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Abstract

This paper presents a simple and efficient method of
modeling synthetic vision, memory, and learning for au-
tonomous animated characters in real-time virtual environ-
ments. The model is efficient in terms of both storage re-
quirements and update times, and can be flexibly combined
with a variety of higher-level reasoning modules or complex
memory rules. The design is inspired by research in mo-
tion planning, control, and sensing for autonomous mobile
robots. We apply this framework to the problem of quickly
synthesizing from navigation goals the collision-free mo-
tions for animated human figures in changing virtual en-
vironments. We combine a low-level path planner, a path-
following controller, and cyclic motion capture data to gen-
erate the underlying animation. Graphics rendering hard-
ware is used to simulate the visual perception of a char-
acter, providing a feedback loop to the overall navigation
strategy. The synthetic vision and memory update rules can
handle dynamic environments where objects appear, disap-
pear, or move around unpredictably. The resulting model
is suitable for a variety of real-time applications involving
autonomous animated characters.

1 Introduction

Graphic Animation by computer lies at the boundary of
modeling and simulating the real world, and shares much
in common with the design and control of robotic systems.
This paper approaches the problem of generating motion
for animated characters from a robotics perspective. More
specifically, the problem of controlling an autonomous an-
imated character in a virtual environment is viewed as that
of controlling an autonomous virtual robot complete with
virtual sensors.

This paper combines the fast 2D path planner and con-
troller originally presented in[13], with a simple synthetic
vision and memory model to compute natural-looking mo-

Figure 1. An interactive session involving
multiple characters navigating outdoors.

tions for navigation tasks. The controller is used to synthe-
size cyclic motion capture data for an animated character as
it follows a computed path towards a goal location. The goal
location can be can be user-specified or defined by a behav-
ior script. The rendering hardware is used to simulate the
visual perception of a character so that it reacts in response
to obstacles in its visual field. A record of perceived objects
and their state is kept as the character explores an unknown
virtual environment, allowing the character to construct mo-
tion plans based solely on its own internal model of the vir-
tual world. The internal model is updated as new sensory
information arrives, and a new navigation plan is computed
if necessary. The resulting animation can be generated at
interactive rates and looks fairly realistic.

2 Related Work

Previous work in motion synthesis for animated char-
acters has traditionally been divided between real-time ap-
plications and off-line animation production. However, as



processor speeds continue to increase, algorithms originally
intended for off-line animations will gradually become fea-
sible in real-time virtual environments.

Much research effort in robotics has been focused on
designing control architectures for autonomous agents that
operate in the real world[15, 7, 1]. More recently, many
of these same techniques have gradually been adapted for
the purposes of creating autonomous animated characters in
virtual worlds. The ultimate goal being the creation of fully-
autonomous, interactive, artificial agents. Reactive behav-
iors applied to simple simulated creatures appeared in the
graphics literature with Reynolds’ BOIDS model[22]. Tu
and Terzopoulos implemented a realistic simulation of au-
tonomous artificial fishes, complete with integrated simple
behaviors, physically-based motion generation, and simu-
lated perception[29]. Noser, et al. proposed a navigation
system for animated characters using ideas for synthetic
vision originally developed by Renault, et al.[21]. Their
implementation also included memory and learning mod-
els based on dynamic octrees[17]. These ideas were later
expanded to include virtual tactility and audition[18, 27].
Researchers at the University of Pennsylvania have been
exploring algorithms for controlling their Jack human char-
acter model[10, 8], incorporating body dynamics[12], and
high-level scripting[2]. Koga et al. combined robot motion
planning and human arm inverse kinematics algorithms for
automatically generating animation for human arm manip-
ulation tasks[11]. Other systems include Perlin and Gold-
berg’s Improv software for interactive agents[20, 19], the
ALIVE project at MIT[5, 16], Johnson’s WavesWorld, the
Oz project at CMU[3], and the work of Strassman[24, 25],
and Ridsdale, et al.[23]. Researchers at Georgia Tech have
combined physically-based simulation with group behav-
iors for simulating human athletics[6]. They have also de-
signed a controller for human running in 3D[9]. Despite
these achievements, building autonomous agents that re-
spond intelligently to task-level commands remains an elu-
sive goal, particularly in real-time applications.

