor vibration phase angles stems from a
number of sources. The first source of confusion, common to harmonic signals in
general, is the sign convention (i.e., is the phase angle defined positive when the
signal leads or lags the reference signal?). The second source of confusion is the
visual similarity between the complex plane illustration of harmonic signals as ro-
tating vectors and the actual rotation of fixed points or force vectors on the rotor,
e.g., high spot, heavy spot (or unbalance mass).

On real machines, the most troublesome consequence of phase angle con-
fusion occurs when balance correction weights are placed at incorrect angular lo-
cations on a rotor. Similar mistakes often result from the fact that the rotor must
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spin clockwise (cw) when viewed from one end and counterclockwise (ccw)
when viewed from the other end. Consequently, it is far less confusing to have
the analysis model consistent with the actual rotor’s rotational direction, and this
is accomplished by starting the shaft element inputs from the proper end of the
rotor. As shown in Sec. 3 of Chapter 2, RDA is formulated in a standard xyz
right-hand coordinate system where x and y define the radial directions and pos-
itive z defines the axis and direction of positive rotor spin velocity. Thus, if one
views the rotor from the end where the rotation is ccw, the positive z-axis should
point toward one and the rotor model shaft elements’ input should start from the
other end of the rotor. The proper end of the rotor to start RDA shaft element
inputs is accordingly demonstrated in Fig. 1 for a three-element (four-mass-sta-
tion) example.

The RDA phase angle sign convention is defined by the following specifi-
cations for unbalance force and vibration displacement components.

Fx � muru
2 cos (
t � �), mu � unbalance mass, x � X cos(
t � 
x)

Fy � muru
2 sin (
t � �), ru � unbalance radius, y � Y cos(
t � 
y)

(1)

These specifications define a phase angle (�, 
x, and 
y) as positive when its re-
spective harmonic signal leads the reference signal. A commonly used convenient
way to visualize this full complement of synchronous harmonic signals is the com-
plex plane representation, which illustrates each harmonic signal as a rotating vec-
tor. Figure 2 shows this for the RDA unbalance force and vibration displacement
components.

120 Chapter 4

FIGURE 1 Proper shaft element and station input ordering.

Copyright © 2001 Marcel Dekker, Inc.



The three complex vectors (X, Y, F) shown in Fig. 2 are conceived rotat-
ing at the angular velocity 
 in the ccw direction, thus maintaining their angu-
lar positions relative to each other. However, this is not to be confused with
points or vectors fixed on the rotor that also naturally rotate ccw at 
. It is only
that the mathematics of complex numbers has long been recognized and used as
a convenient means of handling a group of related harmonic signals all having
the same frequency, such as the various components of voltage- and current-re-
lated signals in alternating-current electricity. Because the unbalance force is
purely a synchronous rotating vector, it easy to view it as a complex entity as its
x-component projects onto the real axis while its y-component projects onto the
imaginary axis. The same could be said of the rotor orbits for the simple three-
mass rotor model given in the previous subsection, because the bearing stiffness
and damping inputs are radially isotropic and thus yield circular orbits. But this
is not typical.

To avoid confusion when applying the complex plane approach to rotor vi-
bration signals, it is essential to understand the relationship between the standard
complex plane illustration and the position coordinates for the orbital trajectory of
rotor vibration. First and foremost, the real (Re) and imaginary (Im) axes of the
standard complex plane shown in Fig. 2 are not the x- and y-axes in the plane of
radial orbital rotor vibration trajectory. A few rotor vibration academics have
joined the complex plane and the rotor x-y trajectory into a single illustration and
signal management method by using the real axis for the x-signal and the imagi-
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nary axis for the y-signal. This can be accomplished by having the component Y
cos �y projected onto the imaginary axis by defining �y relative to the imaginary
axis instead of the real axis. The author does not embrace this approach because
all the rotor orbital trajectory motion coordinates then entail complex arithmetic.
The author does embrace the usefulness of the complex plane, as typified by Fig.
2, to illustrate the steady-state rotor vibration harmonic signals specified by Eqs.
(1).

Figure 3 is an addendum to Fig. 2, illustrating the x-displacement, x-veloc-
ity, and x-acceleration in the complex plane. The same can be done for the y-di-
rection signals. As in the previous complex plane illustration, all the vectors
shown in Fig. 3 rotate ccw at the angular velocity 
, thus maintaining their angu-
lar positions relative to each other.

2.3. Three-Mass Rotor Model with Two Bearings/Pedestals
and One Disk

The previous three-mass model is augmented here with the addition of bearing
pedestals, as formulated in Sec. 3, Chapter 2. The inputs here differ from those in
the previous example only by the addition of a pedestal at each bearing. If creat-
ing this input file from the Keyboard Input option, only the following inputs are
added to the previous sample’s input as prompted by RDA. The following nu-
merical inputs are used in this example.
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Number of Pedestals: 2

Pedestal Data: Pedestal No. Station No. Weight

“#1” 1 5.0 (lb)
“#2” 3 5.0 (lb)

Pedestal Stiffness and Damping Coefficients:
Kxx Kyy Cxx Cyy

“#1” 2000. (lb/in) 2000. (lb/in) 0.5 (lb s/in) 0.5 (lb s/in)
“#2” 2000. (lb/in) 2000. (lb/in) 0.5 (lb s/in) 0.5 (lb s/in)

This example has 16 DOFs, four more than the previous example, because
each of the two pedestals has two degrees of freedom, x and y. An abbreviated out-
put summary follows. Because the model is symmetric about station 2, rotor and
pedestal responses at station 3, being the same as at station 1, are not shown here.

Response of rotor station No. 1

X-direction Y-direction

Speed AMPL. PHASE AMPL. PHASE
RPM MILS DEG. MILS DEG.

100.0 .001 �.8 .001 �90.8
300.0 .007 �2.5 .007 �92.5
500.0 .020 �4.2 .020 �94.2
700.0 .044 �5.9 .044 �95.9
900.0 .087 �7.9 .087 �97.9

1100.0 .174 �10.4 .174 �100.4
1300.0 .398 �14.7 .398 �104.7
1500.0 1.803 �36.5 1.803 �126.5
1700.0 1.196 �173.9 1.196 96.1

Max. Amplitudes of Station 1 Occurred at:
1500.0 RPM for X-direction with 1.8 MILS and a Phase of �36.5 DEG.
1500.0 RPM for Y-direction with 1.8 MILS and a Phase of �126.5 DEG.

Response of rotor station No. 2

X-direction Y-direction

Speed AMPL. PHASE AMPL. PHASE
RPM MILS DEG. MILS DEG.

100.0 .003 �.2 .003 �90.2
300.0 .031 �.6 .031 �90.6
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500.0 .091 �1.0 .091 �91.0
700.0 .201 �1.5 .201 �91.5
900.0 .396 �2.3 .396 �92.3

1100.0 .780 �3.7 .780 �93.7
1300.0 1.762 �7.1 1.762 �97.1
1500.0 7.843 �28.0 7.843 �118.0
1700.0 5.083 �164.6 5.083 105.4

Max. Amplitudes of Station 2 Occurred at:
1500.0 RPM for X-direction with 7.8 MILS and a Phase of �28.0 DEG.
1500.0 RPM for Y-direction with 7.8 MILS and a Phase of �118.0 DEG.

Response of pedestal No. 1
Located at station No. 1

X-direction Y-direction

Speed AMPL. PHASE AMPL. PHASE
RPM MILS DEG. MILS DEG.

100.0 .000 �.2 .000 �90.2
300.0 .003 �.5 .003 �90.5
500.0 .010 �.9 .010 �90.9
700.0 .023 �1.4 .023 �91.4
900.0 .046 �2.2 .046 �92.2

1100.0 .093 �3.7 .093 �93.7
1300.0 .219 �7.2 .219 �97.2
1500.0 1.025 �28.3 1.025 �118.3
1700.0 .704 �165.2 .704 104.8

Max. Amplitudes of Pedestal 1 Occurred at:
1500.0 RPM for X-direction with 1.0 MILS and a Phase of �28.3 DEG.
1500.0 RPM for Y-direction with 1.0 MILS and a Phase of �118.3 DEG.

A number of observations can immediately be made from this abbreviated
output summary. First, the addition of pedestals has dropped the first critical
speed from about 1680 rpm (previous example) to about 1500 rpm, as all the re-
sponse signals here peak at approximately 1500 rpm. Second, the orbital trajecto-
ries of rotor stations as well as the pedestal masses are all circular and corotational.
This is shown by the x and y amplitudes for a given rotor station or pedestal mass
being equal, with the x-signal leading the y-signal by 90°. This is the result of all
bearing and pedestal stiffness and damping coefficients being radially isotropic;
otherwise the trajectories would be ellipses. Third, the total response of rotor sta-
tion 1 is almost twice its pedestal’s total response. Relative rotor-to-
bearing/pedestal motions are now continuously monitored on nearly all large
power plant and process plant rotating machinery using noncontacting induc-
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tance-type proximity probes mounted in the bearings and targeting the rotor (jour-
nals). Part 3 of this book, Monitoring and Diagnostics, describes this in detail. Be-
cause a bearing is held in its pedestal, bearing motion and pedestal motion are syn-
onymous here in the context of an RDA model. The corresponding additional
computation of rotor (journal) orbital trajectory relative to the bearing can be de-
rived directly with the aid of the previously introduced complex plane, wherein
the standard rules for vector addition and subtraction apply. This is illustrated in
Fig. 4 and specified by Eqs. (2).

xR � XR cos(
t � 
RX) yR � YR cos(
t � 
RY)

xB � XB cos(
t � 
BX) yB � YB cos(
t � 
BY) (2)

xrel � xR � xB � Xrel cos(
t � 
Xrel) yrel � yR � yB � Yrel cos(
t � 
Yrel)

All the vectors in Fig. 4 maintain their angular position relative to each other and
rotate ccw at 
. By considering the view shown to be at time t � 0, it is clear from
standard vector arithmetic that the single-peak amplitudes and phase angles for the
relative rotor-to-bearing orbital trajectory harmonic signals are given as follows.

Xrel � �(X	R	co	s	
	RX	 �	 X	B	co	s	
	BX	)2	 �	 (	X	R	si	n	 
	RX	 �	 X	B	si	n	 
	BX	)2	

Yrel � �(Y	R	co	s	
	RY	 �	 Y	B	co	s	
	BY	)2	 �	 (	Y	R	si	n	 
	RY	 �	 Y	B	si	n	 
	BY	)2	


Xrel � tan�1 � � (3)


Yrel � tan�1 � �YR sin 
RY � YB sin 
BY
���
YR cos 
RY � YB cos 
BY

XR sin 
RX � XB sin 
BX
���
XR cos 
RX � XB cos 
BX
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Equations (3) are general, thus applicable to the RDA outputs for any case.
Substituting outputs from the simple isotropic bearing/pedestal example problem
here, one may confirm that the relative rotor-to-bearing orbits are circles because
the individual rotor and pedestal orbits are circles. For general anisotropic sys-
tems, all the total-motion and relative-motion orbits are ellipses.

2.4. Anisotropic Model: Three-Mass Rotor with Two
Bearings/Pedestals and One Disk

The previous model is modified here to provide an example with bearing and
pedestal dynamic properties that are not isotropic and thus more realistic. Starting
with the input file from the previous example, the bearing and pedestal inputs are
modified according to the following input specifications.

Bearing Stiffness and Damping Coefficients:

Bearing No. 1 �15

K

0
xx

0. (lb/in)� �7
K
50

xy

.0� �20

C

.0
xx

(lb s/in)� �
C
5.

x

0
y

�

�5
K
0
y

.
x

0� �50

K

0
yy

0. (lb/in)� �
C
5.

y

0
x

� �30

C

.0
yy

(lb s/in)�

Bearing No. 2 �15

K

0
xx

0. (lb/in)� �7
K
50

xy

.0� �20

C

.0
xx

(lb s/in)� �
C
5.

x

0
y

�

�5
K
0
y

.
x

0� �50

K

0
yy

0. (lb/in)� �
C
5.

y

0
x

� �30

C

.0
yy

(lb s/in)�

Note that the bearing stiffness coefficient matrices are postulated as nonsymmet-
ric and thus provide a more realistic example for fluid-film journal bearings, as
dissected in Section 4 of Chapter 2 and more fully developed in Chapter-5.

Pedestal Stiffness and Damping Coefficients:
Kxx Kyy Cxx Cyy

Pedestal No. 1: 2000. (lb/in) 3000. (lb/in) 10. (lb s/in) 10. (lb s/in)
Pedestal No. 2: 2000. (lb/in) 3000. (lb/in) 10. (lb s/in) 10. (lb s/in)

In an RDA model, the connection between horizontal and vertical is essentially
through the bearing and pedestal stiffness and damping inputs. It is typical for hor-
izontal-rotor machines that pedestal vertical stiffnesses are approximately 50% or
more larger than the pedestal horizontal stiffnesses and the inputs in this example
emulate that (i.e., x horizontal, y vertical).

The steady-state unbalance response for this third sample case is driven by
the same single unbalance at station 2 (the disk) of the previous two examples with
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its phase angle input as “zero.” Therefore, as with the previous two examples, the
unbalance at station 2 is a reference signal to which all phase angles in the output
are referenced. This example is also symmetric about the rotor midplane (station
2) in all details, and thus its abbreviated output, tabulated as follows, does not in-
clude bearing and pedestal responses for station 3.

Response of rotor station No. 1

X-direction Y-direction

Speed AMPL. PHASE AMPL. PHASE
RPM MILS DEG. MILS DEG.

1500.0 .677 �60.4 .494 �131.7
1550.0 .915 �72.6 .692 �142.2
1600.0 1.249 �92.6 1.007 �160.1
1650.0 1.509 �124.3 1.369 169.3
1700.0 1.292 �157.6 1.383 130.7
1750.0 .945 �173.8 1.036 101.8
1800.0 .772 178.2 .748 87.4
1850.0 .661 171.5 .582 80.2
1900.0 .577 166.0 .482 75.7

Max. Amplitudes of Station 1 Occurred at:
1650.0 RPM for X-direction with 1.5 MILS and a Phase of �124.3 DEG.
1700.0 RPM for Y-direction with 1.4 MILS and a Phase of 130.7 DEG.

Response of rotor station No. 2

X-direction Y-direction

Speed AMPL. PHASE AMPL. PHASE
RPM MILS DEG. MILS DEG.

1500.0 3.699 �33.1 3.412 �109.3
1550.0 5.077 �44.7 4.783 �117.9
1600.0 7.054 �64.7 7.003 �133.7
1650.0 8.640 �97.4 9.715 �162.1
1700.0 7.206 �133.3 10.197 160.6
1750.0 4.791 �148.6 7.867 131.2
1800.0 3.802 �151.5 5.688 116.1
1850.0 3.315 �154.8 4.383 109.0
1900.0 2.956 �158.2 3.596 105.1

Max. Amplitudes of Station 2 Occurred at:
1650.0 RPM for X-direction with 8.6 MILS and a Phase of �97.4 DEG.
1700.0 RPM for Y-direction with 10. MILS and a Phase of 160.6 DEG.
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Response of pedestal No. 1
Located at Station No. 1

X-direction Y-direction

Speed AMPL. PHASE AMPL. PHASE
RPM MILS DEG. MILS DEG.

1500.0 .407 �56.3 .336 �124.2
1550.0 .556 �68.9 .474 �134.8
1600.0 .766 �89.4 .694 �153.0
1650.0 .932 �121.8 .949 176.0
1700.0 .795 �156.3 .959 136.9
1750.0 .572 �172.6 .714 107.6
1800.0 .466 179.9 .514 93.3
1850.0 .402 173.4 .400 86.3
1900.0 .354 167.9 .333 81.9

Max. Amplitudes of Pedestal 1 Occurred at:
1650.0 RPM for X-direction with 0.93 MILS and a Phase of �121.8 DEG.
1700.0 RPM for Y-direction with 0.96 MILS and a Phase of 136.9 DEG.

The response outputs here all show a critical speed near 1650 rpm. A more pre-
cise critical speed value and corresponding response-peak values may, of course,
be obtained by speed “zooming in” around 1650 rpm. The main feature that dis-
tinguishes this example from the previous two is that the bearings/pedestals are
anisotropic and thus the orbits are ellipses, not circles.

2.5. Elliptical Orbits

As typified by the last example, when one or more bearings and/or pedestals have
anisotropic stiffness and/or damping coefficient matrices, the steady-state unbal-
ance response orbits are ellipses. Size, shape, and orientation of the elliptical re-
sponse orbits change from station to station (refer to Fig. 1 in Chapter 2). Fur-
thermore, depending on the difference (
x � 
y), an orbit’s trajectory direction
can be corotational (forward whirl) or counterrotational (backward whirl). Whirl
direction at a given rotor station (absolute or relative to bearing) may be ascer-
tained directly from the corresponding RDA response output using the following.

Forward-whirl orbit → 0 � (
x � 
y) � 180°

Backward-whirl orbit → �180° � (
x � 
y) � 0 (4)

Straight-line orbit → (
x � 
y) � 0, 180°

In long slender rotors, such as for large steam turbogenerator units, the whirl along
the rotor can change direction as a function of axial position. That is, some por-

128 Chapter 4

Copyright © 2001 Marcel Dekker, Inc.



tions of the rotor steady-state response can be in forward whirl while the other por-
tions are in backward whirl. Troubleshooting cases in Part 4 of this book deal with
several large turbogenerators. In addition, the steady-state response orbit at a
given rotor station changes with speed, as typified by the example in Fig. 5 which
shows the progressive change in orbit size, shape, and orientation as a critical
speed is traversed.

The geometric properties of an orbital ellipse can be computed directly from
the x and y harmonic displacement signals. With the aid of the complex-plane rep-
resentation of harmonic signals previously introduced, the x and y displacement
signals are first transformed in the following standard way.

x � X cos(
t � �x) � X1 sin 
t � X2 cos 
t

y � Y cos(
t � �y) � Y1 sin 
t � Y2 cos 
t
(5)

X1 � X sin �x X2 � X cos �x

Y1 � Y sin �y Y2 � Y cos �y

Here it is advantageous to handle the orbital position vector as a complex entity,
as follows (i � ��	1	).

r(t) � x(t) � iy(t) (6)

The complex exponential forms for the sine and cosine functions are as follows.

sin 
t � ��
2
i
� (ei
t � e�i
t) cos 
t � �

1
2

� (ei
t � e�i
t) (7)
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Substituting the components of Eqs. (7) into Eqs. (5) and the results then into Eq.
(6) yields the following.

r(t) � �
1
2

� [(X cos �x � Y sin �y) � i(�X sin �x � Y cos �y)]ei
t

� �
1
2

� [(X cos �x � Y sin �y) � i(X sin �x � Y cos �y)]e�i
t
(8)

r(t) is thus expressed in terms of two rotating vectors, as follows.

r(t) � R1ei(
t��1) � R2e�i(
t��2) (9)

R1 � �
1
2

� �(X	 c	o	s	�	x	�	 Y	 s	in	 �	y)	2	�	 (	�	X	 s	in	 �	x	�	 Y	 c	o	s	�	y)	2	

R2 � �
1
2

� �(X	 c	o	s	�	x	�	 Y	 s	in	 �	y)	2	�	 (	X	 s	in	 �	x	�	 Y	 c	o	s	�	y)	2	

�1 � arctan � �
�2 � arctan � �

Equation (9) shows the elliptical orbit decomposed into two synchronously rotat-
ing vectors, one corotational of radius R1 and the other counter-rotational of radius
R2, both with angular speed magnitude of 
 (Fig. 6). At t � 0, these two vectors
are positioned relative to the x-axis by their respective angles �1 and �2. It is then

X sin �x � Y cos �y)
���
X cos �x � Y sin �y)

�X sin �x � Y cos �y
���
X cos �x � Y sin �y)
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FIGURE 6 Elliptical orbit as the sum of two counterprecessing circular orbits.
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clear, as Figure 6 illustrates at t � 0, that the angle " from the x-axis to the major
ellipse axis is the average of these two angles, as follows.

" � �
�1 �

2
�2

� (10)

When R1 � R2 their vector sum produces forward whirl, and conversely when R1

� R2 their vector sum produces backward whirl. The orbit is a straight line when
R1 � R2. Furthermore, the semimajor axis (b) and semiminor axis (a) of the orbit
ellipse are given by the following expressions.

b � | R1 | � | R2 | a � || R1 | � | R2 || (11)

All the results developed here for the orbit ellipse properties in terms of the x and
y harmonic displacement signals are applicable for steady-state unbalance re-
sponse signals as well as for instability threshold modal orbits.

Once a steady-state response is computed, the task of visually presenting
the results depends upon how much detail the user requires. A multi-DOF ver-
sion of Fig. 4, Chapter 1, with plots of amplitudes and phase angles at selected
rotor stations as functions of speed is often all that may be needed. However, to
appreciate the potentially complex contortions the complete rotor undergoes in
one cycle of motion requires that the orbital trajectories be pictured as a func-
tion of axial position at selected rotor speeds. For educational purposes in engi-
neering courses, the author uses special animation software to construct an iso-
metric-view “movie” of rotor orbital trajectories along the rotor. The animation
shows the greatly slowed-down and enlarged whirling rotor centerline position
by line connecting the instantaneous rotor radial (x, y) coordinates on the ellip-
tical orbits axially positioned along the rotor. The motion picture on the PC
monitor slowly progresses through the speed range provided by the given RDA
response output. Animations for a flexible rotor on anisotropic
bearings/pedestals clearly show that the rotor “squirms” as part of a complete
cycle of motion. This is because of the response phase angle changes along the
rotor, which give rise to the size, shape, and orientation of the elliptical response
orbits changing from station to station at a given speed. The author can provide
the animation software upon request.

Unfortunately, such animations are not readily incorporated in report texts
or published papers and books, although reports conveyed on PC CD-ROM disks
make it possible. Thoughtfully prepared still-picture presentations can provide
much of the visual communication of animations. The most extensive and infor-
mative compilation of axially distributed rotor orbits on still-picture presentations
is given in the book by Lalanne and Ferraris (2) listed in this chapter’s Bibliogra-
phy. Figures 7, 8, and 9 here provide a few such examples to emphasize how the
fundamental rotor-orbit characteristics can be delineated by whether or not the
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model has damping and by whether or not the model has one or more anisotropic
bearings and/or pedestals.

The example shown in Fig. 7 typifies the nature of near-resonance orbits at
selected rotor stations for a case where all bearings and pedestals are isotropic and
the model contains no damping. Naturally, the orbit amplitudes (typically in the
range of a few thousandths of an inch) are illustrated here greatly enlarged. As
with any harmonically excited linear vibration model, RDA response cannot be
computed exactly at a natural frequency without any damping; i.e., amplitudes ap-
proach infinity with zero damping. The case illustrated in Fig. 7 is not exactly at
a critical speed. As shown, because the model is completely isotropic, the orbits
are all circular and thus the additional feature of “no damping” makes the rotor
mode shape planar.

The addition of isotropic bearing damping to the case in Fig. 7 maintains the
orbits as circular but causes the rotor response shape to be nonplanar, as shown in
Fig. 8. In both these isotropic cases, the respective rotor response shapes are fixed
and simply precess synchronously at 
.

For general RDA unbalance response models, the bearing/pedestal proper-
ties are usually anisotropic and bearing damping is nearly always included in the
model. In such general models, the synchronous orbital response trajectories are
ellipses that progressively change in size, shape, and orientation as functions both
of axial rotor position and speed. The case shown in Fig. 9 illustrates such a gen-
eral unbalance response output at a given speed. In such a general case, the previ-
ously mentioned animation software adds significantly to the visualization to
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FIGURE 7 Isotropic model with no damping and very near resonance gives cir-
cular orbits that are in phase.
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show the rotor “squirming.” That is, the rotor response shape is not fixed as it is
in the previous examples of Figs. 7 and 8.

Unbalance response computation is one of the two most important and nec-
essary types of rotor vibration analyses, providing a number of valuable pieces of
information about the analyzed system. Unbalance response analyses show the
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FIGURE 8 Isotropic model with damping gives circular orbits.

FIGURE 9 Response orbits of an anisotropic model with damping.
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speeds (i.e., critical speeds) where unbalance produces forced resonance re-
sponses and also how sensitive the critical-speed vibration peaks are to residual
rotor unbalance magnitude and axial location. Unbalance response analyses also
show whether postulated damping (e.g., at the bearings) is adequate for a reason-
able tolerance to residual rotor unbalance. Lastly, unbalance response analyses
can be used to supplement actual balancing influence coefficients from trial
weights (see Sec. 10, Chapter 12).

3. INSTABILITY SELF-EXCITED-VIBRATION THRESHOLD
COMPUTATIONS

Avoiding self-excited rotor vibration is an absolute necessity because in most oc-
currences the resulting vibration levels are dangerously high, potentially causing
severe machine damage within a relatively short interval of time. Even with the
best of design practices and most effective methods of avoidance, self-excited ro-
tor vibration causes are so subtle and pervasive that incidents continue to occur.
Thus, a major task for the vibrations engineer is diagnosis and correction. Cran-
dall (1) provides physical descriptions of sources of dynamic destabilizing forces
that are known to energize self-excited lateral rotor vibrations (LRVs). Crandall
shows that the various destabilizing mechanisms all have one thing in common, a
dynamic force component that is perpendicular to the instantaneous rotor dynamic
radial displacement vector and thus at least partially colinear with the orbital tra-
jectory (i.e., colinear with the instantaneous trajectory velocity). Because force �
velocity � power, such a dynamic force is nonconservative and thus potentially
destabilizing. As described in Sec. 4 of Chapter 2 for linear LRV models, such
destabilizing forces are embodied within the skew-symmetric portion of the stiff-
ness matrix, which in fact operates upon a radial displacement vector to produce
a force vector perpendicular to the radial displacement, consistent with Crandall’s
physical descriptions.

RDA utilizes the standard formulation for the extraction of eigenvalues cov-
ered in Sec. 3 of Chapter 1 and prescribed by Eq. (57) in that chapter. In assessing
the potential for self-excited LRV, computations are performed to locate bound-
aries for operating parameters (e.g., speed, power output) where a mode’s com-
plex conjugate set of eigenvalues moves from positive damping to negative damp-
ing. In Table 1 of Chapter 1, this corresponds to case 1, which is the transition
boundary between case 2 and case 3. In self-excited LRV, such a boundary is usu-
ally referred to as an instability threshold. Self-excited vibration resulting from a
negatively damped 1-DOF system is formulated in Sec. 1, Chapter 1. The initial
transient vibration buildup of a self-excited unstable LRV mode occurs just like
its 1-DOF counterpart illustrated in Fig. 3, Chapter 1. A typical journal orbital vi-
bration transient buildup for a rotor speed above the instability threshold speed is
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shown in Fig. 10. Although the nonlinear barrier presented by the bearing clear-
ance limits the vibration amplitude, in most cases a machine would not tolerate
such a high vibration level for a long period of time without sustaining significant
damage. The simple examples that follow are to demonstrate RDA’s use for pre-
dicting instability threshold speeds.
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FIGURE 10 Transient orbital vibration buildup in an unstable condition. (a) Ini-
tial linear transient buildup; (b) growth to nonlinear limit cycle.
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3.1. Symmetric Three-Mass Rotor with Two Anisotropic
Bearings (Same) and One Disk

The simple nontrivial 8-DOF model illustrated in Fig. 4 of Chapter 2 is again used,
here as a basis for new-user RDA demonstrations on computations to predict in-
stability threshold speeds. Chapter 5 is devoted to formulations, computations,
and experiments to determine bearing and seal dynamic properties. In this exam-
ple, bearing dynamic properties will be used that are typical for fluid-film journal
bearings and are scaled to be consistent with the relatively small dimensions of the
rotor in this example. The same three-mass rotor model used in the three previous
examples, for unbalance response, is also used here. The bearing stiffness coeffi-
cient matrices are anisotropic and nonsymmetric and are the same for both bear-
ings to preserve symmetry about the rotor midplane. For this first instability
threshold example, pedestals are not included.

In the previous three examples, for unbalance response, the bearing proper-
ties were contrived to be independent of speed just to keep the input shorter. In ac-
tual applications involving journal bearings, the dynamic properties of the bear-
ings are usually quite speed dependent and should thus be input as such even for
unbalance response computations. In the examples here for instability threshold
speed prediction, speed-dependent bearing properties are not optional because
they are required to demonstrate the computations. RDA uses bearing dynamic
property inputs at a user-selected number of appropriate speeds (maximum of 10)
to interpolate for intermediate speeds using a cubic-spline curve fit, for unbalance
response as well as instability threshold speed computations.

From the MAIN MENU, option 4 initiates an instability threshold speed
computation, and the DATA MENU shown earlier in this chapter appears. Using
bearing property inputs at five or more speeds is not unusual, and the considerable
amount of corresponding input certainly suggests that the user use a full-screen
editor outside the RDA environment to prepare the input file in a format compat-
ible with that used by RDA to save an input file for subsequent use. That follow-
ing full-screen input process is applicable for both unbalance response and insta-
bility thresholds. Inputs are in free format.

Input Title: 50 spaces for any alphanumeric string of characters (1 line)
No. of: Stations, Disks, Bearings, Pedestals, Extra Weights (integer) (1 line)
Units Code: “1” for inches and pounds or “2” for mm and kg (integer) (1

line)
Shaft Elements: OD, ID, Length, Inertia, Weight (1 line for each element)
Disks: Station No. (integer), OD, ID, Length, Weight, IP, IT (1 line for each

disk)
Bearings: Station No. (integer), Weight (1 line for each bearing)
Pedestals: Station No. (integer), Weight (1 line for each pedestal)
Pedestals: Kxx, Kyy, Cxx, Cyy (1 line for each pedestal)
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Added Rotor Weights: Station No. (integer), Weight (1 line for each weight)
Shaft Material: Modulus of elasticity, Poisson’s ratio (1 line)
No. of speeds for bearing dynamic properties: (integer) (1 line)
Bearing Dynamic Properties:

RPM (1 line)
Kxx, Kxy, Cxx, Cxy, Kyx, Kyy, Cyx, Cyy (1 line for each bearing)� Sequence

for each RPM
Unbalances: Station No., Amplitude, Phase Angle (1 line for each station)

This last input group of lines (Unbalances) is ignored by RDA when executing
threshold speed runs but may be retained in the input file. It can therefore also be
excluded when executing threshold speed runs. The input file for this sample can
be viewed in file sample04.inp, but it is not printed here in the interest of space.

Entering option 1 in the DATA MENU produces the INPUT OPTIONS
menu, from which option 1 (File Input) prompts the user for the input file name,
which is sample04.inp for this example. Input file must reside in rda99 direc-
tory. Upon entering the input file, the user is returned to the DATA MENU, where
the user can select any of the six options, including option 5, which executes the
previously designated MAIN MENU option 4 for stability analyses. Three stabil-
ity analysis options are displayed as follows.

The new user should explore all three of these options. Option 1 provides the
complex eigenvalues for a speed range and increment prompted from the user.
Plotting the real eigenvalue parts as functions of speed is one way to determine the
instability threshold speed, i.e., by finding the lowest speed at which one of the
eigenvalue real parts changes from negative (positively damped) to positive (neg-

STABILITY ANALYSIS

The Options Are:

1. Do not iterate to find threshold speed.
Energy check will not be performed.
Store the eigenvalues for plotting.

2. Find the threshold speed of instability.
Perform energy check at threshold speed.
Store the eigenvalues for plotting.

3. Find the threshold speed of instability.
Perform energy check at threshold speed.
Do not store the eigenvalues for plotting.
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atively damped). At this negative-to-positive crossover speed, the two eigenval-
ues for the threshold (zero-damped) mode are imaginary conjugates and thus pro-
vide the natural frequency of the unstable mode. Plotting the first few lowest fre-
quency modes’ eigenvalues versus speed can provide information (Campbell
diagram) to corroborate which modes are shown to be sensitive to rotor unbalance.
However, option 3 is more expedient because it automatically “halves in” on the
positive-to-negative crossover threshold speed to within the user-supplied speed
convergence tolerance. In this demonstration example, option 3 is selected.

The unstable mode theoretically has exactly zero net damping at the insta-
bility threshold, so its eigenvector at the threshold speed (and only at the thresh-
old speed) is not complex. Thus, a real mode shape can be extracted from the
threshold-speed eigenvector. The “energy check” referenced in the STABILITY
ANALYSIS menu uses the eigenvector components for the mode at the deter-
mined stability threshold speed to construct that mode’s normalized x and y har-
monic signals at the bearings to perform an energy-per-cycle computation at each
bearing, as provided by Eq. (81) in Chapter 2. This computation provides a po-
tential side check for solution convergence of the threshold speed, because exactly
at a threshold of instability the sum of all energy-per-cycle “in” should exactly
cancel all energy-per-cycle “out.” However, the second example in this section
demonstrates that in some cases inherent computational tolerances in eigenvalue
extraction can make the energy-per-cycle residual convergent to a relatively small
but nonzero limit.

STABILITY ANALYSIS option 3 prompts for the following (inputs
shown).

Input Lower Speed (rpm): 0 (RDA starts at the lowest bearing data speed)
Input Upper Speed (rpm): 4000
Desired Accuracy (rpm): 1

The user is next prompted with an option to change the speed tolerance.
With present PCs being so much faster than the early PCs for which RDA was
originally coded, the user should answer the prompt with “N” for “No.” The user
is next prompted to select from the following three choices.
The Bearing Coefficients Will Be Fitted by a Cubic Spline.

Three Types of End Conditions Could Be Used:

1. Linear
2. Parabolic
3. Cubic

Option 1 (Linear) is used in this demonstration example.
The user is next prompted to select from the following three choices per-

taining to shaft mass model formulation, just as in unbalance response cases.
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Shaft Mass Model Options:

1. Lumped Mass
2. Distributed Mass
3. Consistent Mass

The Consistent Mass option is usually preferred and is chosen here. For any given
rotor, curious users may compare model resolution accuracy or convergence of
these three options by varying the number of shaft elements.

The last user prompt is to give a name to the output file that will be gener-
ated (here sample04.out is provided). The complete output file for this example
is provided on the diskette that comes with this book. An abbreviated portion of
that output file is given here as follows.

STABILITY ANALYSIS RESULTS

Threshold Speed � 2775.6 RPM � 1.00 RPM
Whirl Frequency � 1692.5 CPM
Whirl Ratio � 0.6098

ENERGY PER CYCLE AT THE ONSET OF INSTABILITY

Bearing Rotor Damping Stiffness Net
No. Location Part, Cij

s Part, Kij
ss Energy

1 1 �349.9 350.0 0.148
2 3 �348.5 348.6 0.143

Energy/Cyc. of the Bearings Total: 0.291

As can be observed from the quite small bearing energy-per-cycle residual,
the user-provided 1-rpm convergence criterion for the instability threshold speed
provides an eigenvector indicative of a zero-damped mode. The energy-per-cycle
output tabulations reflect that the model (including bearing coefficient inputs) is
symmetric about the rotor midplane. In the next example, where the bearings are
somewhat different, it is seen that the total energy per cycle residual does not ap-
proach “smallness” to the same degree as in this example, even though the thresh-
old iteration has essentially converged to the solution. One can conclude that the
energy-per-cycle criterion for convergence is much more stringent than the speed
tolerance. The “whirl ratio” (whirl frequency/threshold speed) is always less than
“one” for this type of instability; i.e., the associated self-excited vibration is al-
ways subsynchronous.

The normalized threshold (zero-damped) mode used for the energy-per-cy-
cle computations is essentially planar, which can be deduced from the following
RDA output for this example. The threshold mode for this example is also indica-
tive of the typical journal orbit shapes at instability thresholds.
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Normalized Self-Excited Vibration Mode
Coordinate Amplitude Phase (RAD.) Phase (DEG.)

x1 1 .1016590 .9276607E-03 0.0
y1 2 .8729088E-01 �1.822578 �104.4
�x1 3 .1160974 1.317930 75.5
�y2 4 .1352273 �.9837417E-04 0.0
x2 5 1.000000 .0000000 0.0
y2 6 .8586232 �1.823513 �104.5
�x2 7 .2455765E-03 1.304664 74.8
�y2 8 .2896766E-03 .9317187E-02 0.0
x3 9 .1014572 .8898759E-03 0.0
y3 10 .8711492E-01 �1.822611 �104.4
�x3 11 .1163277 �1.823615 �104.5
�y3 12 .1355006 3.141485 180.0

The orbits are “fat ellipses” or “almost circular,” and there is an insight to be
gleaned from this. Referring to Eq. (79) in Chapter 2 for the energy-per-cycle in-
put from the skew-symmetric part of the bearing stiffness matrix, the integrated
expression is the orbit area. Thus, the destabilizing energy is proportional to the
normalized orbit area, which is a maximum for a purely circular orbit. A major Eu-
ropean builder of large steam turbogenerator units used this idea “in reverse” by
making the journal bearings much stiffer in the vertical direction than in the hori-
zontal direction to create “very flat” modal orbit ellipses (i.e., small normalized
orbit areas), with the objective of increasing the instability threshold power for
steam-whirl-induced self-excited vibration. This design feature unfortunately
made these machines difficult to balance well and was thus subsequently “re-
versed” in the power plants, per customer request.

3.2. Symmetric Three-Mass Rotor with Two Anisotropic
Bearings (Different) and One Disk

The model for this example differs from the previous model only in the bearing
coefficients for bearing 2, which are somewhat different from those of bearing 1.
This example demonstrates instability threshold output for the more typical ma-
chine configuration in which perfect symmetry is not preserved. The input file
(sample5.inp) and output file (sample5.out) are on the diskette that comes with
this book. Following is an abbreviated output summary with a speed tolerance of
�1 rpm.

STABILITY ANALYSIS RESULTS

Threshold Speed � 2017.4 RPM � 1.00 RPM
Whirl Frequency � 1455.7 CPM
Whirl Ratio � 0.7216
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ENERGY PER CYCLE AT THE ONSET OF INSTABILITY
Bearing Rotor Damping Stiffness Net

No. Location Part, Cij
s Part, Kij

ss Energy

1 1 �36041. 30865. �5176.
2 3 �157. 167. 10.

Energy/Cyc. of the Bearings Total: �5166.

A first impression of the energy-per-cycle residual here might induce one to
question the quality of solution convergence. However, the following abbreviated
output summary from a rerun of this example with the significantly smaller speed
tolerance of �0.1 rpm does not support such a first impression.

STABILITY ANALYSIS RESULTS

Threshold Speed � 2016.5 RPM � 0.10 RPM
Whirl Frequency � 1455.2 CPM
Whirl Ratio � 0.7216

ENERGY PER CYCLE AT THE ONSET OF INSTABILITY
Bearing Rotor Damping Stiffness Net

No. Location Part, Cij
s Part, Kij

ss Energy

1 1 �36035. 30852. �5183.
2 3 �158. 167. 9.

Energy/Cyc. of the Bearings Total: �5174.

For practical purposes, the threshold speed answer here is the same as computed
in the initial run in which a �1 rpm speed tolerance was used. In contrast to the
previous example, which is symmetric about the midplane, the threshold mode in
this example has its largest modal motion at station 1 (bearing 1) and its smallest
motion at station 2 (disk). In the previous example, the disk’s threshold modal or-
bit is about 10 times as large as at the bearings. The difference in energy-per-cy-
cle residual convergence characteristics between these two examples, one sym-
metric and one not, invites further research. Clearly, the energy-per-cycle criterion
for convergence is more stringent than speed tolerance, but fortunately speed is
the answer sought.

In all RDA examples presented thus far, the bearing damping coefficient ar-
rays used are symmetric. For the examples in this section, bearing stiffness and
damping coefficients originate from standard computations for fluid-film hydro-
dynamic journal bearings, i.e., using “small” radial position and velocity perturba-
tions on the solution of the Reynolds lubrication equation. As shown in Sec. 4 of
Chapter 2, a skew-symmetric portion of a bearing “damping” matrix is not really
damping because it embodies a conservative force field and thus should be present
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only if needed to capture bearing (or seal) fluid inertia effects. Chapter 5 more thor-
oughly develops this and other aspects of bearing dynamic properties, but it is rel-
evant to mention here that the classical Reynolds lubrication equation encompasses
only the viscous effects of the lubricant fluid with no account of the fluid inertia ef-
fects. Thus, journal bearing dynamic properties obtained from Reynolds equation
computations should have symmetric damping coefficient arrays.

This first group of RDA examples should provide a background to begin
analyses of other cases. Like any computer code, RDA is just a tool and thus can
be used properly or improperly. As will be exposed more fully in Part 4, proper
use of an LRV code such as RDA demands that the user apply good engineering
judgment and care in devising models that adequately portray the important vi-
bration modes and responses of the system.

4. ADDITIONAL SAMPLE PROBLEMS

The sample problems of the previous two sections were devised primarily to give
one a primer on use of the RDA code. The new RDA user is encouraged to ana-
lyze variations of that initial batch of samples. That is, the user is encouraged to
perform basic parametric studies on the model to study the influence of input vari-
ations (bearing, pedestal, shaft, etc.) on the results, such as critical speeds, atten-
dant amplitude peaks, and instability threshold speeds. The sample problems pro-
vided in this section are an extension of the RDA primer begun with the previous
sample problems.

4.1. Symmetric Three-Mass Rotor with Two Anisotropic
Bearings and Two Pedestals

The inputs for this example are the same as for the previous example except that
pedestals are added at each of the two bearings. Input file sample06.inp for this
sample contains the following requisite input modifications to input file sam-
ple05.inp.

Number of Pedestals: 2

Pedestal Data: Pedestal No. Station No. Weight

1 1 25.0 (lb)
2 3 25.0 (lb)

Pedestal Stiffness and Damping Coefficients:
Kxx Kyy Cxx Cyy

Pedestal No. 1: 15000. (lb/in) 25000. (lb/in) 1. (lb s/in) 1. (lb /in)
Pedestal No. 2: 15000. (lb/in) 25000. (lb/in) 1. (lb s/in) 1. (lb /in)
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The following is an abbreviated results summary for this example.

STABILITY ANALYSIS RESULTS

Threshold Speed � 2004.1 RPM � 0.10 RPM
Whirl Frequency � 1530.0 CPM
Whirl Ratio � 0.7634

The new RDA user is encouraged at this point to explore moderate input varia-
tions, specifically for the pedestal parameters. For example, a small reduction in
both pedestal’s x-stiffness input may provide the surprise of eliminating a thresh-
old of instability from the speed range below the maximum speed of bearing in-
put stiffness and damping coefficients (i.e., no threshold speed below 8015 rpm).
The new RDA user should attempt to explain such dramatic changes in the results.

4.2. Nine-Stage Centrifugal Pump Model with 17 Mass
Stations, Two Bearings

The input file name for this model is pump17.inp. Both unbalance response and
instability threshold speed cases are included here for the main purpose of com-
parison with the next example, which is a five-mass-station model of the same
pump. The rotor model for this example is based on a pump rotor quite similar to
that shown in Fig. 11. It has two oil-film journal bearings and nine impeller stages
to produce a very high pump pressure. The model here is purely for RDA demon-
stration purposes. It does not account for the quite significant effects of any of the
interstage close-clearance sealing gaps and end seals, all of which have their own
bearinglike rotor dynamic coefficients that can be entered into RDA just like the
coefficient inputs for journal bearings. In Part 4, such effects are included in the
models used for the troubleshooting case studies presented.

4.2.1. Unbalance Response

This pump could be driven by either a constant-speed driver (e.g., induction mo-
tor) or a variable-speed driver (e.g., frequency-inverter drive motor, induction mo-
tor through fluid coupling, or an auxiliary steam turbine). The main advantages of
variable-speed drive for such a pump include operation at a “best efficiency point”
(BEP) over a wide flow range and avoidance of intense flow-induced vibration at
flows significantly below BEP flow. In any case, it is prudent practice to analyze
the unbalance response over a speed range that is significantly higher than the an-
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ticipated maximum operation speed. This is to ensure the detection of any unbal-
ance-sensitive critical speeds of the model that might be located just above the
maximum operating speed. Given the possible inaccuracies of any model, such
critical speeds that are computed to be only marginally above the maximum oper-
ating speed could in fact intrude into the upper range of the operating speed on the
actual machine. Such pumps are generally driven through a so-called flexible cou-
pling, which provides a tolerance of angular as well as parallel misalignment be-
tween driver and pump. As a consequence, LRV characteristics of the pump are
essentially decoupled from the driver.

This example involves a relatively long flexible rotor with nine impeller
stages inboard of two journal bearings that are located near their respective ends
of the rotor. Thus, one should anticipate the possibility of more than one bending-
type critical speed existing within the operating speed range. To ensure the po-
tential for exciting multiple bending critical speeds with unbalances, the axial lo-
cation and phasing of the unbalance inputs should be properly configured, as
demonstrated in this example. For an indication of where to place unbalances in
the model, one should be guided by the mode shapes for a uniform beam with ap-
propriate approximate boundary conditions. In this example the so-called simple
support case of a uniform beam, illustrated in Fig. 12, is appropriate.

In Sec. 3 of Chapter 1 it was shown that the influence of a force on a partic-
ular mode is proportional to the participation factor of the mode at the point of the
force’s application, i.e., proportional to the relative displacement magnitude at the
point of application. Accordingly, an unbalance placed near the axial midpoint of
this example rotor can be expected to provide near-maximum effect on the first
and third modes, whereas unbalances placed near the �

1
4

� and �
3
4

� axial locations at
180° out of phase can be expected to provide near-maximum effect on the second
mode. Accordingly, input file pump17.inp is configured with three such unbal-
ances. Also, to make the problem a bit more interesting, the two 180°-out-of-phase
unbalances are placed 90° out of phase with the axial-midpoint unbalance. The
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FIGURE 12 First three planar mode shapes for a simply supported uniform
beam.
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full output file is pump17ub.out, from which the following abbreviated output
summary is extracted.

Response of rotor station No. 5 (near �
1
4

� axial position)

X-direction Y-direction
Speed AMPL. PHASE AMPL. PHASE

RPM MILS DEG. MILS DEG.

1200.0 .333 �1.9 .327 �93.9
1400.0 .678 �1.5 .676 �93.0
1600.0 2.138 �1.1 2.106 �93.0
1800.0 4.593 179.8 4.759 91.8
2000.0 1.410 �179.8 1.416 90.5
2200.0 .943 �179.2 .946 90.9
6200.0 .786 �131.7 .786 138.3
6600.0 1.162 �120.1 1.164 149.9
7000.0 2.636 �107.3 2.634 162.7
7200.0 7.237 �101.0 7.234 169.0
7400.0 10.493 85.2 10.256 �4.7
7600.0 3.159 91.3 3.162 1.3
8000.0 1.452 102.1 1.453 12.1

Response of rotor station No. 9 (near �
1
2

� axial position)

X-direction Y-direction
Speed AMPL. PHASE AMPL. PHASE
RPM MILS DEG. MILS DEG.

1200.0 .442 �.7 .434 �92.5
1400.0 .896 �.7 .894 �92.1
1600.0 2.812 �.8 2.770 �92.6
1800.0 6.004 179.6 6.223 91.6
2000.0 1.830 179.4 1.838 89.8
2200.0 1.214 179.4 1.219 89.5
2400.0 .963 179.3 .964 89.4
6200.0 .428 175.5 .428 85.5
6400.0 .419 174.2 .419 84.2
6600.0 .411 172.4 .410 82.3
6800.0 .403 168.8 .403 78.8
7000.0 .402 161.0 .402 71.0
7200.0 .499 133.1 .499 43.0
7400.0 .696 �130.0 .684 139.4
7600.0 .421 �157.9 .421 112.1
7800.0 .384 �165.6 .384 104.4
8000.0 .366 �169.1 .366 100.9
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Response of rotor station No. 13 (near �
3
4

� axial position)

X-direction Y-direction

Speed AMPL. PHASE AMPL. PHASE
RPM MILS DEG. MILS DEG.

1200.0 .312 .4 .306 �91.9
1400.0 .634 .1 .631 �91.6
1600.0 1.997 �.4 1.964 �92.4
1800.0 4.282 179.4 4.435 91.4
2000.0 1.312 178.6 1.317 88.9
2200.0 .876 177.9 .879 88.0
2400.0 .699 177.1 .700 87.2
6200.0 .687 121.1 .686 31.2
6400.0 .823 114.1 .823 24.1
6600.0 1.047 107.2 1.049 17.1
6800.0 1.480 99.9 1.480 9.9
7000.0 2.492 93.0 2.490 3.0
7200.0 7.020 86.3 7.017 �3.7
7400.0 10.438 �99.8 10.204 170.2
7600.0 3.215 �105.5 3.218 164.5
7800.0 2.018 �110.6 2.018 159.4
8000.0 1.531 �115.2 1.532 154.8

The results summarized here clearly show two critical speeds, the first near
1800 rpm and the second near 7400 rpm. One may, of course, zoom in on these
two speeds to more accurately acquire the model’s critical speeds and associated
amplitude peaks. As the full unabridged results output on file pump17ub.out
show, the motion at the two journal bearings is vanishingly small over the com-
plete computed speed range, indicating that the rotor locations at the bearings are
virtual nodal points for both critical speeds. And that is consistent with the mode
shapes at the first and second critical speeds, albeit nonplanar, closely resembling
the corresponding mode shapes shown in Fig. 12 for the simply supported uniform
beam. For example, the vibration level at station 9 (near the rotor midplane) shows
virtually no sensitivity to the second critical speed, indicating that station 9 is prac-
tically a nodal point for the second critical speed. Furthermore, the relative am-
plitudes for the second critical speed at stations 5, 9, and 13 are in qualitative
agreement with the first mode shape for the simply supported uniform beam. This
example clearly shows that vibration measurements near the bearings may not
correlate well at all with rotor vibration at the midspan zone.

4.2.2. Instability Threshold Speed

The input file from the previous example is used here to perform a computation
to determine whether a threshold speed is predicted in the speed range below
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8000 rpm for the nine-stage centrifugal pump. The full unabridged results are
on output file pump17ts.out. An abbreviated output summary is given as
follows.

STABILITY ANALYSIS RESULTS

Threshold Speed � 2648.1 RPM � .10 RPM
Whirl Frequency � 1417.0 CPM
Whirl Ratio � .5351

This result shows a couple of features that are typical for this type of insta-
bility (commonly called oil whip). First, the whirl ratio at the oil-whip threshold
speed is close to �

1
2

�. Second, the mode that is self-excited is quite similar to the first-
critical-speed mode excited by unbalance in the previous example but with two
notable differences: (a) The motion at the bearings is approximately 5% of the
maximum (at rotor midplane) instead of vanishingly small. This is because the
journal bearings are providing the self-exciting destabilizing mechanism. (b) The
unstable mode’s natural frequency (1417 cpm) is noticeably lower than the first
critical speed (approximately 1800 rpm). This is because the bearing’s hydrody-
namic oil films get thicker, and thus less stiff, as rotational speed is increased.
Consequently, the first mode’s natural frequency at the threshold speed (2648
rpm) is 1417 cpm, not 1800 cpm.

4.3. Nine-Stage Centrifugal Pump Model with Five Mass
Stations, Two Bearings

This five-mass-station rotor model has been configured to provide a best effort at
approximating the previous 17-mass-station rotor model. The input file is
pump5.inp. Both the unbalance response case and instability threshold speed
case have been rerun with the five-mass rotor model. Bearing inputs are the same
as in the pump17.inp file. A brief summary of the unbalance response output
from file pump5ub.out is presented as follows. The first critical speed is reason-
ably close to that with pump17 but the second critical speed differs considerably
from that of pump17, as should be expected.

First Critical Speed 
 1800 rpm with x �
1
2

�-axial-position amplitude 
 6 mils
Second Critical Speed 
 6400 rpm with x �

3
4

�-axial-position amplitude 
 37
mils

The instability threshold speed case computed with pump17.inp is repeated
here using pump5.inp. The following output summary is extracted from the full
output file pump5ts.out.

