
10.1098/rspa.2000.0613

Development of a lifting wavelet representation
for surface characterization

By X. Q. Jiang, L. Blunt a n d K. J. Stout

Centre for Precision Technologies, School of Engineering,
University of Hudders¯eld, Hudders¯eld HD1 3DH, UK

Received 30 March 1999; revised 23 August 1999; accepted 3 November 1999

This paper reviews the existing numerical analysis methods and their problems in
surface metrology. Based on the requirements of functional analysis of surfaces, this
paper proposes a lifting wavelet representation for extraction of di¬erent compo-
nents of a surface. The theory of the lifting wavelet is introduced and a fast algo-
rithm is developed. Di¬erent frequency components of the surface can be separated,
extracted and then reconstructed according the intended requirements of functional
analysis. The surface textures can be highlighted and multi-scalar topographical fea-
tures can be identi­ ed and clearly recovered. In order to verify the behaviour of the
new model, a computer simulation based on sinusoidal and triangular waveforms is
used. Case studies are conducted using a series of typical surfaces of engineering and
bioengineering, such as planes, cylinders and curves, measured by contact (stylus)
and non-contact (phase-shifting interferometry) instruments, to demonstrate the fea-
sibility and applicability of using the lifting wavelet model in the analysis of these
surfaces.

Keywords: lifting wavelet; roughness; waviness; form error;
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1. Introduction

It is recognized that surface topography is the one of the most important factors
a¬ecting the functional performance of components. The functions that have been
identi­ ed in various studies include wear, friction, lubrication, corrosion, fatigue,
coating, paintability, etc. (Bhushan 1996; Scott 1998; Stout et al . 1993; Thomas
1982; Whitehouse 1994). It is also reported that the wear rates of surfaces in opera-
tional service is determined by roughness, waviness and the multi-scalar topographic
features of a surface, such as random peaks/pits and ridges/valleys. These func-
tional topographical features will impact directly on wear mechanics and physical
properties of a whole system, such as a hip joint replacement system in bioengineer-
ing (Bachnick et al . 1994; Bauer et al . 1994; Fisher et al . 1994; Hall et al . 1996;
McGovern et al . 1996; Unswoth 1995). For example, during functional operation of
interacting surfaces, peaks and ridges will act as sites of high contact stresses and
abrasion, and consequently, wear particles and debris will be generated by such sur-
face topographical features, whereas the pits and valleys will a¬ect the lubrication
and ®uid retention properties. In this situation, a vitally important consideration
for functional characterization must be the appropriate separation of the di¬erent
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components of surfaces, which is not only to extract roughness, waviness and form
error, but also should be extended to concern all multi-scalar topographical events
over surfaces.

Conventionally, only the extraction of roughness and waviness components of a
surface is considered. This is accomplished by using ­ ltering techniques, especially
Gaussian ­ ltering (ISO 11562 1994; Stout et al . 1993; Whitehouse 1994). These tech-
niques are employed to isolate the roughness frequency band relevant to the surface
by the breaking down of a surface signal. These techniques take the waveform created
by the surface data as received and decompose it. In fact, Gaussian ­ ltering, used
to extract the roughness and waviness components, is based on two presuppositions.
One presupposition is that before ­ ltering, the irrelevant form and translation errors
have been removed from the measured dataset. The other is that the residual sur-
face, obtained according to the ­ rst assumption, can be broken down into a series of
harmonic components. If surfaces conform to these assumptions, the roughness and
waviness can be well identi­ ed and extracted from the original surfaces, though with
a modi­ ed amplitude resulting from the transmission characteristics of a Gaussian
function.

In order to monitor manufacturing processes and identify surface texture, ran-
dom process techniques have been applied to surface analysis in which the surface
topography is assumed as a stationary random system. The spectral and correlation
techniques based on the Fourier transform are used to study time-averaging fre-
quency information of surfaces (Nayak 1971). Wallach (1969), Weszka et al . (1976),
Sato & O-hori (1981) and Sherrington & Smith (1988) applied the areal spectra
to diagnoses and analyses of the processes of manufacturing and the machine tool
marks of surfaces. Stout et al . (1993) demonstrated that the areal spectra provide
distinctive spectral patterns to represent the directionality of the surface texture.
However, the disadvantage of random analysis is that signi­ cant di¬erences involved
in a surface, such as large peaks/pits or ridges/valleys, will be smoothed over the
space of a signal, without indicating the location of the frequency events.

Identi­ cation of topographic features of engineering surfaces has been made by
Whitehouse & Zhang (1992; Zhang & Whitehouse 1992). The two possible functions
that linked the spatial{spectral domain, the ambiguity function (in radar application)
and Wigner distribution (in quantum mechanics) were introduced. Considering that
the frequency shift can be preserved in the Wigner distribution and Wigner function
has a real-valued capability, whereas the ambiguity function is complex and has a
complicated phase property, Whitehouse & Zhang selected the Wigner transform as
a tool to investigate the decomposition of the surface signal into a space{frequency
plane. The energy distribution in the space{frequency plane, o¬ered by Wigner trans-
form, can be used to identify the variation of a surface topography. The result of this
is that the information about the frequencies of a surface signal and their locations
has been used to monitor and adjust the manufacturing process. However, it is also
well known that although the Wigner transform can o¬er an analysis of the energy
distribution of a signal, it only yields an imperfect descriptor concerning the energy
distribution, due to its substantial interference terms. Even now, there does not exist
a reasonable algorithm that allows the reconstruction of the atomic decomposition
of a signal using the Wigner transform (Meyer 1993).

As previously stated, analysis of multi-scalar properties of a surface topography not
only needs to provide both the frequencies of the signal and their location, but is also
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expected to accurately recover and perfectly reconstruct these topographic features.
Considering the needs of surface assessment, wavelet analysis has been applied to
surface characterization (Chen et al . 1995; Klimczak & Hanzel-Powierza 1995; Jiang
& Li 1994; Jiang et al . 1997a,b, 1998, 1999; Lee et al . 1998; Liu et al . 1995).

Wavelet analysis employs time{frequency windows and o¬ers the relevant time{
frequency analysis, which uses long windows at low frequencies and short windows
at high frequencies (shown in ­ gure 2). As a result, `it can divide functions into
di¬erent frequency components, and then study each component with a resolution
which is matched to its scale’ (Daubechies 1992; Chui 1992). This is an alternative to
the classical short-time Fourier transform (STFT) or Gabor transform (Gabor 1946;
Allen & Rabiner 1977), but there is a basic di¬erence in contrast to STFT, which
uses a single analysis window, and o¬ers the same accurate analysis in the whole
space{frequency plane. The wavelet transform is related to space{frequency analysis
similar to the Wigner{Ville distribution (Wigner 1932). A point to be noted is that
wavelet analysis takes the signal decomposition to a space-scalar (time{frequency)
plane and separates, then reconstructs these components in the space domain. In con-
trast, Wigner analysis also decomposes a signal into the space{frequency plane, then
studies the energy distribution of these components, but these can not be recovered
and reconstructed perfectly. Therefore, taking advantage of the proposed wavelet
analysis, the spectral information of the surface topography can be observed on a
`space-scale space’, the multi-scalar events over space can be simultaneously tracked
and the transient signals along the space can be captured, and later these di¬erent
components can be perfectly reconstructed.

