
BU CS TR98-006. To appear in Proc. Computer Animation, Philadelphia, PA, June 1998.

Active Voodoo Dolls: A Vision Based Input Device for Nonrigid Control

John Isidoro and Stan Sclaroff
Computer Science Department

Boston University
jisidoro@bu.edu, sclaroff@bu.edu

Abstract

A vision based technique for nonrigid control is presented
that can be used for animation and video game applica-
tions. The user grasps a soft, squishable object in front of
a camera that can be moved and deformed in order to spec-
ify motion. Active Blobs, a nonrigid tracking technique is
used to recover the position, rotation and nonrigid defor-
mations of the object. The resulting transformations can be
applied to a texture mapped mesh, thus allowing the user to
control it interactively. Our use of texture mapping hard-
ware in tracking makes the system responsive enough for
interactive animation and video game character control.

1 Introduction

A wide variety of input devices have been invented for
human-computer interaction. One category of devices can
transform intentional human motion into a measurable ana-
log quantity. Not only must such devices be accurate; they
must also be intuitive in such a way that motion of the de-
vice corresponds directly with the motion that the human
is controlling.

Basic analog joysticks and mice have two degrees of
freedom, which correspond to the screen's x and y axes.
The spaceorb and polhemus provide six rigid degrees of
freedom. Haptic feedback pens, data gloves, and body suits
can provide even more than six degrees of freedom. How-
ever, all of these devices have the limitation that they can
only sense rigid, or in the best case, articulated motion. Al-
though it is theoretically possible to build a device to mea-
sure higher degrees of freedom in motion (bending, twist-
ing, etc.), vision based techniques offer an inexpensive al-
ternative, without the wiring and cumbersome devices.

In this paper, we present a vision based technique for
nonrigid control. The user grasps a soft object in front of a
camera that can be moved and deformed in order to spec-
ify motion. Active Blobs, a nonrigid tracking technique
is used to recover the object position, rotation, and defor-
mations. The resulting transformations can be applied to a
graphics model, thereby allowing the user to control mo-
tion interactively. The use of texture mapping hardware in
tracking makes our system responsive enough for interac-
tive animation and video game character control.

2 Related Work
Sensing motion and transforming it into meaningful data
using a camera is most easily done using some form of
tracking. Most previous systems that use vision to control
graphics have tracked face, hand, or body gestures.

Some previous approaches are based on tracking fea-
ture points across a sequence of video frames. Williams
[26] tracked iridescent points placed on the face of the
user. The points were used to pull regions of a triangu-
lar mesh of a human head. This approach has the disad-
vantage that the dots must be painted or pasted onto the
user's face. In contrast, Azarbayejani, et al. [1] used a fea-
ture finding algorithm to track facial points and converted
them into three-dimensional estimates using an extended
Kalman Filter. Motion estimates were then used to drive a
rigid graphics model of the user's head.

Contour-based approaches have also been proposed.
For instance, Terzopoulos and Waters [25] used snakes to
follow lines drawn on the user's face. The snakes drive
an intricate face model where muscle and skin are physi-
cally simulated. In a similar approach, Blake and Isard em-
ployed contours in gesture tracking[4], allowing the user
to use hand motion as a three-dimensional mouse. Rigid
motion supplies the position of the mouse while nonrigid
motion supplies button pressing and releasing actions.

Other researchers [8, 10] have used optic flow to drive
the motion of an anatomically-motivated polyhedral model
of the face. Optic flow has also been used to capture mo-
tion of more general nonrigid models like deformable su-
perquadrics [17, 18]. In a different approach, histograms
of optic flow direction can be used directly in hand gesture
recognition [11], allowing television viewers to freely use
their hand like a mouse to make menu selections.

Other researchers have used simple low-level image
processing techniques such as normalized image corre-
lation [7], or background subtraction and thresholding
[5, 15, 16, 27] for tracking moving body parts, facial fea-
tures, and hand gestures. The resulting tracking output can
be used to drive the animation of a face model [9], to drive
manipulation of virtual objects [15], or to interact with an-
imated creatures in a virtual world [27, 16, 5]. Such low-
level methods are surprisingly useful for qualitative mea-
sures (e.g., person is standing, object is bending) but are not

1

a. b. c.