Threshold Speed � 2449.5 RPM � .10 RPM
Whirl Frequency � 1512.3 RPM
Whirl Ratio � .6174
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As these results show, the threshold speed computed here is approximately 200
rpm lower than that computed from pump17.inp and the whirl frequency is ap-
proximately 100 cpm higher. The reason the threshold results from pump5.inp
are this close to those from pump17.inp is that the mode at instability threshold
is just a somewhat “softer” version of the mode at the first critical speed, as pre-
viously explained. As explained in Chapter 1, the higher the mode number needed,
the more degrees of freedom (i.e., the more finite elements) necessary to portray
the actual continuous media body accurately with a discrete model. The compar-
isons between the pump17 and pump5 results are completely consistent with this
axiom.

5. SUMMARY

The primary focus of this chapter is to provide a primer on using the RDA code
for LRV analyses. Several carefully configured examples are presented for that
purpose. In addition to the “how-to” instructions, attention is given to important
issues needed to make comprehensive use of what “comes out” of RDA. This in-
cludes showing that unbalance response results are the best approach to deter-
mining the so-called critical speeds at which sensitivity to residual rotor unbal-
ance can produce significant resonant vibration peaks. Also, the confusing topic
of rotor vibration phase angles is clearly and comprehensively covered. The ex-
planation of elliptical orbits and their changing size, shape, and orientation as
functions of rotor axial position and speed is provided an in-depth treatment. The
important topic instability self-excited rotor vibration is both analyzed and ex-
plained. In Part 4 (Troubleshooting), a constructive interplay between the analy-
sis types covered in this chapter and the Monitoring and Diagnostics methods
covered in Part 3 gives serious vibration analysts and troubleshooters a broad pic-
ture of the methods used to solve rotating machinery vibration problems.
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5

Bearing and Seal Rotor Dynamics

1. INTRODUCTION

RDA, the modern finite-element-based PC code supplied with this book, is pre-
sented from a fundamentals perspective in Chapter 2 and from a user’s perspec-
tive in Chapter 4. There are a number of commercially available codes with sim-
ilar capabilities. Rotor dynamic analysis codes in particular, and engineering
analysis codes in general, nearly always have one tacit fundamental trait in com-
mon. That trait is as follows. Those aspects of the problem class that are reason-
ably well defined and modeled by first principles are “inside” the computer code.
Those aspects that are not as well defined and modeled by first principles show up
as some of the “inputs” to the computer code. With this approach, the typical com-
puter code developer and marketer has long been quick to tout their code as capa-
ble of handling “any” conceivable problem within the code’s intended range of us-
age, as long as one has all the “correct” inputs.

For lateral rotor vibration (LRV) analyses, those important “inputs” that
present the biggest challenge are the dynamic properties (i.e., stiffness, damping,
and inertia coefficients) for the components that dynamically connect the rotor to
the stator (stator � everything that does not rotate). These components include
first and foremost the radial bearings. In many rotating machinery types (e.g., tur-
bomachinery), other liquid- and gas-filled internal close-clearance annular gaps,
such as in seals, are also of considerable LRV importance. Furthermore, the con-
fined liquid or gas that surrounds a rotor component (e.g., centrifugal pump im-
peller and balancing drum) may also significantly contribute to the basic vibration
characteristics of a rotating machine, in an interactive way much like bearings and
seals and/or as explicit time-dependent unsteady-flow forces (e.g., hydraulic in-
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stability in centrifugal pumps, rotating stall in turbocompressors). Electromag-
netic forces may also contribute. Most modern LRV research has been devoted to
all these rotor-stator effects. One could justifiably devote an entire book just to this
single aspect of LRV. This chapter focuses on bearing and seal LRV dynamic
properties. Small clearances critical to these properties are of significant uncer-
tainty because of manufacturing tolerances. Thus, LRV characteristics are really
stochastic rather than deterministic. That is, if significant inputs are random-vari-
able distributions, then so are the outputs.

2. LIQUID-LUBRICATED FLUID-FILM JOURNAL BEARINGS

2.1. Reynolds Lubrication Equation

The strong urge to derive the classic Reynolds lubrication equation (RLE) rigor-
ously is resisted here in the interest of space and because the RLE is so aptly de-
rived in several references e.g., Szeri, 1998 (34). To facilitate the serious reader’s
understanding of available derivations of the RLE, the following perspective is
provided. Figure 1 provides an elementary illustration of a journal bearing.

The general starting point for modeling fluid mechanics problems is en-
compassed in the three coupled fluid-momentum partial differential equations
(the “Navier-Stokes” equations) plus the single conservation-of-mass partial dif-
ferential equation (the “continuity” equation). The three scalar Navier-Stokes
equations (which are nonlinear) are obtained by applying Newton’s second law,
∑ F

→
� d(mv→)/dt, to a differential control volume of a continuum flow field. At-
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FIGURE 1 Generic journal bearing configuration and nomenclature.
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tempting to solve these equations for two-dimensional (2D) and 3D problems has
historically been a challenge to occupy the careers of computational fluid me-
chanics specialists, because these equations are nonlinear and coupled. The inge-
nious contributions of the precomputer age fluid mechanics “giants” (such as Os-
borne Reynolds) sprang from the application of their considerable physical
insights into specific problems, leading them to make justifiable simplifying as-
sumptions and thereby producing important solvable formulations. This was tan-
tamount to identifying and excising those terms in the Navier-Stokes equations of
secondary importance for a specific problem. In this regard, Reynolds’ (1886)
original paper on development of the RLE is nothing short of a masterpiece (29).

In a “nutshell,” the RLE applies to an incompressible laminar (no turbu-
lence) strictly viscous (no fluid inertia) thin fluid film between two closely spaced
surfaces in relative motion. Because of the neglect of fluid inertia, all the nonlin-
earities (convective-inertia terms) are deleted from the Navier-Stokes equations.
Because of the close spacing of the two surfaces, a number of further simplifying
assumptions are invoked. These include neglect of local surface curvature and ne-
glect of gradients of fluid shear stress components in the local plane of the thin
fluid film, because they are much smaller than their gradients across the thin fluid
film. The simplifying assumptions also include neglect of the fluid velocity and
the change in local pressure normal to the local plane of the film. When all these
simplifying assumptions are implemented, the Navier-Stokes equation for the di-
rection normal to the film is eliminated. The other two Navier-Stokes equations
(for the two in-plane directions) are decoupled from each other and are left with
only shear stress and pressure terms for their respective directions. Integrating
these two differential equations and applying the surface velocity boundary con-
ditions yield solutions for the two in-plane velocity distributions in the film in
terms of the local in-plane pressure gradient terms and relative velocity compo-
nents between the surfaces.

These velocity solutions with the conservation-of-mass condition yield the
Reynolds equation. Originally, only sliding velocity between the two surfaces was
considered. Much later, as Eq. (1) for the RLE reflects, the so-called squeeze-film
term was added to handle local relative velocity of the surfaces perpendicular to
their local plane. In the context of rotor dynamics, it is the sliding velocity term
that gives rise to the bearing stiffness coefficients and the squeeze-film velocity
term that gives rise to the bearing damping coefficients.

“Sliding velocity term”↓ “Squeeze-film term”

�
�
�
#
� ��

h
$

3

� ��
�

�

p
#
��� � �

�
�
z
� ��

h
$

3

� ��
�

�

p
z
��� � 6
R �

d
d
h
#
� � 12 �

d
d
h
t
� (1)

where p � p(#, z), h � h(#, z), 0 � # � 2!R, � L /2 � z � L /2, and $ � viscosity.
Here, p(#,z) is the film pressure distribution, h(#,z) is the film thickness distribu-
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tion, and L is the hydrodynamic-active axial length of the journal bearing; p(#,z)
is the “unknown” and all other parameters are specified.

It was Reynolds’ objective to explain then recently published experimental
results for rail-locomotive journal bearings that showed a capacity to generate film
pressures to keep the rotating journal from contact rubbing of the bearing.
Reynolds’ derivation showed that the sliding action of the rotating journal surface,
shearing oil into the converging thin gap between a rotating eccentric journal and
bearing, produced a hydrodynamic pressure distribution that could support static
radial loads across the oil film without the journal and bearing making metal-to-
metal contact. This is one of the most significant discoveries in the history of en-
gineering science. Reynolds’ derivation clearly showed that this hydrodynamic
load capacity was in direct proportion to the sliding velocity (rotational speed) and
the lubricant viscosity. Virtually every first-level undergraduate text in machine
design has a chapter devoted to journal bearing design based on the Raimondi and
Boyd (27) (1958) computer-generated nondimensional solutions to the RLE for
static load capacity. The focus here is primarily on how the RLE is used to deter-
mine journal bearing stiffness and damping coefficients.

Before the existence of digital computers, Eq. (1) was solved by neglecting
either the axial pressure flow term (“long bearing” solution) or the circumferen-
tial pressure flow term (“short bearing” solution). With either approximation, the
RLE is reduced to an ordinary differential equation (i.e., one independent spatial
coordinate) and thus solvable without computerized numerical methods. These
two approximate solutions provide an upper bound and lower bound, respectively,
for the “exact” 2D solution to Eq. (1). Whether using one of these approximate so-
lution approaches or a full 2D numerical solution algorithm, pressure boundary
conditions must be specified with Eq. (1) in order to have a “well-posed” mathe-
matical problem. The generic circumferential view of a journal bearing hydrody-
namic pressure distribution in Fig. 1 is for the typical (p � 0) boundary condition
in which cavitation or vaporization in the diverging portion of the fluid film gap
is handled by imposing the additional boundary condition %

→
p � 0 at the interface

between the full-film region (in which the RLE is used) and the cavitation region
(in which the pressure distribution is set equal to vapor pressure � 0). The %

→
p �

0 condition imposes the physical requirement that lubricant mass flow is con-
served across the interface boundary separating the full-film and cavitated re-
gions.

To show how journal bearing stiffness and damping coefficients are ob-
tained from the RLE, it is necessary first to show how solution of the RLE is used
to generate static load capacity design curves such as those originally published
by Raimondi and Boyd (27). The sequence of steps for obtaining solutions to Eq.
(1) is exactly the reverse of the sequence of steps when the RLE solutions are sub-
sequently used in design analyses. This distinction can be quickly shown by the
following outline.
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For a single RLE solution point:

1. Specify e � �(e	x
2	�	 e	y

2)	, 
 � arctan(ey /ex), ex � xJ � xB, ey � yJ � yB

With journal-to-bearing axial alignment,
h � C � ex cos(#/R) � ey sin(#/R ), giving,

�
d
d
h
#
� � �

e
R

x
� sin ��

R
#

�� � �
e
R

y
� cos ��

R
#

��, ḣ � �ėx cos(#/R ) � ėy sin(#/R )

2. Solve the RLE for the pressure distribution p � p(#, z).
3. Integrate p(#, z) over the journal cylindrical surface to get x and y

forces.

Fx � �
L /2

�L /2

2!R

0
p(#, z) cos ��

R
#

�� d# dz,

Fy � �
L /2

�L /2

2!R

0
p(#,z) sin ��

R
#

�� d# dz

(2)

In a numerical finite-difference solution for p(#, z), the pressure is determined
only at the grid points of a 2D rectangular mesh. The preceding integrations are
then done numerically, such as by using Simpson’s rule.

4. Calculate resultant radial load and its angle.

W � �F	x
2	�	 F	yy	2	, �W � arctan(Fy /Fx) (3)

By performing steps 1 through 4 over a suitable range of values for 0 � e/C
� 1 and 
, enough solution points are generated to construct design curves simi-
lar to those of Raimondi and Boyd. As stated earlier, the sequence of steps design
analyses is the reverse of this sequence. That is, one starts by specifying the bear-
ing load, W, and its angle, �W, and uses design curves preassembled from many
RLE solutions to determine the corresponding journal eccentricity, e, and attitude
angle, 
.

2.2. Journal Bearing Stiffness and Damping Formulations

Solutions to the RLE are a nonlinear function of the journal-to-bearing radial dis-
placement or eccentricity, even though the RLE itself is a linear differential equa-
tion. Thus, Fx and Fy given by Eqs. (2) are nonlinear (but continuous) functions of
journal-to-bearing motion. Therefore, they may each be expanded in a Taylor se-
ries about the static equilibrium position. For sufficiently “small” motions, the
corresponding changes in the journal fluid-film force components about equilib-
rium can thus be linearized for displacement and velocity perturbations, as indi-
cated by Eqs. (60) in Chapter 2.

Because solutions for the fluid-film radial force components Fx and Fy are
usually obtained through numerical integration on p(#, z) as it is obtained from nu-
merical solution of the RLE, the partial derivatives of Fx and Fy that are the bear-
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ing stiffness and damping coefficients must also be numerically computed. This is
shown by the following equations.
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ẋ
x

� �

�cyx � �
�

�

F
ẋ
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Here x � ex, y � ey, ẋ � ėx, ẏ � ėy.
The definitions contained in Eqs. (4) for the eight stiffness and damping coeffi-
cients are compactly expressed using subscript notation, as follows.

kij � ��
�

�

F
xj

i
� and cij � ��

�

�

F
ẋj

i
� (5)

It is evident from Eqs. (4) that the journal radial force components Fx and Fy

are expressible as continuous functions of journal-to-bearing radial displacement
and velocity components, as follows.

Fx � Fx(x, y, ẋ, ẏ)

Fy � Fy(x, y, ẋ, ẏ) (6)

It is also evident from Eqs. (4) that for each selected static equilibrium operating
condition (x, y, 0, 0), five solutions of the RLE are required to compute the eight
stiffness and damping coefficients. Those five slightly different solutions are
listed as follows.

(x, y, 0, 0), equilibrium condition
(x � &x, y, 0, 0), x-displacement perturbation about equilibrium

Fy(x, y, 0, &ẏ) � Fy(x, y, 0, 0)
����

&ẏ

Fx(x, y, 0, &ẏ) � Fx(x, y, 0, 0)
����

&ẏ

Fy(x, y, &ẋ, 0) � Fy(x, y, 0, 0)
����

&ẋ

Fx(x, y, &ẋ, 0) � Fx(x, y, 0, 0)
����

&ẋ

Fy(x, y � &y, 0, 0) � Fy(x, y, 0, 0)
����

&y

Fx(x, y � &y, 0, 0) � Fx(x, y, 0, 0)
����

&y

Fy(x � &x, y, 0, 0) � Fy(x, y, 0, 0)
����

&x

Fx(x � &x, y, 0, 0) � Fx(x, y, 0, 0)
����

&x
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(x, y � &y, 0, 0), y-displacement perturbation about equilibrium
(x, y, &ẋ, 0), x-velocity perturbation about equilibrium
(x, y, 0, &ẏ), y-velocity perturbation about equilibrium

2.2.1. Perturbation Sizes

Because of the highly nonlinear nature of Eqs. (6), special care must be taken
when computing the numerically evaluated partial derivatives in Eqs. (4). That is,
each of the displacement and velocity perturbations (&x, &y, &ẋ, &ẏ) must be an
appropriate value (i.e., not too large and not too small) for the particular equilib-
rium condition to ensure reliable results. This point is apparently not adequately
appreciated by some who have developed computer codes to perform the calcula-
tions implicit in Eqs. (4). The author’s approach, while possibly not original, is ex-
plained as follows.

For the sake of explanation, it is assumed that the individual computations
are accurate to eight significant digits. The basic approach is to program for auto-
matic adjustment of each perturbation size based on the number of digits of agree-
ment between unperturbed and perturbed force components. This approach is
quite versatile and can be “calibrated” for any specific application involving the
computation of derivatives by numerical differences. The author has found the
following guidelines to work well. If the difference between the unperturbed and
perturbed force components originates between the third and the fifth digit, the
perturbation size is accepted. If the difference “invades” the first three digits, then
the particular perturbation is reduced by dividing it by 10. If the difference origi-
nates beyond the first five digits, then the particular perturbation is increased by
multiplying it by 10. In this manner, the displacement and velocity force deriva-
tives are tangent (not secant) gradients and are accurate to at least three significant
digits. This is enumerated by the following.

Fi (x, y, 0, 0) � 0.a1a2a3a4a5a6a7a8 � 10n, unperturbed force component

Fi(x, y, 0, 0) � &Fi �

0.b1b2b3b4b5b6b7b8 � 10n, perturbed force component

| | | |
↑ a6a7a8 � b6b7b8, to ensure at least

three-digit accuracy↑ a1a2a3 � b1b2b3, to ensure tangent gradients

2.2.2. Coordinate Transformation Properties

With few exceptions, journal bearing stiffness and damping coefficient arrays are
anisotropic. This means that the individual array elements change when the ori-
entation of the x-y coordinate system is changed. It is therefore quite useful to be

Bearing and Seal Rotor Dynamics 155

Copyright © 2001 Marcel Dekker, Inc.



aware of the coordinate transformation properties of radial bearing and seal rotor
dynamic coefficients. For example, if available stiffness and damping coefficient
data are referenced to a coordinate system orientation not convenient for a given
LRV model, the available coefficient arrays can be easily transformed to the de-
sired coordinate system orientation. 

With journal-to-bearing eccentricity, the predominant anisotropic character
of journal bearing dynamic arrays is in contrast to the isotropic assumption usu-
ally invoked for radial seals, which are more reasonably conceptualized with a ro-
tationally symmetric flow field than are bearings.

The rotor dynamic coefficient arrays defined in Eqs. (4) and (5) are in fact
quite properly categorized as single-point second-rank tensors, being mathemati-
cally just like the components for stress at a point and the components for the
mass moment of inertia of a rigid body with respect to a point. The defining prop-
erty of a tensor entity is its orthogonal transformation properties, i.e., how its in-
dividual scalar components transform when the coordinate system orientation is
rotated from that in which the tensor’s components are initially specified. The
most common application of tensor transformation is in stress analysis when the
coordinate system rotation is into the principal coordinate system, in which all the
shear stresses “disappear” and the normal stresses are the principal stresses. The
rotor dynamic coefficients for radial bearings and seals, involving only two spa-
tial coordinates x and y, are thus comparable to biaxial (2D) stress. Therefore the
same 2D direction cosines relating the two coordinate systems that are used to
transform 2D stress components also apply to the rotor dynamic coefficients of ra-
dial bearings and seals. For the unprimed and primed coordinate systems shown
in Fig. 2, the following transformations apply.

k�ij � QirQjskrs and c�ij � QirQjscrs (in tensor notation)
or (7)

[k�] � [Q][k][Q]T and [c�] � [Q][c][Q]T (in matrix notation)
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where

[Q] � � �
Unlike the component arrays for the stress and mass moment-of-inertia ten-

sors, bearing and seal rotor dynamic coefficient arrays are not necessarily sym-
metric. Recalling the decomposition of bearing/seal arrays into symmetric and
skew-symmetric parts (Sec. 4 in Chapter 2), the skew-symmetric part is an
isotropic tensor; i.e., it is invariant to coordinate system angular orientation.

2.2.3. Symmetry of Damping Array

It is evident from Eq. (1) that the RLE retains certain pressure and viscous fluid
effects in the thin lubricant film while all fluid inertia effects are absent, as de-
scribed in the perspective on simplifying assumptions leading to Eq. (1). As rig-
orously developed in Sec. 4 of Chapter 2 and briefly mentioned at the end of Sec.
3, Chapter 4, the skew-symmetric portion of an unsymmetric array added to the
damping array embodies a conservative force field and thus must reflect inertia ef-
fects, similar to gyroscopic moment effects (Chapter 2). Thus, solution perturba-
tions from the RLE yield symmetric damping arrays (cij � cji).

2.3. Journal Bearing Stiffness and Damping Data and
Resources

Early LRV investigators modeled flexible rotors as circular flexible beams carry-
ing concentrated masses and supported on rigid points at the bearings. The im-
portance of gyroscopic effects was identified quite early, by Stodola (1924), as
was the self-excited vibration induced with hydrodynamic oil-film journal bear-
ings, by Newkirk and Taylor (1925) (23). However, it was not until 1956 that
Hagg and Sankey (13) identified the need to model journal bearings as radial
springs and dampers. Sternlicht (1959) (32) and others generalized the Hagg and
Sankey idea to formulate the linear model given in Eqs. (60), Chapter 2.

Raimondi and Boyd (27) were among the first to use the digital computer to
obtain “exact” 2D numerical solutions of the RLE. They and others soon there-
after applied the same computerized numerical RLE solution algorithms to begin
providing journal bearing stiffness and damping coefficients by applying the nu-
merical partial differentiation approach shown in Eqs. (4).

The earliest major compendium of such journal bearing rotor dynamic prop-
erty coefficients was published by Lund et al. (21), and it is still a significant re-
source for rotor vibration specialists. It contains nondimensional stiffness and
damping coefficients plotted against bearing nondimensional speed (Sommerfeld
number) for several types of journal bearing configurations, including 360° plain,
axially grooved, partial-arc, lobed, and tilting-pad, for both laminar and turbulent

sin �
cos �

cos �
�sin �
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films. The most significant recent compendium of journal bearing rotor dynamic
properties is provided by Someya et al. (33). It is based on data contributed by
technologists from several Japan-based institutes and companies participating in
a joint project through the Japanese Society of Mechanical Engineers (JSME). It
contains not only computationally generated data but also corresponding data
from extensive laboratory testing. Although many industry and university organi-
zations now have computer codes that can generate bearing dynamic properties
for virtually any bearing configuration and operating condition, urgent on-the-
spot rotor vibration analyses in troubleshooting circumstances are more likely to
necessitate the use of existing bearing dynamic coefficient data. The published
data, such as by Lund et al. (21) and by Someya et al. (33), are thus invaluable to
the successful troubleshooter.

For use with LRV computer codes such as RDA, tabulated bearing dynamic
properties are more convenient than plotted curves because the bearing input for
such codes is tabulated data at specific rotational speeds, as demonstrated with
several RDA sample problems in Chapter 4. Furthermore, tabulations are more ac-
curate than reading from plotted curves, especially semilog and log-log plots
spanning several powers of 10. This accuracy issue is particularly important con-
cerning instability threshold predictions. In fact, if a next generation of LRV code
is to be written, it should be directly integrated with a companion journal bearing
dynamic coefficient code. In that manner, at every speed (or speed interation)
where eigenvalues (stability analyses) or unbalance responses are computed, the
bearing coefficients are generated exactly for that condition instead of using
curve-fit interpolation between data points at a limited number of input speeds.
The diskette that accompanies this book contains a directory named BearCoef in
which there are several files, each providing a tabulation of stiffness and damping
coefficients for a particular bearing type and geometry. Thus, space in this book
is not burdened with several pages of hard-to-read graphs of stiffness and damp-
ing coefficients.

2.3.1. Tables of Dimensionless Stiffness and Damping
Coefficients

The bearing data files in directory BearCoef use the standard nondimensionaliza-
tion most frequently employed for journal bearing rotor dynamic coefficients, as
defined by the following dimensionless parameters for stiffness (k	ij) and damping
(c	ij) as functions of a dimensionless speed, S.

k	ij � �
k
W
ijC
�, c	ij � �

cij

W

C
�, S � �

$

P
n
� ��

C
R

��2
(8)

where

C � radial clearance
W � static load
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S � Sommerfeld number
$ � lubricant viscosity
P � W/DL, unit load
R � nominal radius
D � 2R
L � length
n (rev/s) � 
/2!

2.4. Journal Bearing Computer Codes

There are now several commercially available PC codes to analyze all aspects of
journal bearings, including stiffness and damping coefficients. Most of these
codes are older mainframe computer codes that have been adapted to run on a PC;
a few are more recently developed specifically for PC usage, as was the RDA
code. The author uses primarily two journal bearing codes, one that is an in-house
code and a quite similar code that is commercially available. Because these two
codes have very similar features, the commercially available one is described
here.

The COJOUR journal bearing code was originally developed for mainframe
computers by Mechanical Technology Incorporated (MTI) under sponsorship of
the Electric Power Research Institute (EPRI). It is documented in a published
EPRI report authored by Pinkus and Wilcock (26). The COJOUR code is now
commercially available in a PC version, and it has two attractive features that set
it apart from other competing codes.

The first attractive feature is a user option to specify the bearing static load
magnitude and direction. COJOUR then iterates to determine the corresponding
static-equilibrium radial eccentricity magnitude and direction of the journal rela-
tive to the bearing, as illustrated in Fig. 1. Most other journal bearing codes func-
tion only in the opposite sequence outlined by the four-step approach leading to
Eqs. (3), but COJOUR functions either way at the user’s option. As implicit in
Eqs. (4), for any specified bearing operating point, determining the static equilib-
rium position is clearly a prerequisite to generating the stiffness and damping co-
efficients about that operating point. COJOUR is thus quite convenient for this
purpose.

The second attractive feature of COJOUR is that the user may choose either
the uniform-viscosity solution inherent in all journal bearing codes or a variable-
viscosity solution based on a noniterative adiabatic formulation that assumes all
the viscous drag losses progressively accumulate as film heating in the direction
of sliding with no heat transfer (via bearing or journal) to or from the lubricant
film. This is a first-order approximation of a much more computationally inten-
sive formulation (not in any commercially available software) that couples the
RLE to the energy and heat transfer equations. The variable-viscosity option in
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COJOUR is particularly relevant to large turbogenerator bearings. For most case
studies in Part 4, the COJOUR code was used to obtain the journal bearing dy-
namic coefficients.

2.5. Fundamental Caveat of LRV Analyses

The RDA example problems given in Chapter 4 provide a suitable basis for one
to explore the considerable sensitivity of important output answers to variations in
bearing dynamic coefficient inputs, such as arise from manufacturing tolerances.
As implied in Sec. 1 (Introduction), rotor vibration computer code vendors are not
necessarily attuned to the considerable uncertainties that exist regarding radial
bearing rotor dynamic coefficients. Uncertainties arise from a number of practical
factors that are critical to bearing dynamic characteristics but controllable only to
within statistical measures. The most prominent example is journal bearing clear-
ance, which is a small difference between two relatively large numbers. From Eqs.
(8), one immediately observes that the dimensionless bearing speed (S) varies
with C�2, where C � RB � RJ is the radial clearance. Consider the following re-
alistic example of bearing and journal manufacturing dimensions.

Example:
Bearing bore diameter, 5.010�0.001 inches� Radial clearance � �0.004 inch min.
Journal diameter, 5.000�0.001 inches 0.006 inch max.

�
S
S

m

m

a

in

x
� � ��00.

.
0
0
0
0
6
4

��2
� 2.25

This is more than a 2-to-1 range of dimensionless speed, which can be related to
parameter ranges such as 2-to-1 in rpm or lubricant viscosity or static load. This
provides a sizable variation in journal bearing dynamic coefficients, to say the
least. This is just one of many factors which proves that old power plant adage that
no two machines are exactly alike. Other prominent factors which add uncertainty
to journal bearing characteristics include the following.

Large variations in oil viscosity from oil temperature variations
Journal-to-bearing angular misalignment (see Fig. 13, Chapter 2).
Uncertainties and operating variations in bearing static load
Bearing surface distortions from loads, temperature gradients, wear, etc.
Basic simplifying assumptions leading to the RLE

These revelations are not intended to show LRV analyses as worthless, be-
cause they most assuredly are of considerable value. But the savvy analyst and
troubleshooter must keep these and any other sources of uncertainty uppermost in
their mind when applying LRV computations. As described in the next section,
laboratory experimental efforts are at least as challenging.
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3. EXPERIMENTS TO MEASURE DYNAMIC COEFFICIENTS

Bearing and seal rotor dynamic characteristics are of overwhelming importance to
the success of modern high-performance rotating machinery, especially turboma-
chinery. A review of the technical literature on this subject shows that a keen
recognition of this fact dates back to the 1950s, e.g., Hagg and Sankey (13) and
Sternlicht (32). Several serious experimental efforts were subsequently under-
taken. The most impressive of these was the work of Morton (22) and his co-work-
ers at GEC in Stafford, England. They devised a test apparatus to measure stiff-
ness and damping coefficients on full-size journal bearings of large
turbogenerators. The other major world manufacturers of large turbogenerators
developed similar test machines at their respective research facilities and/or col-
laborating universities, albeit on smaller scaled-down journal bearings.

About the same time, a general recognition emerged that many types of an-
nular seals and other fluid-annulus gaps also inherently possess rotor dynamic
characteristics of considerable importance. Black (6–8), possibly first to fully re-
search these fluid dynamical effects, provided a major initial contribution to this
aspect of rotor dynamics technology. Over the last 20 years, precipitated by the
high-energy-density turbomachines developed for NASA’s spaceflight programs,
the major portion of significant experimental and computational development
work on rotor dynamic properties of seals has been conducted at Texas A & M
University’s Turbomachinery Laboratory under the direction of Professor Dara
Childs. A comprehensive treatise of this work is contained in his book (10).

A major ($10 million) Electric Power Research Institute (EPRI)–sponsored
multiyear research project on improving reliability of boiler feed water pumps was
begun in the early 1980s at the Pump Division of the Sulzer Company in Win-
terthur, Switzerland. As one of the major tasks of this research project, a quite
elaborate experimental test apparatus was developed and built to measure the ro-
tor dynamic coefficients of a complete impeller-diffuser stage of a high-head cen-
trifugal pump, as reported by Bolleter et al. (9). The final report covering all the
tasks of this EPRI project, Guelich, Bolleter, and Simon (12), is a major technical
book in itself.

Under laboratory conditions, sources of uncertainty in bearing rotor dy-
namic characteristics (enumerated at the end of the previous section) can be min-
imized but not eliminated. However, measurement uncertainties arise. Bearing
and seal rotor dynamic array coefficients are not directly measurable quantities
because they are based on a mathematical decomposition of a single interactive
radial force vector into several parts, as clearly delineated by Eqs. (60) and (70)
in Chapter 2 and Eq. (4) in Chapter 5. The parameters which can be directly mea-
sured are the x and y orbital displacement signals and the corresponding x and y
interactive radial force signals. One can thus begin to appreciate the inherent chal-
lenge in bearing and seal rotor dynamic coefficient “measurements” just from
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Eqs. (70) in Chapter 2, which show the obvious following fact: Bearing and seal
rotor dynamic coefficients are each a derivative of one measured signal (a force
component) with respect to one of the other measured signals (a displacement
component) or its first or second derivative in time (velocity or acceleration). As
technologists of many fields know, extracting derivatives of one set of time-vary-
ing measured signals with respect to a second set of time-varying measured sig-
nals and their derivatives in time is a challenge to say the least. The significance
of measurement accuracy and signal corruption (noise-to-signal ratio) issues is
substantial.

As described in Sec. 4, Chapter 2, the number of decomposition parts of the
interactive radial force vector depends upon what physical assumptions are in-
voked for the fluid flow within the bearing or seal. For a mathematical model con-
sistent with the Reynolds lubrication equation (RLE) (no fluid inertia effects are
retained) the rotor dynamic coefficients (eight) can capture only displacement gra-
dient (stiffness) and velocity gradient (damping) parts of the radial force vector,
and furthermore the array of damping coefficients is symmetric.

For high-Reynolds-number film bearings and most annular radial clearance
sealing gaps, fluid inertia effects should be included because of their importance.
The mathematical model must then also capture the acceleration gradient (virtual
mass or inertia) parts, giving rise to four more coefficients, for a total of 12 rotor
dynamic coefficients. As fully explained in Sec. 4, Chapter 2, the highest order ro-
tor dynamic coefficient array should be symmetric to avoid physical inconsisten-
cies in the model. Thus, when stiffness, damping, and inertia coefficients are all
employed, the inertia coefficient array should be constrained to symmetry,
whereas the stiffness and damping arrays do not have to be symmetric.

In a practical sense, bearing and seal rotor dynamic coefficients are really
curve-fit coefficients that exist as entities primarily in the minds of rotor vibration
analysts. When the radial pressure field within a bearing or seal is perturbed in re-
sponse to relative orbital vibration of its close-proximity rotating component, the
pressure-field interactive radial force vector is of course correspondingly per-
turbed. To model and analyze LRV with reasonable accuracy, such interactive ra-
dial force perturbations must be modeled in a mathematical format that is com-
patible with F�� � ma�� based equations of motion. This means that the model must
accommodate no higher than second derivatives of displacements with time, i.e.,
accelerations. Furthermore, the inclusion of such rotor-stator interactive forces
must fit a linear mathematical model in order to facilitate most vibration analysis
protocols. Thus, the “die is cast” for the mathematical model of bearing and seal
rotor-stator radial interactive forces. The required model is given by Eq. (9),
which is a restatement of Eq. (70) in Chapter 2.

� � � �� � � � � � � � � � � � � � (9)
ẍ
ÿ

mxy
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kij � ��Fi/�xj, cij � ��Fi/�ẋj, and mij � ��Fi/�ẍj are defined at static equilib-
rium.

A number of experimental procedures have been employed to extract
some or all of the coefficients in Eq. (9). The degree of success or potential suc-
cess varies, depending upon which procedure is used in a given application. Me-
chanical impedance approaches utilizing harmonic excitation are the most fre-
quently employed techniques. Mechanical impedance approaches utilizing
impact excitation are also used. Recent advances in low-cost PC-based data ac-
quisition hardware and software and signal processing methods have somewhat
eased the burden of those researchers seeking to extract LRV bearing and seal
rotor dynamic coefficients from laboratory experiments. However, their task re-
mains a considerable challenge because of the inherent factors here previously
described.

3.1. Mechanical Impedance Measurement Approaches

Impedance approaches are often associated with characterization of an electrical
network by a prescribed model circuit of resistances, capacitances, and induc-
tances. With sufficient measured input/output data on an actual system, correla-
tion of input (e.g., single-frequency sinusoidal voltage signal) and the resulting
output (e.g., current signal) leads to a solution of values for all the model’s resis-
tances, capacitances, and inductances that would theoretically produce the mea-
sured outputs caused by the measured inputs. Such a characterization process is
commonly referred to as system identification. Quite similar approaches have long
been used to characterize mechanical dynamic systems with a suitable linear
model in which the values of a discrete model’s stiffness, damping, and mass el-
ements are solved by determining what combination of these values produces the
“best” fit in correlating measured input and output signals.

For example, suppose a machine is mounted to the floor of a large plant and
it is known from experience that if a vibration analysis of the machine assumes the
floor to be perfectly rigid, the analysis will be seriously flawed. Common sense
dictates that one does not devise a finite-element model of the entire plant build-
ing just to couple it to the vibration model of the machine in question, which oc-
cupies only a few square feet of the plant’s floor space. If previous experimental
data is not deemed applicable, then a mechanical impedance shaker test can be
performed on the plant floor at the location where the machine will be installed.
An alternative technique is to apply an impact force to the floor position in ques-
tion, measuring simultaneously the impact force signal and the acceleration signal
at the floor point of impact. Impact approaches are fairly common and standard
hammer kits are sold for this purpose with the force and motion signals processed
through a dual-channel FFT instrument to extract the impact point’s mechanical
impedance. For very large structures (e.g., plant building) or devices with very
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high internal damping (e.g., multistage centrifugal pump), impact techniques may
lack sufficient energy input to the structure to achieve adequately high signal-to-
noise ratios to work well. In such cases, multiple impact strikes (several hundred)
combined with synchronized signal time averaging has been used to filter out the
noncoherent noise, but this is a very specialized procedure. For the sake of this ex-
ample, it is assumed that the vertical motion of the floor is significant and that a
mechanical shaker is used, as illustrated in Fig. 3. If the structure is dynamically
linear, then its steady-state response contains only the forcing function frequency,

. The linearity assumption thus leads to the following equations as the basis for
processing measured response to the controlled sinusoidal force input illustrated
in Fig. 3. Here it is convenient to use the complex plane representation for har-
monic signals explained in Sec. 2, Chapter 4, and illustrated in Fig. 2 and 3 in that
chapter

(ms � mf) ẍf � cfẋf � kfxf � Fsei
t

xf � Xei(
t�
)
(10)

Equations (10) lead to the following complex algebraic equation.

(kf � 
2mf � 
2ms � icf
) Xei
 � Fs (11)

For the configuration illustrated in Fig. 3, the vertical forcing function is
equal to the imaginary part of the complex force. The single complex equation of
Eq. (11) is equivalent to two real equations and thus can yield solutions for the two
unknowns (kf � 
2mf) and cf at a given frequency. If the excited floor point were
in fact an exact 1-DOF system, its response would be that shown in Fig. 4, Chap-
ter 1, and the impedance coefficients kf, mf, and cf would be constants independent
of vibration frequency, 
. However, since an actual structure is likely to be dy-
namically far more complicated than a 1-DOF model, the “fitted” impedance co-
efficients will be functions of frequency. When it is deemed appropriate or neces-
sary to treat the impedance coefficients as “constants” over some frequency range
of intended application, the coefficients are then typically solved using a least-
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squares linear regression fit of measurement data over the applicable frequency
range.

For a 2-DOF radial plane motion experiment on a dynamically anisotropic
bearing or seal, force and motion signals must be processed in two different radial
directions, preferably orthogonal like the standard x-y coordinates. For a concen-
tric fluid annulus, such as typically assumed for radial seals, the dynamic coeffi-
cient arrays are formulated to be isotropic, as is consistent with a rotationally sym-
metric equilibrium flow field. Impedance tests devised strictly for the isotropic
model, Eq. (85) in Chapter 2, require less data signals than impedance tests for the
anisotropic model, Eq. (9) here.

There are fundamentally two ways of designating the inputs and the outputs.
In the 1-DOF impedance test schematically illustrated in Fig. 3, the input is the
harmonic force and the output is the resulting harmonic displacement response.
However, there is no fundamental reason that prevents these roles from being re-
versed, since both input and output signals are measured and then processed
through Eqs. (10). Likewise, a 2-DOF radial plane motion experiment on a bear-
ing or seal may have the x and y force signals as the controlled inputs with the re-
sulting x and y displacement signals as the outputs, or the converse of this. Both
types of tests are used for bearing and seal characterizations.

The apparatus developed by the author and currently in use at the Rotor
Dynamics Laboratory of Case Western Reserve University is the example de-
scribed here, because it is configured with a maximum of versatility that ac-
commodates the anisotropic model with fluid inertia effects, as embodied in Eq.

Bearing and Seal Rotor Dynamics 165

FIGURE 4 Double-spool-shaft spindle for bearing and seal test apparatus.

Copyright © 2001 Marcel Dekker, Inc.



(9). Figure 4 shows a cross section of the double-spool-shaft spindle assembly
of this apparatus. The inner spindle provides the controlled spin speed. The outer
spindle, which provides a circumscribing support of the inner spindle, is com-
posed of two close-fitting sleeves that have their mating fit machined slightly ec-
centric to their centers. These machined-in eccentricities allow the radial eccen-
tricity between the two coaxial spindles to be manually adjusted from zero to
0.030 inch. Each spindle is driven independently with its own variable-speed
motor. The net result of this arrangement is an independently controlled circular
journal orbit of adjustable radius (0 to 0.030 in) with a controllable frequency
and whirl direction independent of the controllable spin speed. The bearing/seal
test chamber is designed to be hermetically sealed for testing seals with large
leakage through flows and pressure drops, or open to ambient as is typical for
testing journal bearings. The bearing or seal test specimen can be either very
stiffly held by piezoelectric load measuring cells or flexible mounted. Several
inductance-type noncontacting proximity probes are installed to measure all x
and y radial displacement signals of the journal and the tested bearing or seal.
Full descriptions of the complete test facility and data processing steps are given
by Adams et al. (4,5) and Sawicki et al. (31). The journal, attached to the inner
spindle on a tapered fit, is precision ground, while the inner spindle is rotated in
its high-precision ball bearings (16).

In the fullest application of the apparatus shown in Fig. 4, all 12 stiffness,
damping, and inertia coefficients shown in Eq. (9) can be extracted for a rotor
dynamically anisotropic bearing or seal. The inputs are the x and y radial dis-
placement signals of the journal and the outputs are the x and y radial force sig-
nals required to rigidly hold the bearing or seal motionless. If the bearing or seal
has orbital motion that cannot be neglected, then the inputs are the x and y ra-
dial displacement signals of the journal relative to the bearing and the inertia ef-
fect of the test bearing or seal mass (i.e., D’Alembert force) must be subtracted
from the output measurements by the x and y load cells that support the test
bearing or seal. Although the apparatus shown in Fig. 4 produces an orbit that
is very close to circular, it is not required that the orbit be “perfectly” circular
because the orbit is precision measured with a multiprobe complement of non-
contacting proximity probes. The impedance model postulates that the measured
x and y orbit signals (inputs) and force signals (outputs) are harmonic. The pro-
cessed signals extracted from the measurements can thus be expressed as
follows.

x � Xei(�t�
x), y � Yei(�t�
y), ƒx � Fxei(�t��x), ƒy � Fyei(�t��y)
(12)

� � Orbital Frequency (Here, � is not necessarily � 
, the rotational speed.)
Equations (12) are substituted into Eqs. (9), yielding two complex equa-

tions. The basic formula, eiz � cos z � i sin z, separates real and imaginary parts

166 Chapter 5

Copyright © 2001 Marcel Dekker, Inc.



of the resulting two complex equations, yielding the following four real
equations.

Fx cos �x � [(�2mxx � kxx) cos 
x � cxx� sin 
x]X

� [(�2mxy � kxy) cos 
y � cxy� sin 
y]Y

Fx sin �x � [(�2mxx � kxx) sin 
x � cxx� cos 
x]X

� [(�2mxy � kxy) sin 
y � cxy� cos 
y]Y
(13)

Fy cos �y � [(�2myx � kyx) cos 
x � cyx� sin 
x]X

� [(�2myy � kyy) cos 
y � cyy� sin 
y]Y

Fy sin �y � [(�2myx � kyx) sin 
x � cyx� cos 
x]X

� [(�2myy � kyy) sin 
y � cyy� cos 
y]Y

Since there are 12 unknowns in these four equations (i.e., stiffness, damping, and
inertia coefficients), measured data must be obtained at a minimum of three dis-
crete orbit frequencies for a given equilibrium operating condition. There are sev-
eral data reduction (i.e., “curve fitting”) approaches when test data is taken at a
multitude of orbit frequencies for a given equilibrium operating condition. For ex-
ample, a frequency-localized three-frequency fit propagated over a frequency
range with several frequency data points will produce frequency-dependent coef-
ficients to the extent that this improves the fitting of the measurements to the
impedance model of Eqs. (13). However, it is more typical to reduce the mea-
surement data using a least-squares linear-regression fit of all measurement data
over a tested frequency range, thereby solving for all the dynamic coefficients as
constants independent of frequency.

The apparatus shown in Fig. 4 has proved to be accurate and very close to
“linear” by its performance and repeatability. Data is collected at 50 to 100 con-
secutive cycles of orbit excitation (at frequency �) and time averaged to remove
all noise or other noncoherent signal content (e.g., spin-speed mechanical and
proximity-probe electrical run-out at frequency 
). The time-averaged signals
from each measurement channel are Fourier series decomposed. The � compo-
nents ' n� harmonics, indicating near linearity. The tests by Sawicki et al. show
excellent agreement with theoretical results.

3.2. Mechanical Impedance Method with Impact Excitation

As implied earlier in this section, impact techniques are widely used on lightly
damped structures with relatively low background structural vibration noise lev-
els. Such structures can be impact excited to yield adequately favorable signal-to-
noise ratios. Journal bearings and fluid-annulus seals typically have considerable
inherent damping, and that is always an important benefit for controlling rotor vi-
bration to within acceptable residual levels in operating machinery. However,
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from the point of view of using impact testing to extract dynamic coefficients of
bearings and other fluid-annulus elements, their inherent damping capacity typi-
cally results in unfavorable signal-to-noise ratios. Nevertheless, the relative ease
of conducting impact impedance testing motivated some researchers to pursue the
impact impedance approach for various rotor-stator fluid-annulus elements. A no-
table example is the work of Professor Nordmann of Germany, whose experi-
mental setup is schematically shown in Fig. 5.

Nordmann and Massmann (24) explored the use of impact testing to ex-
tract the stiffness, damping, and inertia coefficients of annular seals. For coeffi-
cient extraction, they used the isotropic model presented in Eq. (85) of Chapter
2 with the cross-inertial term mxy � �mxy � 0, which correctly conforms to the
author’s axiom (see Sec. 4, Chapter 2) requiring symmetry of the highest order
coefficient array. Their test setup, shown in Fig. 5, employs two “identical” test
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FIGURE 5 Experimental setup for impact excitation of radial seals. (a) Quarter
through-cut schematic illustration of test apparatus. (b) Schematic of test mea-
surements and data processing.
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seals that are fed from a common central pressurized annular chamber and are
axially opposed to cancel axial pressure forces on the quite flexibly supported
seal housing. Such a seal housing can be impacted at its center of gravity in var-
ious x-y radial directions, so a 2-DOF x-y model was used as a basis for pro-
cessing the measured signals to extract the five coefficients of the isotropic
model. Various algorithms, such as least-squares linear-regression fitting, can be
employed to extract the five isotropic-model dynamic coefficients that provide
the “best” frequency response fit of the model to the measured time-base signals
as transformed into the frequency domain. The 2-DOF model’s equations of mo-
tion are as follows (factor of 2 is present because the apparatus has two “identi-
cal” annular seals).

mẍ � 2(mxxẍ � cxxẋ � cxyẏ � kxxx � kxyy) � Fx(t)

mÿ � 2(myyÿ � cyyẏ � cxyẋ � kyyy � kxyx) � Fy(t)
(14)

Nordmann and Massmann suggest that the questionable quality of their co-
efficient results may be due to the model needing additional degrees of freedom
to correlate adequately with the experimental results. This may very well be a fac-
tor, but the author suspects that the more fundamental problem with their results
lies in the inherent difficulty in providing sufficient energy via an impact hammer
to a system that has such significant internal damping.

3.3. Instability Threshold Based Approach

As explained in Chapter 1, providing accurate damping inputs to vibration analy-
sis models is possibly the most elusive aspect of making reliable predictions of vi-
bration characteristics for almost any vibratory system. The mass and flexibility
characteristics of typical structures are reliably obtained with modern computa-
tional techniques such as finite-element procedures, and thus natural frequencies
can be predicted with good reliability in most circumstances. Referring to Fig. 4
of Chapter 1, on the other hand, predicting the vibration amplitude of a forced res-
onance at a natural frequency is not such a sure thing because of the inherent un-
certainties in damping inputs to the computation model. Similarly, predictions of
instability thresholds suffer from lack of high reliability for the same reason, i.e.,
inherent uncertainties in damping inputs. Motivated by this fundamental reality in
vibration analysis as it affects important rotor vibration predictions, Adams and
Rashidi (2) devised a novel experimental approach for extracting bearing dynamic
coefficients from instability thresholds. Their proposed experiment is embodied in
the apparatus concept shown in Fig. 6.

The apparatus illustrated in Fig. 6 was first presented as a concept in 1985.
This approach has recently been implemented in a vertical-spindle test rig that was
originally constructed for thrust bearing research at the Rotor Dynamics Labora-
tory of Case Western Reserve University. The fundamental concept behind the ap-

Bearing and Seal Rotor Dynamics 169

Copyright © 2001 Marcel Dekker, Inc.



proach is to capitalize on the physical requirement for an exact energy-per-cycle
balance between positive and negative damping influences right at an instability
threshold speed. This physical requirement is expressed by Eq. (81) of Chapter 2
when Ecyc � 0. Through adjustment of the test bearing mass by adding or sub-
tracting weights, one can vary the instability-threshold natural frequency of the 2-
DOF system and thereby cause an instability threshold at selected operating con-
ditions spanning a wide range of journal bearing Sommerfeld number
(dimensionless speed). The controlled test parameters are rotational speed, bear-
ing static radial load, lubricant viscosity, and test bearing mass. As with mechan-
ical impedance approaches, the experiment here is correlated with a 2-DOF
model given by the following equations.

mẍ � cxxẋ � kxxx � cxyẏ � kxyy � 0

mÿ � cyyẏ � kyyy � cyxẋ � kyxx � 0

cxy � cyx

(15)

The complete procedure for extracting journal bearing dynamic coefficients at a
given Sommerfeld number is summarized by the following sequence.

1. Determine stiffness coefficients using controlled static loading data.
2. Slowly increase spin speed until instability threshold speed is reached.
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FIGURE 6 Vertical spindle rig for controlled instability-threshold-speed tests.
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3. Capture x-y signals of “linear” instability growth; see Fig. 10, Chapter
4.

4. Invert eigenvalue problem of Eqs. (15) to solve for the damping coeffi-
cients.

Basically, this procedure yields a matched set of journal bearing stiffness
and damping coefficients. Even if the individual stiffness coefficients are some-
what corrupted by experimental measurement errors, they are “matched” to the
damping coefficients by step 4 to reproduce in the 2-DOF model given by Eqs.
(15) the experimentally observed instability frequency and orbit parameters of the
self-excited vibration. The step 4 algorithm to invert the eigenvalue problem uses
the following experimental information as inputs.

1. Test bearing mass
2. Experimentally or computationally determined bearing stiffness coeffi-

cients
3. Eigenvalue, �, the frequency of self-excited vibration at threshold
4. Eigenvector information: x-to-y displacement signal amplitudes (X/Y)

and the difference in x-to-y phase angles, &�xy � �x � �y

Using a standard eigensolution algorithm, the computation determines the damp-
ing coefficient values (cxx, cxy � cyx, cyy) that in combination with the a priori
stiffness coefficient values yield the experimentally observed instability self-ex-
cited vibration frequency and normalized orbit ellipse.

Equations (15) reflect that, in contrast to impedance approaches, dynamic
force measurements are not needed in this approach, thus eliminating one major
source of experimental error. However, the fundamental superiority of this ap-
proach lies in its basis that the “matched” stiffness and damping coefficients are
consistent with Ecyc � 0 when the steady operating condition is tuned to its insta-
bility threshold (forward-whirl) mode, as described in Sec. 4, Chapter 2. Using
postulated experimental measurement errors, Rashidi and Adams (28) conclu-
sively show the inherent superiority of this approach over impedance approaches
to provide drastically improved prediction accuracy for instability threshold
speeds and resonance amplitudes at critical speeds. In summary, since an insta-
bility threshold is inherently most sensitive to nonconservative force effects (i.e.,
positive or negative damping), it is logical that an instability threshold should be
the most sensitive and accurate “measurer” of damping.

4. ANNULAR SEALS

Developing reasonably accurate rotor dynamic coefficients is even more chal-
lenging for radial clearance seals than for journal bearings. That is, the uncer-
tainty in quantifying seal rotor dynamic coefficients for lateral rotor vibration
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(LRV) analysis inputs is even greater than the uncertainty for journal bearings.
The primary objective here is to identify the major information resources for an-
nular seals and other fluid-annulus rotor dynamic effects. The multistage boiler
feed water pump illustrated in Fig. 7 provides a primary turbomachinery exam-
ple where there are several components and locations of fluid dynamical effects
that collectively have a dominant influence on the vibration characteristics of the
machine.

As described in Sec. 2, journal bearings derive static load carrying capacity
from the hydrodynamic pressure distribution generated between bearing and jour-
nal by a viscous lubricant film which is continuously fed and sheared into the
small-clearance converging gap formed between them. At the same time, a jour-
nal bearing also reacts to rotor vibration with an important interactive dynamic
force that is linearly characterized about the equilibrium position using stiffness
and damping elements. On the other hand, the primary function of seals is to con-
trol leakage, usually to the lowest flow practical. In the process of performing this
primary function, an annular seal also reacts to rotor vibration with an interactive
dynamic force that can be quite significant. The focus here is the LRV dynamic
characteristics of liquid- and gas-filled small-clearance annular seals and other
fluid dynamical effects. Rubbing-type seals are generally not as amenable to lin-
ear modeling.