Previous researchers have argued the case for employing
some kind of virtual perception for animated characters[21,
28]. The key idea is to somehow realistically model the in-
formation flow from the environment to the character. Giv-
ing each character complete access to all objects in the en-
vironment is both conceptually unrealistic, and can be im-
practical to implement for large environments with many
objects. One way to limit the information a character has
access to, is to consider only objects within a sphere cen-
tered around the character[22]. However, most characters of
interest (including human characters) do not have such om-
nidirectional perception. Rather, sensory information from
the environment flows from a primary direction, such as the
cone of vision for a human character. Synthetic audition
may often be considered to be omnidirectional, but for tasks

involving navigation and obstacle avoidance, some kind of
synthetic vision is needed.

3 Synthetic Vision

There have been several previous proposals for model-
ing simulated visual perception. Tu and Terzopoulos imple-
mented a synthetic vision for their artificial fishes based on
ray-casting[29, 28]. Blumberg experimented with image-
based motion energy techniques for obstacle avoidance for
his autonomous virtual dog[4]. Terzopoulos and Rabie pro-
posed using a database of pre-rendered models of objects
along with an iterative pattern-matching scheme based on
color histograms for object recognition[26]. Noser, et al.
presented a clever synthetic vision model that uses object
false-coloring and dynamic octrees to represent the visual
memory of the character[17].

We are primarily interested in synthetic vision tech-
niques that are practical for real-time systems. Specifically,
our goal is to allow an autonomous character endowed with
synthetic vision to explore an unknown interactive envi-
ronment, while maintaining a visual memory or “cognitive
map” of what it has perceived. This map may then be used
as input to a planning or navigation algorithm. Due to the
time constraints inherent in real-time systems, the synthetic
vision module must be reasonably fast, and the visual mem-
ory model must be simple and efficient to update. In addi-
tion, we require the vision and memory modules to handle
changing environments, where objects can appear, move, or
disappear without warning.

The function of the synthetic vision module is to deter-
mine the set of objects currently visible to a character, given
the environment scene description along with a specifica-
tion of the character’s current viewing frustum. Exact geo-
metric algorithms for 3D visibility are complex, and suffer
from poor performance relative to hardware Z-buffers. This
is especially true for large scenes with moving obstacles,
which typically cannot be pre-processed. We adopt an ap-
proach to synthetic vision similar to the one described by
Noser, et al.[17, 18]. The general idea is to render an unlit
model of the scene (flat shading) from the character’s point
of view, using a unique color assigned to each object or ob-
ject part. The pixel color information is extracted to obtain
a list of the currently visible objects. As pointed out by
Thalmann, et al. in [27], synthetic vision differs from vi-
sion computations for real robots, since we can skip all of
the problems of distance detection, pattern recognition, and
noisy images. This allows us to implement a reasonable
model of visual information flow that operates fast enough
for real-time systems. Furthermore, since the object visibil-
ity calculation is fundamentally a rendering operation, all of
the techniques that have been developed to speed up the ren-
dering of large, complex scenes can be exploited. This in-
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cludes scene-graph management and caching, hierarchical
level-of-detail (LOD) approximations, and frame-to-frame
coherency.

From the list of currently visible objects computed by
the vision module, a set of observations is formed by com-
bining this list with each object’s current location. Finally,
this set of observations is added to the character’s internal
memory model of the environment, and a navigation plan is
computed. The navigation planning algorithm we use com-
bines a fast path planner, motion controller, and cyclic mo-
tion capture data, and is presented in detail in[13]. However,
any appropriate real-time navigation planning strategy may
be used.

For our system to work, we assume the environment is
broken up into a collection of small to medium-sized ob-
jects, each assigned a unique ID. For example, a single ob-
ject may be a chair or a door. Large objects such as walls
or floors are further subdivided, and each piece is assigned
an ID. This assignment may be done automatically using
any reasonable object-level spatial subdivision technique. A
color table is initialized to represent a one-to-one mapping
between object IDs and colors. To check which objects are
visible to a particular character, the scene is rendered off-
screen from the character’s point of view, using flat shading
and using the unique color for each object1 as defined by
the object ID (see Figure 3). The size of the rendered image
need not be very large (usually 200x200 pixels yields suf-
ficient detail). The resulting image pixels are scanned, and
a list of visible objects is obtained from the pixel color in-
formation. This list may then be combined with other envi-
ronment state information to encode higher-level aspects of
a character’s perception. Possible examples include encod-
ing semantic information about certain objects, velocities of
objects, and relationships between objects.

4 Internal Representation and Memory

Each character maintains an internal model of the world
as it explores a virtual environment. Noser, et al. used an
occupancy grid model (e.g. an octree) to represent the vi-
sual memory of each character[17]. We instead rely upon
the object geometry stored in the environment along with a
list of object IDs and their most-recently observed states.2

This provides a compact and fast representation of each
character’s internal world model that is scalable to large en-
vironments with many characters.

1Note that this color is used only when rendering the visibility image
offscreen, and does not affect renderings of the object seen by the user,
which may be multi-colored and fully-textured.

2Although we refer to lists in our description, we actually use arrays
indexed by the object ID for faster performance. This is practical for en-
vironments of roughly 20,000 objects or less, depending upon available
memory.

Figure 2. A character navigating in a virtual of-
fice. The image pairs below each scene view
depict renderings from the character’s point
of view using both the true-color, lighted mod-
els, and the unlit, false-color visibility models.
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When a character observes the environment, the vision
module returns the set of object IDs representing objects
that are currently visible. Each object ID is combined with
other state information, such as the corresponding object’s
current 3D transformation. The state information of each
of the visible objects is obtained directly from the environ-
ment, and the character updates its internal model of the
world with each object’s recently observed state. Previ-
ously unobserved objects are added to the character’s list
of known objects, and the rest of the visible objects are sim-
ply updated with their current state. Objects that are not
currently visible but have been observed in the past, retain
their most recent previously-observed states. This process
maintains a kind of spatial memory for each character.

5 Perception-Based Navigation

Using such a sensing and memory model, a character can
be made to explore in real-time an unknown environment,
and incrementally build its own internal model of the world.
We now describe the algorithm in more detail. First, we
will describe the basic sense-plan-control loop that works
for static environments. We then show how to modify the
basic algorithm to work for dynamic environments.

Let O denote the set of all objects in the environment.
Each character maintains a set M of observations built in-
crementally from the output of the vision module. Observa-
tions are represented as tuples 〈objIDi,Pi, Ti, vi, t〉, with
components:

objIDi the object ID of object i
Pi properties of object i
Ti 3D transformation of object i
vi velocities of object i
t observation time

The set Pi contains properties of the object, including se-
mantic information about the object, or characteristics perti-
nent to its current state. For example, if the observed object
is a door, then Pi might identify the object as something that
can be moved (rotated), is currently closed, is currently un-
locked, etc.3 Object properties are flexible and as explained
further in Section 6, can be utilized by higher-level reason-
ing engines to enable the character to make more informed
decisions about the world. The transformation Ti is the ob-
served position and orientation of the object represented by
objIDi. The component vi contains the observed linear and
angular velocities of the object. The last component t is the
time stamp, or the time that the observation was made.

M represents the character’s visual memory of O. Ini-
tially M is empty. At regular intervals, the character’s vi-

3For storage efficiency, permanent (unchanging) object properties can
be stored in a global table indexed by objectID, while variable properties
can be encoded with observation bit flags.
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Figure 3. The basic sense-plan-control loop
for static environments.
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Figure 4. Updating M in static environments

sual perception is simulated by the vision module, which
renders the color-coded instances of the objects in O. Af-
ter scanning the pixels of the resulting image, the set V
is returned, containing the object IDs of all currently vis-
ible objects. Each objIDi in V is combined with its corre-
sponding object’s state information to form the tuple Ω =
〈objIDi,Pi, Ti, vi, t〉. If no existing tuple in M contains
objIDi, then the object was previously unknown, and Ω is
added to M. Otherwise, if there exists a tuple in M that
contains objIDi, then this object was previously observed.
Hence, its corresponding state information is updated based
on the values contained in Ω. After M has been updated
from V , then the navigation path-planning module is in-
voked using only the objects and transformations in M as
obstacles. Thus, each character plans a path based solely on
its own learned model of the world. As the character follows
the path, new objects are observed, and M is updated by re-
peating the above process, and a new path is computed. The
data flow of the algorithm is shown in Figure 3. Figure 4
illustrates how M is incrementally updated as previously
unknown objects are observed.

The aforementioned procedure will work just fine for en-
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Figure 5. Updating M in dynamic environ-
ments

vironments with static objects, but we need to make a mi-
nor modification to correctly handle changing environments
where objects can appear, disappear, or move around unpre-
dictably. The problem lies in recognizing when a previously
observed object has disappeared (or moved) from its previ-
ously observed location. As an example, let us consider the
following two scenarios:

• A character observes an object o2 at a location T2.
Later, o2 moves to a new location T ′

2, and is again ob-
served. In this case, the state information for o2 in M
should be simply updated to reflect the new location.

• A character observes an object o1 at a location T1.
Later, o1 moves to a new location T ′

1. However, before
the new location is observed, the character observes its
former location (o1 is now missing). In this case, the
previous observation of o1 in M should be deleted or
invalidated.

These two scenarios are depicted in Figure 5. The left
side illustrates the case where a previously observed ob-
ject(2) moves to a new location, and the new location is
observed before the former location. The state information
in M for the object is updated to account for the new ob-
servation(2*). The right side of Figure 5 depicts the case
where a previously observed object(1) moves to a new lo-
cation, and its former location is observed prior to its new
location. The character should realize that the object is now
missing and remove or invalidate the observation in M.

How can the vision module determine whether an object
is truly missing, rather than simply obscured by another ob-
ject? The solution is to re-run the vision module after M
has been updated using only the objects contained in M,
along with their corresponding transformations. The result
is a set VM of object IDs that corresponds to the set of ob-
jects the character expects to see based on M. By compar-
ing V and VM , we can distinguish the above case. Specifi-
cally, let X = VM −V be the set of all object IDs contained
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Figure 6. The revised sense-plan-control loop
for dynamic environments.
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Figure 7. “Obscured” vs. “Missing” scenar-
ios requiring VM in order to distinguish be-
tween them and update M properly.

in VM but not in V . Thus, X corresponds to objects that
the character concludes have disappeared or moved from
their previously observed locations, but their new locations
are unknown. Consequently, all observation tuples in M
containing object IDs in X must be removed or invalidated.
Incorporating this change into the algorithm facilitates its
use in arbitrarily changing environments. The data flow
diagram of the modified algorithm is shown in Figure 6.
Two scenarios where the lists of visible objects(V) are the
same, but the final updates to M are different, are depicted
in Figure 7. The scenario on the left corresponds to the
obscured case, where the previously-observed object(1) is
hidden by the appearance of a new object(3). V and VM

are equal in this case, so M retains its previous observation
of object(1). The scenario on the right corresponds to the
missing case, where the previously-observed object(1) has
moved to an unknown location while a new object(3) has
appeared. Since V and VM differ, the previous observation
of object(1) is removed from M.
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6 Learning and Forgetting

The memory update rules described in Section 5 repre-
sents a very simple model that remembers all observations
until sensing contradicts them. We refer to this as the basic
model. However, the framework proposed allows several
possible memory models to be used. For example, one can
imagine a temporal model that remembers observations for
a certain period of time. In this case, old observations are
periodically deleted from the character’s memory. Alterna-
tively, deleting old observations may depend upon the prop-
erties of the object. For example, if a non-movable object
such as a wall or a floor were observed, we may wish to al-
ways retain that observation, while if a moving object such
as a vehicle or animal were observed, we may decide to ex-
pire such observations as time passes. This means that there
can be different types of objects in the world, and different
memory rules for each type. We refer to this type of model
as a logical or deductive model, since updating the charac-
ter’s memory involves logical rules regarding observations
of certain objects or object types.