The wavelet transform has been proved to be a kind of powerful tool for var-
ious applications; for example, the wavelet series expansions, developed for pure
mathematics and applied mathematics. The multi-scalar feature has been used in
capturing, identifying and analysing local non-stationary processes; sub-band cod-
ing used in encoding, compressing, reconstructing and modelling signals and images
(Daubechies 1988, 1992; Oliensis 1993; Rioul & Vetterli 1991). The wavelet tech-
nique includes many di¬erent wavelet functions, but each has its own properties and
applications. Concerning the need of liner phase (symmetric wavelet) and ­ nite pulse
­ ltering, which are basic properties in surface analysis, only the Haar wavelet and
the biorthogonal wavelet have both characteristics. Due to the fact that the Haar
wavelet is a binary and discontinuous function (which is not suitable for surface anal-
ysis, as indicated by Whitehouse (1994)), only the biorthogonal wavelet looks to have
a chance of being a useful tool for surface decomposition. Although the orthogonal
wavelet has been used for analysis of a multi-scalar surfaces in engineering by Chen
et al . (1995), Liu et al . (1995) and Jiang & Li (1994), the ­ rst two authors neglected
the phase distortion, while the latter used an orthogonal wavelet with a high order
to improve the phenomenon resulting from phase distortion. This technique led to a
large measurement area, a great deal of computation and a huge memory requirement
for areal analysis of surfaces.

Biorthogonal wavelet ­ ltering for surface analysis has been proposed by Jiang
et al . (1997a,b, 1998, 1999) and has been carried out to directly extract di¬erent
components from surface topography. The fundamental idea behind the use of this
technique is to break down a three-dimensional raw dataset into a rescaled and
shifted version of the original waveforms in a `scalar space’, extract the waveforms
carrying di¬erent information and then reconstruct these components directly. The
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main advantage of using a biorthogonal wavelet is that it has a brick-wall linear
phase (leading to real output without aliasing and phase distortion) and a traceably
located property, so that the di¬erent component surfaces obtained can more natu-
rally record the real surface. However, due to the fact that wavelets Áj;k(t) (basic
functions) are built by dilation and translation of the prototype wavelet Á(t) which
relied on the Fourier transform, and the fact that the wavelet transform needs to
be applied along three directions (horizontal, vertical and diagonal) (Mallat 1989;
Daubechies 1992), the theory and corresponding algorithm (Mallat 1989; Daubechies
1990, 1992; Chui 1992; Stollntz et al . 1996; Strang & Nyguyen 1996) are very com-
plex. Furthermore, there is still the boundary destruction inherent when using the
Fourier transform.

For industrial application purposes, the method used for surface functional charac-
terization must have considerable merits. It needs to be simple and natural. In other
words, the method of the separation and reconstruction of di¬erent components of
the surface should have both the `simplicity’ of a Gaussian ­ lter and `naturalness’
of a biorthognal wavelet ­ lter. It is the purpose of this paper to discuss the possi-
bility of using a `lifting wavelet’ representation in an attempt to preserve the above
advantages. In this work, the wavelet transform is built using the second generation
of biorthogonal wavelet (the so-called lifting wavelet) originally developed at Bell
Laboratories in middle of the 1990s (Sweldens 1995, 1996). The wavelet and scalar
coe¯ cients are only dependent on the measured raw data of a surface and the ­ l-
tering and lifting factors calculated by a cubic spline interpolation in an interval
(Dyn et al . 1987; Flowers 1995; Stoer & Bulirsch 1980). Compared to the former
wavelet representation, the new model does not take the Fourier transform as a pre-
requisite. The wavelet transform only embraces three stages, splitting, prediction
and updating. The other advantage derived from the new model is that there is no
boundary destruction. Although the implementation of the lifting wavelet is com-
pletely di¬erent from the former model, it is much easier to understand and perform.
In order to account for possible improvements, computer simulation models consist-
ing of some idealized repetitive waveforms will be considered ­ rst. A large number
of experiments of engineering surfaces (including turning, milling, reaming, grind-
ing, ballising, honing, lapping, polishing, electric discharging, rolling and chemistry
processing) and bioengineering surfaces (such as super-lapping, diamond-like coating
and UHMWPE) have been carried out. The accuracy of the surfaces of these com-
ponents covers the levels from the micrometre to nanometre. The specimens include
real manufacturing process, running-in and worn surfaces at di¬erent stages, as well
as standard MICROSURF samples with di¬erent machining methods. A group of
examples has been selected here to demonstrate the feasibility and applicability of
the lifting wavelet for the characterization of surfaces.

2. The biorthogonal wavelet for surface analysis

(a) The ¯rst-generation biorthogonal wavelet

A wavelet is a waveform that has compact support in both the space and frequency
domains and whose integral is zero. In wavelet analysis the signal is broken down
into rescaled and shifted versions of the original waveform. This then transfers space-
based information into scale-based information, which represents the frequency and
location properties of the original signal. In one dimension, the wavelets Áj;k(t) (basis
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Figure 1. The prototype wavelet and its dilation and translation.
(a) The rescaled wavelets Áj; 0 (2 ¡ j t). (b) The shifted wavelets Á0 ;k (t ¡ k).

functions) can be obtained by dilation and translation of the prototype wavelet Á(t).
The rescaled wavelets Áj;0(t) = Á(2¡jt) are dilated by the factor 2¡j , as shown in
­ gure 1a. j is a scalar parameter that can be used to illustrate wavelets of di¬erent
widths, or dynamic transmission bandwidths. The shifted wavelets Á0;k(t) = Á(t ¡ k)
are translated by k (translation parameter), as shown in ­ gure 1b. Typical one-
dimensional discrete wavelets Áj;k(x) are dilated j times and shifted k times. The
discrete wavelets are expressed by

Áj;k(x) = 2¡j=2Á(2¡jx ¡ k): (2.1)

Thus a signal is divided into di¬erent scales, with the signal data now being repre-
sented on a `space-scalar plane’. Multi-resolution divides the frequencies into octave
bands, from ! to 2!. Frequencies shift upward by an octave when time is rescaled
by two. Figure 2 shows how the time{frequency plane is partitioned naturally into
rectangles of constant area.

For a discrete signal y(x) 2 L2(Z), its discrete wavelet transform can be expressed
by

Wj;k(y) = hy(x); Áj;k(x)i = 2¡j=2
X

j;k

y(x)Á(2¡jx ¡ k): (2.2)

It was shown by Daubechies (1992) and Chui (1992) that the discrete wavelet trans-
form is reversible. So the signal y(x) can be recovered with the following equation

y(x) = hy(x); Áj;k(x)i ª j;k(x); (2.3)

where ª j;k = (F ¤ F )¡1Áj;k. The main approach to the wavelets uses a two-channel
­ lter bank, and the dilation equations of the basis wavelets and corresponding scaling
functions develop low-pass H0 and high-pass H1 ­ lter coe¯ cients. However, due to
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Figure 2. A space-scalar (time{frequency) plane.

the fact that the frequency responses of the two-channel ­ lters, so-called analysing
­ lters, are not ideal brick-wall ­ lters, normally there are overlaps that would lead
to aliasing, amplitude modi­ cation and phase distortion. In order to overcome these
defects, other two-channel ­ lters, G0 and G1 (so-called synthesis ­ lters), have been
specially designed to compensate for the errors of the analysing ­ lters H0 and H1.
When the frequency responses of the synthesis ­ lters G0(z), G1(z) are the inverses
of the analysis ­ lters H0(z), H1(z) and they satisfy (Strang & Nguyen 1996)

G0(z)H0(z) + G1(z)H1(z) = 2z¡l;

G0(z)H0( ¡ z) + G1(z)H1( ¡ z) = 0;
(2.4)

the errors in this analysis bank are cancelled. Here, l is time delay, the distortion term
must be z¡l and the aliasing term must be zero. This means that the two-channel
­ lter banks should be biorthogonal. In the biorthogonal case, the impulse responses
h0(k), h1(k) of analysis ­ lters would not be double-shift orthogonal to themselves,
but they would be double-shift biorthogonal to g0(k), g1(k) of the synthesis ­ l-
ters.

According to wavelet theory (Chui 1992; Daubechies 1992), the dilation equations
of the analysis wavelet equation ~Á(x) and synthesis wavelet function Á(x) can be
performed in the light of the impulse responses of the analysis and synthesis high-
pass ­ lters, respectively,

~Á(x) =
N

0

2h1(l) ~’(2x ¡ l);

Á(x) =

~N

0

2g1(k)’(2x ¡ k):

(2.5)
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The scale equation can be given by

~’(x) =

~NX

0

2h0(l) ~’(2x ¡ l);

’(x) =
NX

0

2g0(k)’(2x ¡ k):

9
>>>>>=
>>>>>;

(2.6)

The ~’(x), ~Á(x), ’(x) and Á(x) are constructed as a biorthogonal wavelet pair; their
limit functions would inherit biorthogonality. A complete study of the ­ rst-generation
wavelet for surface characterization was carried out by Jiang et al . (1999).

(b) The second-generation biorthogonal wavelet

Due to the signi­ cant merits of the biorthogonal wavelet, which allows the con-
struction of symmetric wavelets and thus a linear phase ­ lter, its second-generation
algorithm has been developed at Bell laboratories (Sweldens 1995, 1996). The second
generation uses the lifting scheme (Sweldens 1994) to replace the Fourier transform
as its construction tool and gives up the dilation and translation, but it still preserves
all properties of the ­ rst-generation algorithm. In this implementation, the analysis
high-pass ­ lter H1 and synthesis low-pass ­ lter G0 of the initial ­ nite biorthogonal
wavelet ­ lter set fH0; H1; G0; G1g within the ­ rst generation are transferred to H 0

1,
G0

0, which can be found by the lifting scheme as

H 0
1(z) = H1(z) + G1(z)S(z2);

G0
0(z) = G0(z) ¡ H0(z)S(z¡2);

)
(2.7)

where S(z) is a Laurent polynomial. Substituting this new set into (2.4), the perfect
reconstructed condition for the second-generation biorthogonal wavelet is

G0
0(z)H0(z) + G1(z)H 0

1(z)

= G0(z)H0(z) ¡ H2
0 (z)S(z¡2) + G1(z)H1(z) + G2

1(z)S(z2)

= G0(z)H0(z) + G1(z)H1(z) + G2
1(z)S(z2) ¡ H2

0 (z)S(z¡2)

= 2z¡l (2.8)

and

G0
0(z)H0( ¡ z) + G1(z)H 0

1( ¡ z)

= G0(z)H0( ¡ z) ¡ H0(z)H0( ¡ z)S(z¡2) + G1(z)H1( ¡ z) + G1(z)G1( ¡ z)S(z2)

= G0(z)H0( ¡ z) + G1(z)H1( ¡ z) + G1(z)G1( ¡ z)S(z2) ¡ H0(z)H0( ¡ z)S(z¡2)

= 0: (2.9)

In order to perfectly reconstruct, the frequency responses of the analysis and synthesis
­ lters of the second algorithm should be also satis­ ed,

G2
1(z)S(z2) ¡ H2

0(z)S(z¡2) = 0;

G1(z)G1( ¡ z)S(z2) ¡ H0(z)H0( ¡ z)S(z¡2) = 0;

)
(2.10)
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except for (2.4). In this case, S(z2) = S(z¡2). After lifting has been performed, the
new biorthogonal wavelet pair can be found by

~Á0(x) = ~Á(x) ¡
~NX

0

s(l) ~’(x ¡ l);

Á0(x) = 2

~NX

0

g1(k)’0(2x ¡ k)

9
>>>>>=
>>>>>;

(2.11)

and

~’(x) = 2

~NX

0

h0(l) ~’(2x ¡ l);

’0(x) = 2
NX

0

g0(k)’0(2x ¡ k) +

~NX

0

s(k)Á0(x ¡ k);

9
>>>>>=
>>>>>;

(2.12)

where the coe¯ cients s( ) are from the Laurent polynomial S(z). The power behind
the lifting scheme is that s( ) can be used to fully control all wavelets and synthesis
scaling functions.

A simple example is that the linear subdivision (N = ~N = 2) can be obtained by
lifting from the Lazy wavelet, which only subsamples the original signal A0(x; y), in
even A0;2k and odd A0;2k + 1 samples. The Lazy wavelet is the simplest biorthogonal
wavelet with N = ~N = 0. If a linear subdivision occurs N = 2 after lifting the coef-
­ cients s(l) = ( 1

2
; 1

2
), the wavelet coe¯ cient d1;k encodes the di¬erence between the

exact sample A0;2k + 1 and its linear prediction of two even neighbours A0;2k , A0;2k + 2.
It can be written as

dj;k := Aj¡1;2k + 1 ¡ 1
2
(Aj¡1;2k + Aj¡1;2k + 1): (2.13)

Employing the dual lifting scheme, ~N = 2, that is, the coe¯ cient s0(k) = ( 1
4
; 1

4
), the

scalar coe¯ cients a1;k of A0;2k would be updated by wavelet coe¯ cients d1;k and
d1;k + 1. This can be expressed as

aj;k = Aj¡1;2k + 1
4
(dj;k + dj;k + 1): (2.14)

3. The lifting wavelet algorithm

The signi­ cant point for the second algorithm is that the wavelet transform is no
longer the dilation and translation of a ­ xed function. The wavelet can be built by
the selection of an appropriate Laurent algorithm S(z). Considering the requirements
of surface analysis (an excellent re­ nement accuracy, a perfect reconstruction, a
minimum sampling condition (measured area) and a minimum computation), the
cubic spline interpolation has been selected to build a new wavelet model.

In the light of the lifting wavelet representation, the sequence for surface analysis
is to initially decompose an original surface signal z(x; y) to a sequence of subsets,
without an assessment of the frequency content of the original signal. It transfers
space-based information into scale-based information, which provides not only fre-
quency events of z(x; y), but also records their location properties completely in the
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scalar domain. Next, the di¬erent frequency components involved in z(x; y) can be
interrogated via a ®exible transmission bank according to the intended functional
inferences which need to be drawn from it. Finally, the required surfaces can be
reconstructed in the spatial domain.

(a) The wavelet transform

In this wavelet model, a surface topographical signal z(x; y) is assumed to be
Aj(x; y) = z(x; y), j 2 Z ; the wavelet transform ­ rstly divides the signal into `even’
and `odd’ subsets, Aj;2k and Aj;2k + 1, in which each sequence contains half as many
samples as z(x; y), and the operator can be assumed by

aj + 1;k := Aj;2k;

dj + 1;k := Aj;2k + 1:

¼
(3.1)

There are no restrictions on the relative size of each part. aj + 1;k is a sequence of scalar
coe¯ cients and dj + 1;k is a sequence of wavelet coe¯ cients. Considering the presup-
position of the decomposition is to separate the frequency components of z(x; y) at
the scale 2¡(j + 1), both scalar and wavelet coe¯ cients are expected to represent high-
and low-frequency information at the scale 2¡(j + 1) of z(x; y), respectively. To ful­ l
this objective, the scalar and wavelet coe¯ cient sequences aj + 1;k , dj + 1;k are de­ ned
by

dj + 1;k = Aj;2k + 1 ¡ » (Aj;2k);

aj + 1;k = Aj;2k + · (dj + 1;k):

¼
(3.2)

Here, » (Aj;2k) is a weighting prediction of a wavelet coe¯ cient point given by

» (Aj;2k) =
NX

i = 1

fi(Aj;2k): (3.3)

The value of » (Aj;2k) is based on the `even set’ of z(x; y), where N denotes how
many data points will attend the weighting prediction. The fn are a set of ­ lter-
ing factors (weighting function) of one wavelet coe¯ cient point, and can be found
by employing a Neville’s polynomial interpolation with a degree (N ¡ 1) with the
following recursion (Dyn et al . 1987; Flowers 1995; Stoer & Bulirsch 1980):

fi = f1;2;:::;N (x) =
(x ¡ x1)f2;:::;N(x) ¡ (x ¡ xN )f1;2;:::;N¡1(x)

xN ¡ x1

: (3.4)

The initial coe¯ cients f1; f2; : : : ; fN are a set of Bezier coe¯ cients of a spline inter-
polation with degree (N ¡ 1). For example, if a prediction of wavelet coe¯ cients
is simply a linear subdivision N = 2, the weighting prediction can be calculated
by using two neighbours; one neighbouring point, Aj;2k , Aj;2k + 2, on each side (see
­ gure 3a). The result is f1 = f2 = 1

2
and

dj + 1;k = Aj;2k + 1 ¡ 1
2
(Aj;2k + Aj;2k + 2):

It is easy to see that the result is equal to (2.13). Considering raw signal data derived
from an arbitrarily curved surface in a given space interval, the implementation of a
lifting wavelet is to employ a cubic spline interpolation to create a weighting function.
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Figure 3. The basic principle of the lifting wavelet. (a) The lifting scheme: splitting, prediction
and updating. (b) The decomposition of z(x; y).

In this case, four neighbouring values will attend a weighting prediction. The only
di¬erence between this case and the linear case is that here two neighbouring points
on either side are adjusted instead of one. Three cases should be taken into account:

(1) two neighbouring points on either side of an interval;

(2) one sample point on the left and three on the right at the left boundary of an
interval; and

(3) vice versa at the right boundary.

These cases are considered in order to guarantee boundary `naturalness’ without
including any artefacts (all ­ ltering factors are indicated in table 1). The result of
this is that running-in and running-out lengths of normal ­ ltering techniques are not
needed. When the prediction value » (Aj;2k) is subtracted from the `odd set’ Aj;2k + 1

of z(x; y), the dj + 1;k become a real wavelet coe¯ cient series, and they represent the

high-frequency component at scale 2¡(j + 1) of z(x; y).
The · (dj + 1;k) is a weighting update given by

· (dj + 1;k) =

~NX

i= 1

li(dj + 1;k): (3.5)
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Table 1. Filtering factors obtained by Neville’s spline interpolating

cubic spline interpolation ¯ltering factors

neighbour neighbour
number number

on the left on the right k ¡ 5 k ¡ 3 k ¡ 1 k + 1 k + 3 k + 5

1 3 | | 0.3125 0.9375 ¡0:3125 0.0625

2 2 | ¡0:0625 0.5625 0.5625 ¡0:0625 |

3 1 0.0625 ¡0:3125 0.9375 0.3125 | |

It is based on the real wavelet coe¯ cients, where ~N indicates how many wavelet
coe¯ cient points will attend the weighting update. The li are referred to as lifting
factors. The lifting factors can be calculated from the following algorithm. Firstly, an
initial moment matrix for all coe¯ cients at the ­ rst level is de­ ned. The matrix aims
to preserve the value of the integral of a lifting wavelet along the real line as zero (see
Sweldens 1995; Strang & Nyguyen 1996). The moment matrix is only relative to the
sampling matrix size of z(x; y) and wavelet coe¯ cient points attending a weighting
update,

M [p; q] =

m1;1 m1; ~N
... mp;q

...
ms;1 ms; ~N

=

1 12 1
~N

2 22 2
~N

...
. . .

...

s s2 s
~N

; 1 6 p 6 s; 1 6 q 6 ~N;

(3.6)

where s is a sampling number in the processing direction, x or y of z(x; y). Updating
the moment matrix requires an indication of how many ­ ltering factors of correspond-
ing wavelet coe¯ cients will be contributed to by this update. When neighbouring
point numbers on each side are same, the moments can be expressed by

m2p;q = m2p;q +

t;i

f ¤
i mt;q; (3.7)

where

t = 2p ¡ (N ¡ 1); 2p ¡ (N ¡ 1) ¡ 2; : : : ; 2p + (N ¡ 1)

N

; i = 1; 2; : : : ; N:

Therefore, lifting factors are solved using the following linear system:

m2p¡ ~N + 2;1 m2p + ~N;1
...

...
...

... m2p;q

...
m2p¡ ~N + 2; ~N m2p + ~N; ~N ~N£ ~N

l1
...
lq
...

l ~N

=

m2p + 1;1
...

m2p + 1;q

...
m2p + 1; ~N

: (3.8)

If a weighting update of a scalar coe¯ cient is considered to be a linear subdivision, the
update can be calculated using two ( ~N = 2) neighbour wavelet coe¯ cients, dj + 1;k¡1
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and dj + 1;k (as shown in ­ gure 3a). In this case, lifting factors are l1 = l2 = 1
4
, and

the scalar coe¯ cients can be updated to

aj + 1;k = Aj;2k + 1
4
(dj + 1;k¡1 + dj + 1;k):

This result is also equal to (2.14). When a weighting update of a scalar coe¯ -
cient is considered to be a cubic spline interpolation, the update can be calcu-
lated using four neighbour wavelet coe¯ cients. In this case, the lifting factors are
l = ( ¡ 1

32
; 9

32
; 9

32
; ¡ 1

32
), and the scalar coe¯ cients can be updated to

aj + 1;k = Aj;2k + 1
32

( ¡ dj + 1;k¡2 + 9dj + 1;k¡1 + 9dj + 1;k ¡ dj + 1;k + 1):

Three stages of wavelet transform are shown in ­ gure 3a. The fast lifting wavelet
transform algorithm is simpli­ ed to

Aj;2k ; Aj;2k + 1 = Split(Aj);

dj + 1;k = Aj;2k + 1 ¡ » (Aj;2k);

aj + 1;k = Aj;2k + · (dj + 1;k):

(3.9)

With this implementation of the forward wavelet transform, z(x; y) has been driven
to subsets dj + 1;k and aj + 1;k, which record high- and low-frequency events at the scale

2¡(j + 1) of z(x; y). The whole decomposition of z(x; y) is a simple repetitive scheme
through rows and columns and all computations are done in-place. After j steps of
decomposition in the scalar domain, an original surface signal z(x; y) is replaced with
the wavelet series aj;k=2j ¡ 1 ; d1;k; : : : ; dj;k=2j ¡ 1 . It can be expressed by

Wj[z(x; y)] = (a1;k ; d1;k)

= (a2;k=2; d1;k; d2;k=2)

= (aj;k=2j ¡ 1 ; d1;k ; d2;k=2; : : : ; dj;k=2j ¡ 1 ): (3.10)

Figure 3b shows this schedule, where j illustrates a decomposed level of wavelet
transform in the scalar domain.

(b) Separation and extraction of frequency components of a surface

If a surface z(x; y) is assumed to consist of a series of superimposed frequency
components

z(x; y) = ² (x; y) + ² 0(x; y) + ² 00(x; y); (3.11)

these surface components can then be separated in the scalar domain by band-pass
­ lters. The transmission bands are based on di¬erent cut-o¬ wavelengths for di¬erent
frequency components. As shown in the literature (Jiang et al . 1997a,b, 1999), wavelet
coe¯ cients d1;k ; : : : ; dJ;k=2J ¡ 1 can be considered outputs of a high-frequency band
1=¶ s ¹ 1=¶ c, and refer to the roughness component ² (x; y). Here, 1=¶ s indicates the
high frequency limited by the sampling interval, and 1=¶ c is the roughness frequency
limitation. dJ + 1;k=2J ; : : : ; dj;k=2j ¡ 1 represent the output (waviness ² 0(x; y)) of a sub-
low-pass ­ lter band 1=¶ c ¹ 1=¶ wc. 1=¶ wc is the waviness frequency limitation. The
ai;j=2i ¡ 1 are scalar coe¯ cients that represent the output (form error ² 00(x; y)) of a low-
pass ­ lter band 1=¶ wc ¹ 1=l, where l is the sample length when l = lx or ly . Using an
inverse wavelet transform, these surfaces can be recovered ®exibly and immediately
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in the di¬erent transmission bands in terms of functional analysis requirements. The
inverse wavelet transform is performed simply by reversing the operation and toggling
negative to positive for all operations:

roughness: ² (x; y) = IW(d1;k; : : : ; dJ;k=2J ¡ 1 )

=

J

j = 1

fdj;k=2j ¡ 1 (x; y) + » [Aj¡1;k=2j ¡ 2 (x; y)]g;

waviness: ² 0(x; y) = IW(dJ + 1;k=2J ; : : : ; dj;k=2j ¡ 1 )

=

j

j = J + 1

fdj;k=2j ¡ 1 (x; y) + » [Aj¡1;k=2j ¡ 2 (x; y)]g;

form: ² 00(x; y) = IW(aj;k=2j ¡ 1 )

= Aj¡1;k=2j ¡ 2 (x; y) ¡ · [dj;k=2j ¡ 1 (x; y)]:

(3.12)

In order to obtain ² (x; y) and ² 0(x; y), the scalar coe¯ cients aj;k=2j ¡ 1 are set to zero
and then backed out, and vice versa for ² 00(x). In a similar way, a ®exible reference
surface can be obtained,

m(x; y) = z(x; y) ¡ ² (x; y) = z(x; y) ¡ IW(d1;k; : : : ; dJ;k=2J ¡ 1 ): (3.13)

If a functional evaluation of surfaces is needed to cover all of the topographical
information from roughness, through multi-scalar events, to waviness, a functional
surface can be built as follows:

² (x; y) + ² 0(x; y) = IW(d1;k; : : : ; dj;k=2j ¡ 1 )

=

j

j = 1

fdj;k=2j ¡ 1 (x; y) + » [Aj¡1;k=2j ¡ 2 (x; y)]g: (3.14)

The identi­ cation of multi-scalar events in the bands of roughness and waviness is
important in order to study the functional performance of the three-dimensional sur-
face topography of many systems. These multi-scalar topographical events, ¹ (x; y),
such as peaks/pits and rings/valleys, hide in the bands of roughness and waviness,
and their wavelengths would cover a wide frequency range (1=¶ s ¹ 1=¶ wc). Due to
the fact that wavelet coe¯ cient sets over the transmission bands have `naturally’
recorded the information concerning their amplitude and location, these events can
be captured easily using an amplitude threshold Tj to pick out the roughness and
waviness. Here, Tj is the value of an intersection of the probability curve of the cumu-
lative amplitude distribution of each wavelet coe¯ cient set referred to by ISO/DIS
(13565-3, 1995).