For fixed annular seals such as smooth-bore and labyrinth types, the radial
clearance between the close-proximity rotating and nonrotating parts is typically
two or more times the clearance of the machine’s radial bearings. This makes
sense because the seals are not the bearings. On the other hand, it is desirable to
have sealing clearances as small as practical, because seal leakage rates increase
exponentially with clearance. With a floating ring seal, the sealing radial clear-
ance is approximately the same as for a journal bearing of the same diameter. In
many modern high-pressure centrifugal pumps, the potentially beneficial influ-
ence of seal radial dynamic interaction effects upon rotor vibration is now factored
into the design of the machine. While it is certainly a good thing to exploit the ben-
efits of seal rotor vibration characteristics, there is a caveat to making LRV
smooth running too heavily dependent upon sealing clearances. In some sealing
components, such as centrifugal pump wear rings, the sealing clearances are likely
to enlarge over time from wear (possibly rotor vibration caused), and thus not only
does efficiency suffer as this wear progresses, but vibration levels are likely to
grow as well. The author has dealt with such machines, and they can require too
frequent wear ring replacement to maintain rotor vibration within safe levels. This
is definitely not an optimum configuration.

The inputs for annular seals in LRV analyses are handled in the same man-
ner as the stiffness and damping characteristics for journal bearings, except that
seals often have fluid inertia effects that are significant and thus need to be in-
cluded. In further contrast to LRV modeling of journal bearings, the equilibrium
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FIGURE 7 Multistage boiler feed water pump. (a) Pump cross section. (b)
Sources of interaction and unsteady-flow rotor forces.
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position (rotor orbit center) for an annular seal is usually treated as though the ro-
tating part orbits about and relative to the center of its close-proximity nonrotat-
ing part. This is done to justify the isotropic model shown in Eq. (85), Chapter 2,
which is rewritten here as Eq. (16) with the cross-mass term appropriately set to
zero per the axiom given in Sec. 4, Chapter 2.

� � � �� � � � � � � � � � � � � � (16)

Test rigs specifically focused on seal rotor vibration characteristics can ob-
viously be simplified by assuming the isotropic model. In contrast, the test appa-
ratus shown in Fig. 4 is by necessity more complicated than most other test rigs
for rotor dynamic coefficients because it is designed to allow extraction of the full
anisotropic model with fluid inertia, Eq. (9), which contains 12 coefficients, or 11
coefficients when the symmetry axiom of Sec. 4, Chapter 2, is imposed upon the
inertia coefficient array (i.e., mxy � myx).

4.1. Seal Dynamic Data and Resources

The more recent textbooks on rotor dynamics include information on the LRV
characteristics of annular seals. Referring to the Bibliography in Chapter 2, Vance
(1988) and Kramer (1993) both provide quite good introductory treatments of seal
dynamics. However, the most complete treatment and information resource for
seal dynamics is contained in the book by Childs (10). Childs’ book covers a wide
spectrum of rotor dynamics topics well, but its coverage of seal dynamics is com-
parable to the combined coverage for journal bearings provided by Lund et al. (21)
and Someya et al. (33). It is the single most complete source of computational and
experimental data, information, and references for seal rotor dynamic characteris-
tics, reflecting the many years that Professor Childs has devoted to this important
topic. It is probably safe to suggest that had the untimely death of Professor H. F.
Black, Heriot-Watt University, Edinburgh, Scotland not occurred (circa 1980),
there would most certainly exist one more major modern resource on the dynam-
ics of seals and other fluid-annulus component effects. Black’s work [e.g., (6–8)]
provided the major initial impetus for the extensive research and new design in-
formation developed on this topic over the last 30 years.

4.2. Ungrooved Annular Seals for Liquids

Three commonly used versions of ungrooved annular seal geometry are shown in
Fig. 8, with exaggerated clearances for illustrative purposes, as done with the jour-
nal bearing illustration in Fig. 1. Although these ungrooved seals bear some geo-
metric similarity to journal bearings, essential differences distinguish them. First,
in most high-pressure applications the fluid being sealed is not a viscous oil but a
much lower viscosity liquid such as water or other process liquid or gas. The flow
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within the seal clearance is thus usually turbulent, in contrast to most oil-film jour-
nal bearings that are characterized by the laminar flow Reynolds lubrication equa-
tion, Eq. (1). Second, such seals usually have an axial length much smaller than
the diameter (e.g., L/D � 0.1).

The importance of such seals to rotor vibration characteristics is roughly in
proportion to the pressure drop across the seal. For high-pressure pumps such as
that shown in Fig. 7, the net effect of the interstage sealing clearances, balancing
drum, and impeller casing interaction forces is to add considerable radial stiffen-
ing and damping to the rotor system. It is relatively easy to calculate that without
the liquid inside such a pump, it would likely have one or more lightly damped
critical speeds within the operating speed range because the shaft is relatively
slender and the two journal bearings are located at opposite ends of the rotor.
However, the combined influence of the interstage sealing clearances, balancing
drum, and impeller-casing interaction forces is potentially to eliminate detectable
critical speeds from the operating speed range, at least when all the interstage seal-
ing clearances are not appreciably worn open. To maintain good pump efficiency
and low vibration levels, a prudent rule of thumb for such high-pressure pumps is
to replace wear rings when the internal sealing clearances wear open to twice the
“as-new” clearances. Of course, plant machines are like cars in that some owners
are quite diligent with maintenance while some are virtually oblivious to it.

4.2.1. Lomakin Effect

The first to publish about the influence of ungrooved annular seals on rotor vibra-
tion was Lomakin (19,20). Figure 9 illustrates how a radial-pressure centering
force is produced when the rotor and stator of an annular seal are eccentric to each
other. Ignoring at this point the effects of shaft rotation and inlet flow preswirl, the
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entrance pressure loss is highest where the radial gap and thus inlet flow velocity
are largest. Conversely, the entrance pressure loss is lowest where the radial gap
and thus inlet flow velocity are smallest. This effect thus produces a radial cen-
tering force on the rotor which increases with eccentricity between seal rotor and
stator. That is, the radial displacement causes a skewing of the pressure distribu-
tion, producing a radial stiffness effect which is called the “Lomakin” effect. The
x and y components of the centering force are expressible by directionally inte-
grating the pressure distribution as shown in Eqs. (2) for journal bearings. In this
simplest example of the Lomakin effect, with shaft rotation and inlet flow pre-
rotation not included, the centering force vector (ƒ�) is in line with the eccentricity
(e) and thus its magnitude is expressible as follows.

ƒ � �
L

0

2!

0
p(�,z)R sin � d� dz (17)

In precisely the same manner described for journal bearings, the centering
force described by Eq. (17) can be linearized for “small” eccentricities, thus yield-
ing a radial stiffness coefficient as follows.

kr � �
ƒ
e

� � 0.4 �
&p

C
R L
� (18)

where &p � pressure drop, R � seal radius, L � seal length, and C � seal radial
clearance. In this case, kr is the diagonal stiffness ks in the isotropic model given
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FIGURE 9 Lomakin-effect pressure distribution in an ungrooved annular seal.
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by Eq. (16). The centering force stiffness of the tapered bore and cylindrical step
bore ungrooved seals illustrated in Fig. 8 is explained by the same effect given
here for the plain cylindrical bore seal. In fact, for the same operating conditions,
seal length, and minimum clearance, their Lomakin effect is significantly stronger
than that of the plain cylindrical bore configuration, albeit with accompanying
higher leakage flow.

Prior to a wide appreciation of the Lomakin effect by pump designers, their
computational predictions for critical speeds based on a “dry pump” condition
were notoriously unreliable. By accounting for the Lomakin effect, computed pre-
dictions and understanding of rotor vibration characteristics of high-pressure cen-
trifugal pumps are improved over “dry pump” predictions. However, since the Lo-
makin publications (19,20) it has been conclusively shown, especially in works by
Black and Childs, that the additional effects of shaft rotation and preswirl of seal
inlet flow are also quite important, not only to the radial stiffness (ks) but also in
producing the other effects embodied in the coefficients (kss, cs, css, ms) contained
in the isotropic model of Eq. (16). The complete modern treatment of annular seal
rotor vibration characteristics clearly involves a considerably fuller account of
fluid mechanics effects than implicit in the Lomakin effect as well as the classic
Reynolds lubrication equation for laminar oil-film journal bearings.

4.2.2. Seal Flow Analysis Models

The predominance of turbulent flow in annular seals has dictated that their proper
analysis must incorporate a phenomenological (or semiempirical) aspect to the
analysis formulation to account for turbulence. For a limited group of fluid flow
problems, top-end supercomputers are now up to the task of handling simulations
of turbulent flow fine structures without the ingredients of semiempirical turbu-
lence models, employing only the Navier-Stokes and continuity equations. Such
new and highly advanced computational fluid dynamics (CFD) efforts have not
yet been applied to most traditional turbulent flow engineering problems, and an-
nular seals are no exception.

For analyses of annular seals, semiempirical turbulence modeling can be in-
serted into the analysis model is basically two approaches. In the first of these ap-
proaches, the turbulence model is inserted right into the Navier-Stokes equations.
The velocity components are expressed as the sum of their time-averaged and
fluctuating parts. The fluctuating parts of the fluid velocity components give rise
to the so-called Reynolds stress terms, which are handled with a semiempirical
turbulence model. In the second approach, a bulk flow model (BFM) is used in a
manner similar to that used in traditional calculations for turbulent pipe flow. The
fundamental difference between these two approaches is that the BFM approach
characterizes the velocity components at any axial and circumferential location by
their respective average values at that location. That is, fluid velocity variations
across the clearance gap are not considered and thus fluid shear stress variations
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across the clearance gap are also not considered. Fluid shear stresses in a BFM ap-
proach are thus incorporated only at the fluid-solid boundaries (shaft and seal sur-
faces), employing empirical turbulent friction factors borrowed from the tradi-
tional turbulent pipe flow data. The flow path geometric boundaries for ungrooved
annular seals are relatively simple. Consequently, the much simpler BFM ap-
proach has been the primary approach used by the major technologists (e.g., Black
(7), Childs (10), San Andres (30), 1991) who have focused on seal rotor vibration
characteristics. A notable exception is the work by Nordmann and Dietzen (25),
who provide a solution for an ungrooved annular seal using a computational
model based on a perturbation of the Navier-Stokes equations.

4.2.3. Bulk Flow Model Approach

Consistent with the brief description of the Reynolds lubrication equation (RLE)
provided in Sec. 2, the aim here is not to provide all the intricate derivation steps
in applying the bulk flow model to annular seals. Instead, the intent here is to fa-
cilitate the serious reader’s understanding of available derivations of an annular
seal BFM, such as that detailed by Childs (10). To that end, the following per-
spective is provided.

The BFM employs a standard control volume (CV) formulation as covered
in fluid mechanics courses of undergraduate mechanical engineering programs. In
this application, the CV is a small arbitrary volume of fluid within the seal (Fig.
10), bounded by seal rotor and stator surfaces and by infinitesimal differential
sides in the axial and circumferential directions. In fact, this is just how Reynolds
set up the development of the RLE, except that variations of fluid velocities across
the clearance gap are of paramount importance in laminar oil-film bearings and
thus are not neglected as they are in the BFM approach. Fluid flow mass balance
for this CV is satisfied by the continuity equation. Application of Newton’s sec-
ond law (F�� � ma��) to this CV leads to two coupled partial differential equations,
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FIGURE 10 BFM control volume fluid element.
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one for circumferential momentum balance and one for axial momentum balance.
As Childs (10) implies, the continuity equation is satisfied by appropriately sub-
stituting it into each of the two momentum equations, which are in turn consider-
ably simplified in that derivation step. Employing the coordinate system shown in
Fig. 10, the following two momentum equations for the BFM are thus obtained.

Circumferential momentum equation:
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Axial momentum equation:
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where

u � u(�,z), circumferential velocity, us � (u2 � w2)1/2

w � w(�,z), axial velocity, ur � [(u � R
)2 � w2]1/2

h � h(�,z), film thickness
fs � local friction factor for seal
fr � local friction factor for rotor} modeled after empirical friction factors

for turbulent pipe flow, thus functions of local Reynolds number and
surface roughness

( � fluid density

Comparisons of the RLE, Eq. (1), for fluid-film bearings and Eqs. (19) and
(20) for the BFM are informative. First of all, the BFM equations include both
temporal and convective inertia terms which are not retained in the RLE. Thus, the
BFM includes an accounting of fluid inertia effects for seal rotor vibration char-
acteristics. Second, the BFM has two coupled equations whereas the classical lu-
brication model has only one equation, the RLE. This second comparison is inter-
esting in that it shows a fundamental contrast in the developments of the RLE and
BFM. The RLE is basically conservation of mass, i.e., the scalar continuity equa-
tion, with a priori solutions for u and w substituted into it. Conversely, the two
BFM equations are the � and z components of the vector equation, F�� � ma��, with
continuity substituted into them. Third, the RLE has the pressure distribution
p(�,z) as the only unknown field, whereas the BFM equations have not only the
pressure distribution but also circumferential velocity u(�, z) and axial velocity
w(�, z) distributions. Thus, whereas the RLE needs to be accompanied only by
pressure boundary conditions, the BFM equations need pressure plus circumfer-
ential and axial velocity inlet boundary conditions.

Proper pressure and velocity boundary conditions combined with Eqs. (19)
and (20) provide a well-posed mathematical problem whose solution yields
BFM simulations for ungrooved annular seal flow. Although this system of two
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equations is a considerable abridgement from the full Navier-Stokes equations
for this problem, obtaining general solutions is nevertheless still a formidable
task given that the BFM equations are coupled nonlinear partial differential
equations.

However, based on computational solutions plus experiments over a static
eccentricity ratio (e/C) range from zero to 0.9, strong arguments are made that for
practical purposes the seal rotor vibration coefficients expressed in Eq. (16) are
nearly constant out to e/C � 0.3. The mitigating factors that make static eccen-
tricity of less importance to ungrooved annular seals than to journal bearings are
that (a) seal clearances are typically more than twice the clearances of the journal
bearings, which are the primary enforcers of rotor centerline static position, and
(b) turbulent flow inherently acts to desensitize the circumferential variation of
pressure to static eccentricity because of the corresponding reduction of the local
Reynolds number where the seal film thickness is smaller and increase where it is
larger. This second effect is similar to a (hypothetical) circumferentially cyclic
variation in viscosity � h with the maximum viscosity at the maximum film thick-
ness and the minimum viscosity at the minimum film thickness. Such a phe-
nomenon in a journal bearing would obviously desensitize it to static eccentricity.
It would thus appear that the isotropic model of Eq. (16) is justified for seals much
more so than for journal bearings.

Childs (10) presents in considerable detail the formulation for extracting an-
nular seal rotor vibration characteristic coefficients from the BFM. Perturbation
pressure solutions, &p(�,z), are formulated and obtained for a “small” circular ro-
tor orbital motion of radius (e � C) about the centered position, i.e., about the po-
sition for which seal flow is rotationally symmetric. Integration of the perturba-
tion pressure distribution [similar to Eqs. (2) for journal bearings] yields the
orthogonal components of the perturbation force caused by the orbital motion per-
turbation, as follows.

ƒx(e, �) � �
L

0

2!

0
&p(�,z,e,�)R cos � d� dz

ƒy(e,�) � �
L

0

2!

0
&p(�,z,e,�)R sin � d� dz

(21)

Since this perturbation force is a function of orbit frequency, it lends itself to a sec-
ond-order polynomial curve fit in frequency that directly extracts the isotropic
model coefficients of Eq. (16). To that end, expressing the perturbation force by
its orthogonal components referenced to the instantaneous radial and tangential
directions of the circular perturbation orbit yields the following expressions (refer
to Fig. 12 in Chapter 2).

ƒR 
 �(ks � �css � �2ms)e, ƒT 
 (kss � �cs)e (22)
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Solutions for the isotropic model stiffness, damping, and inertia coefficients
of Eq. (16), based upon Eqs. (22), are a mathematical curve-fit approximation of
the exact frequency-dependent characteristic of the BFM perturbation solution. In
a manner similar to data reduction of harmonic-excitation experimental results as
covered in Sec. 3, Childs uses a least-squares fit of Eqs. (22) over a frequency
range of �/
 from zero to 2.

There is a tacit underlying assumption in this whole approach that Adams
(3) calls the mechanical impedance hypothesis, which implies that the extracted
rotor vibration coefficients are not functions of the shape of the imposed harmonic
orbit (i.e., circular versus elliptical). This hypothesis is completely consistent with
the RLE but must be assumed for the BFM. Equations (22) provide that the BFM-
based perturbation solutions are only approximated by the mechanical impedance
hypothesis and thus the potential influence of orbit shape on seal rotor dynamic
coefficients should be kept open for discussion. As the more general sample prob-
lems in Chapter 4 demonstrate, with typical LRV models that incorporate
anisotropic journal bearing characteristics, LRV orbits are usually elliptical, not
circular.

4.2.4. Comparisons Between Ungrooved Annular Seals and
Journal Bearings

The majority of journal bearings operate with their hydrodynamic films in the
laminar flow regime, in which case aligned journal bearings are characterized by
two dimensionless parameters, Sommerfeld number (dimensionless speed) and
L/D. In some applications however, the combination of journal surface speed,
lubricant viscosity, and bearing clearance places journal bearing hydrodynamic
lubricating films in the turbulent regime. Conventional wisdom of the experts is
that a quite good approximation for turbulence effects in journal bearings is
based upon the use of an apparent viscosity, which is locally made higher than
the actual viscosity as a function of the local Reynolds numbers for journal ve-
locity and localized parameters of pressure gradient and film thickness. This ap-
proach is provided by Elrod and Ng (11). In the Elrod-Ng approach, the RLE,
Eq. (1), for laminar lubricant films is still employed, albeit with the local vis-
cosity at each finite-difference grid point modified to its local apparent viscos-
ity. There is then an additional dimensionless number (e.g., clearance-based
Reynolds number) to characterize the journal bearing. The Elrod-Ng approach
rests upon a fundamental assumption that temporal and convective inertia terms
of the Navier-Stokes equations are negligible even though it is fluid inertia at the
film flow’s fine-structure level that is an essential ingredient of the turbulence.
Thus, even with turbulence effects included, the theory and characterization of
hydrodynamic journal bearings are not appreciably different than for laminar
hydrodynamic lubrication. In stark contrast, ungrooved annular seals are char-
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acterized by several nondimensional parameters, including but not limited to the
following list of major ones.

Pressure drop:

�
(pin

(

�

w2
0

pout)
�, w0 � �

2!

Q
C
�, Q � seal through flow

Axial and circumferential Reynolds numbers, respectively:

�z � �
2w

$
0(C
�, �� � �

R


$

(C
�

Length-to-diameter and clearance-to-ratios, respectively: L/D, C/R
Absolute roughness of rotor and stator, respectively: er/2C, es/2C

Thus it is clear that, unlike journal bearings, annular seals do not lend them-
selves to the development of nondimensional wide-coverage design charts or tab-
ulations as a practical option. Although the task of developing reasonably accu-
rate journal bearing vibration characteristic inputs (coefficients) for rotor
vibration analyses can be quite challenging, that task for seals is considerably
more challenging than for journal bearings. For applications such as high-pressure
centrifugal pumps where rotor vibration performance is dominated by the various
fluid-annulus sealing zones (see Fig. 7), the author recommends that serious ana-
lysts use experimentally benchmarked commercially available computer codes
such as those from the Turbomachinery Laboratory at Texas A & M University.

Section 2 provides a list of significant uncertainty factors affecting journal
bearing characteristics. The following comparable list of uncertainty factors for
ungrooved annular seals is similar but longer.

Clearance uncertainty via seal rotor and stator diameter manufacturing tol-
erances

Variations in fluid viscosity from fluid temperature variations
Seal rotor-to-stator static eccentricity (assumed zero for isotropic model)
Seal rotor-to-stator tilt misalignment
Seal ring distortions from loads, temperature gradients, wear, etc.
Basic simplifying assumptions leading to the BFM governing equations
Coefficients for entrance pressure loss and exit pressure recovery
Entrance circumferential velocity (preswirl)
Surface roughness

As this list implies, the uncertainty in seal rotor vibration characteristics is no less
than that for journal bearings.

4.3. Circumferentially Grooved Annular Seals for Liquids

Various fluid-annulus sealing zones, such as shown in Fig. 7, are not always un-
grooved designs. Circumferential grooves are used in many designs to further re-
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duce leakage flow between stages, through end seals and balancing drum (piston).
The number of grooves and their axial spacing, width, and depth are not stan-
dardized parameters, different manufacturers having their own variations on the
basic idea of circumferentially grooving to improve leakage reduction. The pres-
ence of such grooves also provides a more rub-forgiving less seizure-prone rotor-
stator combination than without grooves. Grooves are employed on either rotor or
stator. Figure 11 shows a variety of circumferential groove geometries for annu-
lar seals.

Published analysis and experimental results are sparse. Those cited by
Childs (10) suggest some trends. First, grooving significantly reduces LRV stiff-
ness and damping effects, possibly as much as 80% reduction with wide, deep
grooves. Second, having the grooves on the seal stator is rotor dynamically more
stable than having the grooves on the rotor. A configuration favored by some man-
ufacturers of high-pressure multistage centrifugal pumps employs shallow cir-
cumferential grooves which are separated by axially straight lands unlike the
sharp sawtooth or narrow-strip tips in labyrinth seals, as contrasted in Fig. 11. The
advantage of a shallow-groove land-tip configuration is that it retains a significant
Lomakin effect (see Fig. 9). A balancing drum is long (see Fig. 7). So a shallow-
groove land-tip geometry thus produces a quite high radial stiffness from a bal-
ancing drum because it has the full pressure rise of the pump across it.
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FIGURE 11 Examples of circumferentially grooved annular seals. (a) Labyrinth
seals; groove depth much larger than radial tip clearance. (b) Shallow grooves;
groove depth approximately equal to tip clearance.
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From a fundamental fluid mechanics perspective, the flow patterns in a cir-
cumferentially grooved fluid annulus are considerably more complicated than in
an ungrooved configuration and correspondingly more difficult to analyze. Thus,
a bulk flow model (BFM) approach is unlikely to yield a realistic or accurate char-
acterization of rotor vibration coefficients for circumferentially grooved seals.
Nordmann and Dietzer (1990) (25) use a finite-difference solution of the Navier-
Stokes equations, accounting for both turbulence and the geometric complications
of circumferential grooves. The comparisons between their computational results
and experiments are quite good. At the time of their work, computer costs were a
significant factor in obtaining such Navier-Stokes solutions, but with present
workstations and top-end PCs such computational costs are no longer a significant
consideration.

4.4. Annular Gas Seals

Turbomachinery with a gas as the working fluid (i.e., compressors and turbines)
is quite similar in appearance, function, and principle of operation to turboma-
chinery with a liquid as the working fluid (i.e., pumps and turbines). The
multistage in-line centrifugal pump illustrated in Fig. 7 could almost be taken
for a centrifugal compressor of similar proportions. In compressible flow turbo-
machinery, matters are complicated by the considerable change in process
gas density that naturally occurs as the gas progresses through the flow path within
the machine. On the other hand, at maximum flow conditions, turbomachinery
for liquids commonly operates with some cavitation, particularly at the inlet
section of a pump impeller (first-stage impeller if a multistage pump) or the
exit section of a turbine impeller. Significant amounts of cavitation vapor pockets
in a pump act like a hydraulic flexibility (spring) and thereby can significantly
contribute to pump flow instability and thus unsteady flow forces exerted upon the
rotor.

As with annular seals for liquid handling machinery, the radial forces de-
veloped in annular gas seals are approximately proportional to seal pressure drop
and fluid density within the seal. Thus, for comparably sized seals and pressure
drop, seal forces developed in gas handling machines are much less than in liquid
handling machines because of the compressibility and lower density of the gas.
Also, the added mass effect, (ms) in Eq. (16), is typically negligible and therefore
generally not included when dealing with gas seals. The assumption of a seal-
force isotropic model, as explained and used for liquid seals, is generally also used
for gas seals. With the added-mass terms not included, the isotropic model of Eq.
(16) provides the following linear model that is usually employed for annular gas
seals.

� � � �� � � � � � � � � (23)
ẋ
ẏ

0
cs

cs

0
x
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kss
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�kss
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Unlike liquid seals, the gas seal centering stiffness effect (ks) is usually negligible
and is often negative. However, as with liquid seals, the gas seal cross-stiffness ef-
fect (kss) is an important LRV analysis input because it is a destabilizing effect,
e.g., high-pressure steam turbine blade tip seals.

4.4.1. Steam Whirl Compared to Oil Whip

The self-excited rotor vibration in high-pressure steam turbines called steam whirl
is partially caused by the flow effects in blade tip seals and is embodied in the
cross-stiffness coefficient (kss). Some of the case studies presented in Part 4 of this
book deal with the steam whirl phenomenon, which is quite similar in its charac-
teristics to the other well-known self-excited rotor vibration phenomenon called
oil whip. Section 4 in Chapter 2 rigorously treats the connection between the skew-
symmetric part of the stiffness coefficient matrix and such self-excited rotor vi-
bration phenomena. In both oil whip and steam whirl, the rotor vibrates with a
corotational direction orbit, typically at the lowest rotor-system natural frequency,
usually near and somewhat below one-half the rotor spin speed frequency. The
main difference between oil whip and steam whirl is in the controlled operating
parameters which trigger these self-excited rotor vibration phenomena. With oil
whip there is a rotational speed (threshold speed of instability) above which the
self-excited vibration “kicks in.” With steam whirl, there is a turbine power out-
put level above which the self-excited vibration kicks in. While both are serious
problems requiring solution, oil whip is worse because if the oil whip threshold
speed is encountered below the machine’s operating speed, the machine cannot be
safely operated. With steam whirl, the turbine can be operated below the power
output level where the self-excited vibration kicks in. Thus, when oil whip is en-
countered, the machine should be shut down and a solution developed. With steam
whirl, the machine may still be safely operated, albeit at a sufficiently reduced
power output level. Thus, the “fix” for a steam whirl problem can be made at a
later convenient time. Reduced power yields loss of some generating capacity and
operation below the machine’s best-efficiency power rating (i.e., higher fuel
cost /kW-hr).

4.4.2. Typical Configurations For Annular Gas Seals

Nearly all annular gas seals can be placed into one of the following four cate-
gories.

Labyrinth
Ungrooved with floating stator� Conventional designs

Honeycomb �Brush Recently implemented designs

The design features of conventional annular gas seals are not much different from
those for annular liquid seals. Just like fixed-stator annular liquid seals, gas seals
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are not supposed to act as the bearings; thus the radial clearance for fixed-stator
annular gas seals is also typically two or more times the clearance of the machine’s
radial bearings. Consequently, for the much lower viscosity of typical process
gases as compared with a typical liquid viscosity, ungrooved annular gas seals
with fixed stators are not commonly used because the seal leakage in most cases
would be too high with clearances two or more times the bearing clearances. How-
ever, annular gas seals with a floating stator (possibly segmented, frequently car-
bon for nonseizure qualities) can use an ungrooved surface since the stator float
makes feasible very small clearances.

For gas handling turbomachines, labyrinth seals yield considerably lower
leakage than ungrooved gas seals of the same axial length and radial clearance
because of labyrinth seals’ inherent higher resistance to gas leakage flow. Thus,
because of the optimum combination of simplicity and relatively low leakage,
fixed-stator gas seals with annular grooves are the most common, especially
labyrinth seals such as shown in Fig. 11a. The labyrinth configuration is also in-
herently more rub-forgiving and less siezure-prone than ungrooved seals, a con-
trast that is even more pronounced with gases than with liquids. The basic
labyrinth seal configuration is possibly as old as turbomachinery, i.e., over 100
years old.

In recent times, two relatively new annular gas seal configurations have
found their way into some high-performance gas handling turbomachinery, the
honeycomb seal and the brush seal. These two seal types are illustrated in Fig. 12.
The honeycomb seal is composed of deep honeycomb-shaped pockets on the seal
stator which reportedly provide lower leakage than comparably sized labyrinth
seals of the same clearance and operating conditions. The major improvement
provided by the honeycomb seal over the labyrinth seal is a significant reduction
in tangential flow velocity within the seal, which significantly reduces the desta-
bilizing cross-stiffness effect (kss). This type of seal has recently been imple-
mented in centrifugal compressors with back-to-back impellers at the central lo-
cation sealing the two impeller chambers from each other. Since the axial center
of the rotor typically has a large motion participation in the lowest resonant mode
shape, the significantly reduced destabilization quality of the honeycomb seal pro-
vides a considerable increase in the range of compressor operation free of self-ex-
cited vibrations, as reported by Childs (10).

The brush seal is illustrated in Fig. 12b. It uses a tightly packed array of
many stiff wire bristles oriented with the direction of rotation, as shown. It re-
portedly has been determined in recent tests to provide much lower leakage rates
than either labyrinth or honeycomb seals. The brush seal has also demonstrated fa-
vorable rotor vibration characteristics, as reported by Childs (10). Clearly, the
brush seal would inherently appear to reduce tangential flow velocity within the
seal and thus reduce the destabilizing cross-stiffness effect (kss). The brush seal
would also appear to be inherently immune to the potential rotor-stator rub-impact
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vulnerabilities of other seals since its brush bristles are already in constant contact
with the rotor and are relatively compliant.

Since both the brush seal and the honeycomb seal are relatively recent de-
velopments, their long-term durability and reliability qualities in the field under
favorable as well as adverse operating conditions have yet to be firmly estab-
lished. For example, the author has recently become aware of premature brush
seal wear-out on the gas turbine jet engines of one major aircraft engine manu-
facturer. Although not necessarily a safety hazard, significant engine repair costs
could readily result. One theory concerning this brush seal problem is that bristle
motion characterized by circumferentially traveling waves occurs in the bristles,
leading to their accelerated wear rates.
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FIGURE 12 Recently implemented annular gas seal designs.
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4.4.3. Dealing with Seal LRV-Coefficient Uncertainties

As for annular liquid seals, the most comprehensive single information source on
annular gas seal rotor vibration characteristics is Childs’ book (10). Childs com-
prehensively shows that the current “ignorance factor” in predictions for seal ro-
tor vibration properties is significantly higher for gas seals than for liquid seals.
Also, there is less available laboratory test data on gas seal rotor vibration proper-
ties. Unlike journal bearings, annular seals (for liquid and even more so for gas)
clearly do not lend themselves to the development of nondimensional wide-cov-
erage design charts or tabulations.

Part 4 of this book provides some of the author’s experience in dealing
with the inherent uncertainties in seal rotor vibration properties when performing
LRV analyses for the purpose of troubleshooting. For example, with adroit use
of vibration measurements on a particular vibration-plagued machine, one can
often make insight-motivated adjustments to uncertain inputs of the LRV
analysis model (e.g., seal LRV coefficients) to improve its correlation with the
actual machine’s vibration behavior (e.g., instability threshold speed or threshold
power output, self-excited vibration frequency at the instability threshold,
critical speeds, peak vibration amplitudes at critical speeds). When a model is
successfully adjusted to provide a reasonable portrayal of an actual machine’s 
vibration behavior, the author refers to the model as a “calibrated model.” By 
superimposing promising fixes upon a calibrated model, potential corrective
actions or retrofits can be thoroughly analyzed and evaluated prior to im-
plementing a specific corrective course of action. This approach brings solid
engineering science to bear upon troubleshooting and consequently has a
much higher probability of timely success than randomly trying “some-
thing someone heard worked on a different machine at another plant somewhere
else.”

5. ROLLING CONTACT BEARINGS

Several different configurations of rolling contact bearings (RCBs) are used in
numerous applications. The most common RCB configurations are ball bear-
ings, which can be subdivided into the specific categories of radial contact, an-
gular contact, and axial contact. Other commonly used RCB configurations uti-
lize straight cylindrical, crowned cylindrical, and tapered roller elements. In
many applications that employ RCBs, the complete rotor-bearing system is suf-
ficiently stiff (e.g., machine tool spindles) to operate at speeds well below the
lowest critical speed, so that the only rotor vibration consideration is proper ro-
tor balancing (Category 1, Table 1, Chapter 2). In flexible rotor applications,
where operating speeds are above one or more critical speeds, the RCBs often
have sufficient internal preloading that in comparison to the other system flexi-
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bilities (i.e., shaft and/or support structure) the RCBs act essentially as rigid
connections. In applications where the bearings have no internal preload and
possibly some clearance (or “play”), the dynamic behavior can be quite nonlin-
ear and thus standard linear analyses are potentially quite inaccurate (see Sec. 5,
Chapter 2).

RCBs can readily be configured to achieve high stiffness; thus they are fre-
quently used in applications where precision positioning accuracy is important,
such as in machine tool spindles. In contrast to their high stiffness potential, RCBs
have very little inherent vibration damping capacity, unlike fluid-film journal
bearings. Also, unlike a fluid-film journal bearing, which will fail catastrophically
if its lubricant supply flow is interrupted, an RCB can operate for sustained peri-
ods of time when the normal lubrication supply fails, albeit with a probable short-
ening of the RCB’s usable life. Thus, RCBs are usually a safer choice than fluid-
film bearings in aerospace applications such as modern aircraft gas turbine
engines. In such applications however, the inability of the RCBs to provide ade-
quate vibration damping capacity to pass safely through critical speeds frequently
necessitates the use of squeeze-film dampers (SFDs) (Sec. 6) to support one or
more of the machine’s RCBs. When an SFD is employed, its rotor vibration char-
acteristics are usually the governing factor at the bearing, not the very high stiff-
ness of the RCB in series with the SFD.

Roller bearings inherently possess much higher load capacity and
Hertzian contact stiffness than ball bearings, because a ball’s load-supporting
“footprint” is conceptually a “point” contact, whereas a roller’s load-supporting
footprint is conceptually a “line” contact. However, in roller bearings each roller
has a single axis about which it must spin in proper operation. As rotational
speed is increased for a roller bearing, the increased propensity for dynamic
skewing of the rollers will impose a maximum usable rotational speed for the
bearing. In contrast, a ball’s spin may take place about any diameter of the ball.
As a consequence, ball bearings have much higher maximum speed limits than
roller bearings, given their inherent absence of dynamic skewing. Given the
higher speed capability but inherently lower stiffness of ball bearings compared
to roller bearings, it is far more likely that one would possibly need radial stiff-
ness for a ball bearing than for a roller bearing when performing LRV modeling
and analyses.

If one focuses on the load paths through an RCB, two important factors be-
come apparent.

1. Each contact between a rolling element and its raceways possesses a
nonlinear load vs. deformation characteristic (F vs. �). That is, since the
deformation footprint area between rolling element and raceway in-
creases with load, the F vs. � characteristic exhibits a “stiffening” non-
linearity; i.e., the slope of F vs. � increases with F.
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2. The total bearing load is simultaneously shared, albeit nonuniformly,
by a number of rolling elements in compression as illustrated in Fig. 13.
Therefore, the contact forces taken by the rolling elements are statically
indeterminate, i.e., cannot be solved from force and moment equilib-
rium alone but must include all load carrying elements’ flexibility char-
acteristics.

As first developed by A. B. “Bert” Jones (17), this combination of statically
indeterminate and nonlinear contact forces requires the use of quite specialized
analyses that employ appropriate iterative algorithms to converge on the static
equilibrium state of all the rolling elements and raceways for a specified combi-
nation of externally applied forces and moments. Perturbing such a static equilib-
rium solution, as similarly shown by Eqs. (4) for journal bearings, yields the RCB
stiffness coefficient array. The work of Bert Jones is essentially the foundation of
all modern computer codes for rolling contact bearing load-deflection analyses.

A suitable estimate of RCB radial stiffness for LRV analyses is obtained by
assuming that the inner and outer raceways are both perfectly rigid. This simpli-
fying assumption avoids employing the quite formidable and specialized complete
static equilibrium–based solution just described, because it geometrically relates
all the rolling elements’ compressive deflections to a single bearing deflection.
The load vs. deflection for the ith rolling element is expressible from Hertzian
elastic contact theory, such as in the following summary from Kramer (18) (num-
bers in B expressions based on steel).

Fi � ��
�

B
i

��
n

where Fi,�i are load and deflection of ith rolling element (24)
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FIGURE 13 Typical distribution of contact loads in a rolling contact bearing.
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Here,

n � 3/2
B � 4.37 � 10�4 d�1/3�Ball bearings

n � 1/0.9
B � 0.77 � 10�4 L�0.8�Roller bearings

Units: Ball diameter d mm, roller length L mm, contact force Fj newtons.
Contact forces occur only when a rolling element is in compression. It is

implicit in the approximation here that the bearing has no internal preload and no
play (clearance). Then the only source of contact loads is the applied bearing load
and the contact zone will be the 180° arc shown in Fig. 13. The contact compres-
sive deflection of each rolling element can then be expressed as follows, where x
is the relative radial displacement between the raceways.

�i � �x cos 
i, 90° � 
i � 270°
0, �90° � 
i � 90° (25)

Play (clearance) in a bearing tends to make the contact load arc less than 180° and
preload tends to make the contact load arc greater than 180°.

With 
 referenced to the bearing load as shown in Fig. 13, equilibrating the
bearing load by the sum of the components of all the individual contact forces can
be expressed as follows.
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(26)

Sx � ∑
N

i�1
(cos 
i)n�1

where N � number of rolling elements within the 180° arc of contact loading.
Rearranging Eq. (26), the bearing deflection is expressed as follows.
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n���

(27)

Differentiating the radial bearing force (F) by its corresponding radial bearing de-
flection (x), bearing x-direction stiffness is obtained in the following equation.
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x

� F (28)

Visualize each loaded rolling element as a nonlinear radial spring in com-
pression. Each individual rolling element’s stiffness in the direction perpendicu-
lar to the bearing load can be obtained by projecting a y-direction differential de-
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flection onto its radial direction and projecting its resulting differential radial force
back onto the y direction. The radial stiffness of an individual loaded rolling ele-
ment is obtained by differentiating Eq. (24), as follows.

ki � �
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n

n
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B

s
n


i)n�1
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Projecting the y-direction differential deflection onto the rolling element’s radial
direction and its resulting differential radial force back onto the y direction yields
the following.

d�i � dy sin 
i and dFiy � dFi sin 
i

therefore

dFiy � dFi sin 
i � ki d�i sin 
i � ki dy(sin 
i)2

The y-direction stiffness for an individual loaded rolling element is thus obtained
as follows.

kiy � �
d
d
F
y
iy

� � ki (sin 
i)2 (30)

Summing all the rolling elements’ y-direction stiffnesses yields the bearing’s y-di-
rection stiffness, as follows.
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Sy � ∑
N

i�1
(cos )i)n�1 (sin 
i)2

Combining Eqs. (28) and (31) yields the stiffness ratio, as follows.

Rk � �
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x
� � 1 (32)

This easily calculated ratio increases with the number of rolling elements in the
bearing. Kramer (18) provides values for the following example cases.

Number of rolling elements in bearing � 8, 12, 16 gives the following:

Ball bearing, Rk � 0.46, 0.64, 0.73
Roller bearing, Rk � 0.49, 0.66, 0.74

The bearing stiffness coefficients given by Eqs. (28) and (31) are derived as
though neither raceway is rotating. There are three cases of rotation one could en-
counter: (a) only the inner raceway rotates (most typical), (b) only the outer race-
way rotates, and (c) both raceways rotate (e.g., intershaft bearings for multi-spool-
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shaft jet engines). The cage maintains uniform spacing between the rolling ele-
ments, and when it rotates the bearing load and resulting deflection are perfectly
aligned with each other only when the bearing load is either directly into a rolling
element or directly between two rolling elements. At all other instances, bearing
load and resulting deflection are very slightly out of alignment. This produces a
very slight cyclic variation of the bearing’s stiffness coefficients at roller or ball
passing frequency and thus suggests the possibility of what is generically referred
to as parametric excitation.

As an input into a standard LRV analysis code, such as RDA, Eqs. (28) and
(31) provide the following bearing interactive force with stiffness only, but no
damping.

� � � �� � � � (33)

Of course, the chosen x-y coordinate system orientation in a given LRV model
may not align with the Eq. (33) principal x-y coordinate system orientation, which
is shown in Fig. 13. However, as described by Eq. (7) and Fig. 2, bearing and seal
LRV coefficient arrays are second-rank tensors and thus can be easily transformed
to any alternative coordinate system orientation. In a nonprincipal coordinate sys-
tem, the off-diagonal stiffness terms are not zero, but they are equal, i.e., the stiff-
ness array is symmetric. Thus this model for rolling element bearing stiffness does
not embody any destabilizing effect, in contrast to journal bearings and annular
seals.

6. SQUEEZE-FILM DAMPERS

Vibration damping capacity of a rolling contact bearing (RCB) is extremely small
and therefore to measure it is virtually impossible since any test rig for this pur-
pose would have its own damping that would swamp that of a tested RCB. As is
well known and shown by Fig. 4 in Chapter 1 the benefit of damping is in pre-
venting excessively high vibration amplitudes at resonance conditions. Thus, for
the many machines running on RCBs that have the maximum running speed well
below the lowest critical speed, the absence of any significant RCB damping pre-
sents no problem.

Since an RCB can usually operate for sustained periods of time after the nor-
mal lubrication supply fails, RCBs are usually a safer choice than fluid-film bear-
ings in aerospace applications such as modern aircraft gas turbine jet engines. In
such applications, however, the inability of the RCBs to provide adequate vibra-
tion damping capacity to maintain tolerable unbalance vibration levels through
critical speeds frequently necessitates the use of squeeze-film dampers (SFDs).
Typically, an SFD is defined by a cylindrical annular oil film within a small radial
clearance between the OD cylindrical surface of an RCB’s outer raceway and the
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precision-bored hole into which it is fitted in a machine. The radial clearance of
the SFD is similar to that for a journal bearing of comparable diameter, possibly a
bit larger as optimized for a specific application. Figure 14 shows the typical con-
figuration which employs centering springs.

In its simplest conceptualization, the SFD it basically a journal bearing
without journal rotation. Referring to Eq. (1), the “sliding velocity term” in the
Reynolds lubrication equation (RLE) is then zero, leaving only the “squeeze-film
term” to generate hydrodynamic pressure within the small annular clearance. As
a first-order approximation to compute SFD damping coefficients, the perturba-
tion approach given by Eqs. (4) may be used. However, the factors of film cavita-
tion and dissolution of air in the SFD oil film produce considerably more compli-
cation and uncertainty of computational predictions for LRV damping coefficients
than these factors do in journal bearings. Also, the neglect of fluid inertia effects
implicit in the RLE is not as good an assumption for SFDs as it is for journal bear-
ings.

6.1. Dampers with Centering Springs

The typical SFD configuration shown in Fig. 14 employs centering springs since
there is no active sliding velocity term to generate static load carrying capacity in
the hydrodynamic oil film. To create a static equilibrium position about which the
vibration occurs and is damped by the SFD, centering springs are typically used
to negate the bearing static load and maintaining damper approximate concentric-
ity. The radial stiffness of the centering springs is far less than the radial stiffness
of the RCB, as developed in the previous section. Thus, the stiffness coefficient
array is essentially the isotropic radial stiffness of the centering springs, kcs. As-
suming validity of linearization, as postulated for journal bearings in Eq. (60) of
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FIGURE 14 Squeeze-film damper concept with centering springs.
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Chapter 2, the LRV interactive force at a bearing station employing an SFD is then
expressible as follows.

� � � �� � � � � � � � � (34)

where cd � damping coefficient for the concentric damper film.
The SFD’s length (L) is typically much smaller than its diameter (D � 2R).

Consequently, it is customary to consider two cases: (a) SFD does not have end
seals, and (b) SFD does have end seals. For case (a) the supplied oil flow is con-
tinuously squeezed out the two axial boundaries of the damper film and since typ-
ically L/D � 0.2, solution to Eq. (1) using the “short-bearing” approximation is
justified. For case (b) the use of end seals essentially prevents the significant ax-
ial oil flow encountered in case (a) and thus using the “long-bearing” approxima-
tion is justified. Also for case (b) one or more drain holes are put in the damper to
maintain a specified oil through-flow to control damper oil temperature.

Postulating a concentric circular orbit for the rotor within the SFD, solution
of Eq. (1) yields an instantaneous radial-plane force vector upon the rotor which
can be decomposed into its radial and tangential components. As an example of
this, Vance (35) lists these two force components based on the short-bearing ap-
proximation which is appropriate for the preceding case (a) (no end seals) and
180° cavitation zone trailing the orbiting line of centers (i.e., minimum film thick-
ness), as follows.

Radial component, FR � ��
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(35)

where $ is the viscosity, R the damper radius, L the damper length, � the orbit fre-
quency, C the damper radial clearance, and * the eccentricity ratio e/C.

Radial and tangential force components can also be similarly derived using
the long-bearing solution of Eq. (1), which is appropriate to the previous case (b)
(with end seals). It should be noted that the force components given by Eqs. (35)
are clearly nonlinear functions of the motion. However, they can be linearized for
a “small” concentric circular orbit as similarly shown in Eqs. (22) for annular
seals. Equation (35) can be simplified for * � 1 (* → 0) to the following.
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(36)

Since the radial force approaches zero one order faster than the tangential force
(i.e., * versus *2), the only nonzero coefficient retrieved from Eqs. (22) is the di-
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agonal damping coefficient, cs � cd. Thus, for the short-bearing approximation
with boundary conditions for the 180° cavitation zone trailing the orbiting line of
centers, the Eq. (34) damping coefficient for LRV analyses is given as follows.

cd 
 �
!

2

$

C

R
3

L3

� (37)

For a sufficiently high damper ambient pressure to suppress cavitation, the solu-
tion yields a damping coefficient that is twice that given by Eq. (37).

6.2. Dampers Without Centering Springs

Eliminating the centering springs makes the SFD mechanically simpler and more
compact. The possibility of centering spring fatigue failure does not need to be ad-
dressed if there are no centering springs. However, from a rotor vibration point of
view, eliminating the centering springs makes the system considerably less sim-
ple. The damper now tends to “sit” at the bottom of the clearance gap and it re-
quires some vibration to “lift” it off the bottom. That is a quite nonlinear dynam-
ics problem.

Some modern aircraft engines are fitted with “springless” SFDs while some
have spring-centered SFDs. Under NASA sponsorship, Adams et al. (1) devised
methods and software to retrofit algorithms for both types of dampers into the gen-
eral-purpose nonlinear time-transient rotor response computer codes used by the
two major U.S. aircraft engine manufactures. Adams et al. (1) show a family of
nonlinear rotor vibration orbits that develop in “springless” SFDs as a rotating un-
balance force magnitude is progressively increased. With a static decentering
force effect (e.g., rotor weight) and small unbalance magnitudes, the orbit barely
lifts off the “bottom” of the SFD, forming a small orbital trajectory that has been
likened to a “crescent moon.” As unbalance magnitude is progressively increased,
it tends to overcome the static decentering force and thus the orbit progresses from
the small crescent moon trajectory to a distorted ellipse to a nearly concentric cir-
cular orbit as the unbalance force overpowers the static decentering force effect.

To provide a reasonable linear approximation to the nonlinear behavior of
both springless and spring-centered SFDs, Hahn (14) developed methods and re-
sults to approximate SFD dynamic characteristics with equivalent linearized stiff-
ness and damping coefficients compatible with LRV analysis codes like RDA.
Such an approach appears to make sense when parametric preliminary design
studies are conducted, leaving a full nonlinear analysis to check out a proposed
and/or final prototype engine design.

6.3. Limitations of Reynolds Equation Based Solutions

In developing Eqs. (35), (36), and (37), a concentric circular orbit trajectory is
postulated. If one views the Reynolds equation solution for film pressure distri-
bution in the SFD from a reference frame rotating at the orbit frequency (�), the
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pressure distribution is the same as in an equivalent journal bearing (JB) running
at static equilibrium with the same eccentricity. In the typical case where cavita-
tion occurs, the respective SFD and JB Reynolds equation solutions are still equiv-
alent. However, there is a quite significant physical difference between the SFD
and its equivalent JB. That is, in the JB under static load there is typically an oil
inlet groove near where the film gap starts its reduction (or “wedge” effect) and
the cavitation zone downstream of the minimum film thickness is fixed in the JB
space. On the other hand, in the SFD with a concentric �-frequency orbit, the cav-
itation zone also rotates at � around the SFD annulus. Depending on whether end
seals are used or not and on the through-flow of oil metered to the SFD, a specific
“blob” of oil may be required to pass into and out of cavitation several times at a
frequency of � during a single residence period within the SFD film. It is reason-
able to visualize that as the orbit frequency is progressively increased, the SFD oil
“refuses to cooperate” in that manner. Experiments have in fact shown that as or-
bit frequency is progressively increased, the SFD becomes an oil froth producer
and its damping capacity falls far short of Reynolds equation–based predictions.

Hibner and Bansal (15) provide the most definitive description of the fail-
ure of classical lubrication theory to reasonably predict SFD performance. They
show with extensive laboratory testing at speeds and other operating conditions
typical of modern aircraft engines that fluid-film lubrication theory greatly over-
predicts SFD film pressure distributions and damping coefficients. They observed
a frothy oil flow out of their test damper. They suggest that the considerable de-
viation between test and theory stems from gaseous cavitation, greatly enhanced
by air bubbles being drawn into the SFD to produce a two-phase flow which
greatly reduces hydrodynamic pressures.

The work of Hibner and other SFD specialists indicates that for low-speed
application, classical hydrodynamic lubrication theory can provide reasonable
predictions for SFD performance. But at rotational speeds typical of modern air-
craft engines, classical hydrodynamic lubrication theory greatly overestimates
SFD damping coefficients and therefore thorough testing of specific SFD config-
urations is required to determine actual SFD performance reliably.

7. SUMMARY

The specifics of bearing and seal rotor dynamic properties as well as the rotor dy-
namic effects of turbomachinery flows (Chapter 6) are primary factors which pro-
vide much of the uncertainty in making predictions for rotating machinery vibra-
tion. When using rotor vibration predictive analyses for design purposes, one
should of course reflect such uncertainties in configuring the design and its proto-
type test program. However, the use of rotor vibration predictive analyses for
troubleshooting is a somewhat different endeavor that benefits from having actual
vibration measurements made on the machine that is in vibration difficulty. As
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conveyed by the case studies presented in Part 4 of this book, adroit use of mea-
sured vibration characteristics on the actual machine leads to a “calibrated model”
which can greatly increase the probability of devising a timely and adequate rem-
edy for the particular rotating machinery vibration problem at hand.
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6

Turbomachinery Impeller and Blade
Effects

The complete flow fields within turbomachinery stages, in both radial flow
and axial flow machines, are significant influences on rotor vibration. Figure 1 il-
lustrates the radial flow fields typical in centrifugal impeller stages. For a typical
axial-flow machine, Figure 2 shows the high-pressure turbine of the large steam-
powered multiturbine unit shown in Fig. 9 in Chapter 3. Within these machines,
flow through impellers and blade rows interacts considerably with the flow
through their respective seals.

1. CENTRIFUGAL PUMPS

Referring to Fig. 1a, it is not surprising that static and dynamic hydraulic forces
are imposed on the rotor of a centrifugal pump by the flow through the pump.
These hydraulic rotor forces are dominant factors in determining the vibration be-
havior of centrifugal pumps, especially high-energy pumps such as for boiler feed
water service.

