
Part-of-Speech Tagging Using ProgolJames CussensOxford University Computing LaboratoryWolfson Building, Parks RoadOxford OX1 3QD, UKTel: +44 1865 283520 Fax: +44 1865 273839james.cussens@comlab.ox.ac.ukAbstract. A system for `tagging' words with their part-of-speech (POS)tags is constructed. The system has two components: a lexicon contain-ing the set of possible POS tags for a given word, and rules which usea word's context to eliminate possible tags for a word. The InductiveLogic Programming (ILP) system Progol is used to induce these rulesin the form of de�nite clauses. The �nal theory contained 885 clauses.For background knowledge, Progol uses a simple grammar, where thetags are terminals and predicates such as nounp (noun phrase) are non-terminals. Progol was altered to allow the caching of information aboutclauses generated during the induction process which greatly increasede�ciency. The system achieved a per-word accuracy of 96.4% on knownwords drawn from sentences without quotation marks. This is on a parwith other tagging systems induced from the same data [5, 2, 4] whichall have accuracies in the range 96{97%. The per-sentence accuracy was49.5%.1 IntroductionIn part-of-speech disambiguation or `tagging', the aim is to classify word tokensaccording to their part of speech. This is non-trivial because many words areambiguous. For example, in the sentence \Jane sat on the table", \table" is anoun, yet in the sentence \James decided to table the motion", \table" is averb. Once disambiguation has been carried out, the word can be `tagged' withits correct part of speech (POS) tag. As Daelemans et al [5] note: \Automatictagging is useful for a number of applications: as a preprocessing stage to parsing,in information retrieval, in text to speech systems, in corpus linguistics, etc."A variety of approaches, both inductive and non-inductive, have been usedto attack the tagging problem. In [7] a Hidden Markov model (HMM) was usedto create the well-known Xerox tagger [4] which correctly tagged 96% of wordinstances on a subset of the Brown corpus.In [2], Brill induces a rule-based tagger based on transformations. Words areinitially tagged with their most common tag according to the training corpus. Ifa word is not in the corpus, a tag is guessed according to a number of features ofthe word such as capitalisation. Brill then considers 11 rule templates dictatingwhen a word should have its tag changed. For example, the �rst rule template

is: \Change tag a to tag b when the preceding (following) word is tagged z."Lexicalized rules are included such as: \Change tag a to tag b when one of thetwo preceding (following) words is w." With this approach 267 transformationrules were induced, and an accuracy of 96.5% was achieved on a subset of theWall Street JournalA notable non-inductive tagger is EngCG, the English Constraint Grammar,which is a \rule-based framework for morphological disambiguation and shallowsyntactic parsing, where the rules are hand-coded by a linguistic expert" [8].EngCG achieved a per-word accuracy of 99.7%, albeit with each word receivingon average 1.04{1.09 tags, so some ambiguity remains [9].Daelemans et al [5] take a memory-based approach to the tagging problem,implemented via IGTree, a tree-based approach for e�cient indexing and search-ing of large case base. Together with a method for handling unknown words,Daelemans et al achieved an accuracy of 96.4% overall, and 96.7% on knownwords. (Known words are those that have occurred at least once in the trainingdata.) Training was performed on 2 million words from the Wall Street Journal,and testing on the remaining one million.Tapanainen and Voutilainen [9] combined the inductively constructed Xeroxtagger and the hand-crafted EngCG to produce a system which achieved anaccuracy of 98.5% with no remaining ambiguities on test data of 26,711 wordsof newspaper text taken from the Bank of English corpus from the Universityof Birmingham. The motivation for such a combination was that when EngCGperforms a disambiguation it is almost always correct. However, EngCG doesnot disambiguate all words, so these remaining ambiguities are passed to theXerox tagger, which always makes some decision.There are two dichotomies in the work just described: that between induc-tive and non-inductive approaches and that between statistical and rule-basedapproaches. EngCG, the only non-inductive approach described, does have thebest accuracy �gures, but was \developed and debugged over several years". Allthe inductive approaches have accuracies around 96%, but these systems canrapidly be produced from pre-tagged training corpora.A useful discussion of the relative merits of statistical and rule-based ap-proaches can be found in [1]. Those rule-based taggers tend to be more compact,faster and more comprehensible. A HMM tagger has two notable advantages.Firstly, it can be trained using untagged text, although better performance ispossible using tagged text. Secondly, HMM taggers can perform tagging on asentence-by-sentence basis, using the entire sequence of words in the sentenceto �nd the most likely sequence of tags. Such a system should be able to copewhen the correct tag can only be decided with reference to words some distanceaway: the problem of long-distance dependency. Rule-based approaches whichconsider a small window of words on either side of the word to be tagged (thefocus word), will be in trouble in such cases.Given the complementary strengths of the various approaches just outlined,some sort of hybrid system, such as that in [9], is attractive. Here, we reporton the application of the Inductive Logic Programming (ILP) system Progol [6]

to the tagging problem. Since the brunt of the work involves inducing rules, inthe form of de�nite clauses, for eliminating possible tags, our work falls mainlyinto the inductive+rule-based category. However, we employ a simple statisticalmethod for those ambiguities left unresolved by the elimination rules and employhand-crafted (and fairly complex) background knowledge. This means that thecomplete tagging system is hybrid in nature.The plan of this report is as follows. In Section 2, we describe the two com-ponents of our tagging system. Section 3 describes the core of the work: the useof Progol to induce tag elimination rules. In Section 4, we describe how Progolwas altered to handle large data sets in a reasonable amount of time. Resultsand conclusions are in Sections 5 and 6.2 Combining lexical-statistical information and tagelimination rules2.1 Creating a lexiconThe data used in this work was the 3 million word tagged Wall Street Journalcorpus1. The �rst tagged sentence from the corpus is: Pierre NP Vinken NP, , 61 CD years NNS old JJ , , will MD join VB the DT board NN as IN a DTnonexecutive JJ director NN Nov. NP 29 CD . . So that tags could be repre-sented as Prolog constants, without the need for messy quoting, the originaltags were translated into strings of lower-case letters. The tag set used in thecorpus, together with the Prolog translations and frequencies, is given in Table 1.After splitting the corpus into 2/3 train and 1/3 test set, the �rst step takenwas to create a lexicon which records the frequency with which words in thetraining set are given di�erent tags. An excerpt from the lexicon is given inFig 1. Despite its simplicity, the lexicon is the most powerful single element ofour tagging system, since it gives us (according to the training data) the set ofpossible tags for a given word: the word's ambiguity class. In many cases thereis, according to the training data, only one possible tag for a word.The entry for \New" in Fig 1 shows the problem of rare tags: out of 2574occurrences \New" is tagged as nps (plural proper noun) only twice. From suchstatistics one might infer that these two occurrences are due to noise in thetraining set, Also, intuitively, \New" is not plural. However, the tagging hereis correct, both occurrences are part of the noun phrase \New Yorkers", where\New" is correctly tagged as a plural noun. On the other hand the nn taggingis incorrect.Noise-handling is a particularly important issue when one is chasing accu-racies in excess of 96%. In this work, we simply deleted a tag from a word'sambiguity class if it occurred less than 5% of the time. This crude approachis a weakness, since, for example, the correct nps and even the jj tagging for\New" were deleted. Future work will concentrate on improved noise-handling,but there are some advantages to this approach. Firstly, most incorrect tags are1 ACL Data Collection Initiative CD-ROM 1, September 1991

Table 1. Penn Treebank Part of Speech Tags.Tag Prolog Meaning Frequency# pnd $ 538$ dlr \$" 21242\ lqt \ \ " or \ ` " 23789" rqt \ " " or \ ' " 23427(lpn \(\ 4647) rpn \)" 4552, cma \," 163227. stp \." 127640: cln \;" or \:" 8806CC cc Coordinating Conjunction 67833CD cd Cardinal number 112565DT dt Determiner 263125EX ex Existential "there" 2826FW fw Foreign word 705IN in Preposition or Subordinating conjunction 321687JJ jj Adjective 197118JJR jjr Adjective, comparative 10574JJS jjs Adjective, superlative 6104LS ls List item marker 109MD md Modal 31516NN nn Noun, singular or mass 424605NNS nns Noun, plural 192883NP np Proper noun, singular 304396NPS nps Proper noun, plural 8778PDT pdt Predeterminer 1075POS pos Possessive ending 28090PP pp Personal pronoun 56094PP$ ppz Possessive pronoun 27378RB rb Adverb 99788RBR rbr Adverb, comparative 5482RBS rbs Adverb, superlative 1436RP rp Particle 5391SYM sym Symbol 91TO to \To" 72202UH uh Interjection 328VB vb Verb, base form 86049VBD vbd Verb, past tense 96504VBG vbg Verb, gerund or present participle 48325VBN vbn Verb, past participle 65663VBP vbp Verb, non 3rd-person, singular present 40099VBZ vbz Verb, 3rd person singular present 70394WDT wdt Wh-determiner 14300WP wp Wh-pronoun 7771WP$ wpz Possessive wh-pronoun 587WRB wrb Wh-adverb 6829

New nps 2 jj 61 nn 1 np 2501...bears vbz 16 nns 10beast nn 1beasties nns 1beasts nns 3beat vbd 11 vbp 4 jj 1 nn 5 vb 30beat-up jj 1Fig. 1. An excerpt from the lexicon (before noise elimination).eliminated, secondly, those correct tags that are deleted are necessarily rare sotheir deletion will not cause a substantial decrease in accuracy.2.2 The tagging systemOur basic approach combines features of [8] and [9]. As in [8], we learn rules foreliminating possible tags, but our possible tags are taken from the lexicon, notthe EngCG. As in [9], we use a statistical approach if and only if the rule-basedapproach does not resolve all ambiguities, except here, rather than use the Xeroxtagger, we simply choose the most frequent possible tag for a word according tothe lexicon.The central issue of inducing tag elimination rules is detailed in Section 3.Here, by way of motivation, we show, via an example, how the completed sys-tem operates. The system works on a sentence-by-sentence basis. Suppose thesentence to be tagged was:A House-Senate conference last week accepted the provision with nodiscussion of the potential cost to the government.The lexicon then replaces each word with its ambiguity class. Note that for thisto be possible the word must appear in the lexicon; the word must be one ofthe 66,024 `known' words in the lexicon. Consequently, our system is restrictedto sentences containing only known words. Future work will use morphologicalanalysis of unknown words to overcome this restriction.Each tag in a non-singleton ambiguity class is paired with the relative fre-quency with which it appeared in the lexicon after noise pre-processing. Thisgives us:[[[dt,0.947],[np,0.053]], [[jj,0.268],[np,0.732]], nn, jj, nn,[[vbn,0.523],[vbd,0.477]], dt, nn, in, [[dt,0.873],[rb,0.127]],nn, in, dt, [[jj,0.784],[nn,0.216]], [[nn,0.790],[vb,0.210]],to, dt, nn, stp]We then use induced clauses to eliminate tags. The �rst elimination is thatof the vbn (past participle) tagging for \accepted". This is due to the followinginduced clause:

rmv(A,B,vbn) :- dt(B,C), nounp1(A,D).Here A is the left context of \accepted" and B is the right context. dt(B,C) holdsif B starts with a dt (determiner) and the remainder of B is C. This rule eliminatesthe possibility that \accepted" is a past participle because it is sandwichedbetween the noun phrase \week" and the determiner \the". Note that vbn isthe more likely tag for \accepted" without contextual information, so here theelimination rules have (correctly) overridden the lexical-statistical information.Using the following rule, the rb (adverb) tagging for \no" is eliminated be-cause \no" is followed by the noun \discussion":rmv(A,B,rb) :- noun(B,C).The vb (in�nitive) tag for \cost" has also been eliminated, because it is followedby \to" and preceded by \potential" which may be a noun or an adjective. If\potential" is a noun and hence, in our grammar, a noun phrase, it allows thefollowing rule to �re:rmv(A,B,vb) :- to(B,C), nounp1(A,D).If instead \potential" is an adjective, then the following rule �res:rmv(A,B,vb) :- adjp1(A,C).Either way the vb tagging for \cost" is eliminated.Since no more tag elimination rules can �re, the lexical statistics take overand eliminate the very unlikely np tagging for \A". Returning to the rules, thisallows us to knock out the np tagging for \House-Senate", since the followingrule can now �re.rmv(A,B,np) :- dt(A,C), cnoun(B,D), nounp(D,E), sverb(E,F)The �nal ambiguity caused by the word \potential" is then resolved using thelexical statistical information, giving us the (correct) �nal sequence of tags:[dt, jj, nn, jj, nn, vbd, dt, nn, in, dt, nn, in, dt, jj, nn,to, dt, nn, stp]3 Eliminating tags by partial parsing3.1 Generating examples for ProgolIt was decided to learn rules for eliminations on a tag by tag basis. In otherwords, Progol learnt rules for eliminating cc, cd, dt, etc from separate datasets, one data set for each tag. Positive and negative examples were generated asfollows. The corpus was scanned a sentence at a time. For each word which hasan ambiguous tag according to the lexicon, one negative example, and one ormore positive examples of tag elimination were created. The negative examplerecords which tag it would not be correct to eliminate, i.e. the correct tag. The

positive examples record which tags might have been correct, since they aremembers of the word's ambiguity class, but are, in fact, incorrect in the currentcontext. The example contains the tag to be removed and its entire left and rightcontext. The left context is reversed so that the start of the tag list representingthe left context contains those tags nearest to the focus word. For example, thesecond sentence from the corpus produces the positive and negative examplesgiven in Table 2. Table 2. Creating examples from a sentence.Mr. Vinken is chairman of Elsevier N.V., the Dutch publishing group.:- rmv([dt,cma,np,np,in,nn,vbz,np,np],[vbg,nn,stp],np).rmv([dt,cma,np,np,in,nn,vbz,np,np],[vbg,nn,stp],jj).rmv([dt,cma,np,np,in,nn,vbz,np,np],[vbg,nn,stp],nps).Mr. Vinken is chairman of Elsevier N.V., the Dutch publishing group.:- rmv([np,dt,cma,np,np,in,nn,vbz,np,np],[nn,stp],vbg).rmv([np,dt,cma,np,np,in,nn,vbz,np,np],[nn,stp],nn).Since it was possible to create vast numbers of examples (at least for the moreimportant tags), we could a�ord to be quite restrictive about which examplesto include in training. Firstly, only sequences which (i) began with a word withan initial capital letter, (ii) ended in a full stop and (iii) contained no quoteswere used. This had the e�ect of �ltering out some noisy sentences but meantthat certain sorts of sentence were never used to generate training examples.The no-quote restriction is a considerable one, and further work will have todrop it. It was used in this preliminary work since it made it easier to identifywhere sentences began and ended and because the lack of embedded speech insentences simpli�ed their structure.For many tags, this produced many thousands of examples (positive andnegative). In the future, it may be possible to develop Progol to cope with suchvast example sets. Although Progol was altered to speed up learning on largedata sets, it was still thought necessary here to sample from the full training setfor each tag. So in this work we used only the �rst 6000 examples found for eachtag. Details of the various training sets so produced can be found in [3].3.2 Using a partial grammar as background knowledgeA subset of the background knowledge is given in Fig 2. The background pred-icates fall into three sets: `tag' predicates, such as cc/2, forward parsing pred-icates and backward parsing predicates. The background knowledge de�nes agrammar where the 43 POS tags are terminals and there are 22 nonterminalsde�ning such grammatical constructs as noun phrase (nounp) and adjectivalphrase (adjp). There is also a number of `utility predicates' such as adjp_restwhich are used for e�ciency.

cc([cc|S],S). cd([cd|S],S). dt([dt|S],S).ex([ex|S],S). fw([fw|S],S). in([in|S],S).cncy([pnd|S],S) :- !. cncy([dlr|S],S).cds([cd|X],S2) :- cd(S1,X), (X=S2 ; cds(X,S2)).noun([nn|S],S) :- !. noun([np|S],S) :- !.noun([nns|S],S) :- !. noun([nps|S],S).snp(L1,L2) :- noun(L1,X), (X=L2 ; snp(X,L2)).dtz([dt|S],S) :- !. dtz([ppz|S],S).nounp(L1,L2) :- noun(L1,X), !, (X=L2 ; snp(X,L2)). % "Pierre Vinken"nounp([pp|S],S) :- !. % "us, him"nounp(L1,L2) :- dtz(L1,L3), !, (snp(L3,L2) ; adjp(L3,L4), snp(L4,L2)).nounp(L1,L2) :- cncy(L1,L3), !, cds(L3,L2). % "$ 20 billion "nounp([cd|Y],L2) :- !, (X=Y ; cds(Y,X)), (X=L2 ; snp(X,L2)). % "20, 20%"nounp(L1,L2) :- adjp(L1,L3), snp(L3,L2). % "green men"nounp1([pp|S],S) :- !. % "us, him"nounp1([cd|S1],S2) :- !, (S3=S1 ; cds(S1,S3)), (S3=S2 ; cncy(S3,S2)).nounp1(S1,S2) :- snp(S1,S3), nounp1_rest(S3,S2).nounp1_rest(S,S).nounp1_rest(S1,S2) :- dtz(S1,S2), !.nounp1_rest([cd|S1],S2) :- !, (S1=S2 ; cds(S1,S2)).nounp1_rest(S1,S2) :- adjp1(S1,S3), (S3=S2 ; dtz(S3,S2)).Fig. 2. A subset of the background knowledge.Because the terminals of the grammar are the tags which do not represent allthe information there is about the underlying words, the grammar so de�ned isvery `sloppy'. For example, the de�nition of simple verb phrase svp allows thatthe tag sequence [vbz,vbg] constitutes a simple verb phrase. This means that inany case where a gerund or past participle follows a 3rd person singular presentverb, then this is counted as a simple verb phrase. The singular present verb isnot constrained to be an auxiliary verb. The tag set used here does not distinguishauxiliary verbs. For example, the phrase \is wandering" will be translated, viathe lexicon, into [vbz,vbg] (neither word is ambiguously tagged in the lexicon,although \wandering" can be a noun). It will then be correctly recognised as asimple verb phrase. However, the fragment \wanders being" which is nonsense,will also be marked as a simple verb phrase.The grammar de�ned in the background knowledge is clearly over-general,but we are not using it to determine whether sentences are grammatical, or to