Figure 1: Example voodoo doll object used in our experiments
(a), and a deformable color region on the object used for track-
ing (b). The deformable image region is modeled using a tex-
ture mapped triangular mesh. The underlying triangular model is
shown in (c).

exact enough to allow quantitative measures of fine-grain
deformation (e.g., how much bending or stretching). Fur-
thermore, correlation-based methods are not well-suited to
tracking moving objects that undergo scaling, rotation, or
nonrigid deformation, since tracking is accomplished via
correlation with a translating template.

Larger deformations can be accomodated if the problem
is posed in terms of deformable image registration [2, 23].
In particular, La Cascia, et al. [6], use this approach to reg-
ister a texture-mapped polygonal model of a person's head
with an incoming video sequence. The approach allows
tracking of a wider range of free motion of the head than
was possible using flow or simple correlation methods.

3 Approach
In our system, the user grabs a “voodoo doll” that can be as
simple as a decorated piece of foam or as complex as a toy
stuffed animal. The user moves, rotates, and squishes the
voodoo doll in the same way that he wants to manipulate
the corresponding graphics object on the screen. This al-
lows the intuitiveness of a joystick or spaceorb, while pro-
viding more degrees of freedom. The only limitation of the
voodoo doll's movement is that it must remain visible to
the camera at all times in order to follow its deformations.

An example voodoo doll object is shown in Fig. 1(a).
In this case, the object is simply a piece of foam rubber
painted with a colored grid pattern.

For tracking purposes, we build a two-dimensional de-
formable texture mapped model of a region on the squishy
object. We model the region using the active blob for-
mulation [23]. Tracking of the voodoo doll's deformation
is modeled in terms of a deformable, triangular mesh that
captures object shape plus a color texture map that captures
object appearance.

As shown in Fig. 1(b), a two-dimensional active blob
model is constructed for our example using a modified De-
launay triangulation algorithm. The blob's appearance is
then captured as a color texture map and applied directly
to the triangulated model, as shown in Fig. 1(c).

Nonrigid motion tracking is achieved by warping this
texture-mapped blob to register it with each incoming

a. b.

c. d.

Figure 2: Example animation of a two-dimensional character via
deformation of the voodoo doll object as constructed in Fig. 1.
The character is defined as a polygonal model (a), with a texture
map applied (b). By directly deforming the voodoo doll (c), the
user can control the deformation of the character. The resulting
deformation of the character is shown in (d).

video frame. A blob warp is defined as a deformation
of the mesh and then a bilinear resampling of the texture
mapped triangles. By defining image warping in this way,
it is possible to harness hardware accelerated triangle tex-
ture mapping capabilities becoming prevalent in mid-end
workstations, and PC's.

An example of using the voodoo doll to control defor-
mation of a two-dimensional animated character is shown
in Fig. 2. In this case, the character is defined as a polyg-
onal model Fig. 2(a), with a texture map applied Fig. 2(b).
By directly deforming the voodoo doll Fig. 2(c), the user
can control the deformation of the character. The resulting
deformation of the character is shown in Fig. 2(d).

The same deformations used to warp the tracking blob
can be applied to a completely separate graphics object.
As was shown in this example, the approach can be used
to warp a 2D model. As will be seen later in this paper, the
approach can also be used to control the deformation of a
3D polyhedral model.

By deforming the voodoo doll, the user can control de-
formation of the graphics model with the benefit of haptic
feedback. Furthermore, since it is a visual interface, it is
an interface that is unencumbered by wires.

The voodoo doll input device not only allows for trans-
lation, scaling, and rotation, but also for bending, shearing,
tapering, and other nonrigid deformations. It is also pos-
sible for the user to select only a subset of deformation
parameters to be applied to the character. For instance, it
is possible to use the voodoo doll to control bending of the
character, while leaving rotation, translation, or other de-
formation parameters fixed.

2

4 Tracking Formulation: Active Blobs
Tracking is accomplished via the active blobs formulation.
To gain better robustness, active blobs incorporate infor-
mation about not only shape, but also color image ap-
pearance. Active blobs also provide some robustness to
photometric variations, including specular highlights and
shadows. By taking advantage of texture mapping hard-
ware, active blobs can track nonrigidly deforming shapes
at speeds approaching video frame rate. We will now give
an overview of the active blobs formulation. For a more
detailed formulation, readers are refered to [23].