1.1. Static Radial Hydraulic Impeller Force

A static radial force is imposed on a pump impeller because the steady portion of
the total pressure distribution over the impeller surface is not of perfect axial sym-
metry. This static radial hydraulic force is relatively larger in single-tongue vo-
lute-casing pumps and less in multitongue volute-casing and diffuser-casing
pumps. The combined static radial impeller force from all the impellers of a high-
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pressure multi-impeller pump such as shown in Fig. 7 of Chapter 5 can easily be
much larger than the total weight of the pump rotating element. Thus, the static
hydraulic impeller force can readily be the dominant factor in determining journal
bearing static loads and thus the LRV stiffness and damping characteristics of the
bearings. The static hydraulic radial force on an impeller varies considerably in
magnitude and direction with pump flow. Therefore, the rotor dynamic properties
of the journal bearings can vary considerably over the operating flow range of a
centrifugal pump. For example, if the bearings are unloaded at some pump flow,
this can have serious LRV consequences such as oil whip–induced self-excited
large-amplitude vibration. Similarly, this variation of impeller static radial force
(and thus variation of bearing LRV coefficients) can therefore also shift the loca-
tion of LRV natural frequencies as a function of pump operating flow.

In the early development period for centrifugal pumps, as speeds and output
pressures were being continually increased, it was learned that a significant radial
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FIGURE 1 Centrifugal impeller typical flow patterns. (a) Centrifugal pump im-
peller, radial-plane view. (b) Centrifugal compressor impeller, radial-plane view.
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static impeller force was the main reason for high cyclic shaft bending stresses re-
sulting in material fatigue–initiated shaft failures. Stepanoff (17) was among the
first to report on the static radial impeller force in single-tongue volute-type cen-
trifugal pumps, providing the following equation from dimensional analysis cali-
brated by test results (see Fig. 3).

Ps � �
KsH

2.3
D
1
2B2

� (1)
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FIGURE 2 Contribution to steam whirl from the Thomas-Alford effect.
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where,

Ps � static force (pounds)
H � pump head (feet)
D2 � impeller OD (inches)
B2 � impeller discharge width including impeller side plates (inches)
Ks � empirical coefficient which changes with pump flow approximately

as follows.
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� � 2.31 in2ft/lb! (Water at room conditions)

Ks � 0.36 �1 � ��QQ

BEP
��2�,

Q � operating pump flow, QBEP � best efficient point pump flow
(2)

As Eq. (2) shows, there is a strong correlation between impeller static radial
force and the ratio of the pump’s operating flow to its best efficiency flow. This is
because nearly constant average velocity and pressure in centrifugal pump volutes
occur only near the best-efficiency operating flow. Equation (2) is a simple “curve
fit” of many test results that show static radial impeller force to be minimum near
the best efficiency flow and maximum at the shut-off (zero flow) condition. The
maximum value of Ks depends upon various hydraulic design features, with
Stepanoff reporting values for some single-volute pumps as high as 0.6 at shut-off
operation.

The well-known double-volute (two-tongues) configuration, Fig. 3b, was
devised to divide the pump volute into two 180° equal flow sections, with the in-
tent that each section’s static radial impeller force cancels the other’s. The double
volute does not completely accomplish that objective, but it does yield a drastic
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FIGURE 3 Static radial hydraulic force on volute-pump impellers.
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force reduction from that of a single-tongue volute. The author is familiar with
centrifugal pump designs employing the tri-volute (three 120°-arc sections) and
the quad-volute (four 90°-arc sections). Of course, if one further increases the
number of volute tongues, the volute then resembles a diffuser.

Guelich et al. (10) use the following less confusing form of Eq. (1), which
applies in any consistent system of units and explicitly shows density.

Ks � �
( g H

P
D
s

2B2
� (3)

where ( � mass density of pumped liquid and g � gravitational constant.
In addition to an increased propensity for fatigue-initiated shaft failure from

excessive static radial impeller force, the accompanying shaft radial deflections
can result in rubbing with accelerated wear rates at the close running concentric
annular sealing clearances. The work reported by Agostinelli et al. (3) is probably
the most comprehensive source of experimental information on the static radial
hydraulic impeller force. Their experimental results for single-tongue volute
pumps are approximated well by Eq. (2). Their results also show measured Ks val-
ues at shut-off for both double-volute and diffuser-casing pumps that are as low as
20% of the shut-off values measured for pumps using single-tongue volutes, and
varying far less over pump operating flow range than indicated by Eq. (2).

1.2 Dynamic Radial Hydraulic Impeller Forces

Time-varying (dynamic) hydraulic forces (both radial and axial) are also imposed
on a centrifugal pump impeller. These dynamic hydraulic forces are quite signif-
icant and are separable into two categories, as follows.

Strictly time-dependent unsteady flow forces
Interaction forces produced in response to LRV orbital motions

The radial components of these two delineated types of dynamic forces can be in-
corporated into standard LRV analyses. The interaction forces that dynamically
“connect” the rotor to the stator can be modeled by bearing-like radial stiffness,
damping, and inertia (added mass) coefficients obtained from laboratory tests.
The LRV importance of unsteady flow forces in a particular pump configuration
can be assessed based upon the model resonance sensitivity to the dominant fre-
quency force components from tests.

It has been recognized for many years that dynamic hydraulic unsteady flow
forces on centrifugal pump impellers can be quite significant contributors to over-
all pump vibration levels as well as pump component failures. This is especially
true for high-energy pumps. Furthermore, in contrast to most gas handling turbo-
machines, the process fluid’s dynamic interaction forces in centrifugal pumps
have a major influence on LRV natural frequencies, mode shapes, and modal
damping. As illustrated in Fig. 7 of Chapter 5 interaction forces on a centrifugal
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pump rotor originate from journal bearings, annular seals, balancing drum, and
impeller flow fields.

Most of the relevant research on impeller dynamic radial forces of centrifu-
gal pumps is a product of the last 20 years, and most of what is available in the
open literature comes from two sources: the California Institute of Technology
and Sulzer Co. (Pump Division). The work at Cal Tech has been funded primar-
ily by NASA as part of the development of the high-energy pumps for Space Shut-
tle main engines. Cal Tech’s work has been focused primarily on obtaining the
bearing-like stiffness, damping, and added mass coefficients for impeller interac-
tion forces. The Sulzer work was funded by the Electric Power Research Institute
as part of a $10 million multiyear EPRI research project on improving reliability
of boiler feed water pumps and began in the mid-1980s. The Sulzer work covers
the interaction force bearing-like impeller stiffness, damping, and added mass co-
efficients as well as the time-dependent impeller unsteady flow forces.

1.2.1. Unsteady Flow Dynamic Impeller Forces

Impeller unsteady flow dynamic radial forces are normalized using the same pa-
rameters as shown in Eqs. (1) and (3) for impeller static radial force. The corre-
sponding dynamic force coefficient Kd is given by Eq. (4) with values listed in
Table 1 that are extracted from experimental results reported by Guelich et al. (9).
Good-quality hydraulic flow-passage design

Kd (rms) � �
( g

Pd

H
(rm

D
s

2

)
B2

� (4)

procedures combined with precision cast or precision milled impellers should
yield the low end of the ranges for Kd given in Table 1. Conversely, poor hydraulic
design quality and especially poor impeller dimensional control, such as with
cheap low-quality sand-cast impellers, will tend to yield the high end of the ranges
for Kd given in Table 1. The Kd ranges shown for the frequency range �/
 � 0.2
to 1.25 have the once-per-rev (synchronous) force component filtered out. The
synchronous hydraulic component magnitude is shown in a separate column of
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TABLE 1 Normalized (rms) Impeller Hydraulic Dynamic Force Factor, Kd

Q/QBEP �/
 � 0.02 to 0.2 �/
 � 0.2 to 1.25 �/
 � 1 �v

0.2 0.02–0.07 0.02–0.05 0.01–0.12 0.2–1.2
0.5 0.01–0.04 0.01–0.02 0.01–0.12 0.1–0.8
1.0 0.002–0.015 0.005 0.01–0.13 0.1–0.6
1.5 0.005–0.03 0.01–0.02 0.01–0.15 0.2–1.0

Pd � dynamic force (rms), � � force frequency, 
 � speed, �v � Vane number � 
. Kd

values for �+
 � 0.2 to 1.25 have �+
 � 1 component filtered out.
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Table 1 because it is primarily a function of impeller precision and less dependent
upon percent of BEP flow.

High levels of synchronous rotor vibration are usually attributed to the ro-
tor being badly out of balance. However, in high-head-per-stage centrifugal
pumps, a large synchronous hydraulic dynamic force may be a primary contribut-
ing cause of large-amplitude synchronous rotor vibration. As one might expect,
synchronous hydraulic impeller forces do not completely mimic rotor mass un-
balance forces. Mass unbalance produces a corotational force proportional to 
2

that is “frozen” in the rotor. On the other hand, a large synchronous hydraulic dy-
namic impeller force will change in phase angle and somewhat in magnitude with
pump flow. A clue to the savvy troubleshooter of poor impeller casting dimen-
sional control is an unacceptably high synchronous vibration that cannot be alle-
viated over the full operating flow range by performing good rotor balancing pro-
cedures.

Figure 4 is from experimental results reported by Guelich et al. (9) on a low
specific speed high-head impeller rotating at 4,000 rpm in a diffuser casing, typi-
cal for a boiler feed pump stage. As flow is throttled below the BEP flow, the con-
tinuous strong increase in force magnitudes results from impeller inlet and exit
flow recirculation (see Fig. 1a) and flow separation.

1.2.2. Interaction Impeller Forces

The handling of impeller LRV interaction forces that has evolved over the last 20
years is to “curve fit” experimental data to the same linear isotropic LRV model
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FIGURE 4 Spectra (rms) of normalized broadband impeller forces.
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used for most annular seal LRV characterizations. The assumption typically in-
voked for annular seal LRV coefficient arrays is that the flow field is rotationally
symmetric (Chapter 5), and that assumption leads to the isotropic model given by
Eq. (85) in Chapter 2. While that assumption is quite inappropriate for journal
bearings, it has been justified for annular seals and yields considerable simplifi-
cation of both computational and experimental methods to extract LRV coeffi-
cient arrays for annular seals. Conversely, the flow field of a centrifugal pump im-
peller is certainly not rotationally symmetric. Nevertheless, to simplify test rigs
and minimize associated costs to extract pump impeller LRV coefficient arrays,
initial experiments were based upon the isotropic model given by Eq. (85) of
Chapter 2, rewritten as Eq. (4a).

� � � �� � � � � � � � � � � � � � (4a)

To the surprise of some, early test data of Chamieh et al. (6) suggested that the
isotropic model was well suited to centrifugal pump impellers. Further extensive
testing [e.g., Jery et al. (11) and Bolleter et al. (5)] coupled with computational ef-
forts [e.g., Adkins (2), who did not include impeller-shroud flow effects, and Childs
(7), who included only impeller-shroud flow] led to the realization that the impeller
rotor-stator interaction force is dominated by the flow field between the casing and
impeller shrouds, primarily the inlet-side shroud, which has the main radial area pro-
jection (refer to Fig. 1a). Since the flow field between casing and impeller shrouds
can be reasonably viewed to be rotationally symmetric, the experimenters’ good for-
tune with the LRV isotropic model is understandable. A visualization of the com-
plexity and diversity of such rotationally symmetric flow fields with net inward or
outward through flow is provided by Adams and Szeri (1), who developed computer
solutions of the full nonlinear Navier-Stokes equations using Galerkin’s method to
expand the N-S equations into a truncated set of nonlinear ordinary differential
equations, which are numerically solved using the method of orthogonal colloca-
tion. The simplest of impeller-shroud flow patterns are characterized by a single re-
circulation cell superimposed upon the through flow, as shown in Fig. 1a. Adams
and Szeri provide results that show the single recirculation cell evolving into multi-
ple recirculation cells as rotational Reynolds number is progressively increased.

A summary list of experimentally extracted impeller LRV coefficients for
the isotropic model, Eq. (4), is given in Table 2, and the coefficients are made
nondimensional as follows.
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where ( � mass density of pumped liquid, R2 � impeller outer (discharge) radius,
and B2 � impeller discharge width including impeller side plates.

In comparing the Cal Tech and Sulzer results, it should be realized that the
Cal Tech test rig used much lower power impellers with different hydraulic design
details than the Sulzer test rig impellers. Both the Cal Tech and the Sulzer tests are
reported to demonstrate that, unlike annular seal inertia coefficients, the cross-
coupled inertia coefficient for impellers (i.e., skew-symmetric inertia) is not neg-
ligible. In the author’s opinion, this is an anomalous conclusion that stems from a
lack of due attention to the simple fact that the equivalent mechanical-impedance
coefficients in Eq. (4) are just curve fit coefficients that are given birth when they
are evaluated to provide the best simple curve fit to radial force vs. motion test re-
sults over a limited frequency range from a quite complex 3D fluid mechanics
flow field. Based upon the rigorously argued conclusion in Sec. 4, Eq. (84) of
Chapter 2, the Cal Tech and Sulzer data curve fits should have been done with the
inertia matrix constrained to symmetry, i.e., mss � 0. Sawicki et al. (16) show that
when the highest order matrix is constrained to symmetry in the data reduction
curve fitting step, as compared to allowing it to be nonsymmetric, all the other co-
efficients change (adjust) somewhat to provide the best fit possible with the re-
tained coefficients. Sawicki et al. further show that by applying extracted coeffi-
cients through Eqs. (4a) to the measured displacement signals, the dynamic force
signals so computed have comparable accuracy to the actual measured force sig-
nals with or without the physically inconsistent skew-symmetric coefficient. Nev-
ertheless, provided the Cal Tech and Sulzer coefficient results summarized in
Table 2 are not used as LRV analysis inputs above the maximum �/
 test value
(approximately 2), the physically inconsistent curve fit approach should not cor-
rupt analysis answers. Interestingly, the Cal Tech and Sulzer results summarized
in Table 2 are consistent with each other in magnitudes and signs, except for the
skew-symmetric inertia term. Cal Tech’s m	

ss values are negative and Sulzer’s are
positive, yielding opposite physical interpretations and thus supporting the argu-
ment inferred from Eq. (84) in Chapter 2 that a nonzero m	

ss is a physical incon-
sistency, i.e., doesn’t make physical sense.

Aside from the anomaly of a nonzero skew-symmetric inertia coefficient
shown in Table 2, other important general observations are in order. First, it is ob-
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TABLE 2 Impeller Dimensionless Stiffness, Damping, and Inertia Coefficients

Source/type k
–S k

–SS c–S c–SS m—S m—SS

Cal Tech/Volute �2.5 1.1 3.14 7.91 6.51 �0.58
Cal Tech/Diffuser �2.65 1.04 3.80 8.96 6.60 �0.90
Sulzer/Diffuser (2000 rpm) �5.0 4.4 4.2 17.0 12.0 3.5
Sulzer/Diffuser (4000 rpm) �2.0 7.5 4.2 8.5 7.5 2.0
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served that the radial stiffness term (ks) is negative and tends to slightly lower nat-
ural frequencies. Second, the skew-symmetric stiffness term (kss) is positive and
significantly complements other similar forward-whirl destabilizing effects such
as from lightly loaded journal bearings and annular seals. Third, the relatively
large skew-symmetric term (css) is like a gyroscopic effect (see Fig. 12 in Chap-
ter 2) which lowers backward-whirl natural frequencies and raises forward-whirl
natural frequencies and, being rotation-direction biased, must reflect convective
fluid inertia influences. Finally, the diagonal inertia term (ms) is like a nonstruc-
tural added mass on the rotor and tends to slightly lower natural frequencies.

2. CENTRIFUGAL COMPRESSORS

The radial forces on centrifugal compressor rotors are basically similar to, but
considerably less dominant than, those illustrated for centrifugal pumps in Fig. 7
of Chapter 5. As stated in the previous section, in contrast to most gas handling
turbomachines, the process fluid’s dynamic interaction forces in centrifugal
pumps have a major influence on LRV natural frequencies, mode shapes, and
modal damping. Although the effects of centrifugal compressor aerodynamic
forces are an important design consideration, they do not constitute the over-
whelming influence on LRV characteristics as the hydraulic forces do in centrifu-
gal pumps. As a consequence, there is far less information in the open literature
on centrifugal compressor impeller LRV effects than summarized in Sec. 1 for
centrifugal pumps. No industry-funded research project on centrifugal compres-
sors similar to the $10 million EPRI project on boiler feed water pumps has been
launched. Also, the author is not aware of any copiously funded university re-
search projects on centrifugal compressor aerodynamic rotor forces comparable to
the Cal Tech work on centrifugal pump impeller forces.

As with most turbomachinery, the primary LRV concerns of centrifugal
compressor designers are the location(s) of critical speed(s) within the operating
speed range, unbalance sensitivity, and thresholds of instability. Predictive analy-
ses of centrifugal compressor critical speeds and unbalance sensitivity have tradi-
tionally been considered to be sufficiently accurate without accounting for aero-
dynamic interaction forces. On that basis alone, one might surmise that there is not
a compelling justification to motivate significant research expenditures for labo-
ratory experiments to determine LRV radial-interaction force coefficients for cen-
trifugal compressor impellers. However, thresholds of instability are not easy to
predict accurately but are of paramount importance to achieving successful cen-
trifugal compressor designs. Until recently, the absence of data on LRV coeffi-
cients for gas handling annular seals has hampered centrifugal compressor de-
signers in determining what portion of the LRV destabilization from a centrifugal
compressor stage originates in the stage’s annular sealing clearances and how
much comes from the aerodynamic impeller forces.
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2.1. Overall Stability Criteria

Possibly the definitive publication on centrifugal compressor LRV stability limits
is that of Kirk and Donald (12). The most valuable information in their paper is a
chart of pressure parameter ( p2 &p) vs. speed-to-critical-speed ratio (N/Ncr) for
successfully stable running compressors. Based upon several successfully stable
compressors and two initially unstable ones that were stabilized through modifi-
cations, Kirk and Donald provide an acceptability chart redrawn here in Fig. 5.
The two compressor units labeled Unit “A” and Unit “B” are from well-known
plants that are identified by name in their paper. They draw attention to compres-
sor configurations having back-to-back impellers (to minimize rotor axial thrust
loads) because those are the compressors most susceptible to LRV instability, be-
cause the balancing drum seal is located near the rotor midspan position. Any
destabilizing influence from the midspan balancing drum seal has the maximum
“opportunity” to cause LRV instability because the unstable mode (the first bend-
ing mode, Fig. 12, Chapter 4) has its maximum amplitude near the midspan axial
location. In a recent discussion with Professor Childs (1999), the author has
learned that at least one manufacturer has quite successfully employed a honey-
comb seal (Fig. 12, Chapter 5) in the midspan balancing drum of their back-to-
back centrifugal compressors. According to Professor Childs, this has extended
considerably the margin of stability on these compressors since the honeycomb
seal drastically diminishes the effect of seal inlet preswirl and in-seal swirl as well
as raising the potentially unstable first mode’s natural frequency through in-
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FIGURE 5 Criteria for rotor dynamically stable centrifugal compressors.
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creased interactive radial stiffness at the midspan location. Correspondingly, it is
clear from Fig. 5 that the two compressor units referenced were stabilized by mod-
ifications that raised the critical speed, because the pressure parameter remained
unchanged. That is, the two machines’ delivered output was not lowered as part of
the modifications.

The next two sections deal with the Thomas-Alford LRV destabilizing
forces in axial flow turbomachinery. The Kirk and Donald paper shows a calcula-
tion approach for the centrifugal compressor LRV destabilizing cross-coupled
(skew-symmetric) stiffness coefficient based upon a version of the Alford (4) for-
mulation for axial flow turbomachinery, modified for centrifugal compressors.
They attempt a correlation of their modified Alford calculation with field experi-
ence from stable and unstable centrifugal compressors, but this correlation is of
questionable meaning because of a potential inconsistency. As shown in Fig. 2b
and further explained in the next two sections, an Alford-type destabilizing force
as physically explained is corotational for turbines but possibly counterrotational
for compressors. However, the subsynchronous LRV instability self-excited vi-
bration on centrifugal compressors occurs in the corotational direction, just like
journal-bearing induced oil whip (explained in Sec. 4, Chapter 2). Thus, an Al-
ford-force explanation or basis of modeling is potentially inconsistent with expe-
rience from compressors that have exhibited LRV instability. The author has spo-
ken with a number of centrifugal compressor designers, both in the United States
and in Europe, and none has ever seen a centrifugal compressor experience LRV
subsynchronous vibration in the backward whirl orbital direction. Section 4 in
Chapter 2 provides a fundamental explanation that covers this.

2.2. Utilizing Interactive Force Modeling Similarities with
Pumps

Experimental LRV information is summarized in the previous section for cen-
trifugal pumps, taken from two modern well-funded research projects at Cal Tech
and Sulzer Pump Division, respectively. Since such intensive experimental re-
search results are not in existence for centrifugal compressors, at least not in the
open literature, some assumptions must be made. However, in the author’s opin-
ion it makes more sense to assume that strong LRV similarities exist between cen-
trifugal pump and centrifugal compressor impeller destabilizing interactive forces
than to invoke the Alford-force approach shown by Kirk and Donald. Specifically,
it makes more sense to assume that LRV interactive centrifugal compressor im-
peller forces (not including annular sealing gaps) are dominated by the flow field
between the inlet-side impeller shroud and casing, just as shown for centrifugal
pump impellers and with destabilization effects likewise corotational. This ap-
proach strongly suggests that the primary sources of centrifugal compressor stage
LRV destabilization are the annular sealing gaps and the flow field between im-
peller inlet shroud and casing. As now known for centrifugal pump impellers, the
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smaller the radial projected shroud area, the less the shroud should contribute to
LRV interactive forces and the more the annular sealing gaps are the dominant
source of potential LRV instability.

For compressor impellers without an inlet-side shroud, the annular sealing
gaps are probably the singular dominant source of potential LRV instability. As
stated at the end of Chapter 5, in using rotor vibration predictive analyses for trou-
bleshooting purposes, as opposed to design purposes, one can adroitly utilize ac-
tual vibration measurements made on a troubled machine to adjust uncertain LRV
model inputs (such as for compressor stages) to achieve a reasonable agreement
between the machine and the LRV model. Such “calibrated models” can greatly
increase the probability of devising a timely solution for high levels of subsyn-
chronous instability vibrations.

3. HIGH-PRESSURE STEAM TURBINES AND GAS
TURBINES

3.1. Steam Whirl

As with LRV considerations for most gas handling turbomachinery, in steam tur-
bines the rotor and journal bearings provide the dominant stiffness effects while
positive LRV damping comes almost entirely from the journal bearings. However,
the journal bearings can also be a troublesome source of LRV instability (oil whip)
if journal bearing static loads are insufficient to maintain stable operation, as ex-
plained in Sec. 4, Chapter 2. In steam turbines, there is an additional destabilizing
effect that originates in the turbine stages which can produce subsynchronous for-
ward-whirling rotor vibration quite similar to oil whip. The self-excited rotor vi-
bration caused by this effect is usually referred to as steam whirl, and like oil whip
it can produce large-amplitude subsynchronous frequency forward-whirl rotor vi-
brations. The importance of steam whirl excitation is almost exclusively in the
high-pressure turbine section of large steam turbine-generator units, for reasons
which are made clear in this section. A number of the case studies in Part 4 involve
steam whirl–induced self-excited rotor vibration and corrective measures.

The operating symptom that distinguishes steam whirl from oil whip is that
it initiates at some threshold level of turbine power output, not at some threshold
speed, even though the resulting self-excited vibrations from the two respective
phenomena are essentially indistinguishable, i.e., a forward whirl subsynchronous
rotor vibration usually near and slightly below one-half the rotor spin speed fre-
quency. For example, if steam whirl initiates at say 90% of a turbine-generator
unit’s rated full power output, then operation above 90% rated power will not be
possible without the associated subsynchronous rotor vibration. It will likely be
necessary to temporarily derate the unit by 10% until a modification can be im-
plemented to achieve full power output without the occurrence of subsynchronous
vibration levels above recommended safe operating maximum limits.
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3.1.1. Blade Tip Clearance Contribution

The earliest publication addressing steam whirl was that of Thomas (18). He pro-
posed that observed thresholds of instability correlated to turbine power output
could not be properly explained as a journal bearing–induced instability, which
was then already well known to be speed induced, i.e., instability threshold speed.
Thomas focused on the fact that when a turbine blade row is given a radial dis-
placement eccentricity relative to its closely circumscribing nonrotating casing,
blade-tip leakage and thus blade row efficiency become circumferentially nonuni-
form. The essential feature of Thomas’ explanation is that the power loading on
the turbine blades is correspondingly nonuniform as Fig. 2b illustrates, with the
blades instantaneously passing the position of minimum radial gap (i.e., minimum
local leakage) having the highest tangential driving force and the blades instanta-
neously passing the position of maximum radial gap having the lowest tangential
driving force. The resultant sum of all the tangential blade forces upon the rotor
then has a net radial force that is perpendicular to the rotor radial eccentricity and
in the corotational direction. Assuming that such a net radial force is well approx-
imated using a linear bearing–like LRV coefficient (ksw), the net force shown in
Fig. 2b can then be expressed as follows.

{Fnet}stage � � �
stage

� �� � � � (6)

ksw � �
D
�T

L
� (7)

where

T � turbine stage torque
D � mean diameter of turbine stage blade row
L � radial length of turbine blades
� � linear factor for blade force reduction with radial tip clearance

Fblade � F (0)
blade �1 � � �

C
L

�� (8)

F (0)
blade � blade tangential force for zero clearance

C � radial tip clearance

Based on numerous published test results, 2 � � � 5 for unshrouded turbines. Al-
though � was originally devised as the change in efficiency per unit change in
clearance ratio (C/L), it is now considered more an empirical factor to put Eqs. (6)
and (7) into agreement with laboratory tests and field experience. Consistent with
intuition, Eq. (7) shows that a radial eccentricity of a blade row has a proportion-
ally greater steam whirl effect the shorter the blades; i.e., it is inversely propor-
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tional to blade length. Thus, in the higher pressure stages of a steam turbine, al-
though the mean blade diameter is smaller, 1/DL is still significantly the largest
because the blades are relatively quite short. Furthermore, the torque is signifi-
cantly higher than in lower pressure stages. Therefore, it is clear that the destabi-
lizing force contribution given by Eq. (6) is by far the greatest in the high-pressure
turbine (see Fig. 9 in Chapter 3).

Following Thomas’ (18) explanation in Germany for steam turbines, Alford
(4) proposed the same explanation for gas turbines in the United States, by which
time Thomas was already in the early phases of extensive research on test ma-
chines to measure the net destabilizing force expressed in Eq. (6) and shown in
Fig. 2b. In the United States, the net destabilizing force is often referred to as the
“Alford” force, but it is here referred to as the “Thomas-Alford” force in recogni-
tion that Thomas provided the first explanation of LRV instability correlated to
turbine power output. The major doctoral dissertations under Professor Thomas’
direction, by Urlichs (20) and Wohlrab (22), contain many of the extensive ex-
perimental results on steam whirl developed at the Technical University Munich.
A comprehensive English summary of this research is given by Thomas et al. (19).

3.1.2. Blade Shroud Annular Seal Contribution

Early experimental research on steam whirl found that when blade shrouds (see
Fig. 11a in Chapter 5) are added to a blade row, the magnitude of the destabi-
lizing force becomes approximately two or more times as large as without blade
shrouds. Subsequent research on the rotor vibration characteristics of labyrinth
annular gas seals (Chapter 5) confirmed that the additional steam whirl destabi-
lizing effect with shrouds is strongly driven by the corotational preswirl of high-
pressure steam entering the labyrinth annular tip seals. As shown by one case
study in Part 4, this component of the total steam whirl effect can be greatly at-
tenuated by using axially aligned flow-straightening vanes (called swirl brakes)
just upstream of the annular seals. Without swirl brakes, the total steam whirl
force is approximately two to three times the value that would be predicted us-
ing Eq. (6) with (7).

The most significant precision experiments for the blade shroud annular seal
contribution to whirl forces were conducted and reported by Wright (23). He de-
vised a vertical rotor test rig with a two-strip labyrinth air seal in which precisely
controlled electromagnetic dampers were tuned to produce neutral stability (in-
stability threshold condition) for a given operating seal pressure drop, rotational
speed, seal geometry, and preswirl velocity. Wright’s objective was to provide
high-precision experimental results to which proposed computational approaches
for labyrinth seal destabilizing forces could be compared and evaluated. An ex-
planation is provided here for the labyrinth seal destabilizing effect. Figure 6 con-
sists of four circumferential pressure distributions corresponding to four cases,
respectively.
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The four illustrated cases in Fig. 6 are summarized as follows.

(a) Journal bearing operating with a liquid lubricant, an atmospheric am-
bient pressure, and thus cavitation formed slightly downstream of the
minimum film thickness; pressure field governed by fluid viscosity
(i.e., Reynolds lubrication equation).

(b) Journal bearing operating with very high ambient pressure (e.g., PWR
reactor coolant pump lower bearing; see Fig. 1 in Chapter 12) and thus
no cavitation; pressure field also governed by fluid viscosity.

(c) High rotational Reynolds number fluid annulus in which the major in-
ner core of fluid has a nearly “flat” circumferential velocity profile
which is joined to the cylindrical boundaries through very thin bound-
ary layers; pressure field governed by inertia of inner core of fluid.

216 Chapter 6

FIGURE 6 Circumferential pressure distributions relative to ambient. (a) Journal
bearing operating with atmospheric ambient pressure (cavitation); (b) journal
bearing operating with high ambient pressure (no cavitation); (c) and (d) high ro-
tational Reynolds number fluids annulus with high ambient pressure.

Copyright © 2001 Marcel Dekker, Inc.



(d) A slightly modified version of (c) which is the basis of the author’s
own explanation of the labyrinth seal contribution to steam whirl
forces.

Figure 6a and b are well understood by bearing specialists, and in both of
these cases the fluid film force upon the journal has a destabilizing component in-
fluence on forward whirling LRV orbits (i.e., perpendicular to journal eccentric-
ity). In (a), with a sufficiently high static bearing load, the squeeze-film damping
controls the energy input from the destabilizing force component and the rotor-
bearing system is stable. In (b), the entire fluid film force is perpendicular to the
journal eccentricity, and thus subsynchronous instability vibration is much more
likely. The case illustrated in Fig. 6c is well known to designers of canned-motor
pumps since the fluid inertia–dominated pressure field acts in contrast to the be-
havior of a bearing; i.e., the circumferential pressure distribution pushes the rotat-
ing cylinder in the direction of eccentricity (a decentering force or negative radial
stiffness). Cases (a), (b), and (c) are reviewed here as a backdrop for the author’s
explanation, which focuses on Fig. 6d.

To simplify the explanation, axial flow is ignored and thus it is assumed that
the circumferential mass flow across the radial gap thickness (h) is the same at all
angular locations, which is expressed as follows.

Circumferential flow/unit axial length,

Q� � 
h

0
V(r, �) dr � constant (9)

A high rotational Reynolds number fluid annulus has its pressure field con-
trolled by the fluid inertia in the inner core of circulating fluid. Thus, the clearance
gap can be thought of as a venturi meter wrapped around on itself and operating
on the Bernoulli equation principle of conservation of energy, with maximum
pressure occurring at the maximum radial gap and minimum pressure occurring at
the minimum radial gap. With elevation and density changes discounted, the
Bernoulli equation can be stated as follows.

p � �
(V

2

2

� � constant (10)

where p � pressure, V � fluid velocity, ( � fluid mass density.
If the kinetic energy term is based on the average velocity at each cicum-

ferential location (�), then the pressure distribution in Fig. 6c illustrates the result
and is based on the minimum possible local kinetic energy term (per unit of axial
length), which is achieved with a perfectly flat velocity profile (zero thickness
boundary layer), and is expressed as follows.

KEmin � �
((Q

2
� /h)2

� (11)
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However, the flow in the converging 180° arc is in acceleration while the flow in
the diverging 180° arc is in deceleration. Therefore, the velocity profile will be
“flatter” (thinner boundary layers) in the converging portion than in the diverging
portion, as illustrated by the two representative fluid velocity profiles shown in
Fig. 6d. If instead of using the more approximate average-velocity approach at a
location (�), the kinetic energy term is determined by integrating V2 radially
across the fluid gap (h), the so determined kinetic energy will then be slightly
greater in the diverging arc than in the converging arc. For any circumferential ve-
locity profile (other than “perfectly flat”) at the same radial gap thickness (same
average velocity), the kinetic energy term obtained by integrating across the gap
thickness (h) is larger than KEmin, as expressed in the following equation.

KE � �
2
(

h
� 
h

0
[V(r, �)]2 dr � KEmin (12)

The Bernoulli equation argument of this explanation is that a higher kinetic
energy produces a lower pressure. Consistent with that argument, the pressure dis-
tribution in Fig. 6d is shown slightly skewed in comparison to that of Fig. 6c. Such
a skewing of the pressure distribution will produce a destabilizing component
from the total fluid force upon the rotating cylinder, as shown in Fig. 6d. Note the
two velocity profiles in Fig. 6d. The pressure is slightly higher where the profile
is more flat than where the profile is less flat. Consistent with experiments, Eq.
(10) implies the shroud contribution to steam whirl to be proportional to fluid den-
sity and thus, like the Thomas-Alford effect, also greatest in the high pressure
turbine.

The high corotation preswirl gas velocity entering such seals naturally con-
tributes strongly to the total circumferential circulation flow within the annular
space between two labyrinth seal strips. Without such preswirl, the gas must be
circumferentially accelerated (by the boundary layer attached to the rotating
boundary) after it enters the space between two labyrinth seal strips and thus
would not have nearly as much of the destabilizing force effect illustrated in Fig.
6d as with high preswirl inlet velocity. It is thus quite understandable that the an-
nular labyrinth seal contribution to the total steam whirl effect can be greatly at-
tenuated by using axially aligned flow-straightening vanes (called swirl brakes)
just upstream of the seal.

From laboratory tests and analyses, it is now known by many LRV special-
ists that having the grooves of grooved annular seals located on the stator produces
less LRV destabilizing effect than locating the grooves on the rotor. Consistent
with the preceding discussion, this is easily understandable because of the differ-
ence in the amount of rotating boundary area between the two configuration op-
tions. Referring to Fig. 2b, in which the tip clearance is illustrated greatly exag-
gerated, the gas-filled annular chamber between the two sealing strips has four
sides; one is stationary and the other three are rotating, because the strips shown
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are rotor mounted. In the alternative configuration (not shown) in which the seal-
ing strips are stator mounted, the gas-filled rectangular chamber between the two
sealing strips has three sides stationary and only one rotating. Clearly, there is pro-
portionally less boundary layer area available to circumferentially accelerate in-
coming gas (or liquid) when the sealing strips are stator mounted, and thus there
is less total circumferential circulation flow velocity and therefore less LRV desta-
bilizing effect than with rotor mounted strips (or grooves).

3.2. Partial Admission in Steam Turbine Impulse Stages

Typical fossil fuel–fired boilers for steam turbines in electric power generating
plants in the United States are designed to operate with controlled variable steam
flow output. In contrast, European fossil fuel–fired boilers are typically designed
to operate with controlled variable steam pressure output. Thus, it is usual that
large steam turbines in U.S. power plants have impulse stages at the first stage of
the high-pressure turbine because turbine flow and power output can then be effi-
ciently regulated by throttling impulse stage nozzles.

An impulse stage for a large steam turbine typically incorporates a number
(e.g., six) of equally spaced nozzles (Fig. 7) which are fully open at full power out-
put. To regulate the power below full output, one or more nozzles are throttled.
Thus the term “control stage” is sometimes used to identify such controlled-noz-
zle impulse steam turbine stages. The nozzles are not uniformly throttled, but
more typically only one (possibly two) are operated in the partially open setting.
This mode of operation is commonly referred to as partial admission, and it pro-
duces a significant net static radial force on the turbine rotor due to the nonuni-
form distribution of jet forces on the impulse turbine blade row. So that this static
radial force does not add to rotor weight static loads already carried by the high-
pressure turbine’s journal bearings, the partial admission is configured so that its
net static radial force is directed approximately opposite (i.e., up) the weight. This
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FIGURE 7 Laboratory impulse steam turbine stage with three nozzles.
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makes sense for bearing static load but it can cause rotor vibration problems.
Specifically, the attendant reduction in journal bearing load increases the possi-
bility for subsynchronous instability rotor vibration. The ability of a journal bear-
ing to damp forward whirl subsynchronous LRV modes is reduced as bearing
static loads are reduced. Therefore, the additive action of oil whip and steam whirl
destabilizing effects can combine to produce large-amplitude subsynchronous vi-
bration of the high-pressure turbine at partial admission operation. One of the case
studies in Part 4 is concerned with this type of vibration problem.

3.3. Combustion Gas Turbines

Multistage axial flow gas turbines are most commonly employed for land-based
electric power generation plants and for gas turbine engines of both commercial
and military aircraft propulsion systems. Equations (6) through (8) provide an es-
timate of Thomas-Alford forces in steam turbines and are in fact the same equa-
tions that are similarly applied for gas turbines. The corresponding Thomas-Al-
ford force physical explanations already provided here for steam turbines also
apply to gas turbines. It is the author’s sense that Thomas-Alford forces are a more
important consideration for gas turbine aircraft engines than for gas turbine elec-
tric power generating units.

4. AXIAL FLOW COMPRESSORS

The Thomas-Alford type of destabilizing force described in Sec. 3 and illustrated
in Fig. 2b has been researched concerning its significance for LRV stability of ax-
ial compressors. Multistage axial compressors are most commonly employed as
an essential portion of modern combustion gas turbines, both for electric power
generation plants and for gas turbine engines of both commercial and military air-
craft propulsion. Ehrich (8) reports that the Alford (4) explanation for destabiliz-
ing LRV forces in gas turbines was subsequently extended by Alford to explain
LRV instabilities in axial compressors. The direction of the shaft torque that pow-
ers a compressor is the same as its direction of rotation, which is of course oppo-
site the torque direction upon a turbine by the shaft it is powering. This has led
many who have seriously thought about this problem to expect that Thomas-Al-
ford forces in compressors would seek to drive the rotor into backward whirl self-
excited rotor vibration, in contrast to the universally accepted forward whirl di-
rection of these forces in turbines. However, according to Ehrich (8), Alford
suggested just the opposite, i.e., that these forces also provide energy input to for-
ward whirl modes of compressors just as in turbines. The essence of Alford’s ar-
gument was that as the rotor displaces radially with respect to its stator, the blades
with the instantaneous minimum tip clearance are more efficient and thus more
lightly loaded than the blades with the larger clearance.
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Current thinking on this reflects the realization that the flow field in such
turbomachinery is quite complex, especially at operating conditions other than at
peak efficiency. Although the Thomas-Alford theme is quite important to provide
simplified explanations, reality is not so simple. Ehrich (8) assembled three dif-
ferent sets of experimental Thomas-Alford force results from three different axial
compressors. In a quite thorough analysis of all those results, Ehrich concludes
that the Thomas-Alford force coefficient (�), Eq. (7), is not a simple constant for
a specific compressor but is a very strong function of operating condition of the
stage (i.e., its throttle coefficient or flow coefficient). Quoting Ehrich, “it is found
that the value of � is in the range of �0.27 to �0.71 in the vicinity of the stages’
nominal operating line and �0.08 to �1.25 in the vicinity of the stages’ operation
at peak efficiency. The value of � reaches a level of between �1.16 and �3.36 as
the compressor is operated near its stalled condition.” Consistent with Eq. (7),
positive values for � indicate corotational Thomas-Alford forces as in turbines,
and negative values for � indicate counterrotational Thomas-Alford forces. Al-
ford’s explanation for compressors appears to be mostly wrong.

For an aircraft jet engine application, the axial compressor and gas turbine
on the same shaft have equal-magnitude torque. In such applications, Ehrich’s re-
sults indicate that the compressor either has a negligible influence or may even
negate some of the destabilizing effect of the forward whirl tendencies from the
Thomas-Alford forces in the turbine. Obviously, for electric power generation gas
turbines, the turbine torque is considerably larger than the compressor torque, oth-
erwise no power would be generated. Thus, the compressor’s Thomas-Alford
force importance is less than for gas turbine aircraft engine high-compressor
rotors.

5. SUMMARY

W. A. Rankine (15) in 1869 presented a seriously flawed rotor vibration analysis
in which he cast F � ma in a rotor-imbedded (i.e., noninertial) coordinate system
without including the requisite correction factor known as Coriolis acceleration.
Rankine’s results led designers to work for several years under the misconception
that rotors could not safely operate at speeds in excess of what is now called the
first critical speed. Not until G. DeLaval in 1895 experimentally showed a steam
turbine operating safely above its first critical speed was Rankine’s fallacy de-
bunked, leading to the higher speed, higher power turbomachines of the 20th cen-
tury. Because of the high concentration of power transferred in modern turboma-
chines, and for some types of applications the quite high rotational speeds, the
process liquid or gas in turbomachinery stages provides a number of identifiable
fluid-solid interaction phenomena that can quite significantly influence rotor vi-
bration behavior, especially stability. These phenomena are the focus of this
chapter.
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7

Rotor Vibration Measurement and
Acquisition

1. INTRODUCTION TO MONITORING AND DIAGNOSTICS

Vibration is the most regularly measured condition parameter in modern rotat-
ing machinery, and it is now continuously monitored in many important appli-
cations. Bearing temperature is also quite often a continuously monitored con-
dition parameter, as is rotor axial position. Some types of rotating machinery
vibration problems can be expeditiously diagnosed by correlating vibration lev-
els and other such simultaneously monitored parameters, as covered in Chapter
9 and demonstrated in Part 4 of this book.

Modern vibration monitoring has its genesis in the mid-1950s with the de-
velopment and application of basic vibration sensors, which are the heart of mod-
ern computerized condition monitoring systems. Figure 1 shows the traditional
fundamental use of vibration monitoring in rotating machinery, i.e., to provide
warning of gradually approached or suddenly encountered excessively high vi-
bration levels that could potentially damage the machinery. Trending a machine’s
vibration levels over an extended period of time can potentially provide early
warning of impending excessive vibration levels and/or other problems and thus
provide plant operators with valuable information for critical decision making to
schedule a timely shutdown of a problem machine for corrective action, e.g., re-
balancing the rotor.

In recent years, there has been a concerted effort to utilize vibration moni-
toring in a more extended role, most notably in what is now commonly called pre-
dictive maintenance, which is an extension and/or replacement of traditional pre-
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ventive maintenance. As illustrated in Fig. 2 for one proposed version of predic-
tive maintenance, each machine of a given group is provided specific maintenance
actions based upon the machine’s monitored condition instead of a fixed-time
maintenance cycle. In principle, this makes a lot of sense, but as most practition-
ers know, “the devil is in the details.” This effort is primarily driven by the cur-
rent trend in industry and government organizations to reduce maintenance costs
drastically, primarily by making large reductions in maintenance and technical
support personnel. This prevailing “bean counter” mentality has created new busi-
ness opportunities for suppliers of machinery condition monitoring systems and
impetus for new approaches to glean increased diagnostic information from al-
ready continuously monitored machinery vibration signals.

The fast Fourier transform (FFT) algorithm was developed in the mid-
1960s as an effective means for quickly mimicking the frequently changed radar
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FIGURE 1 Tracking of a representative vibration peak amplitude over time.

FIGURE 2 Predictive maintenance contrasted to preventive maintenance.
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signal spectrum of enemy ground-based antiaircraft missile targeting systems, so
that multiple decoy signals could not be distinguished from authentic reflections.
The FFT algorithm has subsequently become a primary signal analysis tool and
has been the major modern advancement in rotating machinery vibration signal
analysis. The quest of researchers for creative new approaches has been facilitated
by the FFT’s success and the reductions in maintenance and support personnel.
For example, as introduced by Adams and Abu-Mahfouz (1), the author’s team at
Case Western Reserve University (CWRU) is researching chaos and routes to
chaos in vibration signals as new diagnostic markers for providing improved early
detection and diagnosis of impending problems or needed maintenance actions.
The development of new machinery vibration signal analysis techniques gleaned
from modern chaos theory is predicated on the inherent nonlinear dynamical char-
acter of many incipient failure modes and wear mechanisms (e.g., rotor rub-im-
pact phenomena). Other nontraditional signal analysis methods are also finding
their way into machinery vibration diagnosis, such as the signal processing tech-
nique called wavelets.

Over the last 10 years or so the term expert system has gained notoriety in
industry and government organizations heavily concerned with rotating machin-
ery. It is a fact that as these rotating machinery user sectors have been continu-
ously reducing the numbers of maintenance personnel, the original equipment
manufacturers (OEMs) have been going through similar major contractions in-
volving mergers, downsizing and the like, with a considerable reduction in OEM
in-house technology development and an almost nonexistent growth of the next
generation of true specialists and experts. Thus, so-called expert systems have
been welcomed by rotating machinery OEMs and users alike. Naturally, expert
systems are at best as good as the information and data stored in them, and glitzy
additives such as fuzzy logic and neural networks have not significantly changed
that because they entail a “learning period” which must wait for a large number of
unwanted events to occur. Figure 3 illustrates an “expert system” which consists
of computer software that contains a programmed knowledge base and a set of
rules that key on that knowledge base, as reviewed by Bently and Muszynska (2)
concerning expert system application to rotating machinery condition monitoring.

Rotor Vibration Measurement and Acquisition 227

FIGURE 3 Flowchart of a rule-based “expert system.”

Copyright © 2001 Marcel Dekker, Inc.



If future major applications of rotating machinery are to be economically
successful in an environment of greatly reduced maintenance personnel and very
few available true experts, then new yet-to-be-introduced machinery management
systems will be required. Development of such new systems is a topic of extensive
ongoing research in the author’s laboratory at CWRU. For example, the CWRU
team has developed model-based monitoring-diagnostic software which incorpo-
rates an array of machine-specific vibration simulation computer models, specific
to an extensive array of operating modes as well as fault types and severity levels.
As illustrated in Fig. 4, each model (called an “observer”) is run in real time and
its simulated vibration signals are continuously combined with the machine’s ac-
tual monitored vibration signals and correlated through a novel set of statistical al-
gorithms and model-based filters, as summarized by Loparo and Adams (4). Prob-
abilities are generated for each fault type and severity level potentially in progress.
The vibration models in the observers also remove signal “noise” which does not
statistically correlate with the models. In contrast to conventional signal noise fil-
tering techniques, such model-based statistical-correlation filtering allows reten-
tion of physical-model correlated low-level and fine-structure signal components,
such as in signal chaos content, for on-line or off-line analysis.

One of the many interesting findings by the CWRU team is that the various
fault and fault-level specific observer vibration models do not have to be as
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FIGURE 4 Real-time probabilities for defined faults and severity levels from sta-
tistical correlation of monitored and model-predicted vibration signals.
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“nearly perfect” as one might suspect if thinking in a time signal domain and/or
frequency domain framework. Because the sum of probabilities is constrained to
equal 1, a model (observer) has only to be representative enough of its respective
operating mode to “win the probability race” among all the “observers” when its
fault (or fault combination) type and severity level are in fact the dominant con-
dition. Compared to the rule-based approach inherent in so-called expert systems,
this physical model–based statistical approach is fundamentally much more open
to correct and early diagnosis, especially of infrequently encountered failure- and
maintenance-related phenomena and especially conditions not readily covered
within a rule-based expert system.

An additional benefit of a model-based diagnostic approach is the ability to
combine measured vibration signals with vibration computer model outputs to
make real-time determinations of rotor vibration signals at locations where no sen-
sors are installed. Typically, vibration sensors are installed at or near the bearings
where sensor access to the rotor and survivability of sensors dictate. However,
midspan locations between the bearings are where operators would most like to
measure vibration levels but cannot because of inaccessibility and the hostile en-
vironment for vibration sensors. Thus, the model-based approach provides “vir-
tual sensors” at inaccessible rotor locations.

The field of modern condition monitoring for rotating machinery is
now over 40 years into its development and thus is truly a matured technical 
subject. However, it continues to evolve and advance in response to new require-
ments to further reduce machinery downtime and drastically reduce maintenance
costs.

2. MEASURED VIBRATION SIGNALS AND ASSOCIATED
SENSORS

The commonly monitored vibration signals are displacement, velocity, and accel-
eration. The basic operational principles of each of these are presented in this sec-
tion. Commercial suppliers of vibration measurement systems provide specific in-
formation on their vibration measurement products. However, for an introductory
noncommercial treatment of machinery vibration measurement, the author refers
to the book by Mitchell (5), used as an information resource in this section.
Mitchell provides practical insights into properly matching transducer selection to
the application and gives detailed cautions on how to avoid faulty transducer
installation.

2.1. Accelerometers

An accelerometer is composed of an internal mass compressed in contact with a
relatively stiff force-measuring load cell (usually a piezoelectric crystal) by a rel-
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atively soft preload spring, as illustrated in Fig. 5. The functioning of an ac-
celerometer is thus derived from the one-degree-of-freedom system shown in Fig.
1, Chapter 1. For an accelerometer, the system damping is a negligible effect and
thus for explanation purposes the damping is assumed here to be zero. Referring
to the free-body diagram in Fig. 5, the equation of motion for the mass is obtained
as follows.

mẍ � kx � kxa (1)

For a sinusoidal motion of the accelerometer housing (xa � Xa sin 
t) and the
measurement place to which it is rigidly attached, the motion equation for the in-
ternal mass is essentially Eq. (6) of Chapter 1 with zero damping, as follows.

mẍ � kx � kXa sin 
t (2)

Thus, for the steady-state solution of Eq. (2), the normalized response equation
shown in Fig. 4, Chapter 1, is applicable, and for zero damping it provides the fol-
lowing ratio for peak acceleration of the internal mass to the housing.
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For a frequency at 10% of the accelerometer’s natural frequency (
n), Eq. (3)
shows the internal mass’s acceleration to be 1% higher than housing acceleration,
at 20% it is 4% higher, at 30% it is 10% higher, etc.

The accelerometer load cell is usually a piezoelectric crystal and thus regis-
ters only compressive loads, necessitating a preload spring to keep it in compres-
sion. However, the piezoelectric crystal is inherently quite stiff in comparison to
the preload spring. Therefore, the load cell essentially registers “all” the dynamic
force (ala F � ma → a � F/m) required to accelerate the internal mass. Equation
(3) shows that for the load cell electrical output to be highly linear with (propor-
tional to) housing acceleration, an accelerometer must be selected with an internal
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FIGURE 5 Elementary schematic for unidirectional accelerometer.
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natural frequency at least five times higher than the maximum end of its intended
frequency range of use. Consequently, an accelerometer for a relatively high-fre-
quency application has a relatively smaller internal mass than an accelerometer for
a relatively low-frequency range of application. Since a smaller internal mass pro-
duces a proportionally smaller peak load-cell force for a given acceleration peak,
there is clearly a compromise between sensitivity and frequency range. That is, the
higher the accelerometer’s internal resonance frequency, the lower its sensitivity.
Accelerometer sensitivity is proportional to its internal mass (m), but its internal
natural frequency is proportional only to 1/�m	. Consequently, for a given load
cell stiffness, the sensitivity varies as 1/
2

n, i.e., a penalty to sensitivity for better
linearity. But accelerometers are still the best transducer for high frequencies be-
cause of the inherent “frequency squared” multiplier.

Piezoelectric load cells produce a self-generated electrical output in re-
sponse to dynamic loading, but at a very high impedance. Accelerometers are
therefore usually constructed with internal electronics to convert the load cell’s
signal to a low impedance output suitable for conventional plugs, cables, and data
acquisition systems. Mitchell (5) provides many practical considerations includ-
ing an explanation of remote location of the electronics for high-temperature mea-
surement places where the piezoelectric load crystal can survive but the signal-
conditioning electronics cannot.

2.2. Velocity Transducers

The velocity transducer is composed of a mass (permanent magnet) suspended in
very soft springs and surrounded by an electrical coil, as illustrated in Fig. 6. Also
explained by the 1-DOF model, a velocity transducer operates above its natural
frequency, in contrast to an accelerometer. Its springs are configured to produce a
very low natural frequency so that the permanent magnet essentially remains sta-
tionary at frequencies above 10 Hz. Typically, an internal fluid provides critical
damping of the natural frequency and roll-off of response below 10 Hz.
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FIGURE 6 Elementary schematic for a velocity transducer.