This process is based on an assessment that the amplitude distribution of each
wavelet coe¯ cient set dj;k=2j ¡ 1 (x; y), belonging to roughness and waviness compo-
nents, would obey the normal distribution. If the absolute value of the amplitude is
equal to or larger than Tj , a thresholding estimator is applied,

d0
j;k=2j ¡ 1 =

0; jdj;k=2j ¡ 1 j < Tj ;

dj;k=2j ¡ 1 ; jdj;k=2j ¡ 1 j > Tj :
(3.15)
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Where the absolute value of the peak amplitude is smaller than Tj , the coe¯ cient
should be replaced by a zero. In the case of a detail coe¯ cient being larger than or
equal to Tj , the coe¯ cient should be retained. As a consequence, detail coe¯ cients
that represent only the information of the topographical events are obtained. From
the experiments carried out, the threshold approaches the standard deviation of each
wavelet coe¯ cient set. The multi-scalar topographic features can then be built by
using the two-dimensional inverse discrete wavelet transform

¹ (x; y) = IW(d0
1;k; : : : ; d0

j;k=2j ¡ 1 )

=

j

j = 1

fd0
j;k=2j ¡ 1 (x; y) + » [Aj¡1;k=2j ¡ 2 (x; y)]g: (3.16)

4. Computer simulation

Before considering practical cases, it is useful to examine some pro­ les which com-
prise a number of harmonic components with di¬erent wavelengths. Although a syn-
thetic harmonic signal is not a purely random waveform, it can be used to elucidate
the transmission characteristics: a brick wall, a linear phase and a traceably located
property of the lifting wavelet representation, and can then be compared with Gaus-
sian ­ ltering. The `brick wall’ is good for exact separation of di¬erent frequency
components with a sharp attenuation at the cut-o¬ wavelength; and a traceable
location property can exactly mark transient signals throughout space. Two syn-
thetic sinusoidal and triangular repetitive waveform pro­ les, each signal with ­ ve
di¬erent wavelengths, ¶ = ( 1

3
; 1

2
; 2

3
; 1; 2) ¶ c, are used for digital simulation.

The synthetic waveform models are given by

ys in (x) = sin
1

¶ c=3
2º x¢x + sin

1

¶ c=2
2 º x¢x

+ sin
1

2 ¶ c=3
2º x¢x + sin

1

¶ c
2 º x¢x

+ sin
1

2 ¶ c
2 º x¢x ;

ytri(x) = tri
1

¶ c=3
2 º x¢x + tri

1

¶ c=2
2 º x¢x

+ tri
1

2 ¶ c=3
2 º x¢x + tri

1

¶ c

2º x¢x

+ tri
1

2 ¶ c
2º x¢x ;

(4.1)

with

tri
2 º x¢x

¶
=

2x¢x

¶
; ¡ 1

2
º 6

2 º x¢x

¶
6 1

2
º ;

1 ¡ 2x¢x

¶
; 1

2
º 6

2 º x¢x

¶
6 3

2
º ;

where x is the sampling number, ¢x is the sampling interval and ¶ c is a cut-o¬
wavelength. The upper diagrams of ­ gures 4a and 5a show the idealized input sig-
nals. Real ­ ltered pro­ les can be found by using wavelet and Gaussian ­ ltering with
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Figure 4. The transmission characteristic of a digital synthetic sinusoidal waveform by using
Gaussian and wavelet ¯ltering. (a) An idealized input waveform. (b) A comparison of the ide-
alized and the real output waveforms. (c) A comparison of the idealized and the real mean
lines.

the same cut-o¬ wavelength ¶ c (in ­ gures 4b and 5b). The dotted line expresses an
output of wavelet ­ ltering, the dashed line is an output found by the Gaussian ­ lter
model, and the solid line is the ideal simulated output pro­ le that is a combina-
tion of sinusoidal (triangular) repetitive waveforms with four di¬erent wavelengths,
¶ = ( 1

3
; 1

2
; 2

3
; 1) ¶ c. In ­ gures 4c and 5c, the reference datum lines, obtained by ideal

model and two kinds of ­ lters, are given. The ideal mean lines are de­ ned as a
waveform with a single wavelength 2 ¶ c.
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Figure 5. The transmission characteristic of a digital synthetic triangular waveform by using
Gaussian and wavelet ¯ltering. (a) An idealized input waveform. (b) A comparison of the ide-
alized and the real output waveforms. (c) A comparison of the idealized and the real mean
lines.

On comparison with the original input signals (in ­ gures 4a and 5a) and idealized
output signals (the solid lines of ­ gures 4b and 5b), the outputs of the two ­ lter-
ing methods, the sinusoidal (triangular) waveform contents (the dashed and dotted
lines in ­ gures 4b and 5b), are not shifted relative to each other within the cut-o¬
wavelength, and the components maintain their relative positions. The di¬erence is
that for wavelet ­ ltering, the practically ­ ltered pro­ les record the nature of sinu-
soidal and triangular waveforms, shape and amplitude, within a permitted cut-o¬
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wavelength, with only a slight change in amplitude information, as expected. In other
words, no distortion of the ­ ltered pro­ le is noted within this cut-o¬ wavelength and,
as a result, the sinusoidal and triangular waveforms have not su¬ered any attenuation
for wavelengths up to the cut-o¬ wavelength. The ­ ltered mean pro­ le is within a
maximum value, 5% of the theoretical 2 ¶ c references (in ­ gures 4c and 5c). It means
an amplitude transmission characteristic is uni­ ed up to the cut-o¬ wavelength and
falls rapidly after the cut-o¬ wavelength. Whereas for Gaussian ­ ltering, harmonic
amplitudes are modi­ ed in terms of the di¬erent attenuation ratios, all of which
obey the Gaussian distribution, so that the output signals may include some arte-
facts information (in ­ gures 4b,c and 5b,c). Contrary to this, the outputs obtained
by employing wavelet ­ ltering are more realistic.

5. Applications of the lifting wavelet representation

A large number of measurements of engineering surfaces (including turning, milling,
reaming, grinding, ballising honing, lapping, polishing, electric discharging, rolling
and chemistry processing) and topographies of bioengineering surfaces (such as
super-lapping, diamond-like coating and UHMWPE), have been carried out. The
accuracy of the surfaces of these components covers the levels from the micrometre
to nanometre. The specimens originate from the standard specimens, real manu-
facturing process, running-in and worn specimens at a di¬erent stages. A group of
typical examples of surfaces in engineering and bioengineering has been selected to
show the behaviour of wavelet ­ ltering. The measurement data of milled, ground
and rolled surfaces and the reamed cylinder surfaces are generated by employing
a Somicronic stylus instrument. The three-dimensional convex data from lapped
ceramic and metallic femoral heads are produced using Wyko TOPO 3D and NT-
2000 phase-shifting interferometers.

Figures 6 and 7 show decomposed examples of a rolled stainless steel sheet and
a ceramic femoral head, respectively. Using only one operation of wavelet ­ ltering,
surface contents, roughness, waviness and form error can be detected and recognized.
The outcomes of this are that the roughness surface ² (x; y), wavy surfaces ² 0(x; y)
and their corresponding form error surfaces ² 00(x; y) can be immediately and perfectly
reconstructed within a ®exible transmission bank. For instance, in order to indicate
this transmission ®exibility, the cut-o¬ wavelengths of roughness may be selected as
¶ c = 0:5 mm for the rolled surface and ¶ c = 0:05 mm for the ceramic head. The
cut-o¬ length of waviness is limited by practical applications. In the above examples,
¶ wc = 2:0 mm is used for the rolled surface and ¶ wc = 0:10 mm for the ceramic head.