Above low-level navigation planning, there is a layer of
reasoning that makes decisions about the goals and beliefs
of the character based on its internal model of the world.
There are many proposed architectures for logic and rea-
soning in the artificial intelligence literature, each with ad-
vantages and disadvantages. For the purpose of creating au-
tonomous characters, any suitable AI architecture will suf-
fice given that is operates efficiently and provides the abil-
ity to encode memory rules. The rules can then be made
arbitrarily complex. For example, suppose that a character
is exploring an unknown maze of connecting rooms with
the goal of finding an exit. After some time, suppose the
character concludes that no exit exists based on what it has
previously observed (i.e. the low-level navigation planner
fails). This event may then trigger some higher-level rea-
soning that will allow the character to continue to explore
(e.g. there is no path, but some doors which have been
seen closed or locked recently may have been opened in the
meantime. Therefore, observations about closed doors may
be deleted, despite the fact that they are not yet old enough
to discard/forget, etc).

7 Experimental Results

The algorithms described in this paper have been imple-
mented and tested on an SGI InfiniteReality2 running Irix
6.2. Interactive performance has been achieved, on com-
plex scenes with up to three characters. During a session,
the user can click and drag on goal locations or obstacles,
and the low-level path planner will calculate an updated,
minimal-length, collision-free path (if one exists) in approx-
imately one-tenth of one second on average. The path is

Figure 8.

Figure 9.

then sent directly to the controller, and the character will
immediately begin following the new path. Since the goal
is allowed to move arbitrarily, it is possible for one character
to perform simple tracking or following of another charac-
ter. This can be useful for pursuit games, or having a group
of characters follow a tour guide.

For the purposes of path following, the simple PD con-
trol algorithm described in [13] was implemented for a
human-like character with 17 joints. Two sets of motion
capture data were used in the experiments: a walk cycle
and a jog cycle. Sample output involving an outdoor envi-
ronment is illustrated in Figure 1. Multiple characters were
run simultaneously, each planning around the other charac-
ters as they followed their own computed paths and built-
up internal memory models of the environment. Figure 8
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Figure 10.

shows a human character after building a complete cogni-
tive map of a room. Figure 9 shows a previously-observed
table being moved to a new location behind the character’s
back. Since the character is unaware of the change, its nav-
igation path to the goal location is unaffected. Figure 10 il-
lustrates that fact that when the goal location is moved, the
character plans a path assuming the table is still at its former
location. Finally, Figure 11 depicts how when the character
turns around to follow the planned path, it notices the table
in its new location, and plans accordingly. Figure 12 shows
snapshots at various stages of an animation involving a sin-
gle character exploring an unknown maze environment. The
final path is solely the result of the interaction between path
planning based in the character’s internal model and the vi-
sual feedback obtained during exploration. Figure 13 shows
a trace of the actual motion of the character during explo-
ration. Figure 14 shows a trace of the actual motion during
exploration of another unknown maze with dead ends that
forced the character to backtrack.

8 Conclusion and Discussion

This paper presents a simple model of visual percep-
tion, memory, and learning for autonomous characters that
is suitable for real-time interactive applications. The model
is efficient in both storage requirements and update times,
and can be flexibly combined with a variety of higher-level
reasoning modules or complex memory rules. Research on
techniques to control groups of multiple actors using the
existing planning and perception modules would be useful,
and is currently underway[14]. This includes some simple
prediction based on observed velocities to take into account
the estimated motion of other characters and obstacles dur-

Figure 11.

ing planning.
Although the synthetic vision module runs fast enough

to support a small number of characters simultaneously, it is
currently the bottleneck in the computation. This is primar-
ily due to the fact that each character must render the scene
twice in order to correctly update its cognitive map in the
case of dynamic environments. At the time of this writing,
the authors have been unable to devise a general memory
update scheme for dynamic environments that avoids hav-
ing to render the scene twice per character. Such a scheme
would certainly be very useful in improving the efficiency
of the synthetic vision module, and allowing more charac-
ters to be run simultaneously. Other possibilities include in-
voking the vision module every other frame, or at some reg-
ular interval. This could allow one to gain speed (or addi-
tional characters) at the expense of accuracy. Clearly, many
challenging research issues must be faced before more in-
teresting motions and intelligent behaviors for autonomous
animated characters can be realized.
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