Copyright © 2001 Marcel Dekker, Inc.



With the magnet essentially stationary in the transducer’s frequency range
of use (typically 10 to 1,500 Hz), vibration of the electrical coil rigidly attached to
the housing causes the magnetic flux lines to induce a voltage in the coil propor-
tional to velocity of housing vibration. Thus, a velocity transducer produces a self-
generated low-impedance velocity-proportional electrical signal which can be fed
to monitoring and data acquisition systems without additional signal conditioning.
Velocity transducers are therefore popular in many rotating machinery applica-
tions. However, because a velocity transducer has internal moving parts, its use is
less popular in hostile environments where relatively higher ruggedness is de-
manded, as more inherent with an accelerometer.

2.3. Displacement Transducers

2.3.1. Background

The internals of many types of rotating machinery, especially turbomachinery,
have a number of quite small annular radial clearance gaps between the rotor and
the stator, e.g., journal bearings, annular seals, balance drums, and blade-tip clear-
ances. Therefore, one obvious potential consequence of excessive rotor vibration
is rotor-stator rubbing contact or, worse, impacting. Both accelerometers and ve-
locity transducers measure vibration of nonrotating parts of a machine and thus
cannot provide any direct information on rotor motion relative to the stator.

The importance of rotor motion relative to stator motion led to the develop-
ment of transducers to provide continuous instantaneous rotor-to-stator position
measurements, typically at each journal bearing. The earliest rotor-stator position
measurement device widely applied is commonly referred to as a shaft rider, and
it is kinematically similar to a typical spring-loaded IC engine valve tracking its
cam profile. That is, a shaft rider is essentially a radial stick that is spring loaded
against the journal to track the journal radial motion relative to a fixed point on the
nonrotating part of the machine, e.g., bearing housing. Shaft riders utilize a posi-
tion-sensing transducer to provide an electrical output linear with shaft rider posi-
tion. Some older power plant turbines still use OEM-supplied shaft riders. How-
ever, shaft riders have two major shortcomings: their mass inertia limits their
frequency range and their rubbing contact on the journals is a wear point. Copious
lubrication is not a solution to the wear problem, because the uncertainty of con-
tact oil-film thickness is of the same order of magnitude as the rotor relative posi-
tion changes continuously measured. Therefore, a shaft rider journal contact point
is typically a wearable carbon material. The effect of this slowly wearing contact
point is to produce a continuous DC drift in position measurements, thus detract-
ing somewhat from the main intent of rotor-to-stator continuous position
measurement.

The significant shortcomings of shaft riders led to the development of non-
contacting position-sensing transducers. Two types of noncontacting transducers
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that emerged in the 1950s are the capacitance type and the inductance type. The
capacitance-type displacement transducer works on the principle of measuring the
electrical capacitance of the gap between transducer tip and the target whose po-
sition is measured. The capacitance method is well suited for highly precise labo-
ratory measurements, but its high sensitivity to material (e.g., oil) variations or
contaminants within the clearance gap would make it a calibration “nightmare”
for industrial applications. In contrast, inductance-type displacement transducer
systems have proved to be the optimum rotor-to-stator position measurement
method and are now installed on nearly all major rotating machines in power
plants, petrochemical and process plants, naval vessel propulsion drive systems,
and many others.

2.3.2. Inductance (Eddy-Current) Noncontacting
Position-Sensing Systems

Unlike accelerometers and velocity transducers, which are mechanical vibratory
systems in their own right, inductance-type displacement transducer systems
function entirely on electrical principles. As illustrated in Fig. 7, the system in-
cludes a target (shaft), proximity probe, cables, and oscillator demodulator. A
proximity probe is typically made with a fine machine thread on its outer cylin-
drical surface for precision positioning and houses a helical wound wire coil en-
cased in a plastic or ceramic material. The oscillator demodulator excites the
probe’s coil with a radio-frequency carrier signal of 1 to 1.5 MHz, causing a mag-
netic field to radiate from the probe’s tip. When the probe tip is in close proxim-
ity to an electrically conductive material (target), the induced eddy currents in the
target absorb energy from the probe coil’s excitation and thus attenuate its carrier
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signal. Within the oscillator demodulator, a DC voltage output is produced from
the modulated envelope of the carrier signal, as schematically shown in Fig. 7.
Figure 8 illustrates a typical DC voltage output versus gap. As shown, the DC volt-
age output calibrates quite linearly over a large gap range between the probe tip
and the target. For typical systems now used for monitoring rotor vibration, the
linear range is normally from 10 to 100 mils (0.25 to 2.5 mm). Setting the mean
probe-to-target gap at the midpoint of the linear range provides substantially more
vibration magnitude operating range than needed for virtually all rotor vibration
monitoring applications. In rare catastrophic failures (e.g., see Fig. 14 in Chapter
2), dynamic motions can quite readily exceed the usable gap range, but this is ir-
relevant since the vibration monitoring proximity probes are probably destroyed
along with the machine.

It is important to point out that the combination of the proximity probe, os-
cillator demodulator, and their cables forms a tuned resonant electrical circuit.
Thus, in order to obtain a specified voltage-to-gap calibration factor, the cables
must be properly matched to the probe and oscillator demodulator. Adherence to
the manufacturer’s cable type and length will therefore maintain the system’s vi-
bration calibration accuracy with component interchangeability. It is also impor-
tant to know that the calibration factor is a strong function of the target’s material.
Therefore, if the manufacturer’s supplied calibration factor is in doubt for the tar-
get material, the system should be carefully recalibrated using the actual target
material. Large variations in the probe’s ambient temperature and/or pressure may
produce variations in the calibration factor that are significant, at least for high-
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FIGURE 8 Typical inductance probe displacement calibration plot.
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precision laboratory measurements on research rotor test rigs. Mitchell (5) dis-
cusses the influence of probe diameter and excitation voltage on system sensitiv-
ity as well as other design and application considerations such as proper probe
mounting. With the quite high carrier frequency used to excite the probe’s induc-
tance coil, the oscillator demodulator can readily track gap variations linearly at
frequencies well over 10,000 Hz, which is considerably higher than needed for
virtually any rotor vibration measurement purposes.

Obviously, any residual mechanical run-out of the target portion of the shaft
is added to the vibration signal detected by the proximity probe. The periphery of
a rotating shaft presents a target that moves laterally across the proximity probe’s
magnetic field, as illustrated in Fig. 7. As a consequence, the system’s output re-
flects not only the shaft vibration plus mechanical run-out but also the superim-
posed effects of circumferential variations in shaft surface conditions as well as
electrical conductivity and permeability variations just below the shaft surface.
Except for mechanical run-out, these nonvibration electromagnetic additions to
the output signal were not widely recognized until the early 1970s when several
apparent excessive rotor vibration problems in plants were diagnosed correctly as
“false trips” caused by the nonmechanical electromagnetic signal distortions. That
is, the superimposed nonvibration output signal components (commonly called
“electrical run-out”), when added to the signal portion representative of actual ro-
tor vibration, indicated fictitiously high vibration levels, triggering automatic ma-
chine shutdowns or “trips.”

In the years since the nonvibration component in proximity probe system
output was first widely recognized, these vibration monitoring systems have been
refined to substantially remove nonvibration sources from the output. On the me-
chanical side, every effort must be taken to provide a smooth shaft target surface
free of scratches and with a tight concentricity tolerance to the journal. Mitchell
(5) describes various measures to minimize the electromagnet sources of electri-
cal run-out. In more recent times, it has become standard procedure in plants to
take the output signal for each probe while the machine is slowly rotated on turn-
ing-gear mode and to process that signal to extract the once-per-rev component
(amplitude and phase angle), which is then stored and automatically subtracted in
real time from the raw monitored signal. The ultimate precision in journal vibra-
tion measurements was demonstrated by Horattas et al. (3) on the laboratory spin-
dle shown in Fig. 4 of Chapter 5 with maximum precision preloaded ball bearings.
They mounted a precision grinder/slide on the front of the test rig to remove a test
journal’s mechanical run-out as achievable with the spindle bearings, i.e., less
than 0.5 micron TIR residual run-out after grinding. They then processed the re-
maining slow-speed electrical run-out (approximately 0.5 and 0.7 mil pp on x and
y probes, respectively) and recorded the outputs as high-sampling-rate digital sig-
nals. By subtracting the entire electrical run-out digital signal (not just the once-
per-rev component) for each probe from its raw signal at running speed, Horattas
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et al. demonstrated journal vibration measurements with an accuracy approaching
0.02 mil (0.5 micron).

Proximity probes are usually installed in pairs at each journal bearing, with
their measurement axes at an angular displacement of 90° with respect to their
partner, as illustrated in Fig. 9a. In this manner, the rotor vibration orbit can be
readily viewed in real time by feeding the two signals into the x and y amplifiers
of a dual-channel oscilloscope. Rotor vibration orbital trajectories are illustrated
in earlier figures, i.e., Figures 10, 12, and 16 in Chapter 2 and Figures 5 through 9
in Chapter 4. Figure 9a also illustrates the typical angular orientation of a pair of
proximity probes at 45° and 135°. Referring to Fig. 10 in Chapter 2, the reason for
this is that in most cases the major axis of the orbit ellipse is close to the 45° axis
because the journal bearing oil film is stiffest into the minimum film thickness,
i.e., along the line of centers. Thus, with one of the two probes located at 45°, its
channel yields close to the largest vibration signal of the orbit. The 45° channel is
therefore normally selected as the vibration channel used for rotor balancing in the
field; i.e., it has the highest signal level if it closely aligns with the rotor vibration
orbit’s ellipse major axis.

By intent, proximity probes measure rotor motion relative to stator motion
and thus do not provide total rotor motion. When measurement of total rotor vi-
bration motion is needed, the combination of a proximity displacement probe
mounted with a seismic transducer (accelerometer or velocity transducer) may
be employed as illustrated in Fig. 9b. The total rotor displacement signal is then
obtained by adding the conditioned outputs of the integrated seismic transducer
measurement and the proximity probe displacement measurement. An alterna-
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FIGURE 9 Proximity probe example mountings. (a) Typical two-probe at 90°
placement. (b) Probe with seismic sensor.
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tive approach not always feasible in plants but commonly used in laboratory ro-
tor test rigs is simply to mount the proximity probes to an essentially nonvibrat-
ing fixture.

3. VIBRATION DATA ACQUISITION

There is a considerable variety of extent and methods used to acquire and log vi-
bration and other diagnostic monitored machinery parameters. The methods and
corresponding products available to accomplish data acquisition tasks constitute a
constantly changing field that parallels the rapid and perpetual advancements in
PCs and workstations. This section provides neither a historical perspective nor a
forecast of future trends for machinery monitoring data acquisition technology.
The intent of this section is to present the fundamental steps in data acquisition and
a summary of up-to-date methods and devices appropriate for different applica-
tion categories.

3.1. Continuously Monitored Large Multibearing Machines

The main steam turbine-generator sets of large electric power generating plants
are a prime example of large machines where the need for constant condition mon-
itoring is driven both by the monetary replacement cost of a machine if seriously
damaged (well over $100 million) and the lost generating revenues accrued in the
event of an unscheduled outage of a single large steam turbine-generator (as high
as $500 thousand/24-hour day). A complete rigidly coupled drive line, including
a high-pressure turbine (HP), an intermediate-pressure turbine (IP), two low-pres-
sure turbines (LP-1 and LP-2), an AC generator, and its exciter (EX), is illustrated
in Fig. 10. The generating unit shown in Fig. 10 has eight journal bearings and is
equipped with x and y noncontacting proximity probes as well as vertical and hor-
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FIGURE 10 Vibration monitoring channels for an electric power turbine.
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izontal accelerometers at each journal bearing, for a total of 32 vibration data
channels.

Rotor vibration time-based signals are phase referenced to a single keypha-
sor, which locates a fixed angular position on the rotor as illustrated in Fig. 11. A
keyphasor signal must be a very sharply changing signal so as to trigger a time
marker for a designated fixed angular position on the rotor. It can be produced by
a proximity probe targeting a pronounced shaft surface interruption such as a key
way. It can also be produced by a light sensitive optical pickup targeting a piece
of reflective tape on the shaft surface. An important use of the keyphasor is in pre-
scribing phase angles of the once-per-rev components of all vibration signals for
rotor balancing purposes. For large generating units typified by Fig. 10, continu-
ously updated vibration peak amplitudes (or RMS values) at the bearings are dis-
played in the plant control room, such as illustrated Fig. 12.

For power plants and large process plants, the traditional control room is be-
ing replaced by a few computer monitors (i.e., a virtual control room) each hav-
ing several operations, control, and condition monitoring menus. Such virtual con-
trol rooms need not be located at the plant site. These new virtual control rooms
are accompanied by super-high-capacity computer data storage units which make
it possible to store digitally all monitored machinery vibration time-base signals
on a continuous basis, for any subsequent analysis purposes. This facilitates in-
troducing the next generation of condition monitoring systems developed on a
model-based evaluation of fault and fault-level probabilities, as illustrated in Fig.
4. For machinery vibration monitoring, the virtual control room monitor has var-
ious operator-selected menus, such as that illustrated in Fig. 13.
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FIGURE 11 Vibration signals all referenced to a single keyphasor.

Copyright © 2001 Marcel Dekker, Inc.



3.2. Monitoring Several Machines at Regular Intervals

Many types of rotating machines are much smaller and more numerous than the
electric power generating unit illustrated in Fig. 10. Unlike modern power plants,
which are typically dominated by a relatively few large machines, many types of
process plants employ several relatively smaller machines too numerous to bear
the costs of continuous vibration monitoring systems for every machine.

The low-cost alternative to continuous vibration monitoring is to take vi-
bration data from machines at designated regular intervals. All vibration monitor-
ing system suppliers now market over-the-shoulder hand-held vibration analyz-
ers that display on-the-spot vibration analysis outputs such as amplitudes (peak,
filtered, RMS, etc.) and FFT spectra. The typical over-the-shoulder unit employs
an accelerometer vibration pickup that a maintenance person can securely touch
against designated vibration monitoring points on each machine that is routinely
checked. Many of these hand-held vibration analyzers are also made to digitally
record and store vibration signals that a single maintenance person can acquire
from several machines in a single pass through an entire plant (e.g., for subsequent
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FIGURE 13 Viewing vibration levels at bearings in the virtual control room.

FIGURE 12 Control room display of current vibration levels at each bearing.
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downloading into a PC for further analysis and permanent data storage). Figure 14
schematically illustrates a typical hand-held vibration analysis /data logger unit.

3.3. Research Laboratory and Shop Test Applications

For laboratory and shop test applications, high-sampling-rate multichannel data
acquisition is now universally done quite inexpensively by installing one or more
analog-to-digital (A-to-D) expansion boards into a standard desktop PC. Major
suppliers of such PC expansion boards also market quite versatile PC software to
capture, store, and reduce measured signals and to perform user-programmed con-
trol operations based on measured signals. Current PC-based high-sampling-rate
multichannel data acquisition setups are quite superior to top-end systems of about
15 years ago and are about 1/20 their cost.

4. SIGNAL CONDITIONING

Raw vibration signals always contain components which are contamination
(“noise”) and frequently some actual components which may partially obscure
other actual components which are the important part the measurements taken.
Thus, the most frequent signal conditioning operation is filtering. A-to-D signal
conversion is unfortunately often the first step in data acquisition, with filtering
then performed computationally from the digitized signal. However, low-pass
analog filtering should be inserted ahead of the A-to-D converter to avoid alias-
ing, which is the “reflection” into the lower end of the spectrum of high-frequency
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FIGURE 14 Portable machinery vibration analyzer and data logger.
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content above the sampling-rate capability of the A-to-D converter. Other fre-
quently performed signal conditioning operations include integration (i.e., to ex-
tract displacement from measured acceleration or velocity signals or velocity from
measured acceleration signals) and signal amplitude conversion.

4.1. Filters

Filters that are most often used with vibration signals include low-pass, high-pass,
band-pass, notch, and tracking filters. Filtering is now routinely performed digi-
tally after A-to-D conversion, but the initial signal must first be passed through an
analog low-pass filter with cutoff frequency sufficiently below the Nyquist fre-
quency (�

1
2

� sampling rate) to eliminate aliasing (false peaks in the FFT amplitude).
The analog filter’s cutoff frequency must be substantially below the Nyquist fre-
quency because no analog filter has a perfect frequency cutoff, i.e., it has its roll-
off above the cutoff frequency.

The low-pass filter is probably the most frequently employed signal condi-
tioning operation in handling machinery vibration measurement signals. For rou-
tine rotating machinery vibration assessments, frequency components above 10
times spin speed are usually not of interest, be they noise or true signal. The low-
pass filter is intended to remove signal content above the designated cutoff fre-
quency and thus passes through the remaining portion of the signal that is below
the designated cutoff frequency. If using a digital low-pass filter, it is assumed that
the original analog signal has already been passed through an analog low-pass fil-
ter to avoid aliasing, as just described. It is important to caution here that the typ-
ical A-to-D expansion board for PCs does not have an analog low-pass filter to
avoid aliasing. However, modern digital tape recorders do (i.e., Sony, TEAC).

The high-pass filter is the converse of the low-pass filter, removing signal
content below the designated cutoff frequency, and thus it passes through the re-
maining portion of the signal that is above the designated cutoff frequency. Since
routine rotating machinery vibration assessments are usually not focused on fre-
quency components above 10 times spin speed, high-pass filtering by itself is not
often used in machinery applications. However, the band-pass filter, which is a
combination of high- and low-pass filtering, is routinely employed in machinery
vibration analyses.

A band-pass filter is designed to remove signal content outside a designated
frequency band and thus is a low-pass filter in series with a high-pass filter, where
the low-pass cutoff frequency is higher than the high-pass cutoff frequency.
Again, if filtering digitally, the original analog signal has first been passed through
an appropriate analog low-pass filter to avoid aliasing. A band-pass filter centered
at rotor speed is a standard operation in rotor balancing, since only the syn-
chronous vibration component is processed for rotor balancing purposes. The fun-
damental basis for this is that balancing procedures are inherently based on the
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tacit assumption that the vibratory system is linear, and thus only the forcing fre-
quency (once-per-rev) vibration amplitude and phase angle are accommodated in
rotor balancing procedures. Synchronous band-pass filtering thus improves bal-
ancing accuracy.

The notch filter is the opposite of the band-pass filter, passing through all
the signal content except that which is within a specified bandwidth. One inter-
esting application is magnetic bearings, which inherently operate with displace-
ment feedback control, where a notch-type filter is frequently used to filter out the
once-per-rev bearing force components so they are not transmitted to the nonro-
tating structure of the machine, while the bearings continue to provide static load
support capacity and damping. The broadband spectra of measured pump impeller
hydraulic forces provided in Fig. 4 of Chapter 6 have the once-per-rev component
removed, i.e., notch filtered.

A tracking filter can employ the functionally of any of the previously de-
scribed filters, but it has the added feature that its cutoff frequency(s) is made to
track a specified signal component. The main application of the tracking filter in
rotor vibration measurement is to have the center-band frequency of a band-pass
filter track the once-per-rev frequency tracked by the keyphaser signal, illustrated
in Fig. 11. This is a standard feature on rotor vibration signal processing devices
as a convenience for tracking synchronous rotor vibration signals as a machine is
slowly brought up to operating speed and is coasting down to shutoff or turning-
gear condition.

Advanced model-based nonlinear denoising filters which do not remove im-
portant low-level signal content, (e.g. chaos) are inherent in the system schemati-
cally illustrated in Fig. 4, from Loparo and Adams (4).

4.2. Amplitude Conventions

When vibration amplitudes are conveyed, one should also specify which ampli-
tude convention is being used. Although rotating machinery vibration signals al-
ways contain frequency components other than just the frequently dominant once-
per-rev (synchronous) component, the single-frequency (harmonic) signal is well
suited for explaining the different vibration amplitude measurement conventions.
The following generic harmonic vibration signal is thus used here.

x � X sin 
t (4)

For a vibration signal comprising only one single harmonic component,
there are two obvious choices for conveyance of the vibration amplitude, single-
peak and peak-to-peak, as follows.

Single-peak amplitude (SP) � X and
peak-to-peak amplitude (PP) � 2X

However, vibration signals frequently contain significant contributions
from more than just one harmonic, often several, and thus an average amplitude
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is frequently used to quatify a broadband vibration signal. The two conventional
average magnitudes are the average absolute value and the RMS average, evalu-
ated over a specified time interval &t as follows.

A � average � �
&

1
t

� 
t�&t

t
� x � dt and

RMS average � �
&

1
t

��

t�&t

t
x2 dt�1/2

For a simple harmonic signal as given in Eq. (4), these two averages yield the fol-
lowing.

A � 0.637 X and RMS � 0.707X

5. SUMMARY

The vitally important function of machinery condition monitoring rests upon the
feasibility of reliable measurement of a machine’s “vital life signs,” of which vi-
bration is among the most important. The traditional use of rotating machinery vi-
bration monitoring is to provide warning if vibration levels become sufficiently
high to potentially damage the machine. While this traditional function of ma-
chinery vibration monitoring is of course still of paramount importance, present
diagnostic methods now allow a much broader assessment of a machine’s condi-
tion from its monitored vibration than just “the vibration level is too large.” Pre-
dictive maintenance is one example of a fast-emerging capability derived from
condition monitoring.
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8

Vibration Severity Guidelines

Considering the extensive technology development efforts devoted to
computing and measuring rotating machinery vibration signals, it has always
struck the author as ironic that when all that is said and done the fundamental
question “at what level does vibration become too much?” is still often left with
an uncertain answer or possibly an answer which is disputed. It parallels the
health industry’s often changing proclamations on how much of certain
“healthy” foods are “enough” and how much of certain “unhealthy” foods are
“too much.” At the present time, severity criteria for rotating machinery vibra-
tion levels are still most heavily governed by experience. Most industrial rotat-
ing machines are not mass produced like consumer products. Therefore, it is not
economically feasible to base the experience factor in rotating machinery vibra-
tion severity criteria on a rich statistical database stemming from controlled test
to damage or destruction of machines at various levels of “excessive” vibration
to quantify statistically how long it takes the vibration to damage each machine
at each tested vibration level.

There are several new rotating machinery products on the horizon for in-
dustrial and consumer applications, such as in the power generation and automo-
tive sectors, that will run at considerably higher rotational speeds than their pre-
sent forebears (to 100,000 rpm and above). Design solutions for next-generation
high-speed rotating machinery will necessitate some fundamental research and
development to more accurately quantify just how much vibration can be contin-
uously endured by a given machine through its lifetime. The quite approximate
upper limits provided by contemporary guidelines will probably be unacceptably
too conservative or otherwise not applicable to next-generation high-speed rotat-
ing machinery.
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1. CASING AND BEARING CAP VIBRATION
DISPLACEMENT GUIDELINES

The first rotating machinery vibration severity guidelines widely used in the
United States are generally credited to T. C. Rathbone (6). His guidelines grew out
of his experience as an insurance inspector on low-speed machines having shaft-
to-housing vibration amplitude ratios typically in the range of 2 to 3. His chart and
subsequent versions of it by others are based on machine casing or bearing cap vi-
bration levels, such as illustrated by the accelerometers on the turbogenerator in
Fig. 10 and the hand-held analyzer in Fig. 14 of Chapter 7.

Current severity guidelines bear a strong resemblance to Rathbone’s origi-
nal chart, i.e., as the frequency is higher, the allowable vibration displacement
amplitude is less. Many of the Rathbone-like charts are misleading by subdivid-
ing the vibration level into too many zones delineated by too many descriptors
such as destruction imminent, very rough, rough, slightly rough, fair, good, very
good, smooth, very smooth, and extremely smooth (in power plant lingo, “smooth
as a baby’s a—”). Such fine striations and descriptors are misleading because they
incorrectly imply that the vibration severity guidelines are based on refined engi-
neering science or finely honed experienced-based knowledge. In fact, severity
guidelines are based on a collective “voting” by rotating machinery builders,
users, and consultants, each having business interests to foster and protect. The
most sensible “descendent” of the original Rathbone chart found by the author is
provided by Eshleman (1) based on that given by the German Engineering Soci-
ety, VDI (7), reconfigured in Fig. 1 to show peak-to-peak vibration displacement
amplitude in both metric and English units.

As labeled in Fig. 1, the sloping straight lines on this log-log graph are lines
of constant velocity. Consistent with this, it is widely accepted that between 10
and 1,000 Hz (CPS), a given velocity peak value has essentially the same measure
of vibration severity. This is a compromise between the vibration displacement
consideration (e.g., rotor-stator rubbing or impacting caused by excessive vibra-
tion displacement) and the vibration acceleration consideration, (i.e., peak time-
varying forces and stresses generated from vibration are proportional to accelera-
tion peak, which is proportional to frequency squared times displacement
amplitude). In the frequency range of 10 to 1,000 Hz, when specifying vibration
level in displacement, one needs to know the frequency in order to assess the
severity, as Fig. 1 demonstrates. Below 10 Hz the measure of vibration severity is
generally characterized by a displacement value, whereas above 1,000 Hz the
measure of vibration severity is generally characterized by an acceleration value.
This is illustrated in the severity guideline in Fig. 2, which has been constructed
to be numerically consistent with Fig. 1.

The same vibration severity guideline is embodied in Fig. 1 and 2 and typi-
cal of severity levels now used for many years to evaluate large turbomachinery,
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FIGURE 1 Bearing cap vibration displacement guideline.

FIGURE 2 Bearing cap vibration velocity peak guideline.
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especially in power plants. Again, one clearly sees the appeal of using velocity
severity levels, since a particular velocity peak value has the same severity inter-
pretation over the entire frequency range of concern for most plant machinery.

2. STANDARDS, GUIDELINES AND ACCEPTANCE
CRITERIA

The many standards, guidelines, and acceptance criteria for rotating machinery vi-
bration levels can be a source of confusion for those charged with making plant de-
cisions based on assessing vibration severity in operating machines. The potential
for confusion is enhanced by the presence of many governing criteria from several
independent groups, as comprehensively surveyed by Eshleman (1976). There are
international groups such as the International Standards Organization (ISO) and the
International Electrical Commission (IEC). There are nongovernment national or-
ganizations such as the American National Standards Institute (ANSI). There are
industry trade organizations such as the National Electrical Manufacturers Associ-
ation (NEMA), the American Petroleum Institute (API), the American Gear Man-
ufacturers Association (AGMA), the Compressed Air and Gas Association, and the
Hydraulic Institute. Various engineering societies, such as the American Society
of Mechanical Engineers (ASME), also have codes and standards for specific types
and classes of rotating machinery that may include vibration criteria. Last but not
least, standards and specifications which encompass “acceptable” vibration levels
are also mandated by the biggest customer of them all, the U.S. government.

In this last category, the U.S. Navy is noteworthy because its vibration ac-
ceptance levels for rotating machinery are significantly lower than those of all the
other major standards. Nongovernment groups of users of rotating machinery
know that to require vibration specification acceptance levels significantly lower
than what the well-designed and well-maintained machine will comfortably settle
into early in its operating life is a large waste of money. In other words, why pay
a significant increase in the purchase price of a new machine so that it can be de-
livered with tested vibration levels significantly lower than what the machine will
comfortably exhibit after a relatively short period of operation? This monetary di-
chotomy between government and nongovernment groups is of course a “bit”
more inclusive than just machinery vibration specification acceptance levels.

Eshleman (1) provides an excellent survey and comparison of the well-rec-
ognized machinery vibration severity level guidelines and acceptance standards.
In many cases, those guidelines and standards have been revised since Eshleman’s
survey was published. A Bibliography Supplement at the end of this chapter pro-
vides a more up-to-date listing, but one should keep in mind that revisions are an
ongoing process.

To apply, as intended, a specific rotating machinery vibration criterion
(guideline or standard) one must carefully study its documentation, because there
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are a number of important factors which are not uniformly handled across the
many guidelines and standards. For example, some criteria are based on the vi-
bration RMS average (possibly filtered) and some are based on single-peak or
peak-to-peak values. Some are based on bearing cap (or casing) vibration level,
while others are based on shaft peak-to-peak displacement relative to the bearing
or shaft total vibration. Furthermore, the various criteria usually distinguish be-
tween so-called flexible supports and rigid supports, i.e., whether the support’s
lowest resonance frequency is below or above the operating speed of the machine.
Also, the relative mass of the rotor to the stator is an important variable that sig-
nificantly affects application of some criteria, although this is not always stipu-
lated in various standards and guidelines. Whether from a vendor’s or a pur-
chaser’s perspective, to help remove potential confusion for one who must apply
a given guideline or standard, the article by Eshleman (1) and the book by Mitchell
(5) provide good complementary reviews.

3. SHAFT DISPLACEMENT CRITERIA

Virtually all major turbomachines using fluid-film bearings now have continuous
monitoring of shaft orbital x-y displacements relative to the bearings (see Fig. 10,
Chapter 7). Turbomachines have quite small radial rotor-stator clearance gaps,
e.g., at the journal bearings, annular seals, impeller rings, balance drums, and
blade-tip clearances. Thus, rotor-to-stator vibration displacement is important for
evaluation of turbomachines’ vibration severity.

By necessity, displacement transducers are located only near the bearings,
because that is where there is access to the rotor and that is where the sensors can
survive. Vibration displacement at midspan locations between the bearings would
be more informative for vibration severity assessments, i.e., small rotor-stator an-
nular radial clearance gaps. But midspan locations are inaccessible and environ-
mentally too hostile for proximity probes and cables to survive. Assessment of vi-
bration severity levels from proximity probe displacement outputs at the bearings
should therefore be interpreted with due consideration given to the vibration dis-
placement mode shape of the rotor, such as from a rotor response simulation (see
Chapter 4). The extreme example to demonstrate this point is where rotor flexi-
bility produces a rotor vibration displacement mode shape with nodal points near
the bearings. Then the rotor vibration displacement amplitude at the bearings is
relatively small even when the midspan amplitudes are sufficiently high to cause
accelerated wear at the small rotor-stator annular radial clearance gaps and suffi-
ciently high to initiate a failure in the machine. Actually, it is a deficient design
that operates continuously with vibration nodal points near the fluid-film radial
bearings, because the fluid-film bearings are usually the primary source of rotor
vibration damping; i.e., there is no damping unless the dampers are “exercised.”
Thus, it is not difficult to visualize two contrasting machines where the one with
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a substantially higher rotor vibration at the bearings is the significantly “happier”
machine than the one with relatively low rotor vibration at the bearings.

As discussed in Sec. 1 in Chapter 7 (see Fig. 4), one of the side benefits of
a model-based diagnostics approach is the real-time combination of displacement
measurements at the bearings with a simulation model observer to construct rotor
vibration displacement signals at midspan locations. That is, the model-based ap-
proach provides “virtual sensors” at inaccessible rotor locations. As covered in
Chapter 9, measurement of rotor-to-stator vibration displacement adds consider-
ably to the mix of valuable rotating machinery diagnostics information. However,
its interpretation for severity assessment purposes is not as simple as is implied by
the use of vibration levels based on bearing cap vibration, e.g., Fig. 1 and 2. A
meaningful severity interpretation of rotor-to-stator vibration displacement mea-
surements needs to be “calibrated” by information on the machine’s vibration dis-
placement shape of the rotor. The proliferation of severity standards and guide-
lines, as listed here in the Bibliography Supplement, is an attempt by builder
and user groups to address this and other machine-specific severity-relevant dif-
ferences.

One assessment of rotor-to-stator vibration displacement at the bearings is
based on time-varying bearing loads derived from the measured journal-to-bear-
ing (J-to-B) displacement. A severity criterion can thereby be based on the fatigue
strength of the bearing inner surface material (e.g., babbitt). McHugh (4) shows a
procedure using this approach. This approach, however, does not address the ab-
sence of midspan vibration displacement measurements. An experience-based
guideline from Eshleman (3) is tabulated below.

Condition: (R � peak-to-peak J-to-B displacement,C � dia. bearing clearance)

Plan Immediate
Speed Normal Surveillance shutdown shutdown

3,600 rpm R/C � 0.3 0.3 � R/C � 0.5 0.5 � R/C � 0.7 R/C � 0.7
10,000 rpm R/C � 0.2 0.2 � R/C � 0.4 0.4 � R/C � 0.6 R/C � 0.6

4. SUMMARY

When supplying or purchasing a new machine, the allowable vibration levels
mandated by the purchase specification provide definite values, whether based on
a conservative or a not so conservative standard. However, the application of vi-
bration severity guidelines can become a difficult “call” later on when the ma-
chine is out of warranty and its vibration levels have increased above the purchase
specification level but are still below the alarm or mandatory shutdown (trip) lev-
els such as illustrated in Fig. 1 of Chapter 7. The bearing cap vibration severity cri-
teria contained in Fig. 1 and 2 here are not conservative compared to many pur-
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chase specification acceptance levels but are realistic for subsequent operating cri-
teria of many machines.

Rotor-to-stator vibration displacement measurements add considerably to
the mix of valuable monitoring and diagnostics information, as described in Chap-
ter 9. But their use for severity assessment purposes is not any simpler than sever-
ity criteria based on bearing cap vibration levels. A complete vibration severity in-
terpretation of rotor-to-stator vibration displacement measurements needs
“calibration” by information on the vibration displacement mode shape of the ro-
tor so that midspan rotor-to-casing vibration displacement amplitudes can be rea-
sonably estimated. For additional information on vibration severity levels in ro-
tating machinery, Eshleman (2) provides a practical and broad treatment.
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9

Signal Analysis and Identification of
Vibration Causes

1. INTRODUCTION

The most fundamental assessment of monitored rotating machinery vibration is of
course provided by the ever important factors illustrated in Fig. 1, Chapter 7. That
is, how large is the vibration and how is it trending? For those who are operating
a vibration problem machine on a day-to-day basis, these two pieces of vibration
information are often all that the operators use to make operational decisions.
However, over the last 20 years the quite advantageous application of fast Fourier
transform (FFT) spectrum analysis in troubleshooting rotating machinery vibra-
tion problems has sensitized the general community of plant operators to the con-
siderable value of vibration signal analyses in diagnosing the source of vibration
problems whose solutions would otherwise be far more elusive. As illustrated in
Fig. 14, Chapter 7, portable hand-held vibration analyzers/data loggers are now
pretty standard maintenance and troubleshooting tools in many types of machin-
ery-intensive plants. There are other less commonly used signal analysis tools that
are now beginning to find their way into rotating machinery vibration analysis.
This chapter has the dual objectives of introducing (a) the frequently used and
presently emerging machinery vibration signal analysis tools and (b) the use of
these tools combined with accumulated industry-wide experience to help identify
specific sources of vibration.

2. VIBRATION TRENDING AND BASELINES

Even in the healthiest operating machines, monitored vibration signals may tend
to migrate in amplitude and phase angle, even while remaining within a baseline
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“envelope” of acceptable vibration levels. Such benign changes are normal effects
of changes in operating conditions, e.g., thermal transients, load changes, normal
wear, and fluctuations in the machine’s overall environment. On the other hand,
when the monitored vibration signals begin to grow in amplitude beyond the es-
tablished baseline levels for a given machine, that trend should be carefully fol-
lowed by the plant operators to continually assess the potential need for (a) tem-
porary changes of the machine’s operating conditions, or (b) a scheduled early
outage of the machine for corrective actions, or (c) an immediate shutdown dic-
tated by rapidly increasing vibration amplitudes. When a machine’s vibration lev-
els begin to grow beyond its established baseline levels, some problem within the
machine is beginning to emerge and growth in vibration levels is often not the only
symptom of the underlying problem. Once attention is focused upon a machine
beginning to show an upward trend in vibration levels, various vibration signal
analysis tools are now commonly used to seek identification of the root cause(s).
Frequently used and presently emerging machinery vibration signal analysis tools
are introduced in the next sections of this chapter, followed by a section on the use
of these tools to help identify specific sources of vibration.

3. FFT SPECTRUM

The invention in the mid-1960s of the FFT algorithm made feasible the modern
real-time spectrum analyzer, which transforms time-varying signals from the time
domain into the frequency domain and thereby provides a continuously updated
on-the-spot picture of a signal’s frequency makeup. In modern times prior to FFT
spectrum analyzers, the primary real-time on-the-spot display of vibration signals
was in their natural time domain, typically using an oscilloscope.

The mathematical basis for spectrum analysis is the Fourier integral, which
was provided by the mathematician Joseph Fourier in the early 1800s, long before
modern rotating machinery. However, in modern times prior to the FFT algo-
rithm, which utilizes modern digital computational methods, the transform of a
measured time-base signal into the frequency domain required costly “off-line”
processing with slow turnaround. Specificially, a taped recording of the analog
signal was processed through several narrow-bandwidth analog filters (Sec. 4 in
Chapter 7) with center-band frequencies spanning the relevant frequency range.
Pre-FFT spectrum analyzers were cumbersome pieces of electronic equipment to
operate successfully, requiring a technician experienced in how to tune and adjust
the bandwidth filters to achieve optimum results for a given time-base signal
record. Understandably, pre-FFT spectrum analysis was very sparingly used. The
mathematical details of Fourier series, Fourier integrals, and FFTs are now stan-
dard parts of the mathematics component in college engineering curricula and are
well covered in numerous mathematical and engineering analysis textbooks and
handbooks. In the interest of space and brevity, these mathematical details are not
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covered here. Instead, a more heuristic explanation of spectrum analysis is given
here to aid the machinery vibration practitioner in understanding the direct con-
nection between a time-base signal and its frequency spectrum.

The practical underlying idea of the Fourier transform is that a function
(e.g., time-base signal) can be constructed from a summation of sinusoidal func-
tions with a continuous distribution of frequency from zero to a suitable cutoff fre-
quency. For a periodically repeating signal or a defined period, a simpler, more re-
strictive version of this (the so-called Fourier series) is applicable and sums
sinusoidal components only at a discrete set of frequencies which are the integer
multiples (n � 1, 2, . . .) of a designated base frequency �1 � 2!/#, where # � du-
ration of one period. Although machinery vibration signatures often contain only
a limited number of significant harmonic components, their frequencies are often
not all integer multiples of a single base frequency, and therefore the Fourier trans-
form, not the Fourier series, is the appropriate tool to map rotating machinery vi-
bration signals from the time domain into the frequency domain.

Figure 1, fashioned after a similar illustration in Mitchell (16), provides a
visual connection between a function of time, X (t), and its Fourier transform or
frequency spectrum. As illustrated, only a few harmonics added together readily
produce a time trace from which it is difficult to directly view or identify individ-
ual contributing components. By transforming the signal into the frequency do-
main, the contributing components are readily identified.
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FIGURE 1 Illustration of an oscillatory signal’s frequency spectrum.

Copyright © 2001 Marcel Dekker, Inc.



Since the development of the FFT algorithm, spectrum analysis of time-
base signals has permeated many fields of investigation, especially in diagnosing
and troubleshooting vibration problems. In teaching students the practical insight
of using FFT signal analysis in vibration problems, the author uses the analogy of
the modern paint color mixing apparatus used at retail paint stores. The frequency
spectrum of a time-base signal is analogous to a virtually instantaneous process
that would identify all the base color components and their respective proportions
from a sample of an already mixed paint. Adding up a known ensemble of sinu-
soidal functions is analogous to adding the prescribed proportions of each base
color for a given paint specification, whereas obtaining the frequency spectrum of
a multicomponent time-base signal is analogous to figuring out the color compo-
nents or proportions from the already mixed paint.

The spectrum of a vibration signal measured on a rotating machine is typi-
fied by the example in Fig. 2. The 1N (once-per-revolution or synchronous) fre-
quency component is often the largest because of the ever present residual rotor
mass unbalance. Harmonic components with frequencies which are integer multi-
ples (2N, 3N, . . .) of the rotational speed are frequently present, usually at rela-
tively small amplitudes. Harmonics at subsynchronous frequencies are also often
encountered, from a small percentage of the rotational speed to only slightly less
than the 1N component.

4. ROTOR ORBIT TRAJECTORIES

The example shown in Fig. 2 of a frequency spectrum for a vibration signal can be
based on displacement, velocity, or acceleration. As described in the last section of
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FIGURE 2 Example spectrum of a rotating machinery vibration signal.
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this chapter, there is now a considerable wealth of experience and insight in using
such spectra for diagnosing sources of machinery vibration problems. Specifically
for lateral rotor vibration (LRV), rotor orbital vibration displacement trajectories
provide an additional diagnostic information component for the troubleshooter to
analyze when seeking to identify the nature and cause of a rotating machinery vi-
bration problem. Several examples of rotor orbital vibration trajectories are illus-
trated and described in earlier chapters of this book. In Chapter 4, which is essen-
tially a user’s manual for the RDA Code supplied with this book, the discussions
pertaining to Fig. 4 through 10 provide a primer for this section. An understanding
of the topics covered in Sec. 4 of Chapter 2 further facilitates adroit use of rotor or-
bital displacement trajectories in identifying rotor vibration types and sources.

The primary method now widely used to measure rotor orbital displacement
trajectories is the inductance (eddy-current) noncontacting position sensing sys-
tem described in Sec. 2, Chapter 7. Proximity probes for this type of system are
commonly installed on major rotating machinery in power plants, petrochemical
plants, and others for continuous monitoring and diagnostic purposes. As typified
by Fig. 9a in Chapter 7 a pair of proximity probes positioned 90° apart are located
at each of a number of accessible axial locations (usually at the radial bearings) as
illustrated in Fig. 10 in that chapter. By feeding the conditioned output signals
from an x-y pair of probes into the x and y amplifiers respectively of a dual-chan-
nel oscilloscope, the real-time rotor orbital trajectory can be displayed. Thus, one
can measure and display in real time the rotor vibration orbits that are computa-
tionally simulated from rotor vibration models as demonstrated in Chapter 4 us-
ing the RDA Code.

Proximity probes are typically mounted at journal bearings and then mea-
sured orbits of the shaft are relative to the bearing (refer to Fig. 4 in Chapter 4).
There is now a considerable wealth of accured experience and insight in using the
geometric properties of rotor vibration orbits for identifying the nature and source
of machinery vibration problems. Furthermore, the presence of numerous quite
small rotor-to-stator annular radial clearance gaps, such as in turbomachinery,
makes rotor-to-stator relative vibration displacement orbits important information
in assessing the well-being of a machine.

In seeking to devise a suitably accurate computer simulation model for trou-
bleshooting purposes, comparison of predicted and measured LRV orbits of a
troubled machine is of course a proper scientific approach in “fine-tuning” a
model for subsequent “what if” studies. However, it is important to realize that the
noise-free single-frequency elliptical orbits from linear response computer simu-
lations, such as illustrated in Fig. 5 through 9 in Chapter 4, are much “cleaner” pic-
tures than are typically obtained for actual measured orbits from unfiltered dis-
placement signals. Low-pass filtering of raw signals to remove high-frequency
components and noise is a first step in “cleaning up” the measured orbit display.
Proximity probe signal processing instruments typically have a tracking filter op-
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tion (Sec. 4, Chapter 7) synchronized by the keyphaser signal (Fig. 11, Chapter 7)
to track the rotational speed frequency and thus provide a “clean” synchronous or-
bit picture which is comparable to the noise-free single-frequency elliptical orbits
from a corresponding computational simulation. Figure 3 illustrates two typical
measured synchronous rotor vibration orbits, before filtering and after syn-
chronous bandwidth filtering.

When significant nonsynchronous orbit frequency components are present,
synchronous bandwidth filtering is ill advised in general troubleshooting because
it removes the subsynchronous and higher harmonic components such as captured
in the FFT illustration of Fig. 2. On the other hand, for rotor balancing purposes,
since only synchronous vibration components are used in the balancing procedure,
synchronous bandwidth filtering is naturally applicable. Figure 4 illustrates an or-
bit with a period of two revolutions, containing synchronous and one-half syn-
chronous components, the orbit being typical for cases where the one-half syn-
chronous component is largest.

Subsynchronous rotor vibrations are often associated with instability self-
excited rotor vibrations. The example shown in Fig. 4 is for the particular case
where the subsynchronous component is exactly one-half the spin speed and thus,
being a periodic motion, is easy to illustrate. In contrast, subsynchronous rotor vi-
brations are more often not at an integer fraction of the spin speed, and thus the
motion is not strictly periodic. The real-time orbit display then may look similar
to that in Fig. 4 but will have an additional unsteady “bouncing” motion to it due
to its nonperiodic character. An additional unsteadiness is also common because
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FIGURE 3 Illustrated examples of measured rotor synchronous orbits. (a) For-
ward whirl; (b) backward whirl.
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instability self-excited rotor vibrations are themselves often unsteady, as easily
observed from a real-time continuously updated FFT that shows the subsyn-
chronous component significantly changing its amplitude (up and down) from
sample to sample on the spectrum analyzer display.

Referring to the example frequency spectrum in Fig. 2, a word of caution is
in order when observing integer harmonics of the synchronous frequency (2N, 3N,
. . .) if the signals are proximity probe displacement signals. As described in Sec.
2, Chapter 7, proximity probe systems produce a fictitious additive vibration com-
ponent from “electrical run-out” caused by the shaft’s circumferential variations
in surface conditions, electrical conductivity, and permeability. It is now a stan-
dard procedure in plants to take a low-speed output signal for each probe, such as
while the machine is slowly rotated on turning-gear mode, and to consider the
once-per-rev component of that signal (amplitude and phase angle) as the electri-
cal run-out component, which is then stored and automatically subtracted in real
time from the raw signal in normal operation. However, based on the research of
Horattas et al. (1997) discussed in Sec. 2 of Chapter 7, proximity probe electrical
run-out signals are definitely far from sinusoidal, i.e., not a single 1N harmonic.
Thus, integer harmonics of the synchronous frequency (2N, 3N, . . .) are generally
contaminated by electrical run-out components even when using the standard pro-
cedure, which removes only the synchronous component of the electrical run-out.
As shown by Horattas et al., digitally subtracting out all the electrical run-out re-
moves all its harmonics, but this is not generally done in plants thus far. With pre-
sent microprocessors it is easy to remove the first 5 or 10 electrical run-out har-
monics in real time, and this feature will be seen as more relevant with the
monitoring and diagnostic function now becoming utilized intensively in predic-
tive maintenance and troubleshooting.

Having reliable vibration baseline data for a machine, subsequent incre-
mental changes to integer-multiple harmonics of spin speed can reasonably be at-
tributed to changes in the vibration spectrum apart from any contamination origi-
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FIGURE 4 Measured orbit with synchronous and one-half synchronous com-
ponents.
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nating with the electrical run-out harmonics. When a machine’s vibration levels
are within safe conservative levels and running in good condition, the rotor vibra-
tion is likely to be well characterized by linear dynamic behavior and integer-mul-
tiple harmonics of the spin speed are then more likely to be relatively quite small.
When single-frequency dynamic linearity predominates, the rotor orbits are es-
sentially synchronous ellipses. But when a significant nonlinear influence mani-
fests itself, one or more higher harmonics (2N, 3N, . . .) and one or more subhar-
monics (N /2, N/3, . . .) in the synchronous frequency range can become
significant. A number different abnormal conditions can give rise to significant
dynamic nonlinearity in the rotor dynamical system, as described in Sec. 5, Chap-
ter 2. Therefore, the vibration harmonics of spin speed can often be valuable in-
formation utilized in troubleshooting rotating machinery problems.

Figure 5 illustrates an important example where some progressively wors-
ening influence in the machine causes a progressively increasing static radial force
on the rotor (and thus bearings) which leads to nonlinear behavior. For example,
increased static radial load could develop on a centrifugal pump impeller (Sec. 1,
Chapter 6) as internal stationary vanes and/or impeller vanes become damaged,
e.g., by cavitation, improper operation of the pump, or poor hydraulic design. In-
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FIGURE 5 Filtered orbit and FFT with increasing radial load or misalignment. (a)
Nominal radial load; synchronous linear motion. (b) Moderate radial load in-
crease; synchronous linear motion. (c) Substantial radial load; nonlinear motion
with some 2N. (d) Very high radial load, nonlinear motion with high 2N.
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ternally generated static radial loads act similar to internal radial misalignment,
e.g., from casing thermal distortions.

Basically what Fig. 5 illustrates is what can happen to the normal unbalance
forced vibration of the shaft orbital motion due to increased journal bearing dy-
namic nonlinearity as a progressively worsening static radial load and/or mis-
alignment emerges over time. As the shaft orbit changes from the normal ellipti-
cal shape to a “banana” shape to a “figure eight” shape, it reflects the progressive
increase of the 2N harmonic. Similar distortions to the normal elliptical orbits can
also result from other higher order harmonics (3N, 4N, . . .) of spin frequency.
Higher journal bearing static loads produce higher journal-to-bearing eccentricity,
resulting in increased bearing film dynamic nonlinearity. Therefore, an emerging
rich spectrum of higher harmonics can be an indication of excessive radial loads
and/or misalignments.

As stated earlier in this section, subharmonics (N/2, N/3, . . .) of the spin fre-
quency can become present with rotor dynamical nonlinearity, and an important
example of this is an extension of the “story” already told by the filtered signals
in Fig. 5, which typify worsening conditions as monitored at normal operating
speed. What probably happens to orbital vibration of such a machine when it goes
through speed coast-down is illustrated in Fig. 6, fashioned after a case in Bently
and Muszynska (5).
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FIGURE 6 Changes with high radial load or misalignment during coast-down.
(a) Filtered journal orbit and FFT at normal operating speed (5413 rpm); (b) fil-
tered journal orbit and FFT during coast-down at 4264 rpm.
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The journal vibration orbit in Fig. 6a is a slightly different version of the
“figure eight” orbit in Fig. 5d, resulting from a high degree of bearing film dy-
namic nonlinearity associated with high static radial bearing load and/or mis-
alignment. As this machine coasted down (see Fig. 10), a significant increase in
overall rotor vibration levels was encountered between 4,500 and 4,100 rpm, as
shown by Bently and Muszynska (5). The orbit and its FFT spectrum at 4,264
rpm are a clear “picture” of what is occurring in the 4,500 to 4,100 rpm speed
range. At 4,264 rpm the spin speed traverses twice the 2,132 cpm unbalance res-
onance frequency, i.e., half the spin speed. Significant bearing dynamic nonlin-
earity from high radial static load and/or misalignment plus the inherent char-
acteristic of the journal bearings to have low damping for subsynchronous
frequencies combine to produce a dominant �

1
2

�N subharmonic vibration compo-
nent in the speed neighborhood of 4,264 rpm. As the orbit in Fig. 6b clearly
shows, the significant increase in overall rotor vibration level near this speed
causes strong rotor-stator rub-impacting at the monitored bearing journal or a
nearby seal. Once rub-impacting occurs, the dynamic nonlinearity increases
even further, synergistically working to maximize the �

1
2

�N vibration amplitude
through what is tantamount to a so-called nonlinear jump phenomenon, similar
to that analyzed by Adams and McCloskey (3) and shown here in Fig. 17, Chap-
ter 2.

The orbital vibration illustrated in Fig. 4 and the field measurement case
shown in Fig. 6b both have a period of two revolutions but are significantly dif-
ferent in a fundamental way. In Fig. 4, the illustrated motion is the simple sum-
mation of two harmonic motions that have exactly a 2:1 frequency ratio. In the
Fig. 6b case, however, the motion has a rich spectrum of harmonics of the N/2
component, because the sharp redirection of the orbital trajectory in and out of the
rub-impacting zone needs several terms in its Fourier series to add up accurately
to the orbit shape. The spectrum shown in Fig. 6b has been truncated beyond the
2N component, but the actual spectrum is richer.