Figure 8a shows six slope intensity images of general engineering and the ultra-
precise bioengineering surfaces. The axonometric projections of their roughness sur-
faces, derived from two ­ ltering methods, are shown in ­ gure 8b,c. The cut-o¬ wave-
length ¶ c of the two ­ ltering methods is the same and based on the cut-o¬ sample
wavelength set down in the current British and International standards (BS 1134
(1996) and ISOs 4288 (1996) and 11562 (1994)). In this comparative study, the least-
squares linear and quadratic polynomial ­ tting are used to remove irrelevant form
and translation errors of ®at and curved surfaces before Gaussian ­ ltering imple-
mentation, according to Stout and Dong’s suggestion (Stout et al . 1993; Dong et
al . 1995), as well as to Sullivan & Luo (1989). It can be seen that when a mea-
sured raw datum of surface conforms the two assumptions of Gaussian ­ ltering,
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Figure 6. The decomposition of a rolled stainless steel sheet in di® erent transmission bands by
using wavelet ¯ltering. (a) Roughness surface. (b) Wavy surface. (c) Form error surface.

the outcomes of the two ­ ltering (in ­ gure 8b,c) are similar to each other, without
any relative phase shift in sampling area. The peak{valley information on the bear-
ing surfaces conveyed is also recorded completely, with slightly modi­ ed amplitude
in the Gaussian ­ ltering case. This is similar to the standard repetitive waveforms
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Figure 7. The decomposition of a lapped ceramic femoral head in di® erent transmission bands
by using wavelet ¯ltering. (a) Roughness surface. (b) Wavy surface. (c) Form error surface.

displayed in ­ gures 4 and 5. However, as far as surfaces with multi-scalar topograph-
ical features are concerned, and when the form error has not been removed by the
least-squares polynomial ­ tting, the two ­ ltering methods will give di¬erent results.
Figure 8a shows four examples of these types of surfaces: a reamed surface with a
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(a)

vertical milled metallic surface rolled steel sheet surface

reamed metallic cylinder lapped ceramic femoral head

ground metallic surface worn metallic femoral head

Figure 8. Analysis of the roughness of typical surfaces using a lifting wavelet ¯lter and a Gaussian
¯lter with least-squares polynomial ¯tting. (a) The typical bearing surfaces of engineering and
bioengineering surfaces.

irrelevant form error, a rolled stainless steel sheet with large waviness energy near
the cut-o¬ length, and new ceramic and worn metallic femoral heads with multi-
scalar frequency components. The results of wavelet ­ ltering are better than those
of Gaussian ­ ltering (on the left of ­ gure 8b,c). The roughness transmitted by the
wavelet would appear to show only the roughness of the original surface from which
the waviness, form and various errors have been removed, compared with those of
Gaussian ­ ltering. Examining the roughness of the centre pro­ le taken across the
roughness surfaces by Gaussian and wavelet models (shown in ­ gure 8c), the results
show that the components of roughness waveforms obtained by using Gaussian ­ l-
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Figure 8. (Cont.) (b) A comparison of the residual surfaces (milled, reamed and ground)
derived from (a) by employing Gaussian (on the left) and wavelet (on the right) ¯ltering.

tering do not resemble those from wavelet ­ ltering. The multi-scalar topographical
features involved in roughness and waviness near the roughness cut-o¬ length are not
clearly eliminated, so that the obtained residual surfaces may give incorrect infor-
mation. Therefore, it can be stated that for these types of surfaces, wavelet ­ ltering
is guaranteed to obtain a roughness surface with an excellent re­ nement accuracy.
This accuracy is particularly suited to the need for highly accurate characterization
of roughness parameters of three-dimensional surface topography.

In order to verify and provide practical evidence, the three-dimensional amplitude
parameters of these specimens (in ­ gure 8) are shown in table 2. Comparison of
the results obtained using wavelet and Gaussian ­ ltering is shown by two amplitude
parameters, root-mean-square deviation Sq, and ten-point height of the surface Sz,
and their relative variation. The parameter values are an average assessment (the
three di¬erent parts of each engineering workpiece and the eight parts of each bio-
engineering workpiece). From the results, it can be seen that when a measured raw
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Figure 8. (Cont.) (c) A comparison of the residual surfaces (rolled, lapped and worn) derived
from (a) by employing Gaussian (on the left) and wavelet (on the right) ¯ltering.

datum of surface conforms to the two assumptions of Gaussian ­ ltering, the param-
eter values achieved by wavelet ­ ltering are similar to those from Gaussian ­ ltering
and the ®uctuation of results of Gaussian ­ ltering is a slightly larger than ones of
wavelet ­ ltering. However, as far as surfaces with multi-scalar topographical features
are concerned, and when the form error has not been removed by the least-squares
polynomial ­ tting, the amplitude parameter values obtained by wavelet analysis are
clearly lower than those from Gaussian ­ ltering, and the ®uctuation of results is also
obviously more stable. Considering the engineering surface, for instance, the ground
metallic surface has Sq = 0:457 m m with a variation of 5% and Sz = 3:618 m m with
a variation of 3% when analysed by wavelet analysis, but Sq = 0:469 m m with a
variation of 21% and Sz = 3:534 m m with 11% variation are achieved from the Gaus-
sian ­ ltering. While for a bioengineering surface, the worn metallic head surface has
Sq = 2:639 £ 10¡3 m m with a variation of 29% and Sz = 2:980 £ 10¡2 m m with 54%
when assessed by wavelet analysis, but Sq = 3:912 £ 10¡3 m m with a variation of
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Figure 8. (Cont.) (d) The comparison of the centre pro¯les of roughness surfaces shown in (c).

49% and Sz = 4:220 £ 10¡2 m m with 96% when assessed from the Gaussian ­ ltering.
The main reason for the di¬erences is that the residual surfaces ­ tted with Gaus-
sian ­ ltering include local random errors which are not components belonging to the
roughness transmission band. In considering these results, it can be concluded that
the areal parameter characterization generated by wavelet analysis is more stable
and has a higher accuracy than that achieved using the Gaussian ­ ltering technique.
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(a) (i) (ii)

(b) (i) (ii)

Figure 9. The polar and equatorial regions of the bearing surface of a new metallic femoral
head. (i) The measured surface. (ii) The functional surface. (a) In the polar region. (b) In the
equatorial region.

The following examples are used to highlight the surface texture derived from
a new lapped femoral head and capture the functionally relevant topographical fea-
tures derived from a worn head. The left-hand illustrations of ­ gure 9a,b show lapped
topographies in both the polar and equatorial regions of the new head with sampling
area 300 £ 240 m m2. The surfaces look `­ ne and smooth’ and have a `classic’ struc-
ture of random shallow scratches, isolated large pits and small peaks, and one-o¬
deep scratches in the polar area. The right-hand images on ­ gure 9a,b show how
the wavelet model has removed form deviation revealing high quality functional sur-
faces. As illustrated, the multi-scalar topographic features are the dominant factors
of the functional surface of this new head, and roughness and waviness may not
in®uence the functional performance of the head in service due to their relatively
low levels. As shown in ­ gure 9c,d, traces taken from the polar region at random
locations give strong evidence that using the new wavelet model, the signi­ cant fea-
tures of functionally relevant topography can be naturally recorded and perfectly
reconstructed. A further example is shown in ­ gure 10. The left-hand illustrations
of ­ gure 10a,b show di¬erent parts of the bearing surface of a worn metallic femoral
head. The surfaces have two di¬erent kinds of scratches: regular and shallow, possibly
produced by manufacturing processing; and the random deeper scratches resulting
from functional performance in service. The latter scratches have a wider frequency
band and higher amplitude, some with arc structures. Using the segment property
of the wavelet model in the scalar domain, functional surfaces, after form removal,
are shown in middle of ­ gure 10. The outcomes contain obvious waviness. The right-
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Figure 9. (Cont.) (c) A horizontal trace derived from the polar region. (d) A perpendicular
trace derived from the polar region.

hand images of ­ gure 10 highlight surface textures made up of multi-scalar events in
which the roughness and waviness have been removed.

6. Conclusion

This paper has reviewed the existing numerical analysis methods and their problems
in surface metrology. Based on this knowledge, this paper has proposed a novel, feasi-
ble and applicable tool, a lifting wavelet representation, for separation and extraction
of di¬erent components of a surface. The theory of the lifting wavelet has been brie®y
introduced and a fast algorithm has been developed. The lifting wavelet has the fol-
lowing advantages when compared with the former techniques, Gaussian ­ ltering
and ­ rst-generation wavelet, from the point of view of theory and application.

(1) The theory of the lifting wavelet model is relatively new, simple and natural.
The wavelet ­ ltering process comprises three steps. The ­ rst is to decompose a
surface original signal z(x; y) to a sequence of subsets that transfers space-based
information into scale-based information which represents both the frequencies
of z(x; y) and their location in scalar space. The second is to separate and
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(a) (i) (ii) (iii)

(b) (i) (ii) (iii)

Figure 10. The polar and equatorial regions of the bearing surface of a worn metallic femoral
head. (a) In the polar region. (b) In the equatorial region. (i) The measured surface. (ii) The
functional surface. (iii) The multi-scalar topography.

capture the di¬erent frequency components involved in z(x; y) within selected
transmission bands. Finally, these di¬erent frequency surfaces can be recon-
structed in the spatial domain.

(2) The wavelet transform algorithm is much easier and faster than conventional
­ ltering methods, and the transform procedure only embraces three stages:
`plus’, `minus’ and application of the weighting algorithm. All computations
are carried out in-place through rows and columns, no extended memory is
needed and the algorithm procedure is much faster than Gaussian ­ ltering
with least-squares polynomial ­ tting.

(3) The computer simulation shows the behaviour of wavelet ­ ltering. Generally
speaking, the ­ ltered outputs derived resemble the idealized waveforms very
closely without any shift relative to each other in a de­ ned cut-o¬ wavelength.
As a result, the components have similar positions upon emerging from it. The
peaks and pits are noticeable and can be preserved unambiguously. This is
compared with Gaussian ­ ltering, where, due to 50% of the intrinsic trans-
mission characteristic of Gaussian ­ ltering, the required frequency components
can not be extracted clearly.

(4) The behaviour of the wavelet technique for surface analysis has initially been
tested by experimental work. The given practical evidence shows that the ­ l-
tered outcomes resemble the original waveforms very closely with no relative
shift in the de­ ned transmission band. As a result, the components have sim-
ilar positions upon emerging from ­ ltering and the peaks and valleys can be
preserved unambiguously.
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(5) Using the segment property in scalar domain, various surfaces can be ®exibly,
perfectly and immediately reconstructed according the intended requirements
of functional analysis. The surface textures can be highlighted and multi-scalar
topographical events can be identi­ ed and clearly recovered. The information
obtained could be fed back to monitor the manufacturing processes, or to study
actual contact stress, loaded area, asperity volume and lubrication regimes
occurring during the initial stages of wear of surfaces in service.

The lifting wavelet model, and the corresponding algorithm allowing a better
understanding of the three-dimensional surface, has been proposed. The di¬erent
frequency components of surfaces can be considered and retrieved with the excellent
re­ nement accuracy in the light of the algorithm. For industrial application purposes,
the method has considerable merits. Practical examples have initially demonstrated
the feasibility and applicability of the wavelet model.

We thank the European Community for support funds to carry out this work under its pro-
gramme SMT CT98-2209. We also thank Dr P. J. Scott of Taylor Hobson very much for his
advice concerning wavelet theory.

Nomenclature

Aj;k=2j ¡ 1 (x; y) a two-dimensional discrete approximation of
z(x; y) at the scale 2¡j

aj;k=2j ¡ 1 scalar coe¯ cients of z(x; y) at the scale 2¡j

dj;k=2j ¡ 1 detail coe¯ cients of z(x; y) at the scale of 2¡j

d0
j;k=2j ¡ 1 detail coe¯ cients with a thresholding estimator

fi a set of ­ ltering factors of the wavelet coe¯ cient
dj;k=2j ¡ 1

g(k), G(z) impulse and frequency responses of the
two-channel synthesis ­ lter

h(k), H(z) impulse and frequency responses of the
two-channel analysis ­ lter

IW[W (z(x; y))] the two-dimensional inverse wavelet transform

li a set of lifting factors of the scalar coe¯ cient
aj;k=2j ¡ 1

j, k a scalar parameter and a translation parameter

(­ rst-generation wavelet)

m(x; y) a mean value (reference) surface of z(x; y)

M an initial moment matrix for all data points at the

­ rst level

Tj an amplitude threshold at the scale of 2¡j

W[y(x)], W[z(x; y)] a one- and two-dimensional wavelet transform

y(x) a discrete signal

y s in (x) a synthetic sinusoidal pro­ le signal

ytri(x) a synthetic triangular pro­ le signal

z(x; y) the discrete areal signal of the surface
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² (x; y), ² 0(x; y), ² 00(x; y) roughness, waviness and form error of z(x; y)

¹ (x; y) multi-scale topography features of z(x; y)

~’(x), ’(x) analysis and synthesis scalar functions

Á(x) a prototype wavelet

Áj;k(x) discrete basic wavelets
~Á(x), Á(x) analysis and synthesis wavelet functions

¶ c, ¶ wc cut-o¬ wavelengths of roughness and waviness

· (dj;k=2j ¡ 1 ) the weighting update of the scalar coe¯ cient
aj;k=2j ¡ 1

» (aj¡1;k=2j ¡ 2 ) the weighting prediction of the wavelet coe¯ cient
dj;k=2j ¡ 1
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