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Abstract

With the rapid growth in wireless technologies and the cost effectiveness in deploying wireless networks,
wireless computers are quickly becoming the normal front-end devices for accessing enterprise data. In
this paper, we are addressing the issue of efficient delivery of business-critical datain the form of summary
tables to wireless clients equipped with OLAP front-end tools. Towards this, we propose a new heuristic,
on-demand scheduling algorithm, called STOBS-«, that aggregates requests and broadcasts the results only
once to all clients. STOBS-« exploits the structural dependencies among summary tables to maximize data
sharing based on aggregation and does not assume fixed length or uniform broadcasts. The effectiveness of
our proposed heuristic was evaluated experimentally using simulation with respect to both access time and
fairness, as well as power consumption in the case of mobile clients.

1 Introduction

With the rapid growth in wireless technol ogies and the cost effectiveness in deploying wireless networks, wire-
less devices are quickly becoming aternative platforms for accessing enterprise data. This combined with the
increased popularity of palmtop and hand-held computers as well as the availability of light yet powerful 1aptop
computers, mobile computers will become the normal front-end devices hosting sophisticated business applica-
tions.

One such sophisticated business application which is central to the success of any enterprise is the support
of decision making. Without an effective decision support system, enterprises will be unable to exploit opportu-
nities as they appear anywhere and anytime. For good decision making, executives and managers need to count
on up-to-date, business-critical data, being instantly available on their hand-held and wireless computers®. Such
data are typicaly in the form of summarized information tailored to suit the users' analysisinterests.

Traditionally, decision makers use OLAP (On-Line Analytical Processing) toolsto execute decision support
gueries on the enterprise data warehouse or data mart. OLAP tools provide multidimensional views of datafor

decision-making and support [7]. The multidimensional data model abstracts data in the form of a data cube

*Thiswork is supported in part by National Science Foundation award ANI-0123705 and by National Center for Disease Control.
! Good mobile decision making is also critical in a public health surveillance system as the one we are developing at the University
of Pittsburgh (www.health.pitt.edu/rods), especially during emergenciesand periods of crisis



where dimensions are the subject of interests (aggregated attributes) and the cell values are the measures of in-
terest [13]. An OLAP server may store multiple summary tables (subcubes) for efficient access by queriesissued
by OLAP tools at the client. An interesting property of summary tables which we call derivation dependency,
isthat one summary table can be derived from one or more summary tables.

As an example, consider the case of stock brokers on the floor of a Stock Exchange guided by investors
on the galleries, al of them with hand-held devices or notebooks. In this interactive environment, brokers
and investors decide on stock purchases and sales by analyzing stocks along multiple parameters (dimensions).
Different dimensions are more important than others and the importance of dimensionsas well as the popularity
of stocks shifts following the developments in the market place. Consequently, the access rate to the stocks
that are considered hot and the different dimensions shift as well. This analysis process can be viewed as a
sequence of sessions. Each session typically starts with some summarized tablesinvolving few dimensionsand,
if necessary, drillsdown to high dimensional tables for more detailed information.

In this paper, we are addressing the issue of efficient delivery of summary tables to wireless clients (e.g.,
on a company wireless intranet) equipped with OLAP front-end tools. In wireless networks, broadcasting is
the primary mode of operation for the physical layer. Thus, broadcasting is the natural method to propagate
information in wireless linksand guarantee scalability for bulk datatransfer. Specifically, data can be efficiently
disseminated by any combination of the following two schemes: broadcast push and broadcast pull. These
exploit the asymmetry in wireless communication and the reduced energy consumption in the receiving mode.
Client devices are assumed to be small and portable, and most often rely for their operation on the finite energy
provided by batteries. Servers have both much larger bandwidth (downlink) available than client devices and
more power to transmit large amounts of data.

In broadcast push the server repeatedly sends information to the clients without explicit client requests. Any
number of clients can monitor the broadcast channel and retrieve data as they arrive on the broadcast channdl. If
datais properly organized to cater to the needs of the clients, such a scheme makes an effective use of the low
wireless bandwidth and isideal to achieve maximal scalability [1, 15, 14].

In broadcast pull, the clients make explicit requests for data. If multiple clients request the same data
at approximately the same time, the server may aggregate these requests, and only broadcast the data once.
Such a scheme also makes an effective use of the low wireless bandwidth and clearly improves user perceived
performance. Several scheduling algorithms have been proposed that attempt to achieve maximum aggregation
[3,17, 9, 28, 29].