It has been well known for over 40 years that large two-pole AC generators
with relatively long bearing spans, having significant midspan static deflection,
must have a series of radial slots cut along the generator rotor to make its radial
static deflection characteristic as close to isotropic as is practical (Sec. 8, Chapter
12). Otherwise, an intolerably high 2N vibration would occur, as inadvertently
discovered on early large steam turbine-generators in the 1950s. A similar
anisotropic rotor stiffness develops when a crack has propagated partway through
the shaft, and so proper capture of the 2N component of rotor vibration can pro-
vide a primary symptom of a cracked rotor. Furthermore, trending the 2N compo-
nent over time can aid in assessing the propagation rate and extent of the crack,
e.g., how many more hours or days it will take for the shaft to fail. Muszynska (17)
provides insight from tracking the 1N and 2N rotor vibration measurements on ro-
tors with slowly propagating cracks, showing how it is possible in some cases to
make an early detection of a slowly propagating material crack through the shaft.
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Muszynska describes a troubleshooting case study, using orbits, combined with
the additional tools of Bode, polar, and cascade plots.

Acquiring rotor vibration orbits with permanently installed proximity probe
systems for continuous vibration monitoring on major machinery, as typified in
Fig. 10, Chapter 7, has a monetary cost not deemed justified for many other rotat-
ing machines, although many older machines with valuable remaining operating
lives are now retrofitted with proximity probe shaft vibration monitoring systems.
More typically, a check of vibration characteristics is routinely collected at regu-
lar time intervals using portable hand-held vibration analysis./data logger units as
illustrated in Fig. 14, Chapter 7. When vibration problems are detected, however,
effective troubleshooting can usually be significantly helped by temporarily in-
stalling x-y proximity probes at one or more accessible shaft locations.

5. BODE, POLAR, AND SPECTRUM CASCADE PLOTS

The term Bode diagram is from the field of feedback control, referring to a plot
of phase angle between harmonic input and output signals versus frequency.
Many in rotating machinery vibration have adopted this term to describe steady-
state vibration response amplitude and phase angle versus rotational speed. The
well-known plot of steady-state vibration amplitude and phase angle versus fre-
quency for a one-degree-of-freedom (1-DOF) system excited by a sinusoidal
force is shown in Fig. 4 of Chapter 1 and could be similarly labeled as its Bode
diagram. Figure 7 illustrates a “Bode plot” of a rotor vibration signal’s steady-
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FIGURE 7 Bode plot of a rotor vibration signal on speed-up or coast-down.
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state response during a gradual roll-up to operating speed or a coast-down from
operating speed, as it passes through a critical speed near 1,000 rpm. Similar to
the steady-state response for the harmonically excited underdamped 1-DOF sys-
tem (Fig. 4, Chapter 1), passage through critical speeds is typically characterized
by a local peak in vibration amplitude and a phase angle shift of approximately
180°. As covered in Sec. 3, Chapter 1, underdamped natural modes of multi-
DOF systems each behave similar to a 1-DOF system, so the similarity in
steady-state response is natural. Rotor unbalances, which excite critical speeds,
are in fact like synchronous harmonic excitation forces and differ from the 1-
DOF harmonic excitation force only in that the unbalances’ force magnitudes
vary as the square of the rotational speed (i.e., unbalance force magnitudes
�
2).

On complex machines, phase angle shifts through critical speeds may not be
as close to a 180° shift as shown in Fig. 7. For the 1-DOF system, the phase angle
in Fig. 4, Chapter 1, is the phase lag of the steady-state vibration harmonic dis-
placement behind the harmonic excitation force and thus shifts from 0 to 180° ver-
sus frequency through the natural frequency. On the other hand, unbalance syn-
chronous response signals of rotors are time (phase) referenced to a specified
angular location on the rotor (keyphaser mark), and thus the phase shift through
resonance is not specifically referenced to zero. On very well balanced rotors, the
shift in phase angle through a critical speed may be easier to detect than the speed
at which the rotor vibration peaks.

The same information plotted in Fig. 7 is replotted in polar form in Fig. 8.
The polar plot of steady-state vibration is a compact and visually revealing way
to present vibration measurements as a function of rotational speed, as a function
of time, or as a function of some other parameter in which vibration changes are
to be analyzed (see example in Fig. 2, Chapter 12).
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FIGURE 8 Polar plot of steady-state vibration amplitude and phase angle.
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A cascade plot is a contour-map presentation of vibration amplitude (con-
tour elevation) versus frequency (horizontal axis) versus spin speed (vertical axis),
providing an insightful and revealing “picture” of a machine’s rotor vibration
characteristics over its entire speed range. Cascade plots can be “busy” when a
multitude of vibration frequencies are present. Fig. 9 shows a cascade plot which
is interesting but not overly busy.

Figure 9 shows a typical case of encroachment upon the oil-whip threshold
speed, discussed at length in Sec. 4, Chapter 2. As typical, the subsynchronous
self-excited rotor vibration mode is the “same” forward whirling mode as that syn-
chronously excited by unbalance at the first critical speed. The first critical speed
mode does not necessarily have exactly the same frequency as when it becomes
the self-excited mode at the oil-whip threshold speed, for two reasons. First, the
journal bearing effective oil-film stiffness will be somewhat different at the oil-
whip threshold speed than at the critical speed. Second, when oil whip occurs, the
typically high orbital vibration amplitudes may produce a frequency increase con-
sistent with achieving a nonlinear limit cycle if the journal orbit fills up most of
the bearing clearance circle. As the plot in Fig. 9 shows, once oil whip is initiated
as speed is increased, the oil-whip whirl frequency stays locked onto the self-ex-
cited mode’s frequency.
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FIGURE 9 Cascade of passage through first critical speed to oil-whip onset.
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A second type of cascade plot, fashioned after an example of Bently and
Muszynska (5), is shown in Fig. 10. It is the same coast-down case previously dis-
cussed from the rotor orbits and FFTs presented in Fig. 6. The significant vibra-
tion increase between 4,500 and 4,100 rpm is dominated by the N/2 component as
Fig. 10 also clearly shows.

The derivation that accompanies Fig. 6 in Chapter 4 shows that any har-
monic orbit (i.e., ellipse) can be composed of a forward-whirl circular orbit plus
a backward-whirl circular orbit of the same frequency. The cascade plot in Fig.
10 delineates the forward and backward circular-whirl components for each har-
monic, in contrast to Fig. 9, which is the more common cascade plot, being
based on a single time-base signal. On comparing the relative amplitudes of the
forward and backward components, the rotor whirl direction for a given har-
monic at a specific speed is apparent. Also for a particular harmonic and speed,
the major and minor axes of the corresponding orbit ellipse are apparent since
the major axis is the sum of the two circular orbit radii and the minor axis is the
absolute value of their difference. Thus, the type of cascade plot illustrated in
Fig. 10 is an excellent way to include orbit characteristics, making the “picture”
complete. A final interesting observation can be made from the actual coast-
down case shown in Fig. 10. That is, when the rub-impacting occurs around
4,264 rpm, Fig. 6b, the 3N/2 harmonic is essentially present only in the back-
ward-whirl circular orbit component.
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FIGURE 10 Cascade for field measurement case shown in Fig. 6.
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The next two sections treat “advanced” signal analysis methods which have
not yet been widely applied in industrial applications but are described here to
show where future machine condition analysis innovations lie.

6. WAVELET ANALYSIS TOOLS

Over the last 20 years wavelets, which are also called wavelet transforms, have
emerged through a confluence of ideas and techniques from such diverse fields as
pure mathematics, quantum physics, and electrical engineering. The collection of
theory and computational methods now known by the label wavelets has recently
become a mature topic in some “cutting edge” applications. Some specific appli-
cations include (a) computer vision systems that process variations in light inten-
sity at several resolution levels, similar to how animal and human vision is now
postulated to function; (b) digital data compression of human fingerprint images;
(c) denoising contaminated time-base signals; (d) detecting self-similar behavior
patterns in time-base signals over a wide range of time scales; (e) sound synthe-
sis; and (f) photo image enhancements. A number of books on wavelets have been
published, but most of these are suitable reading primarily for applied mathemati-
cians and signal analysis specialists. The author has found a few publications
which are potentially fathomable by the more mathematically inclined engineers,
and these include the article by Graps (11) and the books by Chui (6) and Kaiser
(12). Currently marketed machinery condition monitoring systems do not typi-
cally utilize wavelet transforms, but the author’s exposure to wavelet transforms
has led him to believe that the capability of next-generation machinery condition
monitoring systems will be considerably advanced by their use, once wavelets and
their advantages are familiar to machinery vibration engineers. The important im-
plications of wavelets for future rotating machinery vibration-based trouble shoot-
ing justifies including here a short readable description of wavelet transforms, to
introduce vibration engineers to the topic.

Wavelet transforms (WTs) are a powerful extension of the Fourier transform
(FT), the basis for FFT-generated spectra. Computationally fast numerical algo-
rithms are now readily available for wavelet transforms as well, i.e., FWT (fast
Wavelet transform), and are quite similar in their details to FFT algorithms. These
two types of transforms are in fact also similar in a fundamental way, and thus the
description here of wavelets is keyed to the similarity between the FT and WTs.

When frequency content (spectrum) of a time-base function x(t) is of inter-
est, the first inclination is to compute the Fourier transform, which is represented
by a complex function of frequency, X (
), used to describe the amplitude and
phase angle of a sinusoid. This is expressed as follows.

X (
) � 
,

�,
x(t)e�i
t dt (1)
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Just as the various harmonic frequency components are difficult to see with
a glance at a time signal x(t ), the time-base information contained in X(
) is dif-
ficult to see because it is “hidden” in the phase of X(
). The desirability of time
localizing spectrum information (time-frequency localization) in some signal
analysis applications has made the windowed Fourier transform (WFT) the pri-
mary tool for such needs ever since the development of the FFT algorithm. Time-
frequency localization is similar to the music notes written on a sheet of music,
which show the musician when (time information) to play which notes (frequency
information). A wavelet transform can also be viewed as a time-frequency local-
ization, and thus reviewing the WFT is a first stepping stone to understanding
wavelets; see Daubechies (8).

The function x(t ) is “windowed” by multiplying it by a time window func-
tion w (t ) of a specified time duration t0, usually with “smooth” edges. This “lifts
out” the piece of x(t ) for the time interval prescribed by the window function, as
illustrated in Fig. 11, similar to Daubechies (8). This process is successively re-
peated to span the specified time range of x (t ), with each successive time window
shifted by t0 from the preceding window. Following from Eq. (1), a WFT Xmn(
)
for each successive nth window is obtained for each of a succession of progres-
sively higher frequency localizations as set in the following equation by the index
m (
0 and t0 fixed).

Xmn(
) � 
nt0�&T

nt0�&T
x(t)w(t � nt0)e�im
0t dt (2)

&T � t0 /2, m and n are the real integers �n � 0, 1, 2, . . ., N and �m � 0, 1, 2, .
. ., M.

The family of WFTs given by Eq. (2) can be considered as inner products
of x(t) with the family of functions wmn(t) defined in the following equation.

wmn(t) � e�im
0tw (t � nt0) (3)
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FIGURE 11 Time windowing of a function of windowed Fourier transform.
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As illustrated in Fig. 12, wmn(t) is a windowed sinusoidal oscillation with a fre-
quency of m
0, an amplitude of w, and a time shift of nt0.

As shown generically in the following equation, a wavelet transform Wmn is
similar to a WFT because it is formed from an inner product of x(t) with a se-
quence of wavelet functions "mn(t), where m and n likewise indicate frequency
and time localizations, respectively.

Wmn � 
t2

t1

x(t) "m,n(t) dt (4)

The wavelet functions "mn(t ) are localized in time and frequency, similar to the
windowed functions wmn(t) in the WFT. Also similar to wmn(t), each "mn(t) in-
tegrates to zero over its respective time duration, which means it has at least
some oscillations. However, wavelet functions "mn(t) have a basic property
which sets them apart from the WFT functions wmn(t). "mn(t) are generated so
that the time window interval width is inversely proportional to the localized fre-
quency and thus translated proportionally to its width. In contrast, a given set of
WFT wmn(t) functions all have the same width of time interval. This basic prop-
erty of wavelets makes them ideally suited to analyze signals having highly con-
centrated (time localized) high-frequency components superimposed on longer
lived low-frequency components. This property of wavelets is observed from
their basic mathematical specification, given in the following equation and de-
lineated in the next paragraph.

"mn(t) � a0
�m /2"(a0

�mt � nb0) (5)

Similar to t0 and 
0 in Eq. (2), a0 and b0 � 0 are fixed, and m and n are as
specified for Eq. (2). For m � 0 (higher frequency oscillations in ") the oscilla-
tions are packed into a smaller time width, whereas for m � 0 (lower frequency
oscillations) the oscillations are packed into a larger time width. For a given m, the
"mn are time translates of "m0 (n � 0), with each successive time-shift transla-
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FIGURE 12 Illustration of a member of the function family wmn (t ).
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tion of magnitude na0
mb0. In the terminology of signal analysis specialists, this

generation of a family of wavelet functions "mn is said to be formed by a sequence
of dilations and translations of the analyzing wave or mother wave, "(t). There
are now several recognized “mother waves,” usually named for their respective
originators. Furthermore, unique mother waves can be formulated for optimum
suitability to specific applications, which is an additional advantage of wavelet
transforms over the Fourier transform. Figure 13 shows a fairly simple mother
wave and two example wavelets generated from it.

The well-known intermittent nature (i.e., nonstationary), often at high fre-
quencies, of rotor vibration signal content symptomatic of a number of specific
problems or incipient machine failure phenomena has induced the author to be-
lieve that the capability of next-generation machinery condition monitoring sys-
tems will be considerably advanced by the use of the FWT (fast wavelet trans-
form) to augment the present heavy reliance on the FFT. Figure 14 gives a visual
comparison between wavelet transform and windowed Fourier transform which
clearly delineates the two.

Clearly, the wavelet transform inherently possesses the simultaneous capa-
bilities of isolating signal discontinuities with high resolution and detailed fre-
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FIGURE 13 Two wavelets, which are dilations and translations of "(t ).

FIGURE 14 Time-frequency plane, comparing FT and WT.
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quency analysis over longer time windows. This frequency localization causes
many time-base signals to be “sparse” when transformed into the wavelet domain.
This feature yields wavelets quite useful for feature detection, signal noise re-
moval, and data compression. These capabilities are all obvious potential advan-
tages for next-generation machinery condition monitoring systems. In contrast to
wavelets, the windowed Fourier transform (WFT) has a single time window in-
terval for all frequencies, and thus the degree of resolution with the WFT is the
same at all time-frequency locations.

7. CHAOS ANALYSIS TOOLS

Wavelet transform is fast becoming a signal processing and analysis tool in many
applications. Although not yet a standard tool in condition monitoring systems for
rotating machinery vibration, wavelets are beginning to appear in some research
and application papers on rotor vibration. In contrast, the use of chaos analysis
tools in rotor vibration signal analysis is still pretty much the domain of a few re-
searchers in academia, although chaos analysis tools are being used in other fields
such as in medical research for analyzing monitored heartbeat signals. Adams and
Abu-Mahfouz (2) provide an introduction to chaos concepts for analyzing rotat-
ing machinery vibration signals. They employ computer simulations to demon-
strate how chaos signal analysis techniques can detect some important rotating
machinery conditions that are not readily detectable from standard signal analysis
tools like FFT. Figure 15 illustrates two of the several models investigated by
Adams and Abu-Mahfouz.
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FIGURE 15 Simple rotor dynamics models used for chaos studies.
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The necessary, although not sufficient, requirement for chaotic motion to
occur in a dynamical system is nonlinearity. Interestingly, many in-process fail-
ure mechanisms and various adverse operating conditions in rotating machinery
involve significant nonlinear dynamical properties. Section 5 in Chapter 2 gives
an introduction to nonlinear rotor dynamics. The exploratory work of Adams and
Abu-Mahfouz (2) exposes an abundance of interesting possibilities for machinery
condition feature detection using signal mappings that are regularly employed by
chaos specialists in their work. Just a few of these are presented here for the mod-
els shown in Fig. 15.

Figure 16 presents simulation results for the unbalance-excited rub-impact
model illustrated in Fig. 15a and shows a confluence of rotor orbital trajectories
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FIGURE 16 Rotor orbits and chaos-tool mappings for the unbalance-excited
rub-impact simulation model in Fig. 15a.
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and their mappings using some typical chaos signal processing tools. The central
portion of Fig. 16 is a bifurcation diagram, which plots the rotor orbit’s x-coordi-
nate (with a dot) for each shaft revolution as the keyphaser reference mark fixed
on the rotor passes the same rotational position angle. If the orbital motion were
strictly synchronous, only the same “dot” would appear repeatedly. If a �

1
2

�-syn-
chronous subharmonic component is superimposed, then only the same two dots
would repeatedly appear. Similarly, the Poincaré maps in Fig. 16 contain a dot de-
posited for the orbit’s (x,y) position at each shaft revolution as the keyphaser mark
passes the same rotational position angle. The term quasi-periodic is used by
chaos specialists and others to label nonperiodic signals that are composed of in-
commensurate (non-integer-related) periodic signals.

Spanning the range of nondimensional unbalance shown in Fig. 16, the or-
bital motion goes from quasi-periodic to period-5 motion (5 revolutions to com-
plete one period), then bifurcates into period-10 motion, then becomes chaotic
(nonperiodic but nonrandom), and lastly emerges from the chaos zone as period-
8 motion. For the periodic orbits shown, a “fat dot” is placed at each keyphaser
mark; thus the period-5, period-10, and period-8 orbits have 5, 10, and 8
keyphaser marks, respectively. These keyphaser dots deposited on the periodic or-
bits are, by themselves, the Poincaré maps of their respective motion orbits. Thus,
for any periodic motion, its Poincaré map is a limited number of dots equal in
number to the number of revolutions per period of the motion. For a quasi-peri-
odic motion, the dots on the Poincaré map over time fill in one or more closed
loops, with the number of loops equal to the number of superimposed incommen-
surate periodic components minus one (i.e., N � 1). Thus, the quasi-periodic or-
bit shown in Fig. 16 has two incommensurate periodic components (i.e., one
loop).

For chaotic motion, the Poincaré map has a fractal nature and therefore has
a “fuzzy” appearance, as displayed for the chaotic orbit in Fig. 16. There are math-
ematical algorithms to compute a scalar dimension of such a fractal pattern, as de-
tailed by Abu-Mahfouz (1). In general, the fuzzier the map, the higher the fractal
scalar dimension and the higher the degree of chaos content in the motion. When
processing actual measured signals, noise can also cause the Poincaré map to have
a fuzzy appearance, even without any chaos content. Thus, special filtering meth-
ods must be employed to remove the noise without removing the chaos content.
For this, the author has used in his laboratory model-based observers (see the dis-
cussion concerning Fig. 4 in Chapter 7) and signal-threshold denoising in the sig-
nal wavelet transforms to reconstruct the denoised signal. Clearly, the example
simulation results shown in Fig. 16 indicate that chaos signal processing tools
have a definite potential to enhance significantly the capability of future vibration-
based rotating machinery condition monitoring.

Figure 17 shows some additional simulation results for the unbalance-ex-
cited rub-impact model shown in Fig. 15a. These results were generated to study
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FIGURE 17 Poincaré mapping of chaotic response reveals small loss in damp-
ing at off-resonance condition (rub-impact model).
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the detection of small losses in damping capacity at off-resonance conditions.
Since the effects of damping on vibration amplitudes are significant primarily at
or near a resonance, off-resonance vibration amplitudes are not significantly af-
fected by reduction in damping. As the results in Fig. 17 clearly show, the fractal
nature of the associated Poincaré maps for 8% and 11% critical damping cases has
a quite measurable effect on the degree of chaos in the vibration. However, the
FFT signatures for the two compared cases show virtually no difference. It is not
difficult to relate the practical implication of early detection of damping loss to ro-
tor vibration. For example, through some progressive deterioration process at a
journal bearing, one can readily imagine a slowly progressing loss of damping that
would not result in increased vibration levels at operating speed but would result
in dangerously high rotor vibration levels on coast-down through critical speed(s).

Figure 18 shows one of several interesting results on chaotic motion with
pivoted-pad journal bearings presented by Adams and Abu-Mahfouz (2). For the
three-pad bearing illustrated in Fig. 15b, with the static load directed into a pivot
location (bottom), it is well known that the journal eccentricity will “find” a static
equilibrium position on one side of the pivot or the other, but not on the pivot. This
property can be mitigated or even eliminated if the bearing is assembled with
preload, which is more often not done. The results illustrated in Fig. 18 show the
synchronous unbalance force causing a chaotic orbit with a zero bearing preload
but a more expected small synchronous orbit when a moderate amount of preload
(15%) is applied by adjusting the pivot clearance to 85% of the bearing’s ground
clearance (C� � pivot clearance, C � bearing pad radius-journal radius). These re-
sults suggest some useful applications of chaos-tool signal analysis that can help
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FIGURE 18 Chaotic rotor vibration originating in a pivoted-pad bearing.
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diagnose such abnormal rotor vibration and other related operating problems. The
fuller presentation of these results by Adams and Abu-Mahfouz shows chaotic
pitching motion of all three bearing pads with the chaotic rotor motion shown in
Fig. 18. They also show that chaotic motion for pivoted-pad bearings is possible
for other numbers of pads (e.g., four pads) and other operating conditions where
the static bearing load is not directed into a pivot.

8. SYMPTOMS AND IDENTIFICATION OF VIBRATION
CAUSES

Diagnosis of rotating machinery vibration causes has been enormously advanced
in modern times through the intensive scrutiny of machinery vibration with mod-
ern instrumentation and signal analysis methods (e.g., FFT). However, identifica-
tion of vibration causes remains an inexact science, albeit far better now than 30
years ago.

8.1. Rotor Mass Unbalance Vibration

The most common cause of excessive rotor vibration is mass unbalance in the ro-
tor and the primary symptom is, of course, excessive once-per-rev (synchronous)
vibration. Excessive vibration is often accompanied by a significant presence of
dynamic nonlinearity in a rotor dynamical system (e.g., journal bearing films, ro-
tor-stator rubs). As a consequence, integer multiples of the synchronous frequency
may also appear with high levels of unbalance-driven vibration (see Fig. 2). How-
ever, vibration components at integer multiples of the synchronous frequency are
also possible symptoms of other vibration causes. Furthermore, in some machin-
ery types, strong synchronous vibration can originate from sources other than ro-
tor mass unbalance, most notably centrifugal pump hydraulic forces (see the dis-
cussion pertaining to Table 1 in Chapter 6). Therefore, it is readily apparent just
from the symptoms associated with excessive rotor unbalance that identification
of specific causes of excessive vibration remains an inexact science.

The two most important ramifications of unbalance-caused excessive vibra-
tion are (a) the long-term “beating” that a machine takes at operating speed if the
unbalance situation is not corrected and (b) the passage through critical speed(s)
(i.e., run-up and coast-down) in machines with operating speeds above one or
more critical speeds. In a machine where a rotor piece of significant mass detaches
from the rotor, coasting the machine down through critical speed(s) without ma-
jor damage is a primary concern. Many types of rotating machinery typically
maintain their state of rotor mass balance over long periods of operation and thus
are more likely to exhibit excessive unbalance vibration when something defini-
tive has gone wrong, such as loosening or detachment of a rotor piece. Conversely,
some types of rotating machinery are notorious for going out of balance in normal
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operation, e.g., large fans in power plants, steel mills, etc., due to uneven accu-
mulation of crud on the fan impeller. In spindles of precision grinders where the
grinding wheel diameter is reduced substantially through wear and repeated re-
dressing, nonuniform distribution of grinding wheel density is sufficiently signif-
icant that rotor-mounted automatic balancing devices are a standard spindle at-
tachment needed to achieve precision grinding operations.

The rapid growth in the need for larger and higher speed rotating machinery
initiated in the early 20th century quickly clarified the importance and need for
well-balanced rotors. Early engineering emphasis was on both (a) developing ad-
equate balancing methods and devices for machinery production and (b) design
and construction approaches to make rotors inherently maintain their state of bal-
ance in operation. One notable example is the manufacture of large electric gen-
erators powered by steam turbines. In the construction of these large generators, it
is required that rotors be turned for several hours at their operating speed in shop
floor pits at elevated temperatures to “season” rotor parts to stable dimensional
positions, thereby enabling satisfactory shop balancing of the rotor.

8.2. Self-Excited Instability Vibrations

In “forced vibration” (e.g., from rotor unbalance) the responsible alternating force
is independent of the vibration. In “self-excited vibration” the responsible alter-
nating force is controlled by the vibration itself and vanishes if the vibration
ceases. The early 20th century focus on rotor unbalance vibration quite naturally
led early vibration troubleshooters to attribute any excessive rotor vibration to in-
adequately balanced rotors and/or insufficient ability of rotors to maintain good
rotor balance in operation. Such assessments were usually correct. However, in
certain landmark cases when repeated rotor rebalancing failed to alleviate an ex-
cessive vibration, major discoveries where made of previously unidentified vibra-
tion causes. Possibly the most significant example of this is the discovery of oil
whip, as documented by Newkirk and Taylor (18). Oil whip is a subsynchronous
vibration, triggered when the journal bearings act as negative dampers to the low-
est frequency forward-whirl rotor-bearing vibration mode. Oil whip is scrutinized
in the context of a linear model in Sec. 4, Chapter 2. As Crandall (7) heuristically
explains, oil whip is but one of several known self-excited rotor vibration insta-
bility mechanisms that share the fundamental characteristic illustrated in Fig. 19,
fashioned after that of Crandall.

The most prominent of this group of instability mechanisms include (a) oil
whip, Sec. 4, Chapter 2; (b) centrifugal pump impeller forces; Sec. 1, Chapter 6;
(c) centrifugal compressor impeller forces, Sec. 2, Chapter 6; (d) steam whirl, Sec.
3, Chapter 6; (e) axial flow compressor stages, Sec. 4, Chapter 6; (f) Coulomb fric-
tion, material stress-strain hysteresis, or other rotor-based damping mechanisms
rotating synchronously with the rotor; (g) rotor anisotropy (elastic, inertia); and
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(h) trapped liquid in a hollow rotor. Figure 19 illustrates that for any of these in-
stability mechanisms, their reaction force upon the rotor in response to a radial dis-
placement from equilibrium has both radial and tangential components. The radial
component (Fr) of the reaction force can be either a centering force, as in the case
of journal bearings, or a decentering force, as in the case of a high-Reynolds-num-
ber fluid annulus; see Fig. 6c and d in Chapter 6. However, it is the tangential com-
ponent (Ft) of the reaction force that supplies the energy to destabilize a poten-
tially self-excited rotor vibration mode. Such destabilizing forces are usually
present in most rotating machinery from one or more sources as itemized earlier
in this paragraph. But self-excited vibration occurs only when the dissipative pos-
itive damping influences in the system are overpowered by the negative damping
influences of the instability mechanism(s) present. An instability threshold is an
operating condition “demarcation boundary” where the negative damping effects
overtake the positive damping effects. In a successfully designed machine, the
positive damping effects keep the negative damping effects in check over the full
range of intended operating conditions.

In many modern high-power-density high-speed machines, the “supremacy”
of positive damping effects over the destabilizing negative damping effects is ten-
uous. Thus, due to subtle differences between so-called identical machines, a par-
ticular machine within a group of several of the same configuration may occasion-
ally experience self-excited vibration while the others do not. Similarly, a
particular machine may operate free of self-excited vibration for a number of years
and then begin to exhibit self-excited vibration regularly, e.g., due to accumulated
wear or other gradual changes over time or due to hard-to-isolate changes that may
occur during overhaul and refurbishment. Such is the nature of oil whip and other
similarly manifested instability self-excited rotor vibrations.

278 Chapter 9

FIGURE 19 Growth of rotor orbit for an unstable rotor mode.
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8.2.1. Oil Whip

The cascade plot in Fig. 9 best illustrates the identifying symptoms of oil whip.
The machine must typically be rotating above twice the frequency of the poten-
tially unstable mode. As Fig. 9 suggests, the oil-whip mode is unbalance excited
as a critical speed (damped forced resonance) as it is passed through on the way
up to operating speed, posing no problem as a critical speed provided the rotor is
adequately well balanced and the mode is adequately damped. As the oil-whip
threshold speed is encroached upon, the net damping/cycle for this mode transi-
tions from positive to negative and the mode commences vibration at a significant
amplitude with its frequency typically below half the rotor spin speed. As Fig. 9
further shows, with speed increases beyond the oil-whip threshold speed, the sub-
synchronous rotor vibration does not proportionally track the rotor spin speed but
maintains nearly constant frequency. Also, it does not peak and then attenuate at
progressively higher speeds as response through a critical speed does. Thus, oil
whip cannot generally be “passed through” as can a critical speed. A further char-
acteristic of oil whip and some other similar self-excited vibrations is that its peak
in the frequency spectrum often exhibits significant amplitude fluctuations, e.g.,
as observable from picture to picture on a real-time spectrum analyzer display
screen. Again, this is the nature of oil whip and other similarly manifested insta-
bility self-excited rotor vibrations.

8.2.2. Steam Whirl

Steam whirl is described in Sec. 3, Chapter 6. Its vibration symptoms are quite
similar to those of oil whip, with one notable exception. Its threshold of instabil-
ity is not rotational speed induced but instead is power output induced. In power
plant jargon, power output is synonymous with “load” on the machine. Steam
whirl is a destabilizing mechanism that is of concern primarily in the high-pres-
sure steam turbine section of large turbogenerator units. It can produce signifi-
cantly high subsynchronous forward-whirling rotor vibration just like oil whip.
However, oil whip within the operating speed range usually prevents safe opera-
tion and thus requires an immediate solution. In contrast, because steam whirl is a
destabilizing influence whose strength increases with load on the machine, not
speed, a temporary solution is to derate the machine to a load below which the
steam whirl is suppressed by the positive damping, primarily in the oil-film jour-
nal bearings. Figure 20 illustrates steam whirl vibration symptoms and its thresh-
old power output and is similar to Fig. 9, which illustrates the symptoms for oil
whip and its threshold speed.

8.2.3. Instability Caused by Internal Damping in the Rotor

Damping is a fundamental way both to minimize the amplitude of resonant re-
sponse and to keep destabilizing influences in check. However, damping mecha-
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nisms fixed in the rotor become destabilizing influences in rotors that operate
above a critical speed. Two widely recognized sources of rotor-based damping
are (a) rotor internal material stress-strain hysteresis-loop energy dissipation and
(b) sliding friction between rotor components such as at splines. Both of these ro-
tor-based damping mechanisms are “exercised” by flexural vibration in the rotor.

Internal rotor damping as a potential source of self-excited vibration was
first proposed in a pair of papers by Kimball (13,14), but Smith (20) provided a
simpler insightful explanation. More recently, Crandall (7) has provided addi-
tional clarity to the topic. In essence, whether a damping mechanism is linear (e.g.,
viscous dash pot) or nonlinear (e.g., Coulomb sliding friction), there is always an
energy-dissipating drag force at the heart of the damping action. Aerodynamic
drag forces are a source of energy dissipation, as airplane and automobile design-
ers well know. However, aerodynamic drag can also impart energy to solid ob-
jects, such as occurs in strong windstorms, and that essentially explains how rotor
internal damping can produce self-excited rotor vibration.

Figure 21 illustrates this point using a simple example in which it is assumed
that rotor internal damping is the only damping present. As shown, when the ro-
tor spins slower than the orbit natural frequency, rotor internal damping causes an
orbital disturbance to decay. Conversely, when the rotor and its internal damping
mechanism rotate faster (at a higher frequency) than the orbit natural frequency,
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FIGURE 20 Steam whirl symptoms on high-pressure steam turbine. Unit should
be derated to 400 MW pending solution of problem.
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the rotor internal damping “pulls” tangentially in the direction of orbiting and
thereby imparts energy to the orbital vibration mode, causing the mode to become
“self-excited” at its natural frequency. This is similar to an automobile traveling
at a speed slower than a high-speed tailwind, which then imparts energy to the ve-
hicle rather than extracting energy from it. The strength of the orbit-tangential
“pulling” force from rotor internal damping progressively increases as shaft rota-
tional speed becomes progressively larger than the orbit natural frequency. In ac-
tual machines, there are always sources of damping present in the machine’s non-
rotating portion, and thus for this instability to occur, rotor speed must exceed the
orbit natural frequency (i.e., critical speed) by a sufficient margin to overpower
the positive damping influences present. Thus, when internal rotor damping
causes a self-excited rotor vibration, the frequency of the vibration is subsyn-
chronous, similar to oil whip and steam whirl described earlier in this section.
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FIGURE 21 Transient orbits if rotor-based damping is only damping present.
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Ehrich (9) provides the definitive comprehensive treatment of self-excited
rotor vibration caused by rotor internal damping. This type of self-excited vibra-
tion is not often diagnosed in heavy industrial machines (e.g., in power plants)
where the rotors are supported on oil-film journal bearings. But the destabilizing
mechanism of rotor internal damping may well be a significant contributing fac-
tor in cases where oil whip or steam whirl is diagnosed as the primary source of
self-excited rotor vibration. On the other hand, rotor internal damping is more
likely to be diagnosed as the primary source of self-excited forward-whirling sub-
synchronous rotor vibration on gas-turbine aircraft jet engines and aeroderivative
gas turbines for power generation where rotors are supported on rolling-element
bearings.

8.2.4. Other Instability Mechanisms

Chapter 5 provides a background on bearing and radial-seal rotor vibration char-
acteristics, with attention focused upon factors affecting dynamical stability.
Chapter 6 provides additional insights into the instability mechanisms for self-ex-
cited rotor vibration originating in turbomachinery stages of pumps, turbines, and
compressors. Crandall (7) gives insightful tutorial descriptions of several rotor in-
stability mechanisms and Ehrich (10) provides detailed analyses and symptom de-
scriptions.

8.3. Rotor-Stator Rub-Impacting

The boiler feed water pump illustrated in Figure 7a in Chapter 5 exemplifies many
types of rotating machinery that possess quite small internal annular radial clear-
ance gaps, (e.g., at end seals, interstage seals, bearings, blade tips, balance drums).
These small internal radial clearances are essential to efficient functioning of such
machines and are among the most important reasons for the close attention paid to
operating vibration levels in rotating machinery. This is because one of the dele-
terious effects of excessive rotor vibration is contact between rotor and stator at
locations with small rotor-stator radial clearances.

Occurrences of rotor-stator rubs and rub-impacts can be roughly grouped
into the following categories:

1. Rotor vibration levels become high for any reason (e.g., excessive un-
balance, resonance, self-excited instability), resulting in contact be-
tween rotating and nonrotating components, with the rotor-stator con-
tact somewhat passive in its effect on the overall vibration.

2. Similar to category (1) except the rotor-stator contact contributes a
strong influence on the ensuing vibration.

3. Rotor-stator contact is initiated by excessive static radial rotor forces
and/or casing thermal distortions, and excessive vibrations may or may
not result.
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4. Rotor rub force magnitude is modulated in synchronization with the
once-per-rev component of rotor vibration orbit, providing an asym-
metric friction-induced heat input to the rotor, causing it to develop a
“thermal bow” which initiates a slowly precessing vibration phase an-
gle (forward or backward) because the rotor “high spot” and “hot spot”
do not coincide due to thermal inertia and phase lead or lag between the
unbalance and the synchronous orbital response it excites. In effect, the
“hot spot” tries to catch up to the “high spot”, but as the “hot spot” mi-
grates so does the “high spot” in response. This phenomenon is some-
times referred to as “vector turning” because when a representative vi-
bration signal is polar plotted over time (see Fig. 8) the vibration
“vector” slowly rotates (e.g., couple of hours per turn) in one direction,
as further explained in the corresponding case study of Chapter 12.
When insufficient heat-removal capacity is available, the turning vec-
tor does not stay within an acceptable vibration amplitude but instead
continues to spiral outward slowly.

In brush-type exciters of large AC generators, this “vector turning” phe-
nomenon can be instigated by the brushes’ rubbing contact friction forces being
synchronously modulated by brush inertia; i.e., brushes are spring preloaded to
track rotor contact-surface orbital motions. This type of rubbing friction–induced
vibration is also known to occur from rotor rubbing of radial seals where the rub-
bing contact friction force is synchronously modulated by the effective support
stiffness of the seal. The field measurement case explained earlier in this chapter
pertaining to Fig. 6 and 10 is a prime example of category 3, in which the rub-im-
pacting significantly worsens subsynchronous vibration on coast-down.

Figure 22, from tests and corresponding computer simulations (4), demon-
strates transition from category (1) to category (2). Referring to the orbital re-
sponses in Fig. 22, the stronger the rub-impacting, the higher the degree of dy-
namic nonlinearity and thus the greater the amplitude of harmonics of the
synchronous frequency (2N, 3N, 4N, . . .) which will appear in the rotor vibration
FFT spectra.

Rub-impact in rotating machines is a group of phenomena involving con-
tinuous or dynamically intermittent contact between rotating and stationary
(nonrotating) machine components. Rotor-stator contact is of course undesirable
but tolerated in most machines for brief periods during initial wear-in and oper-
ating transients. Persistent rotor-stator contact considerably accelerates the wear-
ing open of the small rotor-stator radial clearance gaps, significantly reducing
machine efficiency and thereby shortening the time cycles between machine re-
pairs and major overhauls. Furthermore, persistent rotor-stator contact puts a
machine in jeopardy of failure from the potentially devastating effects of very
large amplitude rotor vibration, which can be triggered by severe rotor-stator
rub-impact events. In the worst-case scenario, if rub friction is sufficiently in-
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FIGURE 22 Unbalance-induced rub-impacting on a flexible-rotor test rig.
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tense to impose backward whirl on the rotor vibration orbit, this can provide a
mechanism for the ensuing vibration to tap directly into the primary torque-
transmitted power through the shaft, leading to immediate catastrophic failure of
the machine.

8.4. Misalignment

Vance (21) provides an insightful description of vibration symptoms associated
with misalignment. Piotrowski (19) provides an excellent up-to-date handbook on
shaft alignment methods and procedures. Vance concisely points out the key
symptoms which distinguish misalignment-caused vibration from rotor unbalance
vibration. Specifically, excessive misalignment typically produces a large twice
running speed (2N) harmonic component of vibration and a high level of axial vi-
bration. He cites bent shafts and improperly seated bearings as special cases of
misalignment that yield similar symptoms. Furthermore, for machines that oper-
ate below the first critical speed, the misalignment-induced running-speed axial
vibrations at the two ends of the shaft or across the coupling will be approximately
180° out of phase with each other (as in the 150° to 210° range) In contrast, these
signals will usually be nearly in phase when rotor unbalance is the primary source
of vibration. On this point, Vance cautions that transducer orientations in opposite
directions (e.g., at opposite ends of the shaft) will impose an inadvertent 180° er-
ror in phase measurement if the readings are not properly interpreted for trans-
ducer orientations.

8.5. Resonance

With adequacy of rotor balance quality and available damping, passing through
critical speeds is a tolerable fact of life for many types of modern rotating ma-
chinery, because the critical-speed vibration peaks are endured only for the brief
time periods while the machine passes through the critical speed(s). However, if
by some design flaw, installation error, or component deterioration a machine’s
operating speed is quite near a critical speed, excessive unbalance-driven vibra-
tion will most likely result. To achieve acceptable vibration levels in such an un-
desirable circumstance requires a state of rotor balance quality which is possibly
beyond what is practically achievable. Ironically, it is in this very circumstance for
which it is most difficult to achieve a high-quality rotor balance. This is because
accurate vibration phase angle measurement is an essential ingredient for achiev-
ing quality rotor balancing. But the close proximity of a critical speed to the ma-
chine’s operating speed will cause the vibration signal phase angle to be quite un-
steady. This is explained by the response of the 1-degree-of-freedom system to a
harmonic excitation force (see Fig. 4, Chapter 1), which clearly shows the steep
change in phase angle near the natural frequency which will be caused by contin-
uously occurring small perturbations in natural frequency.
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Aside from critical speed operation, resonances in nonrotating components
such as the machine housing or attached components (e.g., piping) are not un-
common and, if not properly diagnosed and corrected, can shortly lead to a fail-
ure. These types of vibration are usually relatively easy to diagnose and correct,
in comparison to vibration problems inherent in the rotor-bearing system. Vibra-
tions of this type may occur at the synchronous frequency (1N ) and/or its har-
monics (2N, 3N, . . .), such as from a vane-passing frequency, and are thus read-
ily identified by their strong dependence on rotor speed. Spectral cascade plots
against rotor speed (e.g., Fig. 9 and 10) are therefore quite useful in diagnosing
this category of vibration.

8.6. Mechanically Loose Connections

Looseness at nonrotating connections such as bearing caps, bearing mounts, or
base mounts is likely to result in a vibration problem because the bearings and
mounts are what constrain the shaft to its rotational centerline. The dynamical
characteristics precipitated by looseness of these components will quite likely in-
troduce a significant degree of dynamic nonlinearity into the vibratory system,
e.g., intermittent in and out of hard contacting as components vibrate through
dead-band gaps created by the mechanical component looseness. Therefore, the
excessive vibration produced by such mechanical looseness usually yields a rich
vibration spectrum with several prominent harmonics (2N, 3N, . . .) of the syn-
chronous spin frequency and possibly prominent integer subharmonics (N/2, N/3,
. . .) and their integer multiples (2N /3, 4N /3, . . ., 3N /2, . . .) as well. The singular
presence of such a subsynchronous harmonic may lead to a misdiagnosis that the
vibration root cause is one of the subsynchronous self-excited vibration types cov-
ered earlier in this section. In seeking to differentiate mechanical
looseness–caused vibration from other sources (e.g., excessive rotor unbalance,
self-excited vibration), taking vibration measurements in different directions and
locations on the machine (e.g., see Fig. 14, Chapter 7) can be helpful because
looseness-caused vibration tends to be directionally biased as dictated by the spe-
cific direction and location of the looseness (see case studies in Sec. 5, Chapter
12).

Looseness of a rotor-mounted component (e.g., thrust collar, spacer collar,
impeller ring, slinger disk) is also likely to cause a vibration problem. Such loose-
ness is likely to induce a mass unbalance on the rotor, not necessarily resulting in
a synchronous vibration, although it could. If the looseness combined with other
factors involved allows the rotor-loose component to spin at a speed different
from the shaft speed, then a nonsynchronous vibration is likely to be present. Pre-
vailing friction conditions, clearances, and fluid or aerodynamic drag forces pro-
vide a wide range of possibilities for various steady or unsteady vibrations to re-
sult. The loose component could possibly lock its rotational speed into one of the
rotor-bearing system’s subsynchronous orbital natural frequencies and thereby
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disguise itself as one of the previously described self-excited vibration types. If
the loose component is a driven element like a turbine disk, a resulting nonsyn-
chronous vibration would be at a frequency above the rotor spin frequency. Oth-
erwise, any resulting nonsynchronous vibration is likely to be at a subsynchronous
frequency. A rotor-loose component will possibly cause additional symptoms to
help it be identified, e.g., axial shuttling of the rotor if the thrust collar is loose.

8.7. Cracked Shafts

The initiation and subsequent propagation of a crack through the shaft is of course
among the most dreaded failure types in rotating machinery. As a consequence,
early diagnosis and careful trending of vibration symptoms for cracked shafts are
as well studied in the machinery vibration monitoring field. Muszynska (17) pro-
vides an insightful explanation of cracked-rotor vibration symptoms, employing a
simple 2-degree-of-freedom single-mass rotor dynamics model. Muszynska’s
model embodies the two prominent symptoms that a rotor crack superimposes
upon a simple unbalance-only vibration model. These two effects are (a) a bend-
ing stiffness reduction aligned with the crack direction and (b) a crack-local shift
in the bending neutral axis (the rotor therefore bows) corresponding to the crack
direction.

The first of these two effects produces a twice-rotational-speed (2N ) vibra-
tion component. This is similar to what would occur prominently in long two-pole
generators were it not for the standard radial slots that are cut in such generator ro-
tors to equilibrate the principal bending stiffnesses. The second of these effects
produces a synchronous (N ) vibration component which adds vectorially to the
preexisting residual unbalance synchronous vibration.

The vibration symptoms for a developing rotor crack are therefore (a) the
emergence and growth of a 2N vibration component simultaneously with (b) the
emergence of a progressive change in synchronous vibration amplitude and phase
angle from the rotor-bow induced unbalance. An additional symptom is apparent
when rotor x and y displacements are monitored. That is, the rotor orbit will ap-
pear similar to the typical orbit with N and N/2 harmonics superimposed (see Fig.
4) except that the period of the cracked-shaft orbit is one revolution (not two) as
immediately detectable from the presence of only one keyphaser mark per period
of orbital vibration, i.e., the superposition of N and 2N harmonics. There have
been some remarkably accurate predictions of how long a rotor can operate before
it fails from a sudden through fracture precipitated by progressive shaft crack
propagation. In one well-substantiated case, the supplier of the vibration monitor-
ing system predicted the exact number of operating days remaining for a primary
nuclear reactor coolant pump shaft in a PWR commercial electric power generat-
ing plant. Although that nuclear plant’s operators were unfortunately skeptical of
the prediction, after the shaft failed as predicted (to the day) they became con-
verted “believers.”
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8.8. Rolling-Element Bearings, Gears, and Vane/Blade
Passing Effects

Wear and other damage in rolling element bearings yields vibration components
which are symptomatically related to specific bearing features such as inner race-
way, outer raceway, separator, and rolling element damage. Similarly, gear sets
produce unique vibration signatures with specific features that can be diagnosti-
cally related to specific wear and other damage types and locations. The level of
rotor and casing vibration components present for these diagnostic purposes is
typically of much lower amplitude than the overall levels of residual vibration,
and thus typically they are not of great significance with regard to their potential
for vibration-caused damage to a machine.

Similarly, vane-passing and blade-passing frequencies are commonly pre-
sent in turbomachinery vibration signatures, but likewise at amplitudes typically
much smaller than the overall levels of residual vibration. Vane-passing and
blade-passing vibration components are of diagnostic significance primarily in as-
sessing the respective hydraulic or aerodynamic operating factors of such ma-
chinery. For example, the propensity for certain types of internal damage such as
to impeller and diffuser vanes in high power density centrifugal pumps (e.g.,
boiler feed water pumps) can be assessed from the strength of vane-passing vi-
bration components. Vane-passing vibration components can also be related to
acoustic resonance problems. The highly specialized component- and machine-
specific nature of the vibration signature components for these categories rele-
gates their fuller treatments to component- and machine-specific references.
Vance (21) provides introductory treatments, but an entire book chapter could
readily be employed to give comprehensive treatments of each of these topics.
Makay (15) provides definitive charts of vibration symptom identifications for
centrifugal pumps. The Makay charts correlate root-cause symptoms and severity
levels with vibration frequency components (normalized by rotational speed fre-
quency) as functions of pump flow (normalized by best-efficiency flow).

9. SUMMARY

This chapter describes and explains the symptoms of known causes of excessive
rotating machinery vibration within the context of modern measurement and mon-
itoring-detection technologies. An initial call for vibration diagnosis of a specific
machine usually begins with an alert from vibration monitoring that shows the
machine’s vibration levels are going to exceed or have already exceeded the ex-
perienced-based “normal” or “allowable” levels for the machine (e.g., see Fig. 1
in Chapters 7 and 8). In seeking to eliminate the problem, identification of the root
cause(s) of the excessive vibration is a far more rewarding approach than the trial-
and-error method, which may never converge to a good solution. There are many
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unfortunate cases in which machine owners or operators have lived with vibration
problem machines for years without a good diagnosis and solution and thereby
have borne the expenses associated with the all-too-frequent costly repairs pre-
cipitated by long-duration exposure to excessive vibration levels. The spare parts
and rebuild business attending such situations can be lucrative indeed, easily ex-
ceeding by several times the initial profits on the sale of the machinery.

As indicated throughout this chapter, the FFT spectrum is presently the ma-
jor rotating machinery vibration diagnostic tool. A scrutiny of vibration spectral
characteristics for various problem root causes, as described and explained in this
chapter, shows that many different root causes produce similar-looking rich spec-
tra. This shows the need to combine FFT analysis with other diagnostic tools such
as rotor orbit measurement and analysis. This also shows the significant value of
developing further improvements and better tools in the condition monitoring
field. In that spirit, this chapter also presents new emerging machinery vibration
diagnostic approaches which are potentially major developments just “over the
horizon” for next-generation condition monitoring products. These include signal
mappings used to track chaos and routes to chaos, wavelet transforms, and model-
based “observers” for detection and diagnosis.
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10

Rotor Unbalance and Critical Speed Case
Studies

1. INTRODUCTION

Vibration excited by residual rotor unbalance is always present in all rotors at all
operating speeds, because it is of course impossible to make any rotor perfectly
mass balanced. Therefore, the objective concerning unbalance-excited vibration is
its minimization, not total elimination. Chapter 8 addresses the fundamental ques-
tion of whether the residual vibration of a machine is within its acceptable limits
or is excessive. When vibration levels are deemed excessive and it has been es-
tablished that the excitation is by unbalance (see Sec. 8, Chapter 9), the proper cor-
rective course of action is often simply to rebalance the rotor. This is especially
typical in some machinery types which are inherently susceptible to going out of
balance in normal operation, like large fans in power plants and steel mills where
crud collects nonuniformly on fan blades. Many machines are designed with ex-
ternally accessible rotor balance planes where balance correction weights can be
added. Thus, in-service rebalancing of the rotor does not typically require open-
ing up the machine and is considered a relatively routine procedure.

However, the root cause of excessive unbalance-excited vibration can be
other than the rotor being too far out of balance. As explained in Sec. 8, Chapter
9 an inadequately damped resonance condition can cause excessive vibration,
even when the excitation force is not large, as Fig. 4 in Chapter 1 clearly shows.
If for any reason the operating speed is quite near a critical speed, then the vibra-
tion levels can readily become excessive for continuous operation. A critical
speed near the operating speed can be the result of some design flaw, installation
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error, component deterioration, or support/foundation changes over time. For sim-
ilar causes, transient passage through a critical speed may exhibit vibration levels
that are dangerously high even for a short-duration passage through critical speed,
such as in a coast-down of the machine.

The case studies presented in this chapter are not of the category where rou-
tine rebalancing of the rotor is the solution to the excessive vibration problem.
Each case study presented here typifies the more difficult ones where routine re-
balancing does not solve the problem. As these cases demonstrate, identification
of both root causes and the most cost-effective solutions or fixes can be enor-
mously aided by using analysis models.

2. HP TURBINE DURING PASSAGE THROUGH A CRITICAL
SPEED

Figure 1 shows the steam turbine portion (generator not shown) of the HP-LP
drive line of a 350 MW cross-compound turbogenerator. Cross-compound units
typically have 50% of the power capacity on each of two drive lines. One drive
line contains a high-pressure (HP) turbine, one or two low-pressure (LP) turbines,
plus an AC generator and possibly a drive line–mounted exciter. The other drive
line similarly contains an intermediate-pressure (IP or reheat section) turbine, one
or two low-pressure (LP) turbines, plus an AC generator and possibly a drive
line–mounted exciter. Cross-compound units are powered by a single fossil-fired
boiler and have main flow steam lines connecting the two drive lines. That is, re-
heated exhaust from the HP turbine is piped across drive lines to the IP turbine
steam inlet and IP turbine exhaust is piped proportionally to all the LP turbines of
both drive lines.
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FIGURE 1 Cross-compound 350 MW turbogenerator, HP-LP portion.
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The excessive vibration experienced with the unit in Fig. 1 occurred pri-
marily in the HP turbine section during coast-down, where it exhibited a clear res-
onance of the HP turbine, with a 20 mil (0.5 mm) peak-to-peak synchronous vi-
bration of the HP rotor at its bearings. This vibration problem had all the
symptoms of an HP turbine critical speed that had become insufficiently damped
over a period of several months. Furthermore, the coast-down speed at which this
critical speed vibration peaked varied from coast-down to coast-down, anywhere
between 1,400 and 2,000 rpm.

The author’s preliminary diagnosis was that one of the HP rotor’s two tilt-
ing-pad journal bearings was statically unloaded (at least during coast-down),
probably due to bearing alignment shifting. This would explain a significant re-
duction in bearing damping capacity with the attendant excessively high reso-
nance vibration peaks. This would also explain the nonstationary HP turbine crit-
ical speed (i.e., from bearing stiffness variations caused by load variations). From
assembly drawings of the machine, the author developed a complete drive-line fi-
nite element–based rotor vibration model for the complete HP-LP drive line (see
Chapter 4 for computer modeling examples). Even though the excessive vibration
was localized primarily in the HP section of the HP-LP drive line, the model (236
degrees of freedom) was configured to include not only the HP turbine but also the
LP turbine and generator sections, all connected by rigid couplings and with a to-
tal of six journal bearings. The author’s approach on this point is not to guess
whether, or how much, the LP and generator sections affect the vibration problem
but instead to include the complete drive-line rotor. This approach also provides
an analysis model readily available for future analyses needed for rotor vibration
problems anywhere on the same drive line.

A journal bearing’s oil-film stiffness and damping properties are strongly
influenced by its static load. In the computer model for this case, journal bearing
stiffness and damping coefficients were generated for all six journal bearings us-
ing the EPRI COJOUR code referenced in Chapter 5. Bearing coefficients were
determined for the nominal alignment case with bearing design loads as well as
several off-design out-of-alignment bearing load distributions. Since large turbo-
generators have more than two journal bearings, the bearing loads are statically in-
determinate. This means that bearing static loads are strongly influenced by bear-
ing alignments. Therefore, it is common on large turbogenerator units for
vibration characteristics to change significantly as bearing support structures shift,
e.g., as a function of operating point and/or from support shifting and settling over
time.

As detailed by McCloskey and Adams (2) for this troubleshooting case, the
analysis showed that unloading of bearing No. 2 fully accounted for the excessive
vibration symptoms on this unit. They also provide details of an extensive para-
metric study which shows that by adding preload to the statically unloaded tilting-
pad journal bearing No. 2 (preload of 0.3, C�/C � 0.7) the HP turbine vibration
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peak at its critical speed is reduced to half the level of that using an unloaded bear-
ing No. 2 with no preload. This change was made to the actual No. 2 bearing with
the result that the HP critical speed vibration peak amplitude was in fact approxi-
mately halved with no negative side effects of adding the modest amount of
preload to No. 2 bearing. The long-term permanent fix by the power company
owner of this machine was to replace the two original OEM HP-turbine tilting-pad
bearings with a superior non-OEM tilting-pad design discussed in the first of three
case studies covered in Sec. 5, Chapter 12 (see Fig. 7 in that Chapter) and in the
EPRI symposium paper by Giberson (1).

3. BOILER FEED PUMPS: CRITICAL SPEED AT
OPERATING SPEED

The rotor sectional view shown in Fig. 2 is from a four-stage boiler feed water
pump (BFP) somewhat similar to that shown in Fig. 7a in Chapter 5. In the power
plant of this case study, the BFPs are installed as variable-speed units with oper-
ating speeds from 3,000 to 6,000 rpm, each with an induction motor drive through
a variable-speed fluid coupling. In this plant, the BFPs are all “50%” pumps,
which means that when a main stream turbogenerator is at 100% (full load) power
output, two such pumps are operating at their nominal operating condition. This
plant houses four 500 MW generating units, each having three 50% BFPs installed
(i.e., one extra 50% BFP on standby), for a total of 12 boiler feed pumps, all of the
same configuration. Full-load operating ranges for each 50% BFP are 5,250 to
5,975 rpm, 684 to 1,035 m3/hr, and differential pressures from 13.4 to 21.0 MPa.

The BFPs at this plant had experienced a long history of failures, with typ-
ical operating times between overhauls under 10,000 hours, with the attendant sig-
nificant monetary cost. Based on the operating experience at other power plants
employing the same BFP configuration with quite similar operating ranges, these
BFPs should have been running satisfactorily for over 40,000 hours between over-
hauls. Using vibration velocity peak monitored at the outboard bearing bracket,
these BFPs were usually taken out of service for overhaul when vibration levels
exceeded 15 mm/sec (0.6 in/sec). To wait longer significantly increased the over-
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FIGURE 2 Rotor sectional view for a four-stage boiler feed water pump.
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haul rebuild cost, i.e., more damage. The dominant vibration frequency was syn-
chronous.

The author’s preliminary diagnosis was that these pumps were operating
quite near a critical speed and that the resonance vibration resulting from this
worked to accelerate the wearing open of interstage sealing ring radial clearances.
As these interstage clearances wear open, the overall vibration damping capacity
diminishes significantly, typically leading to a continuous growth of vibration lev-
els. To confirm this preliminary diagnosis, the author developed an RDA finite el-
ement–based computer model (see Chapter 4) for this BFP configuration to com-
pute lateral rotor vibration unbalance response versus rpm. The manufacturer
(OEM) of the pump provided a nominally dimensioned layout of the assembled
pump, including weight and inertia for concentrated masses (impellers, balancing
disk rotor, thrust bearing collar, coupling piece, and shaft sleeves). The pump
OEM also provided detailed geometric dimensions for the journal bearings, inter-
stage radial seals, and other close-clearance radial annular gaps. This cooperation
by the pump OEM greatly expedited the development of the RDA model, elimi-
nating the need to take extensive dimension measurements from one of the BFPs
at the plant or repair shop, which were a considerable distance outside the United
States.

The radial annular gaps have clearance dimensions that are quite small and
are formed by the small difference between a bore (ID) and an outside diameter
(OD), each with tolerances. The size of each of these small radial clearance gaps
is very influential on the respective bearing or seal stiffness, damping, and inertia
coefficients (Chapters 5 and 6) and thus very influential on the computed results
for rotor vibration response. However, these small radial gaps vary percentage-
wise significantly and randomly because of their respective ID and OD manufac-
turing tolerances plus any wearing open due to in-service use. BFPs are thus one
of the most challenging rotating machinery types to model and analyze accurately
for rotor vibration. The net result is that even in the easiest of cases, a realistic ro-
tor vibration analysis for troubleshooting purposes (as opposed to design pur-
poses) requires several trial input cases to get the model predictions to reasonably
portray the vibration problem the machine is exhibiting. By iterating the model in-
puts per radial-clearance manufacturing tolerances and allowances for wear, a set
of inputs is sought that produce rotor vibration response predictions that concur
with the machine’s vibration behavior. When (if) a “good agreement” model is so
obtained, this is referred to as a “calibrated model.” Through computer simula-
tions, the calibrated model can then be used to explore the relative benefits of var-
ious fix or retrofit scenarios, as was done in the successful steam turbine case
study presented here in the previous section.

A calibrated model was not initially achieved for this pump vibration prob-
lem in that all reasonable model variations for input dimensions failed to produce
predicted unbalance responses having a resonance peak below 8,000 rpm, which
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is considerably above the operating speed range. Since the power plant in this case
was a considerable distance outside the United States, a visit to the plant had not
initially been planned. However, given the failure of all initial RDA model varia-
tions to replicate or explain the BFP vibration problem, a trip to the plant was un-
dertaken to study the pumps firsthand.

Poor hydraulic conditions in BFPs, such as from inaccurate impeller cast-
ings, can produce strong synchronous rotor vibrations (see Sec. 8 in Chapter 9 and
Table 1 in Chapter 6), so several of the impellers were inspected for such inaccu-
racies. In the course of further searching for the vibration problem root cause, a
number of serious deficiencies were uncovered in the local BFP overhaul and re-
pair shop’s methods and procedures, all of which collectively might have ac-
counted for the vibration problem. Luckily, on the last day of the planned 1-week
visit to the plant, the root cause was discovered, but it could easily have been over-
looked. In the process of discussing installation-after-overhaul details with me-
chanics at the plant, it was revealed that between the inner journal bearing shells
and the axially split outer housings there was a clearance of about 0.001 in (0.025
mm) into which a gasket was interposed and compressed as the two housing
halves were tightly bolted together. This use of gaskets was discontinued many
years earlier in most U.S. power plants. The net effect of the interposed gasket was
to reduce the effective bearing stiffness to a value significantly below the range
that had been reasonably assumed in the initial (unsuccessful) attempts to develop
a calibrated RDA model. When the gasket-clearance effect was incorporated into
the RDA model inputs, a resonance peak showed up right in the normal operating
speed range.

An analysis study was made to compute critical speed (speed at which un-
balance-excited vibration response peaks) as a function of bearing stiffness, using
a stiffness value range consistent with the interposed gasket. A summary of the re-
sults for this analysis is shown in Fig. 3. A bearing stiffness value of 100,000 lb/in
places the critical right at the normal full-load operating speed range. The vari-
ability of gasket stiffness also explained the plant’s experience with the excessive
vibration fading “in and out” over time.

The gasket stiffness is in series with the bearing oil film’s in-parallel stiff-
ness and damping characteristics. Since the gasket stiffness is much less than the
journal bearing oil-film stiffness, the gasket also reduces considerably the damp-
ing action in the oil films. The use of a gasket between the bearing inner shell and
outer housing was clearly the “smoking gun,” placing the critical speed near the
normal full-load operating speed while depriving the attendant resonance of rea-
sonable damping. The bearings were reinstalled with metal shims to provide a
bearing pinch of about 1 mil.

A simplified view of the BFP nonplanar critical-speed response shape is
shown in Fig. 4, which “flattens” the response shape into a plane. This is helpful
in showing the rotor axial locations where residual rotor mass unbalance will have
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the most effect in exciting the critical speed resonance vibration. The unbalance
vibration response shape here is in fact nonplanar, similar to the example isomet-
ric illustration shown in Fig. 9, Chapter 4. The obvious conclusion drawn from the
computed unbalance response shape shown in Fig. 4 was that coupling unbalance
probably contributed significantly to this vibration problem, because the repair
shop’s rotor balancing procedure, as witnessed, was inadequate in several areas,
particularly for the coupling. The flexible couplings employed on these BFPs are
of the diaphragm type and are well suited to such applications, being more reliable
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FIGURE 3 Computed unbalance-excited critical speed versus bearing stiffness
(interposed gasket).

FIGURE 4 Critical speed rotor response shape with typical unbalances.
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than gear couplings that require maintaining lubrication. With a properly func-
tioning flexible coupling, the BFP is sufficiently isolated from the driver (lateral
vibrationwise) so that analysis models can justifiably terminate at the pump half
of the coupling. Experience has shown this to be well justified.

A second BFP vibration case study presented here involves the BFP shown
assembled in Fig. 5. It is similar in size and capacity to that in the previous BFP
case study (Fig. 2), being a “50%” pump for a 430 MW steam turbogenerator unit.
The BFP shown in Fig. 5 is actually a three-stage pump for boiler feed but has a
small fourth stage (called a “kicker stage”) which is to supply high-pressure in-
jection water at pressures above feed water pressure.

This BFP was observed to have a critical speed at 5,150 rpm, although the
manufacturer’s design analyses did not support this observation. This is a vari-
able-speed pump with a maximum operating speed of 6,000 rpm. The 5,150 rpm
critical speed was in the frequently used operating speed range and produced ex-
cessive vibration levels, primarily at the inboard of the rotor (i.e., coupling end at
suction inlet). A clue was supplied by Dr. Elemer Makay (see Dedication of this
book). At a number of power plants employing the same BFP design, he observed
BFP inboard journal bearing distress in the top half of the bearing bore. This bear-
ing distress was consistently centered about 10° rotation direction from the top
center. The journal bearings were of a design employing a relieved top-half
pocket. The specific elbow geometry of the pump inlet piping suggested to Dr.
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FIGURE 5 Assembly view of a boiler feed water pump.
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Makay that there was a significant upward hydraulic static force on the suction
end (inboard end) of the rotor.

A finite element–based unbalance response model was developed by the au-
thor from detailed OEM information supplied by the electric power company
owner of the plant. A lengthy double-nested iteration study was undertaken in
which an upward static rotor force was applied on the rotor model at the suction-
stage impeller. Through a trial-and-error iteration, this upward static radial force
was directed so as to produce an inboard journal eccentricity direction of 10° ro-
tation from the top center, as motivated by the bearing distress observations of Dr.
Makay. From each of several values assumed for this force, a set of journal bear-
ing static loads were calculated. A set of bearing stiffness and damping coeffi-
cients were in turn calculated for each set of bearing static loads. Each set of bear-
ing stiffness and damping coefficients was then used as input to the finite
element–based unbalance response model to compute rotor vibration response
versus rpm using a typical set of rotor unbalances.

Through several iterations, a force of 3,477 pounds yielded journal bearing
rotor dynamic coefficients (using the EPRI COJOUR code referenced in Chapter
5) that predicted an unbalance-excited critical speed of 5,150 rpm. Furthermore,
at this predicted 5,150 rpm critical speed, the rotor vibration response shape
showed high inboard (coupling end) vibration levels as observed on the BFPs at
the plant. In fact, the critical speed rotor vibration response shape was very simi-
lar to that shown in Fig. 4 for the earlier BFP case study presented in this section.
The problem was eliminated by retrofitting a different journal bearing configura-
tion that shifted the critical speed considerably above the 6,000 rpm maximum op-
erating speed.

4. SUMMARY

Unbalance-excited critical speed troubleshooting case studies were selected for
this chapter to highlight a number of important considerations. The large steam
turbine case demonstrates that rigidly coupled drive lines with more than two ra-
dial bearings are susceptible to nonstationary vibration characteristics resulting
from statically indeterminate bearing load shifting. This turbine case, along with
those in Chapter 12, support the author’s belief that in cases of excessive vibration
problems in large steam turbogenerators, journal bearing static load changes, such
as from bearing alignment shifting, are most often a contributing factor to the
problem.

Two feed pump cases were selected for this chapter to stress the consider-
able challenges in developing good predictive rotor vibration models and making
correct problem diagnoses for multistage centrifugal pumps. These challenges
arise for two generic reasons. The first reason is the multiplicity of liquid-filled
annular rotor-stator small-clearance radial gaps that dominate the vibration char-
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acteristics of such machines, combined with the dimensional variability of these
small radial gaps from ID and OD manufacturing tolerances and in-service wear.
Second, the potentially large and uncertain hydraulic radial static impeller forces,
which vary with a pump’s operating point over its head-capacity curve (see Sec.
1, Chapter 6), introduce considerable uncertainty in radial bearing static loads.
Since a bearing’s rotor dynamic characteristics are a strong function of its static
load, the inherent uncertainty of impeller static radial forces adds to the uncer-
tainty for rotor vibration modeling and problem diagnoses. These pump cases
demonstrate the diligent persistence required to isolate the root cause(s) in cases
where simply rebalancing the rotor does not solve the problem.
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11

Self-Excited Rotor Vibration Case Studies

1. INTRODUCTION

As discussed in Sec. 8, Chapter 9, dynamic instability leading to self-excited ro-
tor vibration can originate from several different sources. Modern turbomachin-
ery is probably where self-excited rotor vibration is most often encountered, be-
cause of the high power transfers and the attendant fluid dynamical interaction
phenomena that abound inside turbomachinery. In most cases, self-excited rotor
vibration can lead to quite excessively high vibration levels, and therefore when it
is encountered the mandatory objective is its elimination from the operating zones
of the machine. Paraphrasing Professor Crandall (1), the available rotational ki-
netic energy in a machine is typically several orders of magnitude greater than the
energy storage capacity of a destabilized rotor-whirling mode, and thus only a
miniscule portion of the rotor kinetic energy channeled into an unstable mode can
readily cause a failure. Even with the best of design practices and most effective
methods of avoidance, many rotor dynamic instability causes are so subtle and
pervasive that incidents of self-excited rotor vibration in need of solutions con-
tinue to occur. Three interesting case studies from the author’s troubleshooting
experiences are presented in this chapter, all involving large steam turbogenera-
tors. Each of these three cases is unique and thus individually informative.

2. SWIRL BRAKES CURE STEAM WHIRL IN A 1,300 MW
UNIT

As described in Sec. 3, Chapter 6, and Sec. 8, Chapter 9, steam whirl is a subsyn-
chronous self-excited vibration, typically of the lowest natural frequency forward-
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whirling rotor mode. As previously explained, steam whirl differs from its “close
relative” oil whip in that steam whirl has an instability threshold dictated by in-
creasing power output, not increasing rotor speed. Although steam whirl forces
are present in all stages of steam turbines, when steam whirl occurs it is always in
the high-pressure turbine, as explained in Sec. 3, Chapter 6.

The case study presented in this section pertains to a 1,300 MW cross-com-
pound steam turbogenerator. As explained in Sec. 2, Chapter 10, cross-compound
units have two drive lines, each providing approximately 50% of the unit’s rated
power output. In the unit of this case, each drive line is rated at 650 MW. One
drive line has a double-flow HP turbine, two double-flow LP turbines, a genera-
tor, and a drive line–mounted exciter. The other drive line has a double-flow IP
turbine, two double-flow LP turbines, a generator, and a drive line–mounted ex-
citer. The power plant in this case houses two of these 1,300 MW generating units,
each having it own coal-fired steam boiler. After about 15 years in service, one of
the two units developed a subsynchronous vibration of excessive magnitude in its
HP turbine section. At the point where the author became involved in this prob-
lem, steam whirl was already deemed the likely phenomenon responsible for the
excessive subsynchronous (28 Hz) vibration on this 60 Hz machine. It had been
established that the vibration “kicked in” at about 900 MW as the load was in-
creased on the machine. The unit was temporarily derated to 900 MW pending a
solution to the problem. The organization owning the power plant therefore in-
curred a 300 MW loss in generating capacity with the attendant lowered fuel effi-
ciency of the unit at the reduced power output. At that time, the owning organiza-
tion also had some of its nuclear-powered generating units under a temporary
mandated shutdown pending resolution of regulatory concerns. The search for a
solution to the problem was intense.

As in the case presented in Sec. 2 of Chapter 10, the author developed a cal-
ibrated model for the entire HP drive line. That is not to guess whether, or how
much, the two LPs, generator, and exciter affect the vibration problem, but instead
to include the complete rigid coupled rotor drive line in the model. The complete
HP drive line is supported in six journal bearings. Figure 1 shows only the HP tur-
bine portion of the HP drive line, which is where “swirl brakes” were retrofitted.
As described in Sec. 3, Chapter 6, the destabilizing effect known as steam whirl is
actually the sum of two effects: (a) the Thomas-Alford forces due to variation of
circumferential torque distribution (see Fig. 2b in Chapter 6) and (b) the leakage-
steam pressure distribution effect within the annuluses between the labyrinth
strips of the blade-tip seals (see Fig. 6d in Chapter 6), which is strongly abetted by
the corotational preswirl of steam entering the seals. Swirl brakes work to negate
the second of these two contributions, which is approximately twice as strong as
the first contribution. Swirl brakes are axially oriented flow-straightening station-
ary vanes installed just upstream of the annular tip seals. In this case, the rotor vi-
bration model was used to determine instability thresholds (see Sec. 3, Chapter 4)
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and thereby evaluate how many of the first HP stages should be retrofitted with
swirl brakes, which drastically reduce seal inlet corotational preswirl. As indi-
cated by Fig. 6d in Chapter 6, the destabilizing effect of steam prerotation ahead
of a seal varies approximately with the gas density, and thus the largest stabiliz-
ing influence yielded by swirl brakes is in the highest pressure seals.

As is typical, labyrinth tip seals in this HP turbine have multiple annular
sealing strips at each stage. To make space for swirl brake axial strips, the first an-
nular strip was removed at each stage retrofitted with swirl brakes. This reduces
the efficiency of the turbine, so an evaluation was made of the annual incremen-
tal fuel cost increase for each stage retrofitted with swirl brakes. Stage-by-stage
cross-coupled (skew symmetric) bearing-like stiffness coefficients were incorpo-
rated into the model at each HP turbine stage, with and without swirl brakes. The
resulting analyses with the model indicated that swirl brakes installed in the rotor
midplane seals and in the first three stages (both flow legs) would produce most
of the stabilization influence that could be accomplished. Not only is the steam
pressure (density) highest in this axial central region of the HP turbine, but also
the mode shape of the destabilized mode has its largest receptiveness (i.e., mag-
nitude) in the axial central region. The model-computed HP unstable mode shape
(Fig. 2) clearly shows this, and it also shows that the steam whirl self-excited vi-
bration in this case is primarily in the HP turbine. That is, the rest of the rotor sec-
tions rigidly coupled to the HP turbine do not participate vigorously in the unsta-
ble mode’s self-excited vibration. This is consistent with the monitored vibration
measurements from this machine, which showed the significant subsynchronous
vibration component concentrated in the HP rotor.
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FIGURE 1 HP turbine section of the HP drive line of a 1,300 MW 3,600 rpm
cross-compound steam turbogenerator.
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The fix implemented on this unit at the power plant was therefore to install
swirl brakes in the rotor midplane seals and in the first three stages of both flow
legs. The unit was then able to operate free of steam whirl up to 1,250 MW. Some
subsequent adjustments to journal bearing vertical alignments provided the addi-
tional stabilizing influences which allowed the unit to be operated at its rated
1,300 MW capacity, free of steam whirl. Further details of the analyses for this
case are given in the EPRI (2) Symposium Short Course Proceedings and by Mc-
Closkey and Adams (3).

3. BEARING UNLOADED BY NOZZLE FORCES ALLOWS
STEAM WHIRL

The steam turbogenerator unit in this case study is a 650 MW 3,600 rpm tandem
compound configuration (i.e., one drive line). It is one of five such units housed
at the same plant. About 9 months prior to the unit’s next scheduled outage for in-
spection and overhaul, the unit started to exhibit a large-amplitude subsyn-
chronous 27 Hz vibration concentrated in its HP-IP turbine section (25 mils p.p.
at journals). The initially diagnosed cause of the vibration was steam whirl, be-
cause the associated threshold of instability was dependent on the machine power
output. At the time when the author became involved in troubleshooting this prob-
lem, the subsynchronous vibration “kicked in” at about 500 MW as the load was
increased on the machine.

Upon the strongest of recommendations by the author, the machine was
temporarily derated to 500 MW. The power output below which the subsyn-
chronous vibration subsided decreased as the machine’s scheduled outage ap-
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FIGURE 2 Steam whirl–excited unstable mode of HP drive line.
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proached, indicating progressive worsening of the root cause. Accordingly, the
unit was progressively derated in increments to about 300 MW as its scheduled
outage was reached. When the unit was operable at its full 650 MW rated capac-
ity, the power company owner of this plant had about 1,000 MW of excess power
from its most efficient generating units to sell to other power companies, such as
the “neighboring” organization owner of the generating unit covered in Sec. 2,
which was significantly short of capacity at the time because of its nuclear units
regulatory shutdown. Understandably, the quite significant income reduction
caused by derating the machine to operate free of the high-amplitude subsyn-
chronous vibration precipitated a “tug of war” between production financial man-
agement and plant engineering. Nonetheless, the engineers prevailed over the
“bean counters” (not an everyday event!) and the unit was derated as necessary to
operated free of the subsynchronous vibration. Naturally, the search for a solution
to this vibration problem was intense.

A review of operation and maintenance records for this machine disclosed
a history of excessive HP-turbine impulse (control stage) nozzle erosion for the
unit. That discovery strongly suggested to the author that uneven static radial
steam forces on the HP-IP rotor (at its impulse stage, see Fig. 7 in Chapter 6) pro-
duced a net static radial rotor force that partially unloaded journal bearing static
loads enough so that the bearings’ normal squeeze-film capacity to suppress steam
whirl was significantly diminished. The HP-IP journal bearings for this unit are of
a six-pad tilting-pad configuration with the rotor weight vector directed into the
bottom pad’s pivot location. In this scenario, the impulse stage’s static radial load
on the HP-IP rotor slowly increases over time because of the progressive closing
of an impulse-stage control nozzle as some other nozzles’ steam-flow areas en-
large due to erosion. This control nozzle closing must of course occur in order to
maintain the steam power input to the machine within its rated capacity.

To test this hypothesis, the author developed a finite element–based total
drive-line lateral rotor vibration model calibrated for this unit’s vibration symp-
toms, as had previously been done in successfully troubleshooting the unit in the
case study of Sec. 2, Chapter 10. Net static radial loading conditions on the HP-IP
rotor were calculated as a function of slowly progressing time-dependent nozzle
wear. Several analysis cases were undertaken by incorporating these progressive
HP-IP rotor load changes into the journal bearing static loads for the drive line.
The resulting stiffness and damping coefficients for all the journal bearings plus
the skew-symmetric bearing-like stiffness coefficients for the HP section steam
whirl forces were incorporated into the rotor vibration model of the unit. As re-
lated by McCloskey and Adams (3), the computed model results correlated well
with the actual time-line progression of the continuously worsening subsyn-
chronous vibration problem. The conclusion was therefore drawn, with a high de-
gree of confidence, that the vibration was in fact steam whirl and that progressive
nozzle wear in the HP turbine impulse stage was the root cause. Therefore, a new
nozzle plate replacement, with a change in material to provide improved resis-
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tance to erosion wear, was immediately ordered and ready for installation by the
time of the scheduled outage. During the scheduled outage, the old nozzle plate
was inspected and, as expected, was found to have considerable nozzle erosion
wear. The unit was put back into service with the new nozzle plate and operated
free of steam whirl up to its full rated 650 MW capacity. The unstable mode’s
shape is shown in Fig. 3, and it is quite similar to that shown in Fig. 2 for the steam
whirl case in Sec. 2. The model computed mode shape in Fig. 3 shows that the rest
of the rotor sections rigidly coupled to the HP-IP rotor do not participate vigor-
ously in the steam whirl vibration. This is consistent with the monitored vibration
measurements from this machine at the time of the problem. The experience
gained from this problem by the owning company of this unit was especially valu-
able because the plant houses five such 650 MW units. In the time frame of this
problem, the author was consulted by another power company having a similar
problem on a 620 MW version of the same design machine.

4. MISALIGNMENT CAUSES OIL-WHIP/STEAM-WHIRL
“DUET”

The steam turbogenerator unit in this case study is a 430 MW 3,600 rpm tandem
compound configuration (i.e., one drive line). It is the largest of four generating
units housed at its plant. The author was consulted because the unit was in a der-
ated mode of operation due to a strong subsynchronous 28.5 Hz vibration in the
HP-IP rotor at loads above 390 MW. Based upon prior experiences, such as with
the cases presented in Sec. 2 and 3, it appeared to be a clear-cut case of steam whirl.
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However, the manufacturer of this machine claimed that this design did not have
any history of steam whirl at other plants where the same design had been installed,
and no information was found at these other plants to refute the OEM’s claim.

In a close collaborative effort with the OEM, the author developed a finite
element–based total drive-line rotor-bearing model of the machine from detailed
drawings and other information supplied by the OEM and the power company
owner of the machine. Based on then recent bearing elevation measurements, for
both “cold” and “hot” machine conditions, the rotor static sag-line was computed
and the journal bearing static loads were thereby determined for both cold and hot
conditions. The difference in journal bearing static loads between cold and hot el-
evation readings was large enough to affect critically the loads on the HP-IP ro-
tor’s bearings. Based on the so determined bearing static loads, bearing stiffness
and damping coefficients were computed (see Chapter 5).

Under the hot (operating) condition, bearing alignments at the HP-IP end of
the machine were significantly lowered relative to the rest of the machine com-
pared to the cold condition. Consequently, HP-IP bearing 1 (outboard) was about
90% unloaded. In fact, the HP-IP rotor was operating nearly in a condition of be-
ing cantilevered off the rest of the machine. It was amazing to the author that the
rugged construction of the rotor had allowed this operating mode without struc-
tural fatigue damage to the shaft. However, as the model analyses showed, this al-
lowed bearing 1 to contribute significant oil-whip forces to help the steam whirl
occur. All of the machine’s journal bearings were of the two-lobe configuration,
sometimes referred to as the “lemon” bore design, a metaphor particularly appro-
priate for this plant’s installation. The unstable mode shape for this case is shown
in Fig. 4, and it is significantly different from the two unstable mode shapes shown
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in Figs. 2 and 3 for the two other steam whirl cases presented in this chapter. Fig-
ure 4 reflects that bearing 1 was almost completely unloaded.

Further computer analysis studies singled out an optimum solution to stabi-
lize the 28.5 Hz mode, which resulted in stable operation up to the machine’s rated
output. Bearing 1 was replaced in the model with a four-pad tilting-pad journal
bearing with a range of preload factors, of which 0.5 provided the best compro-
mise. As a result of the author’s analyses, the plant replaced bearing 1 with a four-
pad tilting-pad journal bearing having a preload factor of 0.5. This retrofit enabled
full-load operation of the machine.

5. SUMMARY

These cases and those of Chapter 10 demonstrate convincingly that adroit use of
computer modeling drastically increases the probability of correctly diagnosing
and curing difficult rotating machinery vibration problems that are not cured by
routine maintenance actions or trial-and-error approaches.
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Additional Rotor Vibration Problem Cases
and Topics

1. INTRODUCTION

The commonly identified rotor vibration root causes and symptom descriptions
specific to each cause are summarized in Sec. 8 of Chapter 9. Chapters 10 and 11
present specific troubleshooting case studies, which fall into two of the most fre-
quently identified problem categories and which are drawn from the author’s own
troubleshooting experiences. This chapter is more a potpourri of rotating machin-
ery vibration problem topics that are not as readily grouped into a broad generic
category.

2. VERTICAL-ROTOR MACHINES

The topic of vertical machines warrants special treatment. The author gained valu-
able experience with and insights into vertical machines (while employed at the
Westinghouse R & D Center) from bearing and rotor vibration research on pres-
surized water reactor (PWR) primary coolant pumps, of both the shaft-sealed type
for commercial nuclear plants and the canned-motor type for naval propulsion
systems. That these types of pumps are vertical is dictated by the piping layout
constraints of a typical PWR primary flow loop. Concerning rotor-bearing me-
chanics, vertical machines are fundamentally more difficult to analyze and under-
stand than horizontal machines primarily because the radial bearing loads are not
dead-weight biased, the rotor weight being carried by the axial thrust bearing. Ra-
dial bearing static loads in vertical machines are therefore significantly less well
defined and more nonstationary than bearing static loads in horizontal machines.
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Given the strong dependence of journal bearing rotor dynamic characteristics on
bearing static load, the rotor vibration characteristics of vertical-rotor machines
are typically quite uncertain and randomly variable, far more than those of hori-
zontal machines. While the Westinghouse experience was still fresh, the author in-
fused his insights into vertical machines into the EPRI publication by Makay and
Adams (17), which delineates important design and operational differences be-
tween vertical machines and horizontal machines.

A shaft-sealed reactor coolant pump (RCP) for a PWR nuclear power plant
is illustrated in Fig. 1. This pump is approximately 25 feet (7.6 m) in height. The
motor and pump shafts are rigidly coupled, which enables the entire coupled-ro-
tor weight plus axial pump hydraulic thrust to be supported by one double-acting
tilting-pad thrust bearing. This is the standard arrangement supplied by U.S. RCP
manufacturers. A major European manufacturer employs a flexible coupling, ne-
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FIGURE 1 RCP of 100,000 gpm capacity and speed of 1,200 rpm; typical PWR
primary loop conditions are 2,250 psi (153 bars), 550°F.
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cessitating two thrust bearings, one for the pump and one for the motor. In the con-
figuration in Fig. 1, a large flywheel mounted at the top of the rotor is approxi-
mately 6 feet (1.8 m) in diameter and 15 inches (0.38 m) thick. It provides a rela-
tively long coast-down time to ensure uninterrupted reactor coolant water flow
during the transition to emergency backup power in a pump power interruption. A
spool piece is used in the rigid coupling to allow inspection and repair of the pump
shaft seals without having to lift the motor. The pump impeller outside diameter
is approximately 38 inches (0.97 m). The rigidly coupled rotor shown in Fig. 1 is
held by three journal bearings, two quite narrow oil-lubricated tilting-pad journal
bearings in the motor and one water-lubricated graphite-composition sleeve bear-
ing located just above the thermal barrier. The water-lubricated bearing operates
at primary loop pressure (approximately 2,250 psi, 153 bars), and thus this hy-
drodynamic bearing runs free of film rupture (cavitation). The attitude angle be-
tween the static load and the journal-to-bearing radial line of centers is therefore
90° over the full range of operation. This case is illustrated in Fig. 6b of Chapter
6. As a consequence, such RCPs usually exhibit a half-frequency whirl (i.e., half
rotational speed) component in the rotor vibration signals. More detailed infor-
mation on this pump and similar designs of different manufacturers is given in the
Oak Ridge National Laboratory report of Makay et al. (16).

RCP configurations in most U.S. and several foreign nuclear power plants
have the rigid-coupled three-journal bearing arrangement typified by the pump
shown in Fig. 1. From a rotor vibrations perspective, this presents possibly the
most challenging type of system on which to make analysis-based predictions.
That is, not only are the journal bearing static forces devoid of dead-weight bias-
ing, they are also statically indeterminate. This all combines to make journal bear-
ing static loads, and thus rotor vibration characteristics, highly variable as related
to manufacturing tolerances, assembly variations, pump operating flow point, as
well as normal wear at close-clearance radial gaps. Given the absence of dead-
weight journal bearing loads, the primary source of radial static load is the static
radial impeller force, which changes with pump operating flow (see Sec. 1, Chap-
ter 6). However, given the three-bearing rigid-coupled configuration of RCPs, un-
less the three journal bearings are perfectly aligned on a straight line, there will be
additional journal bearing static loads from the bearings preloading each other.

Jenkins (14) attests to the considerable challenge in assessing the signifi-
cance of monitored vibration signals from RCPs and focuses on possible correla-
tion of vibration signal content and equipment malfunction with machine age. He
presents the “Westinghouse approach” in identifying vibration problem root
causes and corrective changes for these aging Westinghouse RPC machines. In
one of Jenkins’ case studies, what appeared to be a sudden unfavorable change in
monitored rotor vibration orbits was in fact eventually traced to a combined mal-
function and faulty installation of the eddy-current proximity probe system. This
led to the conclusion that eddy-current probe displacement systems are vulnerable
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to deterioration over time in the hot and radioactive environment around RCPs
and thus need to be replaced or at least checked at regular intervals. This “false
alarm” case also emphasized the importance of closely following the proximity
probe vibration instrumentation manufacturer’s instructions regarding permissi-
ble part number with allowable target material combinations to avoid errors in
probe-to-target scale factors, upon which all monitored vibration signals are
based. For rotor vibration monitoring of RCPs, an x-y pair of proximity probes are
installed 90° apart just below the coupling on a short straight low-run-out section
of the shaft.

A second case study presented by Jenkins (14) pertains to an RCP of the
model illustrated in Fig. 1. It is one of three identical pumps for a specific reactor.
It developed a large half-frequency (N/2) rotor vibration whirl. With a cavitation-
free water-lubricated sleeve bearing on a vertical centerline, some N/2 vibration
content is nearly always observed in the monitored rotor vibration signals of these
pumps, but at tolerable levels when the pumps are operating “normally.” In this
case, the drastically increased level of N/2 vibration led to an investigation to de-
termine the likely root cause(s) and the proper corrective actions. Based on both
the drastic increase in monitored N/2 vibration component (changed from 2 to 6
mils p.p. at coupling) and a shift in static centerline position as indicated by the
proximity probe DC voltages, it was diagnosed that the pump (water-lubricated)
journal bearing clearance had significantly worn open. Some motor bearing align-
ment adjustments allowed the N/2 vibration component to be held within levels
deemed operable, pending a replacement of the pump bearing at the next refuel-
ing cycle or sooner if the monitored vibration developed a subsequent upward
trend.

RCPs are not the only vertical pump applications. Some fossil-fired steam
boilers in electric power generating plants are designed with boiler circulating
pumps which are incorporated into the design to make the boiler physical size
much smaller than it would have to be if relying on free convection alone. Boiler
circulating pumps have vertical centerlines as dictated by suction and discharge
piping constraints. Condensate pumps are another example of vertical centerline
machines. Marscher (18) presents a comprehensive experience-based treatment of
vibration problems in vertical turbine pumps. Most hydroelectric turbines and
pump-turbines are vertical.

3. “VECTOR TURNING” FROM SYNCHRONOUSLY
MODULATED RUBS

The propensity for rotor rubs to cause thermal rotor bows or local distortions that
significantly increase synchronous vibration levels is greatest when the operating
speed is close to a critical speed with significant modal participation at the rub site.
This tendency was recognized early in the era of modern rotating machinery as ev-
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idenced by the published works of Taylor (27) and Newkirk (22). More recently,
Muszynska (21) has provided an approximate computational model for this prob-
lem. The author became familiar with this problem firsthand when consulted by
an electric power company in 1991 to help diagnose, explain, and cure the root
cause of a serious exciter vibration problem that the company was experiencing
on one of its fossil-fired 760 MW, 3,600 rpm steam turbogenerator units. The unit
had just been retrofitted with a brush-type exciter to replace its OEM-supplied
brushless exciter, with which the power company had a long history of unsatis-
factory experience. Both the original brushless exciter and the replacement brush-
type exciter were configured to be directly connected to the outboard end of the
generator shaft. The retrofitted brush-type exciter was custom designed and built
by an OEM that was not the turbogenerator’s OEM. Because of the serious vibra-
tion problem initially experienced with the newly retrofitted brush-type exciter, it
was temporarily removed from generator outboard end and the turbogenerator
unit was then operated with an off-mounted exciter. To “add insult to injury,” the
power company had to lease (at a quite high rental rate) the off-mounted exciter
from the turbogenerator’s OEM.

To a high degree of certainty, the exciter vibration problem was initiated by
rub-induced friction heating at the sliding contact between the exciter brushes and
collector rings. The power company’s engineers working on this rub-induced vi-
bration problem were surprised by a fundamental difference between a major
symptom in this problem and the corresponding symptom of previous rub-induced
vibration problems they had seen, i.e., with rubs at packings, oil deflectors, inter-
stage seals, and end seals. Specifically, in their prior experiences with rub-induced
vibration the vibration-signal polar plot of amplitude versus phase (see Fig. 9-8)
exhibited a counterrotational slowly precessing “vibration vector.” In the exciter
vibration problem at hand, the vibration vector slowly precessed in the corota-
tional direction, taking approximately 3 hours per 360° vector turn, as illustrated
in Fig. 2. To understand and thereby properly diagnose the exciter vibration prob-
lem, the author developed a simplified model that explained the corotational di-
rection precession of the exciter vibration vector. The presentation which follows
on the author’s simplified-model explanation is extracted from its first presenta-
tion, by Adams and Pollard (5).

The simplified linear model has only two degrees of freedom (x and y) and
treats the rotor as a single lumped mass, as shown in Fig. 3. Furthermore, the ra-
dial stiffness and damping characteristic is assumed to be isotropic (i.e., same in
all radial directions). Residual rotor unbalance is represented by the standard syn-
chronous rotating force. The two equations of motion for this system are therefore
given as follows (see Eq. 1 in Chapter 2).

mẍ � cẋ � kx � F1 cos 
t

mÿ � cẏ � ky � F1 sin 
t
(1)
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FIGURE 2 Polar plot of exciter vibration (Z ) over 1 day.

FIGURE 3 Simple 2-DOF model for rub-induced “vector turning” vibration.
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The steady-state vibration obtained from the particular solution to Eqs. (1) is as
follows.

x1 � Z1 cos(
t � 
)

y1 � Z1 sin(
t � 
)
(2)

Assume that a rotor rub is initiated or at least modulated by this vibration. Conse-
quently, a localized or cyclic heating of the shaft (hot spot) produces a thermal
bowing or local distortion on the shaft such that an additional synchronous run-
out and therefore additional unbalance-like force are added colinear with the vi-
bration “vector” Z1. The incremental change to the total vibration vector will lag
the incremental unbalance force by the same characteristic phase angle, 
. Thus,
the total unbalance force vector and the total synchronous vibration will be com-
posed of the appropriate vector additions given in the following equations.

x � x1 � x2 � Z1 cos(
t � 
) � Z2 cos(
t � 2
)

y � y1 � y2 � Z1 sin(
t � 
) � Z2 sin(
t � 2
)
(3)

Z � �x2	 �	 y	2	 � �Z�2
1��� Z�2

2��� 2�Z�1Z�2��1� �� 2� s�in�2����


2
�����

Equations (3) are used to explore four cases that explain why the aforementioned
exciter vibration problem was characterized by a corotationally precessing vibra-
tion vector, in contrast to plant engineers’ prior experience with rub-induced vi-
brations at packings, oil deflectors, and seals.

Case 1: Stiffness-modulated rub with 
 � 
cr

If the rub is a “single point” localized “hard” rub, or more generally stiff-
ness modulated all around the shaft, then the incremental unbalance force (F2)
will be in phase with Z1. Further, if the rotor speed (
) is somewhat less than the
critical speed (
cr), then the characteristic phase angle will be less than 90° (see
Fig. 4b in Chapter 1). This case is illustrated in Fig. 4a.

That F2 is proportional and in phase with Z1 is based on the notion that the
rub contact “pushes” back on Z1 approximately in proportion to Z1, (i.e., stiffness
modulated such as rubs against packings, oil deflectors, interstage seals and end
seals, etc.). Two important observations can be made for this case from Fig. 4a.
First, the incremental effect of the rub-induced rotor bow is to increase the total
synchronous vibration (i.e., Z � Z1). Second, the phase lag (�) between F1 (a
point fixed on the rotor, i.e., keyphaser) and the total vibration Z is increased,
which means the rotor high spot slowly precesses opposite the rotor spin direction.
In other words, as time proceeds, the phase lag and the vibration amplitude will
both slowly increase, because Z will produce a “new” incremental synchronous
unbalance force colinear with Z and thus produce an additional incremental syn-
chronous component lagging Z by 
 (not added to Fig. 4a).
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Case 2: Stiffness-modulated rub with 
 � 
cr

In this case, using the same step-by-step approach, Fig. 4b clearly shows
that a stiffness-modulated rub at a speed somewhat above the critical speed also
produces a total vibration vector which precesses opposite the rotor spin direction.
However, in contrast to Case 1, the rub-induced rotor bow does not automatically
tend to increase the total vibration magnitude continuously, an obvious conse-
quence of 
 being between 90° and 180°.

Case 3: Inertia-modulated rub with 
 � 
cr

Figure 5 is a visualization aid to explain the difference between stiffness-
modulated and inertia-modulated rotor rubs. The stiffness-modulated rub (Fig.
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FIGURE 4 Stiffness-modulated simple 2-DOF isotropic model.

FIGURE 5 Rub force modulation models. (a) Stiffness modulated; (b) inertia
modulated. (From Ref. 5.)
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5a) pertains to a rotor-to-stator contact in which the normal contact force increases
the more the rotor displaces into the rub site. In contrast, the inertia-modulated rub
model presumes that the nonrotating contact rub surface is composed of masses
(e.g., exciter brushes) that are soft-spring preloaded against the shaft to prevent
loss of contact, as illustrated in Fig. 5b. Thus, the dynamics of inertia-modulated
rotor rubs produce a normal dynamic contact force which is proportional to the ra-
dial acceleration of the movable stator masses. Therefore, for a synchronous cir-
cular shaft vibration orbit, the dynamic component of the normal contact force is
180° out of phase with the vibration displacement signal, as is obvious from the
following equations.

Given x � X cos(
t � �), then ẍ � �
2X cos(
t � �) (4)

An inertia-modulated rotor rub thus tends to produce a maximum contact
force (and thus “hot” spot) which is 180° out of phase with the displacement vi-
bration vector (“high” spot). Therefore, in this case (
 � 
cr � 
 � 90°) the re-
sult can be illustrated as shown in Fig. 6a, which clearly indicates that the high
spot (Z) will slowly precess in the corotational direction of shaft spin. Figure 6a
also indicates that the total vibration amplitude is less than that from the initial
mass unbalance alone, so in this case the vibration vector is not as likely to spiral
“out of control” as in the next case.

Case 4: Inertia-modulated rub with 
 � 
cr

This case differs from Case 3 in that the characteristic phase angle (
) is be-
tween 90° and 180°. Using the same type of vector diagram illustration as for the
previous three cases, Fig. 6b is constructed for this case. It shows that in this case
the total vibration vector will also slowly precess in the corotational direction of
shaft spin as with Case 3. However, in contrast to Case 3, the total vibration vec-
tor (Z ) is shown to be more likely to spiral outward and, assuming insufficient
heat removal capacity, can readily spiral “out of control.”
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FIGURE 6 Inertia-modulated simple 2-DOF isotropic model.
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Table 1 summarizes the four cases that are delineated with the model in Fig.
3. The specific rub-induced vibration problem on the 760 MW unit referenced at
the beginning of this section falls into Case 4. The successful fix implemented by
the supplier of the custom-designed brush-type exciter retrofit entailed design
changes to raise the exciter critical speed to a safe speed margin above 3,600 rpm,
thus moving it into the Case 3 category.

Taylor (27), Newkirk (22), and Muszynska (21) all sort of treat Case 1. Tay-
lor and Newkirk also sort of treat Case 2. However, none of these publications
mentions anything like the Adams and Pollard (5) Cases 3 and 4 presented here.

In all four cases, the thermal distortion attempts to make the hot spot be-
come the high spot, and thus the position of the high spot will slowly change cir-
cumferentially and thereby continue to hunt for an equilibrium state but never find
it. So the vibration phase angle continuously changes at a slow rate. The leverage
that the thermal bow has on the vibration will be more amplified the closer the run-
ning speed is to a critical speed with high modal participation at the rub site. The
simple model indicates that the likelihood of severe vibration is much greater with
situations that essentially fall into Cases 1 and 4. The plausible explanation for
why such a phenomenon can reach a limit cycle is probably a nonlinearity in the
heat removal mechanisms at work. That is, the incremental increase in heat re-
moval near the hot spot region becomes progressively larger than the incremental
decrease in heat removal near the cold spot. However, the existence of a limit cy-
cle is not a guaranteed line of defense against a major failure because the limit cy-
cle vibration may be larger than the vibration level sufficient to initiate failure.

For brush-type exciters, brush wear does not alleviate the rotor rub intensity
because the brushes (rods of impregnated carbon) are kept in contact with the ro-
tating collector rings by “soft” preload springs. Conversely, it is reasonable to
hope that initial rub-induced thermal-distortion rotor vibrations at packings, oil
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TABLE 1 Four Cases of Rub-Induced Vibration Delineated by Simple Model

Rotor speed Stiffness modulated rub Inertia modulated rub


 � 
cr


 � 
cr

Case 1
Slow precession of vibration

vector is counterrotational.
Spiraling to high vibration

levels is more likely.
Case 2

Slow precession of vibration
vector is counterrotational.

Spiraling to high vibration
levels is less likely.

Case 3
Slow precession of vibration

vector is corotational.
Spiraling to high vibration

levels is less likely.
Case 4

Slow precession of vibration
vector is corotational.

Spiraling to high vibration
levels is more likely.
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deflectors, and seals will eventually attenuate, i.e., by rub alleviation through wear
at the rub site. This may not be realized in specific configurations, especially when
the wearing open of a radial clearance at the rub-site component appreciably re-
duces the component’s otherwise significant contribution to total damping.

4. IMPACT TESTS FOR VIBRATION PROBLEM
DIAGNOSES

A laboratory impact test method for determining radial seal and bearing rotor vi-
bration characteristics was discussed in Sec. 3 in Chapter 5 (see Fig. 5 in that chap-
ter). The major limitation of that experimental approach is the difficulty in getting
sufficient energy into such highly damped dynamical components to enable re-
trieval of an adequately strong signal-to-noise response to the applied impact force.

To execute a comparable impact-based modal test on operating centrifugal
pumps is an even bigger challenge than the laboratory experiment illustrated in
Fig. 5 of Chapter 5. Centrifugal pumps are highly damped dynamical systems. Al-
though impact-based modal testing is a quite useful diagnostic tool for many low-
damped structures, it was long considered not a practical or feasible diagnostic test
method for centrifugal pumps in operation. In addition to having fluid-film bear-
ings and radial seals, centrifugal pumps internally generate a broadband set of dy-
namic forces emanating from the various internal unsteady flow phenomena (see
Sec. 1, Chapter 6). Furthermore, these pump unsteady-flow dynamic forces
change during operation with changes in flow, head, and speed and change over
time with internal component wear. In addition, the rotor dynamic properties of
the bearings and radial seals of the typical centrifugal pump change significantly
as a function of operating conditions and wear over time, making the rotor vibra-
tion natural frequencies nonstationary as well. Thus, the prospect of employing
the quite powerful diagnostic test technique called modal analysis was basically
not an option for centrifugal pumps until recent years. Marscher (19) pioneered an
impact method for centrifugal pumps in which multiple impacts are applied to the
rotor (e.g., at the coupling) with impact magnitudes within ranges that are not in-
jurious to a pump or its driver.

The key to the success of Marscher’s method is the use of time averaging
over several hundred impact strikes. By time averaging over several hundred im-
pacts, only those vibration components that are the response to the impacts will be
magnified in the time-averaging process. The time-averaged pump internally gen-
erated vibration and signal noise that do not correlate with the controlled impact
strikes are progressively diminished as the number of time-averaged signal sam-
ples is increased. Marscher (19) shows test results that provide convincing proof
of the significant change in pump natural frequencies that can occur over the pa-
rameter changes within a pump’s normal operating range.
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Since Marscher first developed his test procedures, the field of data acqui-
sition and signal analysis has advanced considerably (see Chapter 9). With the use
of current generation multichannel high-sampling-rate digital tape recorders and
companion analysis software that runs on a laptop PC right at the test site,
Marscher’s method can now be applied much more expeditiously and more
cheaply than when it was first implemented. Correctly diagnosing particularly
troublesome pump vibration problems can be greatly facilitated by employing this
modal test approach. The impact-based modal test method can greatly facilitate
the development of “calibrated” computer models for pump vibration problem
analyses (see Chapter 10) useful in doing “what if” studies in search of the best
corrective actions.

5. BEARING LOOSENESS EFFECTS

Vibration symptoms for mechanically loose connections are covered in Sec. 8,
Chapter 9. Probably every plant maintenance engineer and mechanic has a long
list of past cases where the root cause of a vibration problem was discovered to be
looseness at the bearings. Virtually no rotating machinery type is immune to vi-
bration problems when bearing or bearing support looseness is present. A short
but informative paper by Bennett and Piatt (9) documents three case studies fo-
cused on looseness at journal bearings in power plant rotating machinery. Their
three case studies are summarized in this Section.

5.1. Bearing Looseness and Poor Geometry (350 MW
Steam Turbogenerator)

This case study is in fact a continuation of the case study presented in Sec. 2,
Chapter 10, where the author’s rotor unbalance computer model analyses of this
350 MW cross-compound steam turbogenerator indicated that bearing 2 (in the
HP turbine) was not providing proper load support for the rotor. The excessive
synchronous vibration peak (20 mils p.p.) of the HP turbine through its critical
speed was not good for the turbine internal clearances and efficiency of the unit.
The author’s analyses further indicated that employing a modest amount of
preload on bearing 2 (four-pad tilting-pad bearing) would reduce critical-speed
peak vibration levels of the HP rotor to approximately half the experienced levels
on run-ups and coast-downs. Based on the author’s analyses, the indicated bear-
ing preload was employed at the plant, and the result was as predicted: the HP crit-
ical-speed vibration peak level was more than halved. However, after only 6
months of operation, the problem reoccurred, indicating that the OEM bearing
was not maintaining the setup.

Upon further investigation by the electric power company’s engineers, it
was uncovered that a number of deficiencies of the OEM HP turbine journal bear-
ings contributed to the problem. Both HP journal bearings (Nos. 1 and 2) had de-
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veloped looseness, which was the primary cause of the excessive critical-speed vi-
bration peak level in the HP turbine. The looseness was found to be primarily an
inherent characteristic of the OEM bearing design. Bearing 1 did not have bolts to
hold together the top and bottom halves of the inside bearing support ring. Also,
the bearings were designed to rely on differential thermal expansions to create the
necessary “pinch” on the inner bearing ring by the bearing outer housing. Several
attempts to create adequate pinch to properly secure the inner bearing rings of both
HP bearings failed.

Because of the inherent design deficiencies of the OEM HP turbine bearing
design, the electric utility company’s corrective course of action was to find a
retrofit replacement for the HP journal bearings that would not have the inherent
deficiencies. Accordingly, a superior non-OEM six-pad tilting-pad bearing was
retrofitted into the existing cylindrical bore bearing fits. Figure 7 shows both the
original OEM bearing configuration and the non-OEM retrofit. After the outage
to install the non-OEM bearings, excessive critical speed vibration in the HP tur-
bine did not occur and the success of the fix has continued for several years. The
electric utility company lists the following items as crucial to this success story:
(a) use of horizontal joint bolts to ensure adequate “pinch” on the inner bearing
ring, (b) bearing pad preload, and (c) high-quality control over materials and con-
struction details. They also recommend controlling the steam valve sequencing so
that the HP turbine bearings are always loaded (see Sec. 3, Chapter 6).

5.2. Boiler Feed Pump 4000 Horsepower Electric Motor

During a routine maintenance vibration survey of plant machinery not instru-
mented with continuous vibration monitoring sensors, quite high vibration levels
were detected on this 4,000 hp, 3,600 rpm feed pump drive motor. Electrical prob-
lems were eliminated as the root cause because the vibration was dominated by
the synchronous frequency component (1N) as well as the 2N and N/2 frequency
components. The pump-motor set was removed from service and found to be out
of alignment by about 9 mils. Furthermore, the drive-end bearing housing-to-end-
bell fit had 8 mils clearance instead of the zero to 1 mil pinch specified. After
properly aligning the set and providing the proper bearing pinch, the unit was re-
turned to service and exhibited an overall vibration level on the motor bearings of
less than 1 mil p.p. One conclusion drawn from this case by the plant engineers is
that bearing pinch is vitally important. The first of two feed pump case studies in
Sec. 3, Chapter 10, also demonstrates the importance of bearing inner shell pinch.

5.3. LP Turbine Bearing Looseness on a 750 MW Steam
Turbogenerator

This 3,600 rpm unit has a rotor and bearing rigid-coupled configuration similar to
that indicated in Fig. 3, Chapter 11 for a unit from the same manufacturer. Just fol-
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lowing a major overhaul, high subsynchronous vibration (19.8 Hz) was experi-
enced. Bearing or support-structure looseness was considered the most likely root
cause; a seal rub was also considered. This subsynchronous vibration was highest
at bearing 6 (generator side of LP 2) and somewhat less on bearings 5 and 7 (see
same drive line arrangement in Fig. 3, Chapter 11).
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FIGURE 7 HP turbine tilting-pad journal bearings for 350 MW unit. (a) OEM
high-pressure turbine bearing configuration; (b) non-OEM high-pressure tur-
bine bearing retrofit.
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The LP turbine bearing (No. 6) was inspected during a short outage. An il-
lustration of the LP turbine bearing configuration for this unit is shown in Fig. 8.
The spherical-seat pinch between the bearing housing and inner bearing halves
was found to be zero, and the side alignment pad was loose. After adjusting the
side adjustment pad and restoring pinch to the spherical-seat fit, the unit was re-
turned to service with drastically reduced overall vibration levels at bearings 5
through 7. The lesson learned was that close attention must be paid to set the bear-
ings properly during overhauls. Virtually any power plant engineer involved with
major overhaul outages is unfortunately accustomed to debugging “new” prob-
lems caused by inadvertent mistakes and oversights when large machines are re-
assembled.

6. TILTING-PAD VERSUS FIXED-SURFACE JOURNAL
BEARINGS

The tilting-pad journal bearing (also called pivoted-pad journal bearing or PPJB)
has a proven history of avoiding the self-excited rotor vibration “oil whip” often
encountered with fixed-surface cylindrical-bore journal bearings (CBJBs). As ex-
plained in Sec. 4 (Chapter 2) and Sec. 8 (Chapter 9), the nonsymmetric portion of
the bearing displacement-reaction dynamic force component perpendicular to ra-
dial displacement is a nonconservative destabilizing force. Conversely, as ex-
plained by Adams and Makay (3), PPJBs do not cause oil whip.

PPJBs were first introduced for vertical-rotor machines (see Sec. 2) be-
cause fix-surface CBJBs are most likely to cause self-excited subsynchronous
rotor vibration when unloaded or lightly loaded. The success of PPJBs on verti-
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FIGURE 8 Low-pressure turbine bearing of a 750 MW, 3,600 rpm unit.
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cal machines prompted designers to employ them on many horizontal-rotor ma-
chines where combinations of light bearing static loads and high rotational
speeds made CBJBs highly susceptible to oil whip. Wide use of PPJBs has
clearly shown that PPJBs are not a cure-all for fundamentally poor rotor dy-
namic design. Also, there are several ways in which PPJBs can be inadvertently
designed, constructed, or applied to cause their own problems (see Sec. 5, Fig.
7), as Adams and Makay (3) describe. Furthermore, PPJBs are somewhat more
complicated and first-cost more expensive than CBJBs. Fixed-surface non-cylin-
drical-bore journal bearings (e.g., multilobe bearings) are a suitable improve-
ment over CBJBs at significantly less cost and complication than PPJBs. Each
new rotating machinery design employing fluid-film journal bearings should be
carefully analyzed before jumping to the conclusion that PPJBs are required for
good rotor dynamic performance.

On large steam turbogenerators, Adams (1) and Adams and McCloskey (2)
show that PPJBs are far superior to fixed-surface CBJBs under conditions of very
large rotor unbalance such as from loss of large turbine blades (see Sec. 5, Chap-
ter 2). Specifically, PPJBs more readily suppress subharmonic resonance from de-
veloping into catastrophically large amplitudes. On the other hand, Adams and
Payandeh (4) show that statically unloaded PPJB pads can incur a subsynchronous
self-excited “pad-flutter” vibration that can lead to pad surface material fatigue
damage.

6.1. A Return to the Machine of the Case Study of Sec. 4,
Chapter 11

Discussion of this troubleshooting case study ended with the confirmation that re-
placing bearing 1 with a four-pad PPJB allowed that 430 MW unit to operate ro-
tor dynamically stable up to its full rated capacity without excessive vibration.
That retrofit of a PPJB to replace the original fixed-surface journal bearing was
determined to be the least expensive and most readily implemented option avail-
able to the electric power company. The root cause of the problem was severe
shifting of journal bearing support structures all along the machine’s drive line,
and correcting that root cause was deemed cost prohibitive. About 4 years after the
retrofit was successfully implemented, this machine again began to exhibit some
of the same subsynchronous self-excited vibration it had previously experienced,
again necessitating that the unit be derated pending solution of the recurring prob-
lem. Apparently, shifting of journal bearing support structures (the problem root
cause) had slowly continued to worsen.

Again, the electric power company contracted the unit’s OEM to retrofit a
four-pad PPJB (this time at bearing 2) to replace the original fixed-surface journal
bearing, as the OEM had already done at bearing 1. This time the author’s in-
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volvement was to check the OEM’s rotor vibration computer model analysis re-
sults independently, because the OEM’s predicted results surprised the power
company’s engineers. The OEM’s computer analyses predicted that retrofitting a
PPJB at bearing 2, to augment the PPJB they had retrofitted at bearing 1 4 years
earlier, did more than just “push” the unstable mode above the rated power range
of the unit. In fact, the OEM’s analyses predicted that the unstable mode would to-
tally “disappear.” That is, the OEM predicted that the additional retrofit of a four-
pad PPJB at bearing 2 effectively removed the offending mode from the rotor dy-
namical system of the unit.

The OEM’s prediction suggested that the proposed retrofit would do more
than provide the needed additional stabilizing damping capacity; i.e., it suggested
to the author that the proposed retrofit would radically alter the modal content of
the system, eliminating the offending mode in the process. Augmenting the au-
thor’s prior model of this unit to include the proposed bearing 2 PPJB retrofit, the
author confirmed this “surprise” result predicted by the OEM. The bearing 2
retrofit was then implemented and yielded the desired result. The unit was re-
turned to service with restored operability to full rated capacity. However, (the ter-
rible “however”) this unit has more recently been having excessive synchronous
vibration problems, also in the HP turbine. In this case the author has analyzed the
unit to assess potential benefits of employing balancing planes in addition to those
already used in plant balancing the unit’s drive line. This is discussed further in
Sec. 10.

7. BASE-MOTION EXCITATIONS FROM EARTHQUAKE
AND SHOCK

An important topic for which the author first gained appreciation during his
Westinghouse experience is earthquake and shock inputs to rotating machinery.
To study this topic, a good place to start is the keynote address paper of Profes-
sor Hori (13) (University of Tokyo), in which he reviews published literature on
the analysis of the ability of large power plant rotating machinery to withstand
major earthquake events. The topic of base-motion excitations from earthquake
and shock inputs to rotating machinery is one of the applications formulated by
the author in his 1980 Journal of Sound and Vibration paper (1). More recently,
the author has analyzed the stable nonlinear limit cycle of oil-whip rotor vibra-
tion and confirmed interesting computational findings with laboratory tests, as
provided in Adams et al. (6). Specifically, this research shows that a machine
operating stable-in-the-small (i.e., below the linear threshold-of-instability
speed) but above its “saddle node” speed can be “kicked” by a large dynamic
disturbance into a high-amplitude stable nonlinear limit cycle vibration with po-
tentially catastrophic consequences.
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8. PARAMETRIC EXCITATION: NONAXISYMMETRIC
SHAFT STIFFNESS

The rotor vibration consequences of anisotropic bending stiffness in a rotating
shaft has been analyzed over the course of several decades by many investigators,
with the earliest English citation attributed to Smith (26). However, the German
fluid mechanics specialist Prandtl (23) appears to be the first investigator to pub-
lish a treatment of the problem. The fundamental problem has shown considerable
appeal to the more mathematically inclined mechanics theoreticians, providing a
rich variety of possible vibration outcomes even for relatively simple configura-
tions such as a Jeffcott rotor (see Fig. 3, Chapter 2) with axially uniform
anisotropic shaft bending stiffness.

The fundamental problem did not attract the attention of rotating machinery
designers until the post–World War II period with the dramatic increases in max-
imum size of two-pole AC generators driven by large compound steam turbines.
Figure 9, fashioned after that of Bishop and Parkinson (10), illustrates the relative
progressive change in rotor maximum physical size and power rating of two-pole
steam turbine powered AC generators from the 1940s to the 1960s. As the length-
to-diameter proportions shown in Fig. 9 indicate, this 20-year change from 120
MW to 750 MW generators has been accomplished by making the rotors longer
but not appreciably larger in diameter, because the diameter is limited by allow-
able stress considerations. The progressive increase in slenderness led to lower
generator critical speeds with an attendant increased propensity for oil-whip vi-
bration. Also, the static deflection of generator centerline under its own weight be-
came a primary problem because of the inherent anisotropic shaft stiffness of two-
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FIGURE 9 Maximum two-pole generator rotor sizes from 1940s to late 1960s.
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pole generator rotors. Basically, the rotor of a two-pole generator is a large rotat-
ing electromagnet with north and south poles on opposite circumference sides of
the rotor. As illustrated in Fig. 10, there are axial slots in the rotor into which cop-
per conductors are embedded to provide a rotating magnetic field from the DC ex-
citer current fed to the rotor windings, usually through brushes rubbing on exciter
collector rings (see Sec. 3). This construction makes the rotor’s two principal
bending-area moments of inertia different; thus the rotor has a maximum and a
minimum static deflection line. Without proper bending stiffness equalization
measures (see Fig. 10), a large two-pole generator rotor slowly rotating about its
centerline would cycle between maximum and minimum static beam deflections,
twice each revolution. Operation at full speed (3,600 rpm on 60 Hz systems, 3,000
rpm on 50 Hz systems) without adequate bending stiffness equalization measures
would produce quite high rotor vibration levels at a frequency of twice the run-
ning speed (2N). Lateral slots cut at intervals along the generator rotor are now the
standard design approach to reduce the rotor bending stiffness anisotropy suffi-
ciently that the residual 2N generator vibration is much smaller than the residual
synchronous vibration.

The 2N rotor vibration exhibited by two-pole generators falls into a vibra-
tion generic category called parametric excitation. A comprehensive theoretical
treatment of this type of rotor vibration as well as the design ramifications of it for
generators is given by Kellenberger and Rihak (15).

9. MAGNETIC BEARINGS

The generic configuration of an active magnetic bearing system is shown in Fig.
11, which schematically illustrates the essential components.
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FIGURE 10 Rotor construction for two-pole generators.
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The main feature of magnetic bearings which has attracted the attention of
some rotating machinery designers is that they are oil-free bearings. This means,
for example, that with large pipeline compressor rotors supported on oil-free bear-
ings, the elimination of oil precludes the eventual coating of pipeline interior sur-
faces with lost oil that otherwise must be periodically cleaned out of the pipeline
at considerable service and downtime costs. Interestingly, this feature is not up-
permost in the minds of magnetic bearing conceivers, who for the most part are
academicians with a particular focus on control theory. They conceived the mod-
ern active magnetic bearing as an electromechanical actuator device that utilizes
rotor position feedback to a controller for the magnetic bearing to provide elec-
tromagnetic noncontacting rotor levitation with attributes naturally occurring in
conventional bearings, i.e., static load capacity along with stiffness and damping.
Magnetic bearing technologists have focused their story on the fact that the rotor
dynamic properties of magnetic bearings are freely prescribed by the control law
designed into the feedback control system, and thus can also be programmed to
adjust in real time to best suit a machine’s current operating needs, such as active
tuning “around” critical speeds and “extra damping” to suppress instabilities.

9.1. Unique Operating Features of Active Magnetic
Bearings

Magnetic bearing systems can routinely be configured with impressive versatility
not readily achievable with conventional bearings. In addition to providing real-
time controllable load support, stiffness, and damping, they can simultaneously
provide feed-forward-based dynamic bearing forces to partially negate rotor vi-
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FIGURE 11 Active magnetic bearing schematic.
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brations from other inherent sources. They can also employ notch filtering strate-
gies to isolate the machine’s stator from specific rotor vibration frequencies such
as synchronous forces from residual rotor mass unbalance. In this last feature,
notch filtering out the synchronous unbalance forces from the rotor-stator interac-
tion forces seems quite nice, but then the rotor wants to spin about its polar iner-
tia principal axis through its mass center and its surfaces will wobble accordingly,
meaning that rotor-stator rubs and/or impacts at small rotor-stator radial clear-
ances have an increased likelihood of occurrence.

A natural extension of current magnetic bearing systems is their integration
with next-generation condition monitoring strategies, discussed in Sec. 1 of Chap-
ter 7. Not only do active magnetic bearing systems possess the displacement sen-
sors inherent in modern conditioning monitoring systems, but they automatically
provide the capability of real-time monitoring of bearing forces, a long-wished-
for feature of rotating machinery problem diagnosticians. As alluded to earlier,
magnetic bearings, being real-time controlled force actuators, can also be pro-
grammed to impose static and dynamic bearing load signals that can be “intelli-
gently” composed to alleviate (at least partially and temporarily) a wide array of
machine operating difficulties such as excessive vibrations and rotor-stator rub-
bing initiated by transient thermal distortions of the stator or other sources.
Clearly, a so-called smart machine for next-generation rotating machinery is not
difficult to conceptualize when active magnetic bearings are employed for rotor
support. For an update on magnetic bearing publications, Allaire and Trumper (8)
provide papers from the most recent magnetic bearing international conference,
and Schweitzer (25) focuses on “smart rotating machinery.”

9.2. Present Shortcomings of Magnetic Bearings

Magnetic bearing systems are relatively expensive, encompassing a system with
position sensors, A-to-D and D-to-A multichannel signal converters, multichan-
nel power amplifiers, and a microprocessor. Also, the lack of basic simplicity with
such a multicomponent electromechanical system surely translates into concerns
about reliability and thus the need for component redundancy (e.g., sensors).

The most obvious manifestation of the reliability/redundancy factor is that
magnetic bearings in actual applications require a backup set of “catcher” bear-
ings (typically ball bearings) onto which the rotor drops when the magnetic bear-
ing operation is interrupted, such as by power or primary nonredundant compo-
nent failure, or the magnetic bearing is overloaded. The dynamical behavior of the
rotor when the catcher bearings take over was initially not properly evaluated by
magnetic bearing technologists. But in rigorous application testing, it was found
that severe nonlinear rotor vibration can occur when the rotor falls through the
catcher bearing clearance gap and hits the catcher bearings.

Fluid-film bearings and rolling-contact bearings both possess considerable
capacities for momentary overloads, e.g., shock loads. Since these conventional
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bearings completely permeate the modern industrial world, their high capacities
for momentary overloads are essentially taken for granted as they “do their job”
and keep on running. On the other hand, magnetic bearings “saturate” when loads
are pushed to their limits and thus provide little capacity for large load increases
that momentarily exceed the bearing’s design load capacity by substantial
amounts. This is a serious limitation for many applications. For static load and
lower frequency stiffness and damping properties, magnetic bearing force capac-
ity is limited by the saturation flux density of the magnetic iron, illustrated in Fig.
12a. A further limitation is set by the maximum rate at which the control system
can change the current in the windings. The magnets have an inherently high in-
ductance, which resists a change in current; thus the maximum “slew rate” de-
pends on the voltage available from the power amplifier. In practical terms, the re-
quired slew rate is a function of the frequency and amplitude of rotor vibration
experienced at the bearing. Figure 12b illustrates the combined effects of mag-
netic saturation and slew-rate limitation on magnetic bearing load limits.

Conventional bearings are not normally feedback-controlled devices; i.e.,
they achieve their load capacity and other natural characteristics through mechan-
ical design features grounded in fundamental principles of mechanics. Con-
versely, the basic operation of active magnetic bearings relies on feedback of ro-
tor position signals to adjust instantaneous bearing forces. A generic shortcoming
of active magnetic bearings stems from this fundamental reliance on feedback
control. It is referred to with the terms “spillover” and “collocation error.” Feed-
back control design is traditionally viewed as a compromise between response and
stability. Whenever a feedback loop is closed, there is the potential for instability,
as is well known. Specifically for active magnetic bearings, collocation error
arises from the sensors not being placed exactly where the bearing force signals
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FIGURE 12 Magnetic bearing saturation-effect load limits. (From Ref. 12.)
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are applied to the rotor, and this can produce rotor dynamical instabilities
(spillover) that would not otherwise occur. Surely, no long-standing rotor dynam-
ics specialist is enthused about this, since other traditionally recognized rotor dy-
namical instability mechanisms are always lurking, especially in turbomachinery.

The magnetic bearing technologists’ answer to this fundamental shortcom-
ing is to have programmed into the control law a very accurate dynamic model of
the rotor system. However, machines constantly change their dynamic character-
istics in response to operating point changes and as a result of normal seasoning
and wear over time. This necessitates continuous automatic real-time recalibration
of the dynamic model residing in the programmed control law. Under some well-
defined operating modes, rotor dynamical systems can be quite nonlinear, and
then having an accurate model in the control law for the actual rotor system be-
comes a formidable challenge. It prompts one to ask sarcastically “how all those
‘stupid’ oil-film bearings and ball bearings can do all the things they do.” The an-
swer is, “the designers are smart.”

10. ROTOR BALANCING

As succinctly stated by NASA’s Dr. David Fleming (11), “A rotor is said to be un-
balanced if its mass axis does not coincide with its axis of rotation.” The mass axis
is the locus of the distributed mass center along the rotor length. Rotor balancing
is the most important and frequently addressed day-to-day operation in achieving
smooth-running rotating machinery. It starts with the basic machine design pro-
cess coupled with the construction details of the rotor, including shop rotor bal-
ancing of new and repaired rotors using a balancing machine. For some machin-
ery types and applications, this is all that may be required. However, in-service
rebalancing of some machinery types is periodically needed to reduce their resid-
ual unbalance-driven vibration to within acceptable levels (e.g., see Fig. 1 in
Chapters 7 and 8). There is a sharp distinction between shop balancing a rotor in
a balancing machine and in-service balancing a rotor in an assembled machine.
Since this book is aimed more at the troubleshooter than the machine designer, the
emphasis here is more on in-service balancing. To that end, a general-purpose
computer code is furnished here for determining balance correction weights. A re-
cent advancement for balancing in operation is a new type of rotor-mounted auto-
matic real-time balancing system, which is described later in this section.

That the subject of rotor balancing warrants its own book was rectified by
Rieger (24), whose book is the most complete and comprehensive treatise on the
subject to date. In addition to fundamental theory and application details for dif-
ferent balancing methods and balancing machines, Rieger provides a historical
perspective on rotor balancing and a summary of balancing specifications for the
different classes of machines. Thus, Rieger’s book provides coverage of the field
as needed by the designer or builder of rotating machinery as well as the in-ser-
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vice user or maintainer of rotating machinery. The emphasis here is on the needs
of the user/maintainer of rotating machinery. If one is just beginning to study ro-
tor balancing, it is helpful to delineate between so-called static unbalance and dy-
namic unbalance as well as distinguish between so-called rigid rotors and flexi-
ble rotors.

10.1. Static Unbalance, Dynamic Unbalance, and the Rigid-
Rotor Category

The simplest rotor unbalance condition is characterized by the rotor mass center
being eccentric to the rotor’s geometric spin axis. This is called static unbalance.
A static unbalance can be likened to an unbalance mass (ms) at some nonzero ra-
dius (rs) superimposed (in the radial plane of the rotor’s mass center) upon an oth-
erwise perfectly balanced rotor, as illustrated in Fig. 7, Chapter 2. Such a concen-
trated static unbalance clearly acts on the rotor like an equivalent synchronous
corotational force (Fu � msrs


2) that is fixed in the rotor. Thus, a purely static un-
balance on a simple rotor configuration like that in Fig. 7, Chapter 2, can theoret-
ically be corrected by a single balance correction with the same magnitude (msrs)
and in the same radial plane as the initial static unbalance, but positioned 180°
from the initial unbalance. That is, static unbalance is theoretically correctable by
adding a balance correction mass in a single plane, i.e., in the plane of the unbal-
ance. A quite common example of single-plane balancing is automotive tire-wheel
units, which are relatively narrow axially compared to their diameter and are thus
approximated as a single-plane mass distribution rotor. The reason for spinning
the tire-wheel unit in the tire shop balancing machine is to produce a sufficiently
large measurement of the static unbalance, not to perform a true dynamic balance
(next paragraph). Furthermore, the competent tire shop mechanic places half the
weight correction on the outside rim and half on the inside rim (both at same an-
gle) so that the added static-balance correction weights do not produce a dynamic
unbalance. There are many other examples where single-plane balancing pro-
duces an adequate state of rotor balance quality.

Dynamic unbalance refers to rotor unbalance that acts like an equivalent ra-
dial corotational moment fixed in the rotor. Referring to Fig. 7, Chapter 2, and us-
ing its nomenclature, the equivalent corotational moment of a concentrated dy-
namic unbalance has magnitude Md � mdrdl
2. If rotor flexibility is not a
significant factor to unbalance vibration response, then the “rigid rotor” assump-
tion can be invoked. Then the total dynamic unbalance of a rotor is theoretically
correctable by adding two equal-magnitude (m crc) corrections (separated by
180°), one at each of two planes axially separated by lc (where m crclc � mdrdl).
The two mcrc corrections are positioned in the plane of the initial dynamic unbal-
ance but 180° out of phase with the initial dynamic unbalance. The initial dynamic
unbalance is thereby theoretically negated since the corotational moment pro-
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duced by the two correction masses has the magnitude mdrdl
2 of the initial dy-
namic unbalance, but 180° out of angular position with the corotational moment
produced by the initial dynamic unbalance. Since a static unbalance can be
negated by two in-phase correction weights appropriately placed in the same two
planes as the dynamic unbalance correction masses, it is clear that a complete ro-
tor balance (static�dynamic) of a “rigid” rotor can be accomplished by adding
correction masses in only two planes. Since a general state of rotor unbalance is a
combination of both static and dynamic unbalance, the correction weights at dif-
ferent axial locations will generally be neither at the same angular position nor
separated exactly by 180° in their relative angular positions.

The defining property for so-called rigid rotors is that rotor flexibility is not
a significant factor to unbalance vibration response. Therefore, the two-plane bal-
ance procedure for a rigid rotor can be performed at a speed lower than the oper-
ating speed of the rotor. In practical terms, this means the rotor may be balanced
using vibration or dynamic force measurements at balancing spin speeds substan-
tially lower than the rotor’s in-service operating speed.

10.2. Flexible Rotors

As all inclusively stated by Dr. Neville Rieger (24), “A flexible rotor is defined as
being any rotor that can not be effectively balanced throughout its speed range by
placing suitable correction weights in two separate planes along its length.” Syn-
onymous with this definition is that a so-called flexible rotor has an operating
speed range which closely approaches or encompasses one or more bending crit-
ical speeds whose rotor flexural bending contributes significantly to the corre-
sponding critical speed mode shape(s) and unbalance vibration responses. Table 1
in Chapter 2 provides an introductory composite description of the increased ro-
tor dynamic complexity produced when rotor flexibility is significant to unbal-
ance vibration characteristics.

In contrast to a rigid rotor, adequate balancing of a dynamically flexible ro-
tor often requires placement of correction weights in more than two separate
planes along the rotor length. What is an adequate number of balancing planes and
what are their optimum locations along the rotor are factors dictated by the mode
shape(s) of the critical speed(s) that significantly affects the rotor’s unbalance vi-
bration response. The first three flexure mode shapes of a uniform simply sup-
ported beam are illustrated in Fig. 12 of Chapter 4 and provide some insight into
proper axial locations for balance correction weights in balancing flexible rotors.
That is, for a rotor with critical speed mode shapes similar to those in Fig. 12,
Chapter 4, a midspan balance plane clearly has maximum effectiveness on the first
mode. Similarly, the �

1
4

� and �
3
4

� span locations have maximum effectiveness on the
second mode, and the �

1
6

�, �
1
2

�, and �
5
6

� span locations have maximum effectiveness on
the third mode.
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A flexible rotor is also definable as one whose dynamic bending shape
changes with rotational speed, and this speed-dependent dynamic bending may al-
ter the state of balance. Ideally, a flexible rotor should therefore be balanced at full
in-service rotational speed and at speeds near critical speeds within or near the op-
erating speed range. This point is clearly demonstrated by an example from Flem-
ing (11) illustrated in Fig. 13, which shows a uniform shaft in stiff bearings un-
balanced by a single mass attached at the axial center of the shaft. Figure 13 also
illustrates that the shaft has been rebalanced using the low-speed rigid-rotor ap-
proach by adding a correction weight at each end of the shaft. As long as the shaft
speed is significantly below its first bending critical speed, it will remain essen-
tially straight and thus will remain in balance. But as its rotational speed ap-
proaches its first bending critical speed, it deforms as illustrated in Fig. 14 (illus-
trated deflection grossly exaggerated). As is clear from Fig. 14, at speeds near its
first bending critical speed the shaft illustrated in Fig. 13 has its initial unbalance
and both unbalance correction weights acting together to excite the first bending
critical speed. If this experiment were performed, one would find that the vibra-
tion near the first bending critical speed is worse (higher) with the two low-speed-
balancing correction weights attached than without. In this simple example, the
initial unbalance is known to be concentrated at the midspan location and thus it
is a trivial case. In a general case with manufacturing and assembly tolerances, the
unbalance is of an unknown distribution along the rotor, such as that illustrated in
Fig. 15.
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FIGURE 13 Simple uniform diameter flexible rotor.

FIGURE 14 Unbalance vibration mode shape of a first bending critical speed.
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Balancing a dynamically flexible rotor is a considerably more involved pro-
cess than low-speed two-plane balancing of rigid rotors. Each type of flexible ro-
tor has its own preferred number and location of balance planes. Many multistage
machines require a component balance of each impeller or blade disk assembly
before mounting and balancing the fully assembled rotor.

There are some dynamically flexible rotors that can be adequately well bal-
anced like a rigid rotor, i.e., on a low-speed balancing machine with correction
masses placed in only two planes along the rotor length. Such a rotor is charac-
terized by having most of its unbalance concentrated at a known axial region of
the rotor. A prominent example is large double-suction power plant centrifugal
fans, where the single impeller (midspan) essentially dominates the assembled ro-
tor’s unbalance distribution.

As described by Rieger (24), there are historically a number of competing
methods for balancing flexible rotors, the two most recognized being the modal
method and the influence coefficient method (ICM). Both of these methods as-
sume that the rotor dynamic system is linear. Significant nonlinearity can be tol-
erated, but it is likely to increase the number of balancing iterations needed to
achieve the required quality of rotor balance. The modal method requires detailed
modal information (mode shapes) for all the critical speeds that significantly in-
fluence the rotor’s unbalance vibration characteristics over its entire speed range.
To the extent that critical-speed modal characteristics are a function of radial bear-
ing dynamic characteristics, the bearings in a modal balancing machine need to
match the dynamic characteristics of the actual machine’s bearings, and this is of-
ten not practical. Thus, although the modal method is considered in some circles
to be theoretically a more effective approach than the ICM for balancing flexible
rotors, in practice the ICM is used in most applications, being less complicated
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and more practical than the modal method. The strong preference for the ICM is
particularly true for in-service rebalancing of rotors in assembled machines, where
a correction is often limited to one plane.

10.3. Influence Coefficient Method

The ICM does not require critical-speed mode shapes, but approximate mode
shapes can be helpful in the design process to prescribe where balance planes and
unbalance vibration measurements are best located. However, after a rotor is in-
stalled in its machine, accessible planes for rebalancing are often limited to loca-
tions near the axial ends of the rotor, e.g., at a coupling. Thus, all the potential ben-
efits of multiplane rotor balancing are of only academic interest to the person in the
power plant who must implement a “balance shot” during a short outage of a ma-
chine. A general summary of the ICM fashioned after Fleming (11) is presented
here, followed by some examples using the ICM balancing code Flxbal.exe con-
tained in the directory Balance on the diskette supplied with this book.

The ICM is based only on the assumption of linear dynamic characteristics,
so nonplanar modes are automatically accommodated. Utilizing the linearity as-
sumption, the rotor vibration response can be given as the superposition or sum of
individual vibration responses from an unbalance at each of the selected balance
planes, as expressed in the following equation.

Vj � ∑
Np

k�1

AjkUk j � 1,2, . . ., Nm, k � 1,2, . . ., Np (5)

Nm � No. of independent vibration observations � No. locations � No.
speeds

Np � No. of balance planes
Vj � Vibration response from jth measurement � Vjei(
t��j) (complex)
Uk � Unbalance at kth balance correction plane � Ukei(
t�
k) (complex)
Ajk � Influence coefficient Nm � Np Array � Ajkei	jk (complex)

Vibration measurements need not be taken at the same locations as the bal-
ance correction planes. Also, any and all of the three basic vibration sensor types
may be used, i.e., accelerometer, velocity pick-up, and displacement proximity
probe. Furthermore, vibration measurements may be made on adequately respon-
sive nonrotating parts of the machine (e.g., bearing caps). For in-service rebal-
ancing of machines with displacement proximity probes installed (typically
mounted on the bearings targeting the shaft) the rotor vibration relative to the
bearing(s) may be used and is recommended.

The influence coefficients are experimentally obtained by measuring the in-
cremental change in each of the measured vibration responses to a trial mass in-
dividually placed at each balance correction plane. With the influence coefficients
known, balance corrections for each correction plane can be computed. After the
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correction masses (Wj, j � 1,2, . . ., Np) are installed, the residual rotor vibration
for all the specified observations (locations and speeds) are expressible as follows,
where Vj

(0) are the measured vibration responses before adding the balance cor-
rection masses.

Vj � Vj
(0) � AjkWk (6)

If the number of observations (Nm � Np) is equal to the number of balance
correction planes (Nm � Np), then the influence coefficient array Ajk yields a
square matrix which is presumably nonsingular by virtue of making Nm linearly
independent vibration measurement observations. Using Eq. (6), unbalance vi-
bration at the observation locations and speeds can then theoretically be made zero
by using balance corrections given by the following equation.

{W} � �[A]�1{V (0)} (7)

It is widely suggested that better balancing often results if the number of observa-
tions exceeds the number of correction planes, i.e., Nm � Np. Since it is then math-
ematically impossible to make all the observed vibrations go to zero, the approach
generally taken is to base the balance correction masses on minimizing the sum of
the squares of the residual observed vibrations.

What the ICM can theoretically achieve is best understood by considering
the following. If the system were perfectly linear and the vibration observation
measurements were made with zero error, then for the case of Nm � Np, the ob-
served vibrations (at location-speed combinations) are all made zero by the cor-
rection masses. Similarly, for the case of Nm � Np, the sum of the squares of the
residual observed vibrations can be minimized. However, there is no mathemati-
cal statement for unbalance vibration amplitudes at any other location-speed com-
binations. By choosing balance speeds near all important critical speeds and at
maximum operating speed and balance planes where actual unbalance is greatest,
as well as choosing vibration measurement points that are not close to critical
speed mode-shape nodal points, smooth running over the full speed range is rou-
tinely achievable.

10.4. Balancing Computer Code Examples and the
Importance of Modeling

Rotor balancing examples are presented here to demonstrate the use of the
PC code Flxbal.exe contained in the directory Balance on the diskette that ac-
companies this book. Flxbal.exe is based on the influence coefficient method. It is
written by NASA’s Dr. David Fleming and provided as part of his invited two-lec-
ture presentation on “Balancing of Flexible Rotors,” given regularly to the au-
thor’s graduate class on Rotating Machinery Dynamics at Case Western Reserve
University. Flxbal.exe is demonstrated here using some of the RDA99.exe un-
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balance sample cases in Sec. 2 of Chapter 4. That is, the RDA99.exe computa-
tional models are treated here as “virtual machines” for balancing data “input” and
“output.” This way, the balance corrections computed by Flxbal.exe can be in-
vestigated at midspan rotor locations where rotor vibration measurements are typ-
ically not available with in-service machinery.

The “virtual machine” provided by an RDA99.exe model is equivalent to a
hypothetical machine that is perfectly linear and on which there is zero error in the
balancing vibration measurements. Flxbal.exe runs in the DOS environment just
like RDA99.exe and thus all input and output files in use during a run must reside
in the same directory as Flxbal.exe. To initiate it, simply enter “Flexbal” and the
code then prompts the user, line by line, for input options and data, as will be
demonstrated by the following examples. There are a few key factors in using this
balancing code in conjunction with RDA99 models for virtual machines, itemized
as follows.

RDA99 vibration phase angles are leading since xRDA � X cos(
t � �).
Flxbal vibration phase angles are lagging since xFlxbal � X cos(
t � �).
Both RDA99 and Flxbal use leading angles for unbalance placement.

Therefore, when transferring data between RDA99 and Flxbal, the sign on the in-
dicated vibration phase angle(s) must be reversed, but the indicated angles for
placement of unbalance trial weights and correction weights are the same. The
nomenclature for Eqs. (5) is defined consistent with Flxbal.

Flxbal correction weights are based on trial weight(s) being removed.

Case 1, Three Mass Rotor, Two Bearings, One Disk, Unbalance and Cor-
rection Same Plane

This numerical balancing experiment example uses the first model in Sec.
2, Chapter 4, and is a trivial case because the balance correction can be automati-
cally seen. As detailed in that section for this model, a single unbalance of 0.005
in-lb, located at 0° phase angle, is attached to the disk at the axial center of the ro-
tor. With a 0° phase angle, it becomes the angular reference point fixed on the
shaft. The rotor will be balanced at 1,700 rpm (near its first critical speed) using
the RDA99 x-displacement of 16.388 mils (s.p.) at �108.1° (from first sample
case tabulation in Sec. 2, Chapter 4) at the axial center of the rotor where the disk
is located. Thus, this example is really a case of static unbalance correction since
the correction is to be placed in the same plane as the initial unbalance. Further-
more, a trial “weight” of unbalance magnitude 0.0025 in-lb will also be used at the
midspan disk and at 0° phase angle. Thereby, the Flxbal inputs and the sought an-
swer for the “correction weight” are already obvious.

Begin by entering Flxbal. The prompt reads ENTER DESCRIPTIVE LINE
TO IDENTIFY RUN: “Balancing example case-1” is entered here.
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The next prompt is ENTER NAME OF FILE FOR OUTPUT DATA: “Case-
1” is entered here.

The next prompt is ENTER NUMBER OF PROBES: (NUMBER OF
PROBES) TIMES (NUMBER OF SPEEDS) � � 50: The number “1” is
entered here.

The next prompt is ENTER NUMBER OF SPEEDS: The number “1” is en-
tered here.

The next prompt is ENTER NUMBER OF BALANCING PLANES: The
number “1” is entered here.

The next prompt is ENTER CALIBRATION FACTOR FOR PROBE 1: The
number “1” is entered here.

The next prompt is DO YOU WANT TO ENTER LOW SPEED RUN OUT?
(Y/N): The letter “N” is entered here for “no.”

The next prompt is DO YOU WANT TO ENTER NEW INFLUENCE CO-
EFFICIENTS? The letter “Y” is entered here for “yes.”

The next prompt is ENTER BALANCING SPEED 1 IN RPM: “1700.” is en-
tered here.

The next prompt is ENTER AMPLITUDE AND PHASE ANGLE FOR
PROBE 1: “16.388   108.1” is entered here.

The next prompt is ENTER SIZE AND ANGULAR LOCATION OF TRIAL
WEIGHT: “0.0025   0.0” is entered here.

In this last entry, one may enter either a “weight” or an “unbalance” magnitude (in
any system of units), provided the usage is consistent throughout the exercise.

The next prompt is ROTOR SPEED 1700 RPM
ENTER AMPLITUDE AND PHASE FOR PROBE 1:

“24.582   108.1” is entered here.

By inspection for this last entry, the addition of 0.0025 (in-lb) to the initial unbal-
ance of 0.005 (in-lb), both at 0° phase angle, simply increases the total vibration
by 0.5 times the initial unbalance magnitude (1.5 � 16.388 � 24.582) while leav-
ing the phase angle unchanged at 108.1°.

The next prompt is DO YOU WANT TO SAVE THESE INFLUENCE CO-
EFFICIENTS? The letter “N” is entered here for “no.”

The output file Case-1 is automatically written to the same directory (folder) in
which Flxbal.exe has been executed. The following is an abbreviated list from the
output file Case-1.

CORRECTION WEIGHTS
PLANE WEIGHT ANGLE, DEG.

1 0.5000E-02 180.0
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RESIDUAL VIBRATION AFTER BALANCING
PROBE SPEED AMPLITUDE PHASE

1 1700.0 0.2719E-06 108.1

The complete Flxbal.exe generated output file for this case is contained in
the subdirectory BalExpls, along with the output files for all the other subsequent
rotor balancing examples presented here. The correction “weight” shown in the
abbreviated output provides the obvious correct answer of 0.005 (in-lb) at 180°,
which directly cancels the initial unbalance. Thus, the residual vibration ampli-
tude (mils, s.p.) after balancing is essentially zero.

Case 2, Same as Case 1 Except Trial Weight Angle Is More Arbitrary

In Case 1, the trial weight is placed at 0° (the same angle as the initial un-
balance), and so the total resulting vibration with the trial weight is deducible from
the original sample01.out results simply by multiplying the vibration amplitude
by 1.5. Here in Case 2, the same trial weight unbalance is used but is placed at a
different angle than the original unbalance. This is to demonstrate the correct in-
terpretation of weight placement angles.

A trial weight unbalance of 0.0025 (in-lb) is placed at 30° on the disk located
at the axial center of the rotor (Station 2 in RDA99 model). The total unbalance at
Station 2 of the RDA99 model is therefore the vector sum of 0.005 (in-lb) at 0° plus
0.0025 (in-lb) at 30°. This vector sum gives 0.00727382 (in-lb) at 9.896091°, which
is implemented in the RDA99 input file ubal02tw.inp. The RDA99 computed re-
sponse with this input file is contained in the output file ubal02tw.out and shows
the x-vibration computed for Station 2 at 1,700 rpm is 23.838 (mils, s.p.) at a phase
angle of �98.2°. Thus, for the Flxbal input the trial weight is 0.0025 (in-lb) placed
at 30° and the resulting total vibration is 23.838 at �98.2°.

The Flxbal output file for this case, named Case-2, shows the same unbal-
ance correction as determined in the Case 1 example, i.e., same magnitude as ini-
tial unbalance but 180° from the initial unbalance. It is not necessary to confirm
this result with an RDA99 run with the trial weight removed and the correction
weight added because the net unbalance is obviously zero.

Case 3, Case 1 Model with Measurement and Correction at Rotor End

This next example also uses the first model in Sec. 2, Chapter 4, with the
same single midspan initial unbalance as in the first two examples. It also uses
the same 1,700 rpm balancing speed near the critical speed. But this case is less
trivial than the first two examples. In this case, the correction weight is placed
at one end of the rotor (Station 1). Also, the y-displacement signal at Station 1
is used as the single vibration “measurement.” Using the Flxbal.exe results, the
specified correction is added to the RDA99 model and the RDA99 code is used
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to compute the unbalance vibration amplitudes at all the stations. Thus, this ex-
ample will demonstrate the overall results that a single rotor-end “balance shot”
in the field might produce. In an actual machine, the change produced by a “bal-
ance shot” cannot generally be measured at the important midspan axial loca-
tions. However, a “calibrated” RDA99 model for an actual machine can provide
a reliable estimate of midspan vibration after the balance correction is imple-
mented. This is demonstrated in the next subsection from a case study on a 430
MW steam turbogenerator.

The RDA99 output file named sample01.out, summarized in Sec. 2, Chap-
ter 4, shows the initial Station 1 unbalance y-vibration at 1,700 rpm as 1.897 (mils,
s.p.) at a phase angle of 140.4°. The first step in this exercise is to use RDA99 to
compute the unbalance response with a trial weight added at Station 1. Accord-
ingly, the RDA99 input file named ubal03tw.inp reflects the addition of a trial
weight of 0.01 (in-lb) at 0° placed at Station 1. The corresponding RDA99 output
file, ubal03tw.out, shows the y-response at Station 1 with this trial weight added
is 2.210 (mils s.p.) at 145.1° phase angle. Therefore, the Flxbal inputs are 1.897 at
�140.4° for the initial Station 1 y-vibration at 1,700 rpm. The Flexbal inputs af-
ter the trial weight is added are 2.210 at �145.1°. An abbreviated Flexbal output
is listed as follows.

CORRECTION WEIGHTS
PLANE WEIGHT ANGLE, DEG.

1 0.5341E-03 149.3

The next step is to remove the trial weight, add the Flxbal indicated correc-
tion weight, and then compute the unbalance response of the rotor with the bal-
ance correction in place, using RDA99. The RDA99 input file named
ubal03cw.inp reflects the Flxbal computed balance correction. The correspond-
ing RDA99 output file, ubal03cw.out, shows that the 1,700 rpm y-response at
Station 1 is essentially zero with the correction added. However, a quite important
observation is made by observing the unbalance response at all other rotor loca-
tions and at other speeds. Clearly, the “balance shot” did exactly what it was
mathematically programmed to do, i.e., make the 1,700 rpm vibration at Station
1 become zero through the addition of a correction weight at Station 1. But the
general unbalance response was not overall improved but in fact was worse after
addition of the correction.

Case 4, Rotor-End Measurement, But Midplane Correction

Case 3 shows the potential pitfall of adding a “balance shot” correction
weight at the end of a rotor. The next case is a variation of Case 3. The vibration
measurement is still taken at the rotor end (Station 1) where proximity probes, ve-
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locity pickups, or accelerometers can generally be placed on actual machinery.
But the trial weight and subsequent correction weight are place at the rotor
midspan location (Station 2) where the initial unbalance is concentrated. This is to
demonstrate a typical situation where the vibration measurement can’t be made at
the rotor midspan location, but the balance weights can be added at the midspan
location when a midspan access plate has been designed into the casing so that the
rotor midspan plane is easily accessible.

The trial weight RDA99 unbalance vibration here can be taken from the
Case 2 output file ubal02tw.out for vibration at Station 1 with the trial weight
0.0025 (in-lb) at 30° placed at Station 2. This output is 2.759 (in-lb) at 150.3°.
From the first case tabulated in Sec. 2, Chapter 4, the initial midspan (Station 2)
1,700 rpm y-direction vibration is 1.897 (mils, s.p.) at 140.4°. Thus, the Flxbal in-
puts are as follows (refer to Case 2).

Balance speed, 1,700. (rpm)
Initial y-vibration data, 1.897 �140.4°
Trial weight, 0.0025   30°
y-vibration data with trial weighted added, 2.759 �150.3°

The Flxbal file (Case-4) correction weight data is 0.005 at 180 degrees, the exact
cancellation of the initial unbalance and thus zero vibration everywhere.

A comparison of Cases 3 and 4 demonstrates the critical importance of
proper balance plane(s) selection. It also demonstrates that the vibration measure-
ment point is not as critical provided that measurement point is adequately re-
sponsive to the initial unbalance distribution and the added unbalance trial
weight(s). That is, the measurement point should not be near a nodal point of any
of the important critical speed modes or near a nodal point of the rotor response
shape at operating speed. These two cases clearly demonstrate the value of em-
ploying a calibrated rotor unbalance response computer model in concert with
standard balancing procedures to predetermine whether a quick “balance shot”
during a short outage will actually reduce the rotor vibration at the important
midspan rotor locations. An unbalance response computer model used in this
manner basically “measures” the midspan vibration reduction from a balance shot.

With the example Cases 1 through 4 provided here, interested readers can
create additional interesting examples using any of the other RDA99 unbalance
response sample cases presented in Chapter 4. Of course, the primary reason for
this is to prepare interested readers to generate new RDA99 models of rotor-bear-
ing systems for machinery important to their respective organizations.

10.5. Case Study of 430 MW Turbogenerator

The machine in this case study is the same machine described in the self-excited
subsynchronous vibration case study of Sec. 4, Chapter 11. After this machine was
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reassembled at the end of a recent major planned outage for the unit, it exhibited
excessive synchronous rotor vibration concentrated in the HP and IP rotors (see
Fig. 4 in Chapter 11 for the schematic layout). Successive attempts by a quite com-
petent industry-recognized specialist in balancing such machines were unsuccess-
ful in reducing the journal-to-bearing vibration at bearing 1 to less than 10 mils
p.p. Since the author had already modeled this machine to solve the problems de-
scribed in Sec. 4, Chapter 11, and Sec. 6 in this Chapter, he was retained to em-
ploy the model to determine whether using additional balancing planes (not typi-
cally used for in-service rebalancing) could potentially reduce the synchronous
vibration from 10 mils p.p. to possibly 5 or 6 mils p.p.

The influence of employing various multiplane balancing combinations
was computationally researched using an RDA99 unbalance response model.
The model included the entire rigidly coupled drive line, including the HP, IP,
LP, generator, and exciter rotors, all supported on seven journal bearings, as
sketched in Fig. 4, Chapter 11. In the process of conducting this work, the au-
thor’s computed unbalance responses were compared to the incremental re-
sponses produced by the trial weights used on the actual turbogenerator during
the most recent attempt to balance the machine. These comparisons are summa-
rized as follows to demonstrate the expected accuracy of a properly devised
RDA99 model for such a machine.

Plane 1: HP rotor between bearing 1 & HP end seals; 488 grams @ 180° @
7.58 in. radius, for 8.135 in-lb; Vibration (mils p.p.),
Phase Angle° (lagging)

Incremental vibration from measurement at bearing #1: 3.1 @ 290°
Incremental vibration from RDA99 model at bearing #1: 3.3 @ 272°

Plane 10: IP end of LP, just outside of LP last-stage blades; 950 grams @
255° degrees @ 19.68 in. radius, for 41.13 in-lb

Incremental vibration from measurement at bearing #3: 1.7 @ 52°
Incremental vibration from RDA99 model at bearing #3: 2.8 @ 27°

Given the complexity of the machine and the uncertainty of actual journal bearing
static loads, these comparisons are remarkably close. This excellent comparison
added to the author’s own confidence in applying computer model simulations to
aid in troubleshooting vibration problems, even on such large complicated ma-
chines with the inherent uncertainties.

Unusually large balance correction weights indicated by the analyses in this
case led the author to conclude that the root cause of the excessive vibration was
not unbalance but more likely an improper setting of a rigid coupling between two
of the rotors at the scheduled outage reassembly, probably at the coupling between
the HP and IP rotors. Power generation revenue considerations dictated that this
unit be deemed “operable” until the next opportunity to remove the turbine cov-
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ers for general inspection of internals and to check for rotor-to-rotor run-out at the
turbine couplings.

10.6. Continuous Automatic In-Service Rotor Balancing

No up-to-date discussion of rotor balancing would be complete without mention-
ing the latest and most advanced product in automated real-time continuous rotor
balancing. Figure 16 shows this in a cutaway view of the newest automatic bal-
ancing product from the Baladyne Company of Ann Arbor, Michigan. The rotor-
mounted portion houses two equally unbalanced counterweight/stepping-motor
rotors, separately indexed in 5° increments relative to the rotor. Power and control
are through magnetic couplers.

Conventional rotor-mounted automatic balancing devices are designed to
minimize residual rotor mass unbalance so that the rotor vibration level is main-
tained within a given application’s requirements. Precision machine tool spindles,
especially for grinding, are a major application for such devices since successful
high-volume high-precision grinding requires continual automatic adjustment of
balance correction weights on the rotating assembly as grinding wheel material is
removed. The conventional devices available for such automated balancing are
configured to change the correction weight magnitude and angular location based
on many successive incremental moves that reduce the monitored vibration (usu-
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ally measured with an accelerometer attached to the spindle housing). However,
such conventional systems do not “know” the magnitude or angular location of the
continuously changed correction weight, nor are they able to execute a “com-
mand” to perform a specified incremental change to the correction weight.

The new BalaDyne product shown in Fig. 16 has significantly advanced the
field of automatic rotor balancing by tracking the magnitude and angular location
of the instantaneous balance correction. The author has recently designed and con-
structed a new flexible-rotor test rig in his laboratory at Case Western Reserve
University which is configured with two of these Baladyne balancing devices. The
software supplied with these two matched devices executes real-time two-plane
automatic rotor balancing, with the controlling algorithm based on the influence
coefficient method. The software also permits manual control of counterweight
placement and magnitude (through a host PC controller). That feature plays
prominently in current ongoing model-based monitoring and diagnostics research
in the author’s laboratory; see Adams and Loparo (7). That is, by being able to im-
pose a known incremental change in the state of unbalance (i.e., active probing of
the dynamical system), a continuous real-time comparison can be made between
how the actual machine incrementally responds and how an observer model track-
ing the machine’s vibration responds.

The author believes this new type of real-time automatic balancing system
can be a quite cost-effective method for minimizing rotor vibration levels on flex-
ible-rotor machines that currently necessitate considerable compromises between
various important critical speeds and operating speeds that individually have
somewhat unique optimum balance correct weight placements. The author is fa-
miliar with some large steam turbogenerator configurations now in service that
would benefit considerably from such a system.

11. SUMMARY

This chapter is a potpourri of rotating machinery vibration problems. The em-
phasis is on solving real problems in real machines, with actual case histories
being the primary basis of the material presented. This chapter and Chapters 10
and 11 form Part 4 of this book on case studies. Since the author’s own trou-
bleshooting experience has been, and continues to be, heavily focused on power
plant rotating machinery, the case studies here are primarily from power plants.
However, the particulars of each case study have much broader value in guiding
problem solution investigations in many other different industrial applications of
rotating machinery.
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