generate new sentences. We have chosen the de�nitions of the 22 backgroundpredicates in the hope that these will be relevant to the task of tag elimination.The clauses produced show this to be the case.As well as the terminals and the `forward parsing' predicates we have de�ned4 predicates for parsing backwards. We parse the left context of the focus wordbackwards on the grounds that the most useful part of the context is that near-est to the focus word. Consequently, we work from right-to-left through the leftcontext, i.e. backwards. This can best be done by reversing the the context to theleft of the focus word, and then parsing taking the reversal into account. Con-sequently, a simple verb phrase in the left context can be a sequence [vbg,vbz](\walking is").Although all background predicates were de�ned for all Progol runs, notall were allowed to appear in bodies of induced tag elimination clauses. Thebasic set of 38 background predicates that were allowed to appear in clausebodies can be found in [3]. The intuition for doing this was that for many ofthe tags, the missing background predicates were irrelevant. For example, know-ing whether a particular tag was an nn, nns, np or nps was thought not tobe that helpful in eliminating the possibility that a certain word could be adt|it is enough to know that it is a noun or indeed a noun phrase. When learn-ing elimination rules for certain tags: jj, jjr, jjs, nn, nns, np, nps, vb,vbg, vbn, vbp, vbz it was judged that extra background predicates should beallowed to appear in clause bodies. The details are given in [3].4 Speeding up Progol with cachingThe combination of four factors meant that inducing a theory for tag eliminationinvolved a heavy computational burden. These are: the size of the example sets,the complexity and size of the background knowledge, the non-heuristic natureof Progol's search and the fact that positive examples covered by induced clauseswere not removed from the training set. Given the scale of the induction prob-lem a more heuristically based ILP approach has attractions. However the veryhigh accuracy �gures required motivate a complete search ILP algorithm, suchas Progol. Although this can lead to long computation times (e.g. 19.8 hours forrp), computation still comprised a very small fraction of the total time commit-ted to the problem. (The Prolog implementation of the Progol algorithm, calledP-Progol, was used in all the work reported here. P-Progol is available, for aca-demic research, via anonymous ftp from ftp.comlab.ox.ac.uk in the directorypub/Packages/ILP.)In Progol, a `bottom' clause is produced from a `seed' positive example,which is the most speci�c clause which covers that example, given the declarativebias. Progol then carries out an admissible top-down search of the subsumptionlattice of clauses which subsume the bottom clause (and are in the hypothesislanguage). Progol is guaranteed to �nd a clause which has maximal compressionin this lattice. In this work the following search strategy was employed: once apositive example became covered by an induced clause it was removed from the

set of possible seeds. However, it was not removed from the example set. Thisensured that the correct positive (P) and negative cover (N) of induced clausesis always available, allowing a training set estimate of the accuracy of a clause:jP j=(jP j+ jN j). This was required to exceed 0.95 for all induced clauses.The computational problem was tackled in two ways. Firstly, search con-straints were used: clauses were constrained to have at most 5 literals and coverat least 15 positive examples (jP j > 15). This last constraint plays a dual role.Firstly, it ensures that our crude and generally over-optimistic clause accuracyestimate is unlikely to be too inaccurate. But it is also particularly useful in Pro-gol's top-down search; if a clause covers less than 15 positive examples, then sowill all its re�nements and so the search can be pruned at this clause. One �nalsyntactic constraint pruned out clauses with redundant literals: for example, if aclause contains the literals adjp(B,C), jjs(B,C) then adjp(B,C) is redundantsince all superlative adjectives are also adjectival phrases.These constraints alone were insu�cient to allow learning in a reasonableamount of time. To speed up learning further, we traded space for time by cachingthe positive and negative cover of clauses which Progol produced during itssearch. If a clause appears again in a subsequent search, we can avoid doing anytheorem-proving by simply recovering its cover from the cache. This approachwas extended by having a `prune cache'. If a clause is such that, for any searchin which it appears, the search can be pruned at that clause, then it is added tothe prune cache. For each clause produced by Progol during its search, we thencheck to see if it is in the prune cache, and prune the search if it is. (Detailsof the caching method are in [3]. Caching is now implemented in the ftp-ableversion of P-Progol.)Caching brought a large speed-up. A few comparative experiments have beendone to measure this speed-up. In one experiment we induced the sub-theory foreliminating rp, with and without caching. With caching Progol took 19.8 hours,which is the longest time for any theory. Without caching, Progol took 312hours and then stalled, for reasons unknown. This means we have a speed upfactor in excess of 15.75. However, even for small data sets the improvementsare signi�cant, for the rbs theory (1784 examples) Progol without caching took17,403 seconds. With caching, the same theory was induced in 1,620 seconds, aspeed-up factor of 10.74. Using a very recent version of Progol with additionale�ciency improvements the rbs theory was induced in only 641 seconds, whichis over 27 times quicker than the original non-caching version of Progol.5 Results5.1 Computation timesDetails of the computation times for inducing tag elimination theories for eachtag are given in Table 3. The n/a entries for jj, nn, nns, np and nps are becausethe theories for these tags were produced over a number of runs, where many ofthe same clauses were found in the di�erent runs. The \Searches" column records

the number of bottom clauses and hence subsumption lattices searches under-taken. The \Mean" column gives the mean time taken over all these searches.All times are in seconds.Table 3. Theory size and search computation times for each tag.Tag Pos Neg Searches Mean Search time Total time (est.) Clausescc 1192 338 539 10.61 5717 6417 28cd 780 2312 780 26.47 20650 21664 0dt 3825 2175 385 53.83 20724 21225 42ex 182 660 101 2.85 288 419 2fw 331 162 294 7.31 2148 2530 2in 2292 3708 1186 20.75 24605 26146 22jj 3216 2784 n/a n/a n/a n/a 47jjr 2624 3376 1101 49.06 54012 55444 39jjs 879 1068 426 7.98 3401 3955 19md 209 102 35 0.19 7 52 4nn 3025 2975 n/a n/a n/a n/a 61nns 2266 3734 n/a n/a n/a n/a 48np 2647 3353 n/a n/a n/a n/a 31nps 3773 2227 n/a n/a n/a n/a 47pdt 3231 470 21 58.41 1227 1254 14pos 448 448 21 110.05 2311 2338 6pp 511 168 32 2.32 74 116 18ppz 152 511 84 0.41 35 144 2rb 4182 1818 1305 19.63 25622 27318 87rbr 3850 2150 1727 21.08 36400 38645 45rbs 1064 720 250 4.04 1009 1334 25rp 4539 1461 1883 36.31 68371 71259 48rqt 1043 0 1 4.65 5 6 1stp 11 1 10 0.01 0 13 0sym 11 18 10 0.01 0 13 0uh 195 33 42 0.21 9 64 3vb 3566 2434 180 44.09 7935 8169 35vbd 3294 2706 545 37.35 20354 21062 20vbg 3192 2808 1589 22.24 35335 37401 44vbn 3087 2913 881 28.92 25482 26627 57vbp 4328 1672 222 38.39 8522 8811 25vbz 4925 1075 462 62.90 29061 29661 83wdt 4433 1567 5 115.83 579 586 3wp 10 5 10 0.01 0 13 0Total 73313 51952 14127 n/a n/a n/a 908

5.2 Structure of the induced theoryBecause of the search strategy used, it is possible to have redundant clauses inthe induced sub-theories. We call a clause redundant if all the positive examplesit covers are covered by other clauses in the theory. Removing such clauses makethe theory simpler and may reduce the negative cover, rendering it more likelyto be accurate.2 It does not specialise the theory according to the training data.Redundant clauses were removed by a companion program to P-Progol called T-Reduce. T-Reduce reduced the �nal theory from the original 908 clauses to 885clauses. The two big reductions were for the nn subtheory (from 61 to 54 clauses)and nps (from 47 to 41 clauses). This was probably because these theories wereproduced over several runs leading to large overlap over clauses. (T-Reduce isavailable from Ashwin Srinivasan at the same address as the current author.)One of the features of ILP is that the �rst-order representation often allowsan easily intelligible induced theory. Examining the theory induced here, anextract of which is shown in Fig 3, we see that each individual clause is easy tounderstand, although not all are intuitive. So, although, it seems intuitive thatno word preceding \to" should be a co-ordinating conjunction (second rule) rulessuch asrmv(A,B,in) :- cma(A,C), cds(C,D), nounp1(D,E), cln(E,F).are not so obvious.The number of 2,3,4 and 5 literal clauses is 103, 251, 276 and 254 respectively.The number of clauses of depth 0,1,2,3 and 4 is 1, 242, 322, 228 and 92 respec-tively. The induction of a large number of depth 4 and 5 clauses is signi�cant.This shows that our approach performs disambiguation based on long-distancedependencies, which was one of the motivations for using ILP. The most com-monly appearing background predicates are: nounp (15.4%), nounp1 (12.1%),in (10.4%), noun (8.0%) dt (6.5%), cma (5.2%), vp (4.0%), vp1 (3.1%), adjp(3.1%) and advp (2.9%). The importance of complex background predicates suchas nounp demonstrate the utility of background knowledge for the tagging prob-lem.Taking the theory as a whole, there is the intelligibility problem of the sheernumber of clauses. In future work, we will induce both tag elimination andtag identi�cation rules which may lead to a more compact theory. However, itshould be noted that overriding goal in tagging is to produce a tagging systemof very high accuracy, and given the complexity of the problem it is probablyover-optimistic to hope that accurate theories will also be simple ones. (The full(unreduced) theory and extensive analysis of the results can be found in [3]. Thereduced theory is available from the author on request.)5.3 Accuracy on test dataThe central results of this work are summarised in Tables 4-7. These show theresults of testing the tagging system on an independent test set of 5000 sen-2 In fact, accuracy was only increased from 106718/110716 to 106719/110716!

rmv(A,B,cc) :- nounp(B,C), in(A,D), noun(D,E), in(E,F).rmv(A,B,cc) :- to(B,C).rmv(A,B,dt) :- in(B,C), noun(C,D), nounp(D,E), vp1(A,F).rmv(A,B,dt) :- in(B,C), nounp(C,D), vp(D,E), vp1(A,F).rmv(A,B,dt) :- noun(B,C), noun(C,D), vp1(A,E), advp(E,F).rmv(A,B,dt) :- nounp(B,C), advp(C,D), vp(D,E), vp1(A,F).rmv(A,B,dt) :- nounp(B,C), noun(C,D), pos(D,E), nounp(E,F).rmv(A,B,in) :- cma(A,C), cds(C,D), nounp1(D,E), cln(E,F).rmv(A,B,in) :- dt(A,C), in(C,D).rmv(A,B,jj) :- cc(A,C), prnoun(B,D).rmv(A,B,jj) :- cma(B,C), vp(C,D).rmv(A,B,jj) :- dt(A,C), in(B,D), dt(D,E).rmv(A,B,nn) :- advp(A,C), nounp1(C,D).rmv(A,B,nn) :- cc(A,C), dt(B,D).rmv(A,B,nn) :- cc(B,C), nounp(C,D), prnoun(A,E).rmv(A,B,rp) :- dt(B,C), nounp1(A,D).rmv(A,B,rp) :- in(A,C).rmv(A,B,rp) :- in(B,C), adjp(C,D), noun(D,E), nounp1(A,F).rmv(A,B,vb) :- cc(B,C), vp(C,D).rmv(A,B,vb) :- cma(A,C), nounp1(C,D), nounp1(D,E).Fig. 3. Subset of theory of tag elimination.tences consisting of 110,716 words. This preliminary system is only applicableto sentences starting with a capital letter, ending with a full stop, not contain-ing quotes and which are composed entirely of words which have occurred atleast once in the training set. Only sentences which met these restrictions wereincluded in the test set.As well as overall accuracy �gures, we give accuracies on just the ambiguouswords and also accuracies excluding lexical errors. A lexical error occurs whenthe correct tag for a word is not in the lexicon. This can arise either because ofour crude noise-handling approach or simply because not all of the correct tagsfor a word were seen in the training data. We also compare tagging using the tagelimination theory with tagging just using the lexical statistics. The per-worddi�erence between 94.1% and 96.4% given in Table 5 may seem insigni�cant.But when we compare on a sentence by sentence basis we see (in Table 7) thatthe rules increase accuracy from 30.4% to 49.5%.Finally, in Table 8, we show the results of testing the tag elimination theoryin isolation. As expected, the theory is seriously under-general: only 62% oftags that should be eliminated are eliminated. However, tags are very rarely

Table 4. Per-word tagging accuracy.Ambiguous OverallLexical errors? Correct Total Lex-Errs Acc Correct Total Lex-Errs AccIncluded 19495 22956 247 84.9% 106719 110716 783 96.4%Excluded 19495 22709 0 85.8% 106719 109933 0 97.1%Table 5. Per-word tagging accuracy with and without rules.Ambiguous OverallTheory Correct Total Lex-Errs Acc Correct Total Lex-Errs AccFull 19495 22956 247 84.9% 106719 110716 783 96.4%Empty 16937 22956 247 73.8% 104161 110716 783 94.1%incorrectly eliminated. In this application we are not invoking the Closed WorldAssumption as is often done in ILP. If we can not prove that a tag should beeliminated, we do not assume it is the correct tag; instead we ask the lexiconto do the necessary disambiguation. This accounts for the large discrepancybetween an accuracy of 77.4% for the rules in isolation and a system accuracyof 96.4%.6 Conclusions and future workThe most important �gure is that of overall 96.4% per-word tagging accuracy.Given our restrictions it is di�cult to compare with other approaches, given theabsence of many `known' words results. Daelemans et al [5] achieve 96.7% onknown words, but do not have our `no quotes' restrictions. We conjecture thatincluding sentences with quotes will not cause us too many problems, indeed willincrease accuracy since quotes themselves are unambiguous and such sentencesgenerally include the word \said" which is almost always a vbd. We concludethat the system produced here achieved a respectable result for a �rst applicationof Progol to the tagging problem, but that better results using an unrestrictedsystem are required in the future.Apart from the reasonable accuracy achieved, important features of this workinclude the combination of induced clauses and lexical statistics, the capturing oflong-term dependencies, the construction of a reasonably comprehensible theoryand the successful incorporation of caching.Table 6. System tagging accuracy for sentences.Lexical errors? Correct Total Lex-Errs AccIncluded 2475 5000 698 49.5%Excluded 2475 4302 0 57.6%

Table 7. System tagging accuracy for sentences with and without rules.Theory Correct Total Lex-Errs AccFull 2475 5000 698 49.5%Empty 1520 5000 698 30.4%Table 8. Contingency table for complete theoryActualPredicted# Pos Neg TotalPos 3439 146 3585Neg 2111 4304 6415Total 5550 4450 10000 True positives = 62.0%True negatives = 96.7%Overall accuracy = 77.4%Having said this, our approach could be improved in a number of ways. We�nish by listing, in order of importance, necessary future work.Unknown words At present, we have no method of dealing with words thathave not occurred in the training set. This means that the present system isnot yet a practical tagging system. There is nothing to stop us \bolting on"a sensible method of dealing with unknown words which takes an unknownword and returns a tag ambiguity class. Brill [2] and Daelemans et al [5]both have methods for dealing with unknown words; these techniques couldbe incorporated into future work.Noise handling Noisy data is particularly problematic when one is aiming foraccuracies of over 96%. [8] used two linguists to pore over the training datato weed out noise. Our crude method of noise-handling is the single biggestcause of inaccuracy. Future work should use a Bayesian approach to takeinto account the absolute frequency with which a tag appears for a particularword, rather than the simply the proportion (relative frequency) with whichit appears.Combining rules and lexical statistics Our system uses two sources of in-formation to tag a word:1. The frequencies with which the word has been given particular tags,irrespective of context.2. The context of the word in terms of the tags of the other words in thesentence.Essentially, we are trying to �nd argmaxtag P (tagjword; context). At present,we use the lexicon to estimate P (tagjword) and have a collection of rules,such that if a rule of the form remove(tag) context is present, then weassume, sometimes incorrectly, that P (tagjcontext) < 0:05 and also that ifthis inequality holds then tag has a lower probability than any other tag.If no elimination rule covers the word then we simply use P (tagjword) toestimate P (tagjword; context). A better approach would be to label inducedclauses with estimates of their accuracy and to allow (labelled) clauses with

much lower estimated accuracy to be included in the �nal theory, essentiallyusing induced clauses as the structural component of a suitable probabilitydistribution.Including quotes The avoidance of sentences with quotes is a non-essentialrestriction and is primarily a matter of convenience. This should be droppedin future work.Acknowledgements This work was supported by ESPRIT IV Long TermResearch Project ILP II (No. 20237). The author would like to thank WalterDaelemans, Ashwin Srinivasan, David Page, Stephen Muggleton and two anony-mous reviewers.References1. Steven Abney. Part-of-speech tagging and partial parsing. In Ken Church, SteveYoung, and Gerrit Bloothooft, editors, Corpus-Based Methods in Language andSpeech. Kluwer, Dordrecht, 1996.2. Eric Brill. Some advances in transformation-based part of speech tagging. InAAAI94, 1994.3. J. Cussens. Part-of-speech disambiguation using ILP. Technical Report PRG-TR-25-96, Oxford University Computing Laboratory, 1996.4. Doug Cutting, Julian Kupiec, Jan Pedersen, and Penelope Sibun. A practical part-of-speech tagger. In Third Conference on Applied Natural Linguistic Processing(ANLP-92), pages 133{140, 1992.5. W. Daelemans, J. Zavrel, P. Berck, and S. Gillis. MBT: A memory-based part ofspeech tagger-generator. In Proceedings of the Fourth Workshop on Very LargeCorpora,, pages 14{27, Copenhagen, 1996.6. S. Muggleton. Inverse entailment and Progol. New Generation Computing Journal,13:245{286, 1995.7. Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applicationsin speech recognition. Proceedings of the IEEE, 77(2):257{285, February 1989.8. Christer Samuelsson, Pasi Tapanainen, and Atro Voutilainen. Inducing constraintgrammars. In Laurent Miclet and Colin de la Higuera, editors, Grammatical Infer-ence: Learning Syntax from Sentences, volume 1147 of Lecture Notes in Arti�cialIntelligence, pages 146{155. Springer, 1996.9. Pasi Tapanainen and Atro Voutilainen. Tagging accurately { Don't guess if youknow. In Proc. ANLP94, 1994.
This article was processed using the LATEX macro package with LLNCS style