Assuming the traditional OLAP server basic functionality, the broadcast pull or on-demand environment
as shown in Figure 1 is the most suitable for supporting wireless OLAP query processing. Interestingly, the

broadcast scheduling problem arising in the wireless OLAP system exhibits the above mentioned derivation
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Figure 1. Wireless OLAP System

dependency feature. That is, every client request is for one of the summary tables and a table requested by a
client may subsume the table requested by another client. However, each table satisfying a particular request
incursa different processing cost, and this cost needs to be considered in selecting the specific table to broadcast
at agiven point. Since request aggregation iscommonly used by general content delivery scheduling algorithms
for efficient data dissemination, the derivation dependency property adds a new optimization dimension to the
request aggregation process that alows further broadcast efficiency and scalability.

In this paper, we propose a new, heuristic, on-demand scheduling agorithm called Summary Tables On-
Demand Broadcast Scheduler (STOBS-«). STOBS-«v is non-preemptive and considers the varying sizes of the
summary tables. The unique characteristic of STOBS-« is its a-optimizer that exploits the derivation depen-
dency among the summary tablesto increase sharing among clientsthat goes beyond the exact match of requests
of al the current on-demand scheduling approaches.

The performance of our new heuristic was evaluated experimentally using simulation by comparing it to
relevant heuristics previously proposed in literature, namely FCFS, SSTF, and RxW. To the best of our knowl-
edge, RXW iscurrently the best performing preemptive scheduler reported in theliterature[5]. Our experimental
results have shown that STOBS-« outperforms the RxW, reducing the access time by up to 75%.

For mobile clients, savingsin power consumption is particularly important since they operate on batteries.
Power consumption is also becoming a key issue for all other computer products given the negative effects of
heat. Heat adversely affects the reliability of the digital circuits and increases costs for cooling [24]. STOBS
achieves power reductions up to 30% less than RxW, while reducing the average accesstime by 63%. The latter
saving could beincreased to 75%, while preserving the same power consumption as RxW by adjusting the value
« of the optimizer.

The rest of this paper is organized as follows. The next section presents an overview of the related work in



OLAP technologies and broadcast-based data dissemination techniques. In Section 3, we discuss our assumed
wireless OLAP environment. In Section 4, we review various scheduling heuristics previously proposed, and
in Section 5, we present STOBS, our new on-demand scheduling algorithm. Our simulation testbed and experi-
mental resultsare presented in Sections 6 and 7 respectively. Section 8 concludesthe paper with a summary and

discussion of the future work.

2 Background and Related Work

In adecision support environment, sets of facts are analyzed along multiple dimensions. Thisled to the devel op-
ment of the multidimensional data model that represents a set of factsin a multidimensional spacein away that
facilitatesthe generation of summarized data and reports[18]. Inthismodel, dataistypically stored using a star
schema. The star schema consists of a single fact table storing the measures of interest (e.g., sales, or revenue)
and atablefor each dimension (e.g., product, time, or region).

OLAP queries typically operate on summarized, consolidated data derived from fact tables. The needed
consolidated data by an OLAP query can be derived using the data cube operator [10]. The data cube operator
isbasically the union of all possible Group-By operators applied on thefact table. A datacube for a schemawith
N dimensional attributes, will have 2"V possible subcubes. Given that the data cube is an expensive operator,
often subcubes are pre-computed and stored as summary tables at the server. Basically, a summary table can be
model ed as an aggregation query, where the dimensionsfor analysisare the Group-By attributesand the measures
of interest are the aggregation attributes. A detailed summary table T'; can be used to derive a more abstract one
T,. Insuch acase, the abstract table T,, has a derivation dependency on T. thisproperty derivation dependency.
For example, in Figure 1, by adding the measure val ues across customer, the detailed table (supplier, customer)
can be used by a client to extract the abstract table (supplier).

The idea of using summary tables to derive one from another has been widely used in materialized views
selection. The objective is to select the appropriate set of tables for storing (materialization), so that to speed
up future query processing, while meeting the space constraints [13, 11, 12, 19, 25]. To facilitate the selection
process, the search latticewasintroduced in [13]. The search latticeisa directed graph to represent the subcubes
gpace that captures the derivation dependencies among subcubes. For example Figure 2 shows the lattice for the
(Supplier (), Product(P), Customer (C)) schema.

In this paper, we aso use the property of derivation dependency of the summarized tables and the idea of
search lattice in selecting the appropriate tables to broadcast over wireless links, such that the user perceived
latency is minimized.

Asmentioned in the introduction, broadcast pull and broadcast push are the basic methods for efficient data
disseminationin wireless networks. Dykeman et. a. pointed out that First Come First Serve (FCFS) scheduling



Figure 2: Data Cubes L attice

would provide poor access time for a broadcast pull environments [9] and proposed severa alternative efficient
algorithms in [9, 29]. We will elaborate more on these algorithms in Section 4. The RxW agorithm was
proposed in the context of non-preemptive environments with homogeneous request, i.e., request for data of the
same size [5]. The heterogeneous requests problem, i.e., requests of varying sizes, is approached in [3], through
apreemptive algorithm called M AX . In [17], the authors gave an offline algorithm of O(1) for minimizing the
average access time in on-demand systems, while [6] studied minimizing the maximum access time.

In broadcast push, techniques for data organization have been investigated. For example, the broadcast
disks organization was introduced in [1], while a scheme to generate non-uniform broadcasts that support range
queriesisdescribedin [27]. For fast search and sel ective tuning, several indexing techni ques have been proposed
(eg., [15, 4]). The work in [8] introduced techniques for reducing data dissemination costs in a subscription
environment, by exploring the idea of merging queries with overlapping answers. Research on balancing the

broadcast push of information and broadcast pull data delivery methods appeared in [2, 26].

3 WirelessOLAP Model

In this section, we are presenting our model for the wireless OLAP environment. Our assumed architecture is
based on broadcast pull scheme as shown in Figure 1. The OLAP server is responsible for maintaining and
disseminating the summary tables. We are assuming that all the lattice subcubes are ready at the server, whichis
a reasonable assumption, specialy for relatively small size data marts. The Essbase system (according to [13])
isan example of commercial product that materialize all the possible summary tables.

A client sends an uplink request for a table on the uplink channel. Then it listens to the downlink channel
for aresponse. A client can be in one of two modes, either a tune mode, listening to the broadcast, or in a wait
mode, where the client isidle waiting for the response. Clients depend on the server to satisfy all their requests;
they are not accessing any local storage and previous answers are not locally cached for future use.

An uplink request () is characterized by the set of its Group-By attributes D. Hence, we represent a request



as Q" and the corresponding table as 7. A summary table 7' subsumestable 772, if D2 C D1, similarly,
TP? s dependent on TP, We denote the number of dimensional attributesintheset D as| D |.

The smallest logica unit of a broadcast is called a packet or bucket. A broadcast table is segmented into
equal sized packets, where thefirst one isa descriptor packet. Every packet has a header, specifying whether it
is data or descriptor packet, the offset (time step) to the beginning of the next descriptor packet, and the offset of
the packet from the beginning of its descriptor packet. The descriptor packet contains a table descriptor which
has an identifier describing the aggregation dimensions of the table being broadcast, the number of attribute
values or tuples in the table and the number of data packets accommodating that table. We are assuming that
no single data packet is occupied by tuples from different tables. We refer to the period required to broadcast a
table as a broadcast cycle. That is, each summary table is broadcast within a broadcast cycle that startswith the
table descriptor packet and broadcast cycles have variable duration.

Here we used bit encoding to represent the client request and the descriptor packet identifier. The repre-
sentation is a string of bits; itslength is equal to the number of the complete schema dimensions and each bit
positionis equivalent to one of thedimensionsd , ds, ..., d,,.

If atableT” hasdimensiond, € D, thenthe bit at positionx isset to 1, otherwiseit isa zero. For example,
assume the (supplier, product, customer) schema. The representation of the (supplier, customer) summary table
will be 101. This scheme can be easily extended to include tables with more than one measure and different
aggregation functions such as Sum, Avg, Min, Max. But, without loss of generality, we are assuming only one
measure attribute and Sum as the aggregation function in this paper.

When a client submits a request for table 7% on the uplink channel, it immediately tunes to the downlink
channel, examining descriptor packets. When it finds a descriptor packet, say for table T2, the client classifies

TP as:
1. Exact match: if the aggregation dimensionsin T# arethe same asT* (i.e., R = B).
2. Subsuming match: if 72 subsumes T, and T2 is not an exact match for 7% (i.e, R C B and R # B).
3. No match: if it is neither an exact match nor a subsuming match (i.e., R Z B).

For example, assume R is(supplier, product), then B, = (supplier, product, customer) isasubsuming match,
while By = (product) and B3 = (supplier, customer) are examples of no match.
Depending on the kind of match (as we will see in Sections 4 and 5), the client will either tune to the next

sequence of data packetsto read (download) table T2 or it will wait for the next broadcast cycle.

3.1 Performance Metrics

The performance of any scheduler in awireless environment can be expressed in terms of:



e Access Time: It is the user perceived latency from the time a request is posed to the time it gets the

response. |ts two components are the tune time and wait time.

e Tune Time: It is the total period of time spent by the client listening to the downlink channel either

reading a descriptor packet or a stream of data packets containing the requested summary table.

e Wait Time: The total period of time a client spends waiting for a descriptor packet to appear on the
downlink channel until it finds a matching one. A client network interface is switched off during the wait

time and the client does not listen to the channel.

In our model, requests are for different tables of different sizes. Hence, an equal quality of service for all
requestsis neither feasible nor fair. However, requests can be logically grouped in classes, where the quality of
service is different from one class to another. Accordingly, we adopt fairness as one of the proposed scheduler

objectives. In calculating fairness we used the notion of stretch [3], both defined as follows:

e Service Time: Thetime that takes the server to completely transmit a table on the downlink channel in

an non-preemptive manner.

e Stretch: The stretch of arequest is defined as the ratio of the response time (access time) of arequest to

itsservicetime.
e Fairness: Thefairness measure is computed as the standard deviation of the requests stretch values [22].

The service time depends on the size of the table and hence the notion of stretch normalizes the accesstime
of a request with respect to the size of the resulting table. A low standard deviation implies the fairness of

scheduling policy for all jobs, while a higher value means that the policy isunfair towards some class [22].

4 Scheduling Algorithms

In this section, in order to set the stage for the presentation of our new scheduling algorithm, we will discussin
some more detail four of the major scheduling policies previously proposed in the literature: First-Come First-
Served, Shortest Service Time First, Most Requests First, and RXW. In Section 7, we will evaluate our algorithm

by comparing its performance in terms of these algorithms.

e First ComeFirst Served (FCFS): In this simple scheduling policy, requests are served and broadcast in

their arrival order.

e Shortest Service Time First (SSTF): The scheduler serves the data item which has the minimum re-
source regquirements first. In our case, the downlink channel is the shared resource. Hence, the requested

dataitem with the smallest size is broadcast first.



e Most RequestsFirst (MRF): The scheduler selectsthe most popular item to broadcast, i.e., the dataitem

with the maximum number of pending requests.

e RxW: This scheme combines the benefits of MRF and FCFS. At each broadcast cycle, the server selects
the data item with the highest R x W value to broadcast. The R value isthe number of requests for that
item, while the W value isthe longest wait time for arequest to that data item.

The SSTF policy is biased in favor of requests for small objects. Requests for large data items are prone
to starvation. In contrast, FCFS is not susceptible to starvation. However, it can be particularly bad for small
requests as they may need to wait in the queue until the broadcast of a large data item is finished and a new
scheduling point is reached. The intuition underlying RxW isthat “hot” or popular data items are disseminated
as soon as possibleyet it avoids starvation of “cold” or less popular data items by means of an aging scheme.

It has been shown that RxW outperforms the FCFS and the MRF techniquesin reducing the average access
time under a skewed data access pattern [5]. The performance of RxW was not previously compared to SSTF,
as the RxW was designed to handle requests for homogeneous data items (same size) and the service time for
all requests at the server side isthe same.

As it is clear from the preceding discussion, the aready existing variation of scheduling algorithms are
performing well for some cases, but they might fall shortin others. Hence, the selection of a broadcast scheduler
should be tightly coupled to the application context, which may have its specific data structure and access
pattern characteristics. Accessing OLAP data cubesis one example of such contexts, which might need a specia
scheduler that is capable of boosting the access performance in a broadcast environment and we are proposing

such algorithmin the next section.

5 Summary Tables On-Demand Broadcast Scheduler (STOBS-«)
The profile for OLAP summary tables access has the following key features:

1. Heterogeneity: summary tables are of different dimensionality (number of dimensional attributes) and
varying sizes.

2. Skewed Access: Request from OLAP clients usually form a hot spot within the data cubes lattice. Most
of the time queries are accessing low dimensionality tables and they often drill down for detailed ones.

3. Derivation dependency: it is often possible to use one detailed table to extract other tables.

The Summary Tables On-Demand Broadcast Scheduler (STOBS-«) that we are proposing in this section,

consists of two components: A normalizing (basic selection) component, which captures the first and second



features above and the a-optimizing component that exploits the third feature above to control the degree of
sharing.
In STOBS, the server queues up the clients requests as they arrive. For each request Q@ for asummary table

TX, the server maintains the following three val ues:

e R: The number of requestsfor 7% . Thisvalueisincremented with every arrival of arequest for 7~ .
e A: Thetimethefirst request QX has been waiting for table 7¥.

e S: Thesizeof tableT¥.

When it istime for the server to make a decision which table to broadcast next, it computes the £24 value

for each request in the queue. The request with the highest value is selected to be broadcast.

The parameter « defines the degree of flexibility in broadcasting a summary table and eliminating from the
broadcast some of its dependent tables. For example, for o = 2, if the server selects atable T to broadcast,
then the server discards every request in the queue for atable T that can be derived from 7% and is up to two
levelslower in the data cubes|attice. (Recall from Figure 2 that the position of atableinthelatticeislower than
the position of any table from which it can be derived.) Formally, T can be discarded and is not broadcast iff
TX isbroadcast,Y ¢ X and | X | — | Y < a.

Consequently, a client can use a table T that subsumes the table T it originally requested and is up to
two levels higher in the data cubes lattice. Formally, a client that requested 7Y can use T iff, Y ¢ X and
X |- Y I<a

The value of « ranges from O to the maximum data cube dimensionality M AX. At o = 0 thereis no
flexibility in using summary tables and the client access is restricted to exact match. At o« = M AX, aclient
will use the first subsuming matching table. In caseswhere 0 < o« < M AX, the client will use the first table
that subsumesitsorigina request and is up to « levels higher than it in the data cubes lattice.

In order to distinguish between STOBS-« and the algorithmsin Section 4 that are restricted to exact match,
we are calling the algorithms mentioned in Section 4 strict algorithms, STOBS-0 is a strict algorithm as well,
whilethe family of STOBS-«, where o > 0, are flexible algorithms. The valuefor « isknown to the server and
clients (it can be part of the table descriptor information).

As an example, consider the search lattice shown in Figure 3, in which nodes are summary tables. Q¥ is
a request to the 4-dimension table (dy, ds, ds, dy). Assume the search lattice nodes shown in figure, are the
tables for which there exist at least one request and o = 2. Also, assume that table 7* corresponding for Q¥
is selected for broadcast. Then, clients requests for tables (dy, ds), (dy, d3), (d1, do, d3), and (dy, dz, d4) will
be satisfied by 7% . While Clients requested tables (d,), (d2), (d3), and (d,) will just wait for the next broadcast

cycles.
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Figure 3: Flexibility

The intuition for the algorithm is to capture all the specific features of summary tables access in an on-

demand broadcast environment. The £24

encapsulates all the factors affecting response access time. The o
parameter controlsthe degree of flexibility. The advantage of the flexibility isto find another aspect of common
interest other than the exact strict one. The drawback isthe extratime a client hasto spend tuning to a detailed
tablerather than asummarized one. Picking areasonablevaluefor « will balance the trade-off between reducing
the wait time and increasing the tunetime. Asin[13], we are assuming alinear cost model for aggregate query
processing, where a table scan is required to compute the result. This processing time can simply overlap with
the tuning phase and is determined by the memory transfer rate. Given that the memory transfer rate is much
higher than that of the wireless network which isthe real bottleneck, the cost of any extra required filtering and
extraction is very small and may be neglected.

Asan example for the flexibility trade-off, consider the case where « is set to 2. In case of request for table
Thish where | X | — | high|< 2. If the £24 value for the request for table 79" is till not high enough, then
disseminating 7~ will reduce the wait time by a client requested 79" . On the contrary, a client requested table
T'v, where | X | — |low|> 2,if T isdisseminated, the client requested 7'°* would rather wait for the next
broadcast cycles to avoid the costly tune time of downloading 7 X .

Let us now consider a simple numeric example that highlightsthe differences in scheduling decisions and
average access time between the al gorithmsin Section 4 and the algorithm we have just proposed. Table 1 shows
the exampl e settings, where there are four pending requests 01, ()2, @3, and Q4 for four different tables T}, T»,
T3, andTy. The R;, A;, and S; valuesfor request ); are as described above. Additionally, we are assuming that
table T, isderivable from T,. Each scheduler hasto make a decision what is the sequence of tablesto broadcast
given the queue status at each broadcast cycle. In thissnapshot, the four requests constitute the whole workload,

i.e., no more requestswill arrive at the server.
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Table 1: Example Settings

Algorithm | Broadcast Sequence | Average Access Time | Broadcast Size
FCFS 1,15, 11, T, 116.1 155
SSTF 11, 15,15, T, 90.3 155
RxW Ty, 11,15, 15 102.8 155

STOBS-0 Ty, Ty, T3, Ts 85.3 155

STOBS-2 Ty, Ty, Ts 77.0 130

Table 2: Example Results

Table 2 shows the broadcast sequence generated by each algorithm (left most table is the first to be broad-
cast), the corresponding average access time, and the broadcast size. Assume that the transmission time of a
tableisequa to its size, hence, the transmission time for table T'; is 20 unitsand its access time using FCFS is
equal to Ay + Sy + S5 + 51, where (A, + Sy + S3) isthewait time and S isthe tunetime.

The sequences generated by the FCFS depends only on each request Age (A), while that from SSTF issize
(S) dependent. We can see in the sequence generated by RxW that the large table T, isthefirst to be broadcasted
due toitshigh A and R values. However that gave an average access time higher than the SSTF algorithm. In
STOBS-0, sending the small popular table T first, followed by T, gave the lowest access time among the
strict algorithms. Asit is possible to derive T's from T, STOBS-2 selects T, for transmission and discards T,

converting the wait time for T, into atunetime to 7, and in addition eliminating part of the wait time for T's.

6 PerformanceEvaluation Testbed

We implemented a system simulation model to evaluate the potential gains using the STOBS-«: algorithm by
comparing it to the relevant scheduling algorithms previously proposed in literature, namely, SSTF, FCFS, and
RXW.

We modeled the environment as a single server with a set of clients. There is a single downlink broadcast
channel over which all data is disseminated to the clients and a single uplink channel that clients use to send
uplink requests. We are assuming that clients are able to complete any uplink request in a single uplink packet.
For the purposes of this simulation, we have ignored all communication errors.

We generated a synthesized lattice for a six-dimensional data cube. The sizes of |attice subcubes are com-

puted as in [16], where a subcube is given a binary code C'. The binary code is similar to the bit encoding



we used for identifying cubes on broadcast. Then the subcube size (number of tuples) is set to C'2. The fina
cube size is the product of generated number of tuple and the number of attributes (dimensional and measure
attributes), hence, the unit for size isthe number of attribute valuesin atable. Using a six-dimensional data cube
results in a maximum value for «=6. Due to similarity in performance between close values of « and for the
sake of readability, we are only presenting resultswhere « isset to 0, 2, 4, and 6.

The way we generated the | attice ensures diversity in subcube sizes and significant size difference between
acube and all itsdependent cubes. In the generated lattice, cubes at the bottom left area have small sizeswhile
those at top right have larger sizes. This setting will resultsin 64 (2°) possible queries.

Derived summary tables are of different sizes, i.e., they have different degrees and cardinalities. In the
simulation, we are assuming that attributes values have the same sizes and a data packet capacity is 10 attribute
values. The accuracy of the resultsis dependent on the number of packets needed by each table. In any system
with fixed packet size, internal fragmentation is possible. That is, the last data packet of a given table could be
partially empty and two tables of different size might fit within the same number of data packets. This means
that two tables of different size, possibly one derived from the other one, will incur the same tuning time. Our
scheme tradestuning time for wait time and in order to illustrate the maximum possible performance degradation
with respect to tuning time that can be exhibited by our proposed flexible algorithms, we decided to ignore any
internal fragmentation in our experiments reported in this paper, and hence we did not round up the number of
packets. For example, atable of 73 attribute values will consume 7.3 data packets.

To test the system under a typical workload, requests are generated by the clients according to Zipf distri-
bution with the Zipf parameter (¢) default value is equal to 0.8. Queries are sorted according to their size, so
that queriesto small size tables occur with higher probability than queriesto detailed ones. Thisreflects the fact
that typically an analysis session starts by accessing some consolidated data before focusing on more detailed
information. We also experimented with aworkload in which the table size is not correlated with the table size,
reflecting the situation in which users are accessing specific detailed data as a response, for example, to specific
market conditions.

We control the simulation by establishing a fixed number of requests, that is, each client was required to
complete a certain number of requests before the experiment would terminate. Thisensuresfairnessin reporting,
and eliminates any possibility of reporting partial completion data. A client will pose a new request as soon as
it gets an answer to its previous one. We aso allow for the variability of the number of clients in the client
population.

Table 3 summarizes our simulation parameters and settings. The combination of these parameters allows
us to examine the scalability of the system as well as the impact of a changing workload on the algorithm

performance.



Parameter Value

Base Cube Dimensionality 6 dimensions

Possible Requests 64 requests

Packet Capacity 10 attributes values

Zipf Parameter () 0.0 —0.9 (default 0.8)
Simulation Length 100 requests/client

Number of Clients (Request Rate) | 10— 200 clients

Algorithms SSTF, FCFS, RxW, STOBS-«
a-optimization 0,246

Table 3: Simulation Parameters

7 Results

For our evaluation, we took extensive performance measurements. Thetime reported throughout isin broadcast

units. Each of these experiments was repeated 5 times to take statistically correct results.

7.1 AverageAccess Time

In thisexperimental setting, the number of clientsvaried between 1 to 200 client, each client poses 100 requests.
The variation in the number of clients reflects different request arrival rates. Requests are generated according
to the previously mentioned Zipf distribution with 6 equalsto 0.8.

Figure 4 shows average waiting time for the strict algorithms, namely SSTF, FCFS, RxW and the STOBS-
0 (with « = 0). The RxW and STOBS exhibit a similar behavior, with the average access time increasing
but ultimately stabilizing as the number of clientsis increased. This behavior isthe normal for broadcast data
delivery to clients with shared interests. For the STOBS-0, balancing between all the decision parameters, it
achieves an average access time that is 50% less than FCFS and 30% less than RxW in case of 90 clients. This
improvement increased to 60% and 35% respectively at a population of 200 clients.

In case of OLAP data cubes delivery, the sharing can be extended beyond the explicit exact similarity of
reguests to the implicit derivation dependency between the requested summary tables. This is illustrated in
Figure 5, where we used different values for the STOBS agorithm « parameter. Setting « to 2, resulted in an
average access time 40% less than the strict STOBS in the case of 100 clients, which implies a 60% less than
the RXW. Increasing the degree of flexibility to o = 4, gave a 60% reduction in access time than STOBS-0 and
75% reduction than RxW for 100 clients and almost the same value in case of 200 clients.

Figures 6 and 7 depicts the tune and wait components of the access time demonstrated in Figure 5. As
expected, increasing the « value leads to the increase in tune time as shown in Figure 6. However, that increase
was successfully compensated by a decrease in wait time as shownin Figure 7. It isworth mentioning here, that

as the requests arrival rate increases, the wait time becomes the dominant factor in the access time computation
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(we can see a 10:1 relation in Figures 6 and 7). This observation supports our idea of tackling the access time

reduction by decreasing the wait time even if it yieldsto a moderate increase in the tunetime.

7.2 Fairness

In this experiment, the setting are the same as the previous experiment. However, the metric here isthe fairness
which iscomputed as described in Section 3 by cal culating the standard deviation of the requests’ stretch values.
Recall that lower fairnessvalues (i.e., values of the standard deviation of stretch) that remain constant across the
whole range of request rate indicates better fairness.

Thefairness of algorithmsis compared in Figure 8. It isclear the unfairness of the FCFS where the decision
is biased on the wait time only. Hence, a small request can accumulate high waiting time that can not be

absorbed when calculating its stretch. Recalling the experimental setting where there is a high popularity for
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small requests, will explain the improvement of fairness of RxW compared to the FCFS. Interestingly, although
SSTF initially exhibitsthelowest values of standard deviation of stretch values, it isnot the most fair one because
of the steady growth of itsfairness values. The SSTF fairness degrades as the request rate increases, where the
policy isturning down the large requests in favor of the small ones, eventually leading to the starvation of large
requests. The STOBS versions exhibit almost a constant value for fairness regardless of the request rate. They
are clearly more fair than the FCFS and RxW. Compared to RxW, STOBS-6 is 4 times better in the case of 10
clientsand thisimprovement in fairnessincreases to 14 times in the case of 200 clients.

In order to get a better insight into the fairness of the STOBS algorithm, we group the requests into classes
based on their corresponding table size. Asin[3], arequest for atable of size between2'~! 4+ 1 and 2! (attribute
values) belongs to class ¢. In Figure 9, we have included SSTF as a reference that help in explaining the
behavior of STOBS in handling requests of different sizes. The figure magnifies the fairness metric at the point
corresponding to workload of 90 clients. The figure shows the obvious biasing of SSTF towards small request
and the unfairness towards large ones. In case of STOBS, the service is amortized among the different classes.
Increasing the value of « gives more chances and aternative ways for satisfying asinglerequest (especialy if it

fallswithin the middle of the class range) which contributesto the improvement in fairness.

7.3 Skewness

In al the previous comparisons, we used the default # value of 0.8. In this section, we examine the performance
for different values of 4, i.e., the degree of skewness of access. Figure 10 shows the average access time for a
setting, where the number of clients equals to 100, each posing 100 requests. The Zipf parameter ranges from 0
to 0.9 where for 6= 0, the distribution corresponds to the uniform one.

Since the number of clients (request rate) is kept constant, the increased overlap in client interests allows
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more efficient use of the broadcast bandwidth. Therefore, asthe skew increases all agorithms provideimproved
reduction in access time. However, the STOBS-2 and STOBS-6 schedulers are also taking advantage of the
derivation dependency property between requested tables. Using STOBS-2 reduces the access time by 70% less
than the RxW for all 6 values.

In Figure 11, we are still varying the value of 6, but we arranged the requests in arandom order, so that the
small onesare not the popular any more. We can notice that the reduction in access timefor the strict algorithms
isnot asrapid asitisin Figure 10, especially for the SSTF. However, the STOBS-2 and STOBS-6 till maintain

the same low average access time, which reached 73% less than RxW in this case.

7.4 STOBS-a and Mobility

An environment where clients are mobile is a specia case of the wireless environment, that has even more
challenging requirements. Maybe the most important of these requirementsisthe conservation of energy. Mobile
computers operate on batteries which have limited power availability. Hence, power consumption is an issue
and itsreduction is a performance objective for any proposed agorithm.

Power conservative indexing methods for single-attribute and multi-attribute based queries appeared in [15,
14, 4]. Themainideais, if sufficient indexing information is provided to clients, then the mobile device access
pattern to the data stream can aternate between a doze mode waiting for data and an active mode tuning for
required data. In a doze mode the mobile device is consuming power orders of magnitude less than that in the
active mode.

Our model supportsmobile access. Recall that each packet header containsa pointer which isthe offset (time
step) of the next descriptor packet in the broadcast. After the mobile client poses a request, it startslistening to

the downlink channel and tunesto the first descriptor packet. If it can use the up-coming data packetsit staysin
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active mode to download the broadcast table. Otherwise, it switchesto doze mode reducing power consumption.
Using the offset, it wakes up just before the next broadcast cycle (i.e., descriptor packet of the next table on
broadcast). When the client wakes up again, it checks the descriptor packet and the process of matching is
repeated as shownin Figure 12.

It should be clear that for the FCFS, SSTF, RxW, and STOBS-0 algorithms, the active power is ailmost the
same for all. However, the doze power is a direct consequence of the wait time. So, a reduction in wait timeis
areduction in doze power. Using STOBS with « > 0 will start the trade-off between the increase in tune time
(active power) and the wait time (doze power). In contrast to the access time cal culations, where the wait time
was the dominant factor, in case of power consumption, the active power is much higher than the doze power.

Figure 13 showsthe average consumed power in the active mode when a client is tuned to the broadcast, and
in the doze mode when the client is waiting for datato arrive. Figure 14 showsthe overall power consumption
for the algorithms. We express power in terms of doze mode units assuming that the active:doze ratio to be
20:1 asin the ORINOCO World PC Card [23] — the power dissipated tuning to one packet is equivalent to that
dissipated in dozing for 20 packets transmission time. Here, we used the default experimental settings (/=0.8).

It isinteresting to notice the intersection between the active and doze power consumptionsfor the STOBS-0
in Figure 13. This means that as the workload increases, the increase in wait time will give more weight to the
doze power consumption making its significance equal to that of the active power and even more. Figure 14
shows that 90 STOBS-0 clients will consume on average 20% less power than 90 RxW clients. Setting o = 2
achieved a good balance between the active and doze powers, resulting in a reduction of 25% than RxW for 90
clientsand 30% for 200 clients.

In order to put these savingsin power in perspective, let us consider the practical implicationsin terms of
power units. Consider awireless LAN, where the broadcast channel has a bandwidth of IMbps. Assume each
attribute value in our synthesized lattice is of size 10 bytes. And one data packet capacity is 10 attribute val ues.
It will take about 0.8 mSec to broadcast a single packet. Let the clients be equipped with the ORINOCO World
PC Card. The card operates on a 5V power supply, using 9mA at doze mode and 185 mA at receiver mode.
Hence, dozing for one packet time will consume 0.8 mSec * 9 mA * 5V = 36 nJ, while being active tuning to

one packet will take 0.8 mSec * 185 mA * 5V = 740 nJ. To see how much time and energy we are saving, we
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are providing a practical numeric comparison between the various algorithmsin Table 4. The table summarizes

the average access time and the average energy consumption per query for population of 90 clients.

Algorithm | Average Access Time (Secs) | Average Energy Consumption (Joules)
SSTF 9.5 0.64
FCFS 10.1 0.66
RxW 7.2 0.53

STOBS-0 4.9 0.43

STOBS-2 29 0.40

Table 4: Practical Results

8 Conclusions

In this paper, we discussed the new challenge of efficient support of mobile decision making. Towards this, we
re-emphasized the role of broadcast based data dissemination in supporting efficient access of enterprise data
warehouse and consequently enabling good decision making anytime and anywhere. Although the emphasis of
our paper was on wireless and mobile computing environments, our results are applicable in wired networks
which support multicasting.

More specifically, this paper has made four contributionsin the context of on-demand broadcast scheduling:

o It identified the new possibility of request aggregation based on the derivation dependencies among sum-
mary tables rather than just based on the exact match of requests of all the current approaches.

e |t classified on-demand scheduling algorithms into strict and flexible based on their ability to broadcast
subsuming tablesin respond to a given request.



e |t proposed a family of heuristics called called STOBS«. The a-optimization parameter controls the
degree of flexibility in using available subsuming tables, which provided further reductions in access
time and dissipated power. The superiority of the STOBS-« was demonstrated experimentally using

simulation.

e It provided a comprehensive evaluation of existing on-demand scheduling algorithms in terms of their

suitability to support the dissemination of OLAP summary tables.

In summary, the basic STOBS (a=0) balances the trade-off between al the scheduling parameters result-
ing in significant reductions in average access time and power consumption for mobile clients. Further, our
experiments showed that experiencing a moderate degree of flexibility resulted in a good trade-off between the
decrease in wait time and the increase in tune time. Thisis specially important in case of mobile users, where
the former correspondsto low doze power whereas the | atter to high active power.

We are currently working on techniquesto integrate the flexibility with the scheduling decision. We are also
studying the problem in a push subscribe environment. We are planning to investigate the effect of deploying

caching at the client side and what will be the appropriate caching mechanisms.
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