4.1 Blob Warping
In the active blobs formulation, nonrigid deformation is
controlled by parametric functions. These functions are
applied to the vertices that define the active blob's two-
dimensional trianglular mesh:

X0 = f(X;u) (1)

where u is a vector containing deformation parameters,X
contains the undeformed mesh vertex locations, and X0

contains the resulting displaced vertices.
Image warping and interpolation are accomplished by

displacing the mesh vertices and then resampling using bi-
linear interpolation. Thus we define a warping function for
an input image, I:

I0 =W (I;u) (2)

where u is a vector containing warping parameters, and I0

is the resulting warped image.
Perhaps the simplest warping functions to be used are

those of a 2D affine model or an eight parameter projec-
tive model [24]. Unfortunately, these functions are only
suitable for approximating the rigid motion of a planar
patch. The functions can be extended to include linear and
quadratic polynomials [2]; however, the extended formula-
tion cannot model general nonrigid motion.

A more general parameterization of nonrigid motion
can be obtained via the use of the modal representation
[19]. In the modal representation, deformation is repre-
sented in terms of eigenvectors of a finite element (FE)
model. Taken together, modes form an orthogonal basis set
for describing nonrigid shape deformation. Deformation of
a triangle mesh can be expressed as the linear combination
of orthogonal modal displacements:

X0 = X+

mX

j=1

�j ~uj (3)

where ~uj is the jth mode's parameter value, and the eigen-
vector �j defines the displacement function for the j th

modal deformation.

The lowest order modes correspond with rigid degrees
of freedom. The higher-order modes correspond qualita-
tively with human notions of nonrigid deformation: scal-
ing, stretching, skewing, bending, etc. Such an ordering
of shape deformation allows us to select which types of
deformations are to be observed. For instance, it may be
desirable to make tracking rotation, position, and/or scale
independent. To do this, we ignore displacements in the
appropriate low-order modes.

4.2 Including Illumination in the Model
Surface illumination may vary as the user moves and ma-
nipulates the active voodoo doll. In order to account for
this we can derive a parameterization for modeling bright-
ness and contrast variations:

I0 = cW (I;u) + b; (4)

where b and c are brightness and contrast terms that are
implemented using the workstation's image blending func-
tionality.

Blob deformation and photometric parameters can now
be combined in generic parameter vector a. The image
warping function becomes:

I0 =W(I; a): (5)

5 Tracking
The first goal of our system is nonrigid shape tracking. To
achieve this, the system recovers warping parameters that
register a template image I0 with a stream of incoming
video images. The maximum likelihood solution to this
two image registration problem consists of minimizing the
squared error for all the pixels within the blob:

Eimage =
1

n

nX

i=1

e2i (6)

ei = kI0(xi; yi)� I(xi; yi)k (7)

where I0(xi; yi) is a pixel in the warped template image as
prescribed in Eq. 5, and I(xi; yi) is the pixel at the same
location in the input. The above equation is formulated for
comparing two color images; thus, it incorporates the sum
of squared difference over all channels at each pixel.

5.1 Robust Registration
Image registration can be corrupted by outliers. The pro-
cess can be made less sensitive to outliers if we replace the
quadratic error norm with a robust error norm [13]:

Eimage =
1

n

nX

i=1

�(ei; �); (8)

3

where � is a scale parameter that is determined based on
expected image noise. If it is assumed that noise is Gaus-
sian distributed, then the optimal error norm is simply the
quadratic norm �(ei; �) = e2i =2�

2. However, robust-
ness to outliers can be further improved via the use of a
Lorentzian influence function:

�(ei; �) = log(1 +
e2i
2�2

): (9)

This norm replaces the traditional quadratic norm found in
least squares, and is equivalent to the incorporation of an
analog outlier process in our objective function [3]. The
formulation results in better robustness to specular high-
lights and occlusions. For efficiency, the log function can
be implemented via table look-up.

Equation 8 includes a data term only; thus it only en-
forces the recovered model's fidelity to the image mea-
surements. The formulation can be extended to include
a regularizing term that enforces the priors on the model
parameters a:

E =
1

n

nX

i=1

�(ei; �) +

mX

j=1

a2j
2

j (10)

where where 2j are the penalties associated with changing
each parameter, and is a constant that controls the relative
importance of the regularization term. The penalties can be
derived directly from the modal stiffness obtained in modal
analysis [19].

5.2 Difference Decomposition
To minimize the energy (Equation 10) a difference decom-
position approach[12] is used. The approach offers the
benefit that it requires the equivalent O(1) image gradient
calculations and O(N) image products per iteration.

In the difference decomposition, we define a basis of
difference images generated by adding small changes to
each of the blob parameters. Each difference image takes
the form:

bk = I0 �W(I0;nk); (11)

where I0 is the template image, and nk is the parameter
displacement vector for the kth basis image, bk. Each re-
sultant difference image becomes a column in a difference
decomposition basis matrix B. This basis matrix can be
determined as a precomputation.

During tracking, an incoming image I is inverse warped
into the blob's coordinate system using the most recent
estimate of the warping parameters a. We then compute
the difference between the inverse-warped image and tem-
plate:

D = I0 �W
�1(I; a): (12)

This difference image D can then be approximated in
terms of a linear combination of the difference decomposi-
tion's basis vectors:

D � Bq; (13)

where q is a vector of basis coefficients.
Thus, the maximum likelihood estimate of q can be ob-

tained via least squares:

q = (BTB)�1BTD: (14)

The change in the image warping parameters is obtained
via matrix multiplication:

�a = Nq; (15)

where N has columns formed by the parameter displace-
ment vectors nk used in generating the difference basis.
The basis and inverse matrices can be precomputed; this is
the key to the difference decomposition's speed. If needed,
this minimization procedure can be iterated at each frame
until the percentage change in the error residual is below a
threshold, or the number of iterations exceeds some maxi-
mum.

The difference decomposition can be extended to incor-
porate the robust error norm of Eq. 9:

�bk(xi; yi) = sign(bk(xi; yi))
p
�(bk(xi; yi); �);

(16)

where bk(xi; yi) is the basis value at the ith pixel. The
difference templateD is computed using the same formula.
Finally, the formulation can be extended to include a and
a regularizing term that enforces the priors on the model
parameters as described in [23].

6 Using Observed Deformations to Animate
Objects

As the user manipulates the voodoo doll input device,
we want corresponding deformations to be applied to the
graphics model. The appropriate amounts of deformations
to be applied are determined through tracking the deform-
ing active blob as describe above.

We could apply the observed deformations directly to
the computer model. However, due to possible differences
in scale, orientation, and position, we need to first allow
the user to define the appropriate object-centered coordi-
nate frame and bounding box for the animated object. This
helps to establish a mapping between the coordinate spaces
of the voodoo doll input device and the animated model.

The voodoo doll and the graphics model may not have
the same overall shape or extent, and may have differ-
ent polygonal sampling. Therefore, we must employ an
interpolation scheme for mapping deformations from the

4

voodoo doll input device onto the graphics model. To be-
gin with, we position, rotate, and scale the model such that
its bounding box is the same as the voodoo doll's. Next
we use the doll's finite element interpolants to obtain the
modal displacement vectors of Eq. 3:

�0j =H(Xmodel)�j (17)

where �0j is the interpolated modal displacement vector de-
scribing how deformations of the voodoo doll are applied
at the graphics model's triangle mesh verticesXmodel. The
FE interpolation matrix, H, is formulated using Gaussian
interpolants as specified in [22].

To give the further control over deformation, we allow
the user to specify that only a subset of the observed defor-
mation parameters is to be applied to the graphics model.
For instance, it is possible to use the voodoo doll to con-
trol bending of the graphics model, while leaving rotation,
translation, and/or other deformation parameters fixed.

7 Implementation Details
Blob construction starts with the determination of a sup-
port region for the object of interest. The bounding con-
tour(s) for a support region can be extracted via a standard
4-connected contour following algorithm [20]. Alterna-
tively, the user can define a bounding contour for a region
via a sketch interface. In general, the number of contour
segments must be reduced. We utilize the tolerance band
approach, where the merging stage can be iteratively alter-
nated with recursive subdivision [14]. In practice, a single
merging pass is sufficient for a user-sketched boundary.

The triangles are then generated using an adaptation of
Ruppert's Delaunay refinement algorithm [21]. The algo-
rithm accepts two parameters that control angle and trian-
gle size constraints. To satisfy these constraints, additional
interior vertices may be added to the original polygon dur-
ing mesh generation. The source code is available from
http://www.netlib.org/voronoi/.

Once a triangle mesh has been generated, a RGB color
texture map is extracted from the example image. Each tri-
angle mesh vertex is given an index into the texture map
that corresponds to its pixel coordinate in the undeformed
example image I0. To improve convergence and noise im-
munity in tracking, the texture map is blurred using a Gaus-
sian filter. Texture map interpolation and rendering were
accomplished using OpenGL.

Given a triangle mesh, the FE model can be initial-
ized using Gaussian interpolants with finite support. Due
to space limitations, readers are directed to [22] for the
formulation. The generalized eigenvectors and eigenval-
ues are computed using code from the EISPACK library:
http://www.netlib.org/eispack/.

Finally, difference decomposition basis vectors are pre-
computed. In practice, four basis vectors per model param-

eter are sufficient. For each parameter ai, these four basis
images correspond with the difference patterns that result
by tweaking that parameter by ��i and �2�i. The factor
2�i corresponds to the maximum anticipated change in that
parameter per video frame.

8 Experimental Results
Our system was implemented on an Indigo2 Impact with
a 195Mhz R10K processor, 192MB RAM, and hardware
texture mapping. The code is written in C++ and all tim-
ings are reported for unoptimized code. In our interface,
both the tracking and the graphics object can be seen at
once in 2 separate 256x256 true color windows.

Fig. 3 shows an example of manipulation of a two-
dimensional object. The user grabs a decorated piece of
foam rubber that is moved and deformed. The region of
the foam that was circled by the user is used to track the
foam's movements.

The system observes the user manipulation of a de-
formable spongy object via the camera. Representative
frames from such a video sequence are shown in Fig. 3(a).
The system then tracks the motion of the object by tracking
a deformable region as shown in Fig. 3(b).

The recovered deformation parameters are then applied
to the computer model for animation as shown in Fig. 3(c).
Note that because the voodoo doll device and the graphics
model have different object coordinate systems, interpola-
tion and/or extrapolation of the deformations was used (as
described in Sec. 6).

It can be seen that the bunny character is following the
motion of the foam patch. This example uses 14 deforma-
tion modes. The blob used for tracking contains 8503 pix-
els and consists of 72 points with 112 triangles. The animal
object blob contains 10432 pixels and consists of 79 points
with 118 triangles. At 256x256 resolution tracking and
deformation occurred at interactive framerates, 6.6 frames
per second (fps). Thus there was no delay in the haptic and
visual feedback loop to the user controlling the deforma-
tion. At 128x128 resolution the same example runs at 10.2
fps with no loss in tracking quality.

In Fig. 4 a 3D object is deformed. In our interface, the
object can be rotated so it and the voodoo doll object being
manipulated by the user have the same orientation from the
users point of view. Doing this gives the user the illusion
of actually touching the object on the screen. The graph-
ics object moves just like the real object, and in this way,
it inherits the real object's physical properties. What was
once a rigid cardboard animal cracker box, now seems to
be made of soft spongy material.

In this example, 20 modes are used to perform the track-
ing. The tracking blob contains 17278 pixels and consists
of 61 points with 87 triangles. The 3D object is produced
by extruding the contour of the polygonal mesh of the ani-

5

(a)

(b)

(c)

Figure 3: Animating a bunny character via direct manipulation of a spongy object. The system observes the user manipulation of a
deformable spongy object via a camera; representative frames from such a video sequence are shown in (a). The system then tracks the
motion of the object by tracking a deformable region as shown in (b). The recovered deformation parameters are then applied to the
graphics model for animation as shown in (c).

mal cracker blob. It consists of 116 vertices with 226 trian-
gles. At 256x256 resolution the system runs at 3.3 fps. The
larger size of the tracking blob, the 3D rendering, and the
extra 6 modes make the system slower than in the first ex-
ample. However, at 128x128 resolution the same 20 mode
example runs at 8.2 fps using the same blob at half size
(4335 pixels) for tracking.

9 Conclusion

The Active Blobs formulation allows a level of control
rarely seen in an input device. Due to the increasing pop-
ularity of personal computer video cameras and hardware
texture mapping, Active Voodoo Dolls could perhaps be
used as a game controller for home use in a few years.
Games using this system could have characters capable
of bending around obstacles, squishing under tables, and
slithering around corