
Integrated Design and Process Technology, IDPT-2002
Printed in the United States of America, June, 2002

c
�

2002 Society for Desing and Process Science

TGV: theory, principles and algorithms

Claude Jard Thierry Jéron
IRISA, Campus de Beaulieu, F-35042 Rennes Cedex, France
jard@irisa.fr jeron@irisa.fr

ABSTRACT: This paper presents the TGV tool al-
lowing the automatic synthesis of conformance test
cases from a formal specification of a reactive system.
TGV has been developped by Irisa Rennes and Verimag
Grenoble, with the support of the Vasy team of Inria
Rhônes-Alpes. The paper describes the main elements
of the underlying testing theory, based on a model of
transitions system which distinguishes inputs, outputs
and internal actions, and based on the concept of con-
formance relation. The principles of the test synthesis
process are explained as well as the main algorithms.
We then describe the main characteristics of the TGV
tool. As a conclusion, we describe some on going
works in test synthesis.

I. CONFORMANCE TESTING

Testing, in all its variations, is one of the most used
validation techniques. In this paper, we focus on con-
formance testing applied to reactive systems. By reac-
tive system, we mean a software component which re-
acts to stimuli of its environment. Conformance testing
consists in checking that the behavior of a real imple-
mentation of a reactive system (IUT for Implementa-
tion Under Test) is correct with respect to a specifica-
tion. The code of the IUT is unknown, and its behavior
is only visible by interaction with a tester which con-
trols and observes the IUT through dedicated interfaces
(called PCO for Points of Control and Observation).
Conformance testing is a type of functional testing of
a black box nature.

A. Some basic concepts

In the context of telecommunication protocols, the
main concepts of this activity are described in the stan-
dard ISO 9646 [1]. Some of them are introduced here.

A test case is an elementary test targeted to testing
a particular functionality, called test purpose. A test
suite is a set of test cases. The basic elements of a test
case are interactions through PCO: outputs are stimuli
sent in order to control the IUT’s input events, inputs
are observations of the IUT’s output events. Inputs may
lead to different verdicts. A Fail verdict denotes a di-
vergence with the expected behaviour and the IUT is
rejected. A Pass verdict is returned if the observation is
correct and the test purpose is reached. An Inconclu-

sive verdict is returned if a correct behavior is observed,
but it is impossible to reach the test purpose. This is due
to the fact that, in general, reactive systems cannot be
completely controlled by a tester: it may have several
outputs to the same input. The tester, specialized hard-
ware, software or human operator, executes test cases.
But as test cases are often described with some abstrac-
tion level (they are called abstract test cases), they must
be translated into executable test cases.

B. Formalizing for automation

Conformance testing is a costly activity which takes
an important part in the global cost of a software. For
a long time, the scientific community tries to automate
the process of deriving test cases. For conformance test-
ing, the reference behaviour is described by the specifi-
cation which determines the verdicts. Automation thus
induces formalizing the specification, but also formaliz-
ing the interaction between the tester and the IUT. The
definition of verdicts also forces to formalize confor-
mance i.e. the relation between the IUT and its speci-
fication that is checked during testing. Algorithms for
the automatic test case synthesis, which take specifica-
tions as inputs, must be designed. Essential properties
of produced test cases must be established. Soundness
means that test cases only reject non conformant IUT,
exhaustiveness means that all non conformant imple-
mentations are rejected by a test suite. The main ingre-
dients for automation are described in [27].

The paper is organized as follows. In section II we
present the underlying testing theory of TGV. Then sec-
tion III presents the synthesis algorithms. The TGV tool
is described in section IV. Finally we conclude and
draw some perspectives in section V.

II. TESTING THEORY IN TGV

The contribution of TGV in automatic synthesis of
test cases is mainly in the area of algorithms and tool.
However TGV is based on a conformance testing the-
ory, inspired from works around Jan Tretmans (Uni-
versity of Twente) [26]. This theory inherits from pre-
ceding works on testing equivalence and preoders [6],
[2]. The behaviours of specifications and IUT are mod-
elled by a variant of labelled transition systems (LTS).
Roughly speaking, the conformance relation is a partial

inclusion of traces of observable events and quiescence.
We now present this theory, adapted to make it more ef-
fective and understandable.

A. Modelling with transition systems

For conformance testing, a distinction must be made
between events of the system that are controllable by
the environment (the inputs), from those that are only
observable (the outputs). The model we adopt (called
IOLTS for Input-output LTS) is an adaptation of the
classical LTS model.

Definition 1: An IOLTS is a quadruple�������
M �	� M ��

M
�	� M

0
 where
�

M is a finite non-empty
set of states, � M

0 � �
M is the initial state, � M is the

alphabet of actions. It is partitioned into three sets� M
� � M

I � � M
O ��� M. � M

I is the input alphabet, � M
O

is the output alphabet, and � M the alphabet of internal
actions.
 M � �

M ��� M � �
M is the transition relation.

Note: For the sake of clarity, in the examples, we will
note ��� for an input � � � M

I and � � for an output � �� M
O .

Notations: Let
�������

M �	� M ��

M
�	� M

0
 be an IOLTS.
The subscript (or superscript) M will be omitted when
clear from the context. We write � �

M
��� for� � � � �	���
!�
 M and � �

M for " ���$#%� �

M

��� . An

� &('*),+ is sometimes denoted by its initial state and we
write

�

M for � M

0

M. Let -/.1032 � � M some actions,
�4.3012 � � M 5 � M some visible actions (inputs or outputs),6 .3012 � � M some internal actions 7 � � � M 5 � M
	8 a se-
quence of visible actions, � �	�9� � �

M some states.:;� �
=<?> - � � M @ �BA

M C is the set of fireable actions

in � . &EDGF M

� �
;< :H� �
JI � M
O is the set of fireable outputs

in � . We extend it to sets of states: for K � �
M

&EDGF M

� K
;<L> &EDGF M

� �
 @�� � K C .

We note �MAONQPRPRP A�S

M
� � < " �UTV�XWXW�WX�Y�XZB#;� � �XT[AON

�]\ A�^
`_X_X_ A S
a�XZ � ��� .
Visible behaviours are described by the b relation.

We note �dcb ��� < � � ��� or �fe NYP e ^UgRgRg e S
 8 ��� and� �b ��� < " � \ �Y�Xh�#i�jcb � \k�
l�Xhmcb ��� . We also
use the notations � � N gRgRg � Sb ��� < " �UTO��WXW�WX�	��Zn#o� �
� T � Nb � \ _�_X_p� Sb � Z � ��� and ��qb < " ���r#s�kqb ��� .
The set � after 7 <t> �9� � � @%�uqb ��� C (resp.
K after 7 <Bv%wQxOy � after 7) is the set of states reach-
able from � (resp. from the state set K) by action se-
quences from which only the projection 7 onto visible
actions is defined.)=z �|{X}J~ � �
* 7 � � ��5 �
Y8 @��!qb C
(resp.)=z � {U}�~ ���
�<)pz � {U}�~ � � M

0
) describe the se-
quences of visible action fireable from � (resp. from
the initial state of an IOLTS

�
).

The relation b defines an IOLTS with same traces as�
but deterministic (with no visible actions).

Definition 2: The deterministic IOLTS of�������
M �	� M ��

M
�	� M

0
 , denoted by �|} F ���
 is a deter-

ministic IOLTS defined by
�V} F ���
 �f���O� M �Y� M 5 � M � b �	� MT after �
 .

States of �V} F ���
 , called meta-states in the sequel,
are subsets of

�
M, the initial state � MT after � is the set

of states reachable from � MT by internal actions. In sec-
tion III-C we will see an efficient construction of this
IOLTS.
Models of specifications: A specification of a reactive
system is in general given in a specialized language or
notation (SDL, Lotos, UML, IF in the case of TGV).
The operational semantics of such a language, imple-
mented in a simulator, describes all possible behaviors
of specifications. We suppose here that the semantics of
a specification is given by an IOLTS + �����

S �Y� S ��

S�	� ST
 . The example given in the left side of figure 1 will

be our running example.

8

4

0

9

5

1

6

2

7

3

tau_3

tau_2
tau_1

? a

tau_4

? c

? b

 ! x

tau_6

tau_6

 ! z

tau_5

 ! y ? c

 ! y

? a

4

0

5

16

2

7

3

 ! x

LIVELOCK

OUTPUTLOCK

? c

? b

? a
 ! y

 ! x

 ! z
 ! y

LIVELOCK

 ! y

OUTPUTLOCK

? a

OUTPUTLOCK

? a

OUTPUTLOCK

? c

Fig. 1. Specification � and �U�	���1�X���4��� , its visible behaviour

Models of implementations: The implementation un-
der test (IUT) is a black box interacting with a tester. It
is not a formal object. However, if we want to reason
about conformance, we have to consider that the IUT’s
behaviours can be modelled. This is called the test hy-
pothesis.

An IUT is modelled by an IOLTS ���E) �
���

IUT �	� IUT �Q

IUT
�	� IUTT
 with � IUT

� � IUT
I � � IUT

O ��� IUT.
We will always suppose the compatibility of the alpha-
bets of the IUT and + i.e. � S

I � � IUT
I , and � S

O � � IUT
O .

We assume that the IUT is input complete: in each state
all inputs are accepted i.e. � � � �

IUT � ��� � � IUT
I
�Y� �
 .

This hypothesis is reasonable when the IUT never re-
fuses an invalid or inopportune input but answers nega-
tively.
Quiescence: In practice, tests observe traces of a sys-
tem but also quiescence by timers. Several kinds of
quiescence may happen and are illustrated in the left
side of figure 2: deadlock: the system cannot evolve
i.e.

:H� �
 ���
, output quiescence: the system is waiting

for an input from the environment i.e.
:;� �
 � � M

I , or
livelock: the system diverges by an infinite sequence of
internal actions. In the case of finite state systems that

we consider, a livelock is a loop of internal actions i.e.
" 6 \9� 6 h �XW�WXW 6 Z �	� e N P e ^ gRgRg e S
 � .

output

τ

τ

τ

τ

livelock

τ

?a

?b
quiescence

?a

?b

deadlock

τ

τ

!x !x

τ

δ

δ

δ

Fig. 2. Quiescence and how to explicit it

As conformance testing is based on the observation
of visible behaviours, test synthesis requires a deter-
minization of the specification: two sequences with
same traces cannot be distinguished, but their respec-
tive suffix must be considered as possible evolutions of
the system. Also, the information about quiescence of
the specification must be preserved by determinization.
This is only possible if quiescence is computed on the
specification as described in the sequel and sketched in
figure 2.

Definition 3: The suspension automaton of an
IOLTS

���f���
M �	� M ��

M
�	� M

0
 is an IOLTS� ���
 � ���
M �Y��� . M 2 �Q
 � . M 2 �Y� M

0
 where ��� . M 2 � � M �
> � C with

� � � � . M 2
O (

�
is considered as an output, ob-

servable by the environment), and the transition relation
 � . M 2 is obtained from

M by adding loops � �
 � for

each quiescent state � (i.e. deadlock, livelock or output
quiescence).
The right side of figure 1 presents �V} F � � � +
 , the visible
behavior of the specification example + . Note that

�
actions are distinguished.

B. Conformance relation

A conformance relation formalizes the set of IUT
that are considered as correct w.r.t a specification. Fol-
lowing Tretmans [26], the considered observations are
traces of the suspension automaton (traces with quies-
cences). Intuitively, an implementation ���E) conforms
to its specification + for ioco if after each trace 7 of� � +
 the ���E) only exhibits outputs and quiescences
possible in + . Formally:

Definition 4: Let + be an IOLTS and ���E) be
an input complete IOLTS (compatible with +),

���E) ioco + < � 7 �)=z � {U}�~ � � � +

 �
&EDGF � � � ���E)
 after 7
 � &EDGF � � � +
 after 7

Examples : Figure 3 explains ioco. ���E) \ ioco + be-
cause in each state, outputs of � �() \ are included in
outputs of + . ioco thus allows to restrict the IUT on out-
puts. � �E) \ ioco + also even if the initial state of ���E) h
allows a new input ��� as only the outputs are checked

by ioco. ioco thus allows partial specifications. How-
ever � � � �E) h ioco +
 as the output � � after the input �]�
is not allowed in the specification. and the quiescence
after �]� W � � (due to an internal loop for example) is not
specified in + .

?a

!y

!z

δ

δ

!x

partial specification

?a

!x

!z

δ

!z

?b

IUT1
implementation choice

!z

δ

?a

!x !y

δ
δ

!z

forbidden output
IUT2

forbidden quiescence

Specification

Fig. 3. ioco by the example

C. Tests: models, execution and properties

Reactive systems that we consider are not always
controllable by their environment. Thus test cases
should have the choice between correct inputs and
should foresee non-conformant IUT. However, they
have no choice between outputs as they control them.
And they have no internal actions. To model test cases,
we choose IOLTS with verdicts and some additional
properties. A test case has a complex behavior which
structure is a graph, with possible loops.

Definition 5: A test case is an IOLTS) � �
���

TC �	� TC ��

TC
�Y� TC

0
 equipped with three sets of trap
states Pass � �

TC, Fail � �
TC and Inconc � �

TC char-
acterizing verdicts. Its alphabet is � TC

� � TC
I � � TC

O

where � TC
O � � S

I () � emits only inputs of +) and� TC
I � � IUT

O � > � C () � foresee any output or quiescence
of ���E)). By hypothesis, states in Fail and Inconc
are directly reachable only by inputs: � � � � � �Y�9�
E�
 TC� � � � � Inconc � Fail b�� � � TC

I
 , and from each
state, a verdict is reachable � � � "�7 � � TC 8 � " ��� � Pass �
Inconc � Fail �,� q
 ��� . TC is controllable: no choice
is allowed between two outputs or an input and output,

i.e. � � � �
TC � ��� � � TC

O
�Y� �

TC b �	��
� � �	�
 �
 TC. It is
input complete in all states where an input is possible:
� � � �

TC � � "r� � � TC
I
�/� �

TC b �
� � � TC
I
� � �

TC
 .
A test suite is a set of test cases.

Test cases are executed on an IUT. This execution is
modelled by a parallel composition with a synchroniza-
tion on common visible actions:

������ ����� w ���� w �. ��� w 2 �� ��� � � . � � � w � 2
������ ���. ��� w 2 �� ��� � � . � � � w 2 w ���� w �. ��� w 2 �� ��� � � . ��� w � 2

This model of execution, together with the hypoth-
esis made on the IUT and test cases, ensures that

) � @3@ ���E) may only block in states where a verdict is
returned by) � . Thus verdicts are associated to max-
imal traces of the test cases i.e. sequences 7 � � TC �
such that

:H� � TCT after 7
 � �
. Note that test cases (in

particular those generated by TGV) may have loops.

Thus test execution may be infinite. To prevent this,
global timers should be used.

A verdict associated to the execution of a test case
TC on an IUT is completely determined by the state
of TC reached by a maximal trace of � �E) @3@) � .
Depending on this state, it can be Pass, Fail or
Inconc. �|} z � � { F � 7
 �

Fail
� z }�~�� W Pass � Inconc
r<

) � after 7 � Fail
� z }�~�� W Pass � Inconc

A possible rejection of an IUT by a test case is
defined by:) � � ��� z }��|}J{ F ���E) < "�7 �
)=z � {U}�~ �) � @1@ ���E)
 � � } z � � { F � 7
 � Fail.
may pass and may inconc are defined in the same way.
Notice that the lack of control of test cases on an IUT
implies that a unique test case may reject, accept or re-
turn an inconclusive verdict on the same IUT.

Definition 6: A test case) � is sound for + and ioco
if � � �E) � ���E) ioco + b � �) �	� ��� z }��V}J{ F/���E)
 .
A test suite is sound if it consists of sound test cases.

A test suite is exhaustive for + and ioco if
� ���E) � � � ���E) ioco +
 b) �
� ��� z }��|}]{ F ���E)
A test suite is complete if it is sound and exhaustive.

The minimal property required for test suites is
soundness: a test suite should not reject a conformant
IUT. This property is reachable, but not sufficient in
practice as test cases accepting all IUT are sound. One
would like exhaustive test suites i.e. every non confor-
mant IUT would be rejected. But it is unreachable for
finite test suites as soon as the specification has loops. It
requires an infinite number of test cases or infinite state
test cases. Thus we will only require the exhaustive-
ness of the synthesis technique: the infinite test suite
composed of all test cases that the synthesis algorithm
can construct is exhaustive. Thus, for non conformant
IUT, it is theoretically possible to produce a test case
that may reject it.

D. Formal test purposes

One of the main ingredients of the test synthesis tech-
nique implemented in TGV, is the formalization of the
concept of test purpose, and its use for test selection. In
practice, test purposes are informal descriptions of be-
haviors to be tested, in general incomplete sequences of
actions. We model test pruposes by automata (IOLTS
extended with marked states) accepting sequences of
actions of the specification. To allow an efficient se-
lection, in particular on-the-fly (see section III-F), two
distinct sets of marked states are considered, which ac-
cept or refuse sequences of actions of the specification.

Definition 7: A test purpose is a deterministic and
complete IOLTS) K �m���

TP �Y� TP ��

TP
�Y� TP

0
 , equipped
with two sets of trap states � {U{U}�� F TP and �(}�
 D ~]} TP,
with same alphabet as the specification i.e. � TP

� � S.
Complete means that each state allows all actions i.e.
� � � �

TP � � � � TP �	� �

TP and a trap state � has a loops

on each action i.e. ��� � � TP �Y� �

TP
� .

Note and example: It is interesting to allow abstrac-
tion in the description of test purposes, with respect to
the specification behaviour. To satisfy the completeness
requirement, we use the label “*” in TGV which, in a
transition � 8
 ��� is an abbreviation for the comple-
ment set of all other transitions leaving � . Moreover,
such “*”-transitions can be implicit as TGV completes
incomplete test purposes by a “*”-loop, thus allowing
partial sequences in test purposes. TGV also supports
regular expressions for the description of sets of labels.
The left side of figure 5 gives an example of a test pur-
pose) K for the specification + . Here we want to select
sequences of actions which labels do not end with � or
� (tau_5 and ! z) before a � followed by a � . “*”-loops
are implicit in all states.

III. PRINCIPLES AND ALGORITHMS

This section describes the main algorithms of TGV.
Let us sketch these algorithms, summarized in figure 4.
TGV takes as inputs a specification + and a test pur-
pose) K . The first operation performs a synchronous
product between + and) K , marking + ’s behaviours
accepted (or refused) by) K . From the result + K , we
build the visible behaviour (traces and quiescence) in

+ K VIS. Test selection then builds an IOLTS
�)�� by

extraction of the accepted behaviors and inversion of
inputs and outputs. Finally, all controllability conflicts
are suppressed to conform with the definition of test
cases. Alternatively, some conflicts can be suppressed
during selection, leading to the construction of)�� , and
only residual conflicts are suppressed afterwards. When

+ is given implicitly by traversal functions, all opera-
tions except conflict resolution, can be applied on the
fly, avoiding the construction of all complete IOLTS.

selection controllability TCSP (+ δ)
determinization

product SP

S

CTG
−ctg

TG
on−the−fly

TP

suspension vis

Fig. 4. Overview of test synthesis operations

A. Preliminary notions

A graph � with set of vertices � and set of edges � is
denoted � �?� � � �
 . A strongly connected component
(SCC) is a maximal subset � 0 of � such that, for each
pair

� � 0 ��� 0
 of vertices in � 0 , there is a path from � 0
to � 0 and a path from � 0 to � 0 . An SCC is trivial if
restricted to a single vertex with no loop. The partition
of � into SCCs, defines a reduced graph which vertices
are SCCs, and there is an edge from an SCC � 0 to an
SCC ��� if there is an edge in � from a vertex in � 0 to a
vertex in � � .

In the sequel, we will see that several problems in test
synthesis can be understood as reachability problems.
Now, there is strong relation between reachability and
SCC, as all vertices of an SCC have the same reachabil-
ity properties: if a vertex � is reachable from a vertex

D of an SCC � 0 , � is reachable from all vertices in � 0 .
Computation of SCCs: Tarjan [25] describes an algo-
rithm of linear complexity for the computation of SCCs.
In [19], we give an iterative version with “holes”, and
instantiate these “holes” for several algorithms used in
TGV. The algorithm is a depth first traversal (DFS). Its
principle is to identify SCCs by their roots, i.e. vertices
first reached in the DFS. The DFS uses two stacks: the
DFS-stack contains vertices of the current sequence and
their pending edges, and the SCC-stack contains ver-
tices which SCC is not completed. When an SCC root
is popped from the DFS-stack, all vertices of the same
SCC are on the top of the SCC-stack and are popped
together.

B. Synchronous product

Test synthesis in TGV takes as inputs a specification

+ and a test purpose) K . The first problem is to mark

+ ’s behaviours accepted (on � {X{U}�� F states) or refused
(on �(}�
 D ~�} states) by) K . Just as in model-checking,
this is solved by a synchronous product.

Definition 8: Let + �f���
S �	� S �Q

S
�	� ST
 be an IOLTS

and) K � ���
TP �	� TP �Q

TP
�	� TP

0
 a test purpose with� TP
� � S and equipped with state sets � {U{U}�� F TP and

�(}�
 D ~]} TP.
The synchronous product + �) K is an IOLTS + K �
���

SP �	� SP ��

SP
�	� SP

0
 , equipped with two disjoint sets of
states � {U{X}�� F SP and �(}�
 D ~]} SP, and defined as follows.
Its alphabet is � SP < � S

��� � TP
 . Its state set
�

SP is
the subset of

�
S � �

TP reachable from the initial state� SP
0 < � � S

0
�Y� TP

0
 by the transition relation

SP defined by:� � S �	� TP
 �

SP

� ��� S �	��� TP
�� b � S �

S
��� S ��� TP �

TP
��� TP.� {X{U}�� F SP < �

SP I ���
S ��� {X{U}�� F TP
 and �(}�
 D ~]} SP <�

SP I ���
S � �(}�
 D ~]} TP

The effect of the synchronous product is to mark be-
haviours of + by � {U{X}�� F and �(}�
 D ~]} , and possibly to
unfold + . As) K is complete, all behaviours of + (in-
cluding quiescence) are preserved in + K . + K is built
by the next operation but could be built by any traver-
sal.

C. Visible behaviours

The next operation consists in extracting the visible
behaviour (traces and quiescence) from + K , i.e. con-
structing the IOLTS + K VIS

� ���
VIS �	� VIS ��

VIS
� � VIS

0

such that + K VIS

� �V} F � � � + K

 (see definitions 3 and
2). + K VIS is equipped with accept and refuse states:� �����	� � VIS
���
���� VIS ��
�� � �������	� SP �
����

����� �! �� VIS
���
���� VIS ��
"� �#��� �$ �� SP �
"���&% � �����	� � VIS.

which means that we choose to refuse a trace as soon as
it corresponds to at least one refused sequence in + K .
The right side of figure 5 gives the result of this compu-
tation for the examples + and) K where the exploration
is stopped in Accept state 13 and Refuse states 5 and 7
(marked by loops labelled by Accept or Refuse).

0

1

2

3

REFUSE

.*[z5] .*y

.*z

ACCEPT

0

1

2

3
4

5

6
7

8

9
10

11

12
13

14

OUTPUTLOCK

 ! z

 ! x

 ! z

? c

 ! y

 ! y

LIVELOCK

LIVELOCK

? b

 ! y

OUTPUTLOCK

LIVELOCK

OUTPUTLOCK

OUTPUTLOCK

? a

? a

? c

OUTPUTLOCK

REFUSE

? a
? b

OUTPUTLOCK

OUTPUTLOCK

? a

? a

OUTPUTLOCK

? c REFUSE ! y

OUTPUTLOCK

 ! y

LIVELOCK

 ! x

ACCEPT

 ! x

Fig. 5. Test purpose '
 and �
 VIS
 �U�	���1�X���)(*'
 �
Computation of �|} F � � � W

 :

We already gave the definitions of
�

and �|} F , but for
the sake of efficiency, quiescence and determinization
are computed simultaneously. Figure 1 will serve to
illustrate the computation for the example + even if we
apply it to + �) K .

Theoretically, a
�

loop should be added in each quies-
cent state. For deadlocks (no deadlock in +) and output
quiescent states (states 1,7,9), we just look at outgoing
transitions. For livelocks, which are loops of internal
actions (in states 0-2 and 4), a

�
loop should be added

in each state of a non trivial SCC of internal actions
(6 -SCC for short). But, as

� � +
 is determinized after-
wards, adding a

�
loop in the root of each 6 -SCC as the

same effect on b . We will see how to factorize this
with determinization.
Determinization: Determinization consists in build-
ing �V} F � +
 starting from its initial meta-state � S

0

�
� � . S 2

0 after + (in the example, the meta-state , of
�V} F � � � +

 is > , �.-O� � �0/ C) by alternation of two oper-
ations:1

subset construction: for a state set K and a visible
action � , compute the set K � � > ����@ " � � K �	���
 ��� C ,
of states reachable in one visible step � from K . For
K � > , ��-O� � ��/ C and �]� , K � � >32 ��4 C .1
� -closure: for a state set K , compute the set K after �

of states reachable from K by sequences of internal ac-
tions. For K � >32 �04 C K after � is also >32 �04 C .

In [18] we propose an � -closure algorithm that
avoids redundancies, with the counterpart of a sup-
plementary memory complexity. The idea is as fol-
lows. For all states � of a 6 -SCC, 5 � z } � �
 �

> � � �	���
 @ � � � � . SP 2 5 � � . SP 2 �	��� � � � . SP 2 �	� �b ��� C
is identical. In fact 5 � z } � �
 denotes visible ac-
tions after a 6 sequence and resulting states, thus
a reachability property. For example 5 � z } � ,
 �
5 � z } ���
 � > � �]� � 2|
 � � �]� �04
 � � � � ���
 � � ��{ ���
 C and5 � z } � -
 � > � ��� � 2V
 C . A meta-state (> , ��-O� � ��/ C for ex-
ample) is not only a set of states but a reduced graph
of 6 -SCC (> , � � C , > - C , > / C) and 5 � z } � z � { ��� } � � 0

 is
synthesized on each 6 -SCC � 0 . Meanwhile, quiescence
is computed and

�
-loops added. In particular a livelock

is a non trivial 6 -SCC (> , � � C). Then, when an already
visited state � is reached by a new call to � -closure, the
root of its 6 -SCC returns 5 � z } � �
 . For a meta-state K ,
the set 5 � z } � K
 � v��	� x�
��
� _ 0 Z 0�� 5 � z } � z � { ��� } � � 0
	

where + � � 0 Z 0�� is the set of initial SCC of the reduced
graph of 6 -SCC of K gives all fireable transitions and
reached states. Thus it gives the result of the subset
construction. The time complexity of determinization
remains exponential but, by avoiding redundancy, our
algorithm is much more efficient than the naïve one.
A word on minimization: The IOLTS + K VIS built
is not minimal w.r.t. trace equivalence. As parti-
tion refinement algorithms used for minimization work
backward, they need the complete IOLTS. But on-the-
fly test synthesis (see section III-F) avoids the com-
plete construction of + K VIS and works forward. We
then use a weaker equivalence relation and minimize

+ K VIS on-the-fly for this relation: two meta-states K 0
and K � of + K VIS are “1-step equivalents” if 5 � z } � K 0
 �5 � z } � K �
 . This minimization is simply done by a cod-
ing of each meta-state K 0 by 5 � z } � K 0
 which is the only
used information in K 0 .
D. Test selection

+ K VIS represents all visible behaviours of + and,
among these, those behaviours accepted (or refused)
by the test purpose) K with the sets � {U{U}�� F VIS and
�(}�
 D ~]} VIS. The next operation consists in extracting
a test case by selection of accepted behaviours. This
operation is a bit more complex as, to compute a test
case (see definition 5), we must perform a mirror image
(invert inputs and outputs), complete it for inputs in all
states where an input is possible, ensure controllability,
and define verdicts by sets Pass, Inconc and Fail.

In a first step, we will not deal with controllability,
and will describe the computation of an IOLTS

�)��
for Complete Test Graph.

�)�� is an interesting IOLTS
as it contains all test cases corresponding to the test pur-
pose. Moreover, it is easier to explain separately how
controllability conflicts are solved.

Definition 9: For a specification + and a test pur-
pose) K , the complete test graph is an IOLTS

�)�� �
���

CTG �	� CTG ���G

CTG

�	� CTG
0
 , with three sets of trap states

Pass, Inconc and Fail, and defined from + K VIS
�

�V} F � � � + �) K

 as follows:
The alphabet is � CTG

� � CTG
O � � CTG

I with � CTG
O � � VIS

I

and � CTG
I

� � VIS
O (mirror image), The set of states is�

CTG
� ' � � � Inconc � Fail, with ' � � � > � ��

VIS @ " 7 � � VIS �O� � q

VIS

� {U{U}�� F VIS C , (L2A for leads
to Accept) i.e. the set of states from which � {U{U}�� F VIS is
reachable, and � � {�� � { � > � � �

VIS @ " D � ' � �r� �
�
' � � � � � � VIS

O
� D �

VIS � C , i.e. states not in ' � � but di-
rect successors of states in ' � � by an output in + K VIS.
Fail

� > Fail C where Fail
� �
VIS is a new state. If� VIS

0 � ' � � , the initial state is � CTG
0

� � VIS
0 and

�
CTG is re-

stricted to states reachable from � CTG
0 by

CTG, otherwise�
CTG is empty. The transition relation is

CTG

�

L2A

�

Inconc �

Fail where

L2A

�

VIS I � ' � � �M� CTG �

' � �),

Inconc

�

VIS I � ' � � � � CTG

I
� Inconc
 , and

Fail

� > � � � � � Fail
 @ � � ' � � � � � � CTG
I

� �
 �
 VIS C .
Finally, Pass

� � {U{U}�� F VIS.
The left side of figure 6 illustrates the computation of
the complete test graph from + K VIS for the examples

+ and) K . In + K VIS, the SCC > , C , > - C , > � C , > � C ,
> � ��/ �.- , �.- - C and > - 2 C lead to Accept, thus their states
and transitions are preserved in

�)�� . >�2 ��4 C does not
lead to Accept and is cut as it is reached by the input
��{ but outputs � � and � � leading to > � C and > � C are pre-
served and lead to an Inconclusive verdict.

0

1
2 3

4

5

6

7

8
9

10

11

LIVELOCK; INPUT

 ! a; OUTPUT

? y; INPUT

 ! b; OUTPUT

 ! a; OUTPUT

? z; INPUT (PASS)

OUTPUTLOCK; INPUT

OUTPUTLOCK; INPUT

LIVELOCK; INPUT

? x; INPUT (INCONCLUSIVE)

? y; INPUT

LIVELOCK; INPUT

? y; INPUT

? z; INPUT (INCONCLUSIVE)

 ! a; OUTPUT

OUTPUTLOCK; INPUT

 ! a; OUTPUT ! b; OUTPUT
OUTPUTLOCK; INPUT

LIVELOCK; INPUT

? x; INPUT (INCONCLUSIVE)

? y; INPUT

4

0

5

1

2

3

LIVELOCK; INPUT

 ! a; OUTPUT

? y; INPUT

? x; INPUT (INCONCLUSIVE)

? z; INPUT (PASS)

? y; INPUT

 ! b; OUTPUT

Fig. 6. Complete test graph and test case

Algorithm: According to the definition of
�) � , the

main point is to compute the set ' � � and to check if� VIST � ' � � . Now, the set ' � � consists of states where
the CTL [5] property ' � � � � 5 � {U{U}�� F VIS holds. This
is clearly a reachablity property. Thus, either all states
of an SCC are in ' � � or none of them. The algorithm,
called TGVloop adapts Tarjan’s algorithm by the ad-
ditional synthesis of the attribute ' � � and a construc-
tion of
 L2A during backtracking. This algorithm can be
seen as a model-checking algorithm for ' � � producing
all witnesses of ' � � starting in the initial state. More-
over, the computation of Inconc and

Inconc is done dur-
ing backtracking of output transitions of + K VIS from

states in ' � � to states outside ' � � . The Fail state and
transitions in

Fail are implicit,
�� � 0�� being defined by
complementation of fireable transitions. The algorithm
has linear complexity in time and space, just like Tar-
jan’s SCC algorithm.

E. Pruning controllability conflicts

!a !b ?x !a !a ?x ?y

forbidden configurations allowed configurations

Fig. 7. Controllability conflicts

�)�� satisfies all properties required for a test case
(definition 5), except controllability: some states � of�)�� may have a choice between outputs or between
inputs and outputs. (see figure 7). Solving these con-
flicts consists in extracting a controllable subgraph of�)�� while preserving other required properties. In a
state with a conflict, some transitions must be pruned:
either one output is kept and all other outputs and in-
puts are pruned, or all inputs are kept and outputs are
pruned. Unreachable states are suppressed. Reachabil-
ity to � {U{U}�� F (or Pass, synthesized in ' � �) is preserved
by a backward traversal of

�)�� from Pass states to
the initial state. Among possible traversal strategies
we choose a breadth first traversal for its ability to se-
lect shorter paths from Pass. The right side of figure 6
shows a test case which is one possible result of this
conflict resolution. In the state 0 of CTG, � � is cho-
sen and � � and the

�
inputs are pruned, and in state 5,

� � is chosen and �]� and
�

inputs are pruned. Note that
� � could be chosen in 0 but � � cannot in � as the PASS
verdict would be unreachable.
Forward pruning: Conflict resolution with a back-
ward traversal, as presented previously, requires a com-
plete construction of

�)�� . But this reduces the in-
terest of on-the-fly synthesis (see section III-F). An-
other solution consists in pruning during backtracking
in TGVloop. This may solve some controllability con-
flicts and avoid the construction of some parts of

�)�� .
But some conflicts may not be solved this way, only in
the case of particular traversal orders in loops. How-
ever, residual conflicts can be solved a posteriori by the
backward algorithm. In the example, the conflict in 0
can be solved by forward pruning but the conflict in 5
is solved this way only if � � is explored before � � ..

F. On the fly test case synthesis

Figure 4 gives an overview of the operations needed
for test synthesis. After the computation of the product

+ K � + �) K , the suspension automaton
� � + K
 and

the deterministic automaton of it + K VIS
� �|} F � � � + K
	

are factorized in one operation. � {U{X}�� F and �(}
 D ~]}
sets are propagated by these operations. Then, either a
complete test graph

�)�� is computed by selection of
traces leading to � {U{U}�� F VIS, mirror image, addition of
verdicts, or a test graph) � is build by pruning some
controllability conflicts during selection. Finally, resid-
ual controllability conflicts on

�)�� or) � are solved
to produce one test case) � .

In general) � is small compared to + , because of
selection by) K . Also the specification is not given ex-
plicitly by an IOLTS but in a specification language. Its
semantics is an IOLTS + , but it is given implicitly by a
simulator API in terms of functions allowing its traver-
sal. Building + completely when only a small part is
used in) K is thus inefficient, and in general impossi-
ble if + is not finite state.

The idea of on-the-fly synthesis is a lazy construc-
tion of subgraphs of + , + K and + K VIS necessary for the
construction of) � , i.e. selected by) K . To understand
the global behaviour, one has to reason in terms of func-
tions for the construction of each of the IOLTS + , + K
and + K VIS. The required functions are traversal func-
tions (init giving the initial state, fireable which gives
the set of fireable transitions in a state, succ which, from
a state and a fireable transitions, computes the target
state(s)), a comparison function, and functions comput-
ing the membership to � {U{X}�� F or �E}�
 D ~]} .

In the worst case, on-the-fly synthesis does not re-
duce the construction of the IOLTS + , + K and + K VIS.
But in practice, the reduction is often dramatic, in par-
ticular if) K constraints the behaviours by the use of
�E}�
 D ~]} states. Using this technique often allowed us
to quickly synthesize test cases on very large or even
infinite state spaces. Nevertheless, it is clear that if +
is small, it is preferable to build it completely and to
minimize it before test synthesis with different test pur-
poses. As we already noticed, on-the-fly test synthesis
does not allow minimization for trace equivalence, and
this sometimes results in the unfolding of loops in test
cases. However, as test cases are often small, they can
be minimized a posteriori.

IV. THE TGV TOOL

TGV architecture: it follows the functional descrip-
tion (see figure 8). TGV is made of software levels
communicating through API. Each level implements
one of the algorithms described in section III and trans-
forms an IOLTS (or two in the case of the product)
given by its simulation API, into a simulation API of a
new IOLTS. Additionally, TGV uses libraries for stor-
ing states, for hiding, renaming and regular expressions
of the CADP toolbox [11]. Due to this architecture,
TGV allows to guide simulation API of different spec-
ification languages with the same source code, except

for highest API. This ensures the coherency of differ-
ent variants, and facilitates the porting on new systems
(TGV works on SunOS 5, Linux and WindowsNT).
Moreover some parts can be used alone, or by other
programs. In particular, we have implemented a module
called VTS which verifies soundness and laxity of man-
ual test cases. This module just replaces TGVloop and
uses other levels. It also served for testing TGVloop.

on
−t

he
−f

ly

API of SPvis

API of SP = S x TP

(bcg, aldebaran,TTCN GR and MP)

(δ)

(SDL,Lotos,UML,IF, bcg,aldebaran)

selection

Specification
(bcg,aldebaran)

printer

Test Purpose

compiler compiler

synchronous product

API of TP

suspension determinization

API of CTG API of TG

API of TC

Test Case

API of S
simulation simulation

controllability

 CADP
 API for

−regexp
−hiding
−renaming
−storage

Fig. 8. TGV architecture

A. Supported languages

TGV supports different specification language by a
connection to their simulation API:
Lotos: TGV uses the simulation API provided by the
CAESAR compiler of the CADP toolbox. But as Lotos
does not distinguish inputs and outputs, TGV needs an
additional file which partitions visible events into inputs
and outputs.
SDL: TGV uses the simulation API of the Object-
Géode SDL tool (Telelogic) [13]. There exist two ver-
sions of this connection. The academic version uses
a CADP-like API and pilots the ObjectGéode simu-
lator. The commercial tool TestComposer of Object-
Géode also integrates TGV as one of its two test synthe-
sis engines. TestComposer is also equipped with a test
purpose synthesis engine based on a branch coverage
strategy. This engine produces sequences of observable
actions interpreted as test purposes.
UML: to produce test cases from UML models, TGV
is connected to a CADP-like simulation API provided
by UMLAUT [14], a validation framework for UML
developed in IRISA. UMLAUT uses class and objet di-
agrams, deployment diagrams, state diagrams and gives
an operational semantics to UML by transformation and

compilation of the UML model.
IF: IF is an intermediate form developed by Verimag
(Grenoble) that can be produced from SDL and UML.
TGV also uses the simulation API provided by the IF
compiler.
Your favorite specification language: the simulation
API required by TGV is documented and quite simple.
For a language with an operational semantics in terms
of LTS or IOLTS, if a compiler produces a simulation
API, an interface between this API and the TGV API
can be easily built.

As a result, TGV may produce test cases in TTCN
(Tree and Tabular Combined Notation [1]), or in one of
the graph formats (.aut and .bcg) of CADP.

B. Other TGV characteristics

Several options are provided by TGV. In particular,
TGV produces test cases with timer operations. Two
timers are managed, TAC and TNOAC. TAC is started
when inputs are expected (except if

�
is expected). If an

input is observed, TAC is cancelled, otherwise a time-
out is observed and produces a Failverdict. TNOAC is
started before entering a state where a quiescence (

�
) is

allowed, it is cancelled if an input is observed and the
observation of

�
is replaced by a timeout that does not

produce a Failverdict, as it is specified.
The traversal depth can be bounded. This bound is

interpreted in terms of visible actions as, due to non-
determinism, a bound in terms of actions could result
in an unsound test case.

TGV allows the computation of postambles from
PASS and INCONC verdicts. If possible, these postam-
bles lead to stable states i.e. states where, according to

+ , no output from the IUT is expected.

C. Case studies

Different versions of TGV have been experimented
on industrial size case studies, in various application
domains, and with different specification languages.
We just sketch these cases studies, as they have been
already published.
SDL: The DREX protocol, a military version of the
ISDN D protocol, allowed the validation of TGV prin-
ciples on a preliminary version of TGV. This version
was incomplete and not on-the-fly [12]. The experiment
allowed to compare TGV with the TVéda tool from
CNET [23] and the TOPIC prototype from Vérilog, as
well as the manual production of test cases [8]. Another
one, the SSCOP protocol has been used in several ex-
periments with variations on the number of PCO, the
communication mode (synchronous or asynchronous)
between tester and IUT, with the aim of putting into
relief the particularities of TGV [3]. Also a part of
the TTCN test suite produced by ATM Forum has been

checked with VTS (for soundness and laxity) [17] and
some errors due to asynchronism were detected.
Lotos: Several experiments [20], [21] consisted in us-
ing TGV on specifications of a multiprocessor architec-
ture of Bull. Produced test cases have been executed by
Bull on a simulator of the architecture. TGV has also
be used on a conference protocol [9]. Test cases have
been executed on 28 mutants of a correct implementa-
tion in order to compare TGV with the TorX tool from
Twente. Both tools detected all incorrect mutants. A
problem with TGV was to imagine adequate test pur-
poses.
UML: A model of an air traffic controller is used as an
example of the UMLAUT/TGV connection.
IF: In the framework of the IST European project
Agedis, TGV has been used on an IF specification
(translated from an SDL model designed from an UML
one) of a component of the Transit Computerization
Project. The number of processes (10) and their con-
currency pushed TGV to its limits and gave us some
ideas about possible improvements (see section V).

D. Comparison with other techniques and tools

TGV can be compared with test synthesis techniques
and tools based on model-checking (e.g [10]. The com-
mon idea of most of these techniques is to use a stan-
dard model-checker to produce counter-examples of the
negation of a property (interpreted as a test purpose),
abstract these sequence from internal actions and in-
terprete them as test cases. But TGV goes beyond by
the use of a clear testing theory and a real adaptation
of model-checking algorithms to test synthesis, which
allows to take into account non-deterministic and non
controllable specifications.

The most comparable tool is TorX [7], the tool from
the University of Twente. The testing theory is almost
identical (except that livelocks are not considered). It
also synthesizes test cases on the fly, but for the mo-
ment without any test purpose. As it executes test cases
on the fly during their synthesis, the test case synthesis
is guided by the observations made on the IUT on the
proposed stimuli. As mentionned in subsection IV-B
both tools where applied to the same case study and de-
spite their differences, gave similar results in terms of
detection power.

V. CONCLUSION AND PERSPECTIVES

In this paper, we have presented the principles of
TGV, its underlying theory, the algorithms and the tool.
TGV has improved the state of the art in test synthesis
in a significant way. Our main contribution is not in
the theory despite our adaptations and improvements,
but in the algorithms and tool architecture. TGV is able
to synthesize tests from industrial size specifications.

However, some improvements are still necessary for an
industrial use.

A first drawback is the necessity to describe test pur-
poses. It is an advantage compared to manual genera-
tion of test cases because test purposes are of an higher
abstraction level and TGV ensures soundness of syn-
thesized test cases. But their is an effort to be paid for
the description of test purpose and this requires some
expertise. TestComposer provides a partial answer by
the synthesis of test purposes for a coverage criteria.
But the branch coverage criteria is often too weak and
some test purposes still have to be written. A possible
direction for future research is to use improved cover-
age criteria based on the specification code and adapted
to the specific problem of conformance.

Improvements of algorithms are investigated. An in-
teresting direction is to use partial order techniques as
in model-checking [22]. These techniques can already
be used for internal actions as the order of occurrence
of internal actions has no effect (if they are not used
in test purposes) on visible actions, thus on synthesized
test cases. Applying these techniques for visible ac-
tions is more difficult as concurrent behavior must be
synthesized in test cases. Other improvements concern
compositionality. We investigate how to compute test
cases incrementally in the case of compositional speci-
fications and, in the context of Agedis, how to compute
several test cases in one run from a composition of test
purposes or coverage criteria.

Another important problem is the problem of dis-
tributed testing. In the general case, the system is dis-
tributed and test cases should be distributed and should
communicate asynchronously. Concurrent-TTCN gives
such a specification power. A first approach we
adopted [16] is to synthesize a sequential test case and
to distribute it according to localities of actions. Global
choices were solved by a consensus. The main draw-
back is the lost of concurrency and the fact that unnec-
essary synchronizations between testers are added. A
direction of research is to preserve concurrency by the
use of true concurrency models [15] and to revisit the
testing theory accordingly.

Another drawback of TGV is the use of enumera-
tive techniques. A consequence is that specifications
with data structures with large (or infinite) domains
may be impossible to treat, even with on-the-fly tech-
niques. Parametric specifications are out of the scope
of TGV. A solution is to use symbolic techniques [24].
States sets and transitions are not enumerated but repre-
sented by predicates. The specification model we use is
called IOSTS (Input-Output Symbolic Transition Sys-
tems). Transitions are labelled with inputs, outputs or
internal actions, guarded with boolean expressions on
variables and parameters and communication variables,

and may perform assignments. From an IOSTS test
purpose (with Accept and Refuse states) and a speci-
fication in the form of IOSTS, a test case is extracted
with techniques similar to TGV, but only on the syntax
of the specification. This test case is sound for the con-
formance relation but may include unsatisfiable transi-
tions that should be pruned. In its current status, our
tool STG [4] only allows to prune some locally unsat-
isfiable transitions with the Omega constraint solver.
A deeper analysis (using static analysis, abstraction,
proof) could improve the tool. Nevertheless, executable
test cases can be produced and executed on implemen-
tations, which requires to fix the values of parameters.
During execution, Omega is also used to find outputs
satisfying the guards.

Acknowledgements: The TGV tool is the result
of a common work during several years. We wish to
thank all participants in its design and development in
Irisa and Verimag: Jean-Claude Fernandez, Alain Ker-
brat, Pierre Morel, Laurence Nedelka, Joseph Sifakis,
Séverine Simon, César Viho and students. We also
thank Laurent Mounier and Marius Bozga from Ver-
imag for the connection to IF, Hubert Garavel and the
VASY team from Inria Rhônes-Alpes for their help in
the connection of TGV with Lotos, and the support and
distribution of TGV in the CADP toolbox.

REFERENCES

[1] I. 9646. Information Technology - Open Systems Interconnec-
tion Conformance Testing Methodology and Framework - Part
1 : General Concept - part 2 : Abstract Test Suite Specification
- part 3 : The Tree and Tabular Combined Notation (TTCN).
International Standard ISO/IEC 9646-1/2/3, 1992.

[2] S. Abramsky. Observational Equivalence as a Testing Equiva-
lence. Theoretical Computer Science, 53(3), 1987.

[3] M. Bozga, J.-C. Fernandez, L. Ghirvu, C. Jard, T. Jéron, A. Ker-
brat, P. Morel, and L. Mounier. Verification and test genera-
tion for the SSCOP protocol. Journal of Science of Computer
Programming, special issue on Formal Methods in Industry,
36(1):27–52, Jan. 2000.

[4] D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva. Automated test
and oracle generation for smart-card applications. In e-Smart
2001, International Conference on Research in Smart Cards,
2001. to appear in LNCS.

[5] E. Clarke and E. A. Emerson. Synthesis of synchronisation
skeletons for branching time temporal logic. In Workshop in
Logic of Programs, (Yorktown Heights, NY), volume 131 of
LNCS. Springer Verlag, 1981.

[6] R. De Nicola and M. Henessy. Testing Equivalences for Pro-
cesses. Theoretical Computer Science, 34:83–133, 1984.

[7] R. G. De Vries and J. Tretmans. On-the-fly conformance testing
using SPIN. Software Tools for Technology Transfer, 2(4):382–
393, March 2000.

[8] L. Doldi, V. Encontre, J.-C. Fernandez, T. Jéron, S. Le Bricquir,
N. Texier, and M. Phalippou. Assessment of automatic genera-
tion methods of conformance test suites in an industrial context.
In B. Baumgarten and A. Burkhardt, H.-J.Giessler, editors, IFIP
TC6 9 �

�
International Workshop on Testing of Communicating

Systems. Chapman & Hall, Sept. 1996.
[9] L. Du Bousquet, S. Ramangalahy, S. Simon, V. C., A. Belin-

fante, and R. G. De Vries. Formal test automation: The con-
ference protocol with tgv/torx. In H. Ural, R. Probert, and
G. v. Bochmann, editors, IFIP ��� �

�
Int. Conference on Testing

of Communicating Systems(TestCom 2000). Kluwer Academic
Publishers, 2000.

[10] A. Engels, L. Feijs, and S. Mauw. Test Generation for Intel-
ligent Networks Using Model-Checking. In Third Workshop
TACAS, Enschede, The Netherlands, LNCS 1217. Springer-
Verlag, 1997.

[11] J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu,
L. Mounier, and M. Sighireanu. CADP: A Protocol Valida-
tion and Verification Toolbox. In R. Alur and T. A. Henzinger,
editors, Proc. of CAV’96 (New Brunswick, New Jersey, USA).
LNCS 1102, August 1996.

[12] J.-C. Fernandez, C. Jard, T. Jéron, and G. Viho. An experiment
in automatic generation of conformance test suites for protocols
with verification technology. Science of Computer Program-
ming, 29:123–146, 1997. Egalement disponible en rapport de
recherche Irisa n � 1035 et Inria n � 2923.

[13] R. Groz, T. Jéron, and A. Kerbrat. Automated test generation
from SDL specifications. In R. Dssouli, G. von Bochmann, and
Y. Lahav, editors, SDL’99 The Next Millenium, 9th SDL Forum,
Montréal, Québec, pages 135–152. Elsevier, June 1999.

[14] W.-M. Ho, J.-M. Jézéquel, A. L. Guennec, and F. Pennaneac’h.
UMLAUT: an extendible UML transformation framework. In
Proc. Automated Software Engineering, ASE’99, Florida, Oct.
1999.

[15] C. Jard. Principles of test synthesis using true-concurrency
models. In H. König and I. Schiferdecker, editors, Proc. of Test-
com’2002, Berlin, Germany, March 2002. IFIP.

[16] C. Jard, T. Jéron, H. Kahlouche, and C. Viho. Towards au-
tomatic distribution of testers for distributed conformance test-
ing. In FORTE/PSTV’98, Paris, France. Chapman & Hall, Nov.
1998.

[17] C. Jard, T. Jéron, and P. Morel. Verification of test suites. In
TestCom 2000, IFIP TC 6 / WG 6.1, The IFIP 13th International
Conference on Testing of Communicating Systems, Ottawa, On-
tario, Canada. Kluwer Academic Publishers, Aug. 2000.

[18] T. Jéron and P. Morel. Abstraction, � -réduction et déterminisa-
tion à la volée: application à la génération de test. In CFIP’97,
Congrès Francophone sur l’Ingéniérie des Protocoles, Liège,
Belgique. Hermes, Sept. 1997.

[19] T. Jéron and P. Morel. Test generation derived from model-
checking. In N. Halbwachs and D. Peled, editors, CAV’99,
Trento, Italy, volume 1633 of LNCS, pages 108–122. Springer-
Verlag, July 1999.

[20] H. Kahlouche, C. Viho, and M. Zendri. An Industrial Experi-
ment in Automatic Generation of Executable Test Suites for a
Cache Coherency Protocol. In A. Petrenko and N. Yevtushenko,
editors, IFIP TC6 11 �

�
International Workshop on Testing of

Communicating Systems. Chapman & Hall, September 1998.
[21] H. Kahlouche, C. Viho, and M. Zendri. Hardware Testing using

a Communication Protocol Conformance Testing Tool. In W. R.
Cleaveland, editor, Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’99), volume 1579 of Lecture
Notes in Computer Science, pages 315–329. Springer Verlag,
March 1999.

[22] D. Peled. Combining partial order reductions with on-the-fly
model-checking. In D. L. Dill, editor, CAV Workshop, volume
818 of LNCS. Springer Verlag, 1994.

[23] M. Phalippou. Test Sequence Generation Using Estelle or SDL
Structure Information. In FORTE’94, Berne, October 1994.

[24] V. Rusu, L. du Bousquet, and T. Jéron. An approach to sym-
bolic test generation. In Integrated Formal Methods (IFM’00),
Dagstuhl, Allemagne, volume 1945 of LNCS, pages 338–357.
Springer Verlag, Novembre 2000.

[25] R. Tarjan. Depth-first search and linear graph algorithms. SIAM
Journal of Computing, 1:146–160, 1972.

[26] J. Tretmans. Test generation with inputs, outputs and repetitive
quiescence. Software - Concepts and Tools, 17, 1996.

[27] I. J. WG7. Information Retrieval, Transfer and Management
for OSI; Framework: Formal Methods in Conformance Testing.
Committee Draft CD 13245-1, ITU-T proposed recommenda-
tion Z 500. ISO - ITU-T, itu-t sg 10/q.8, 1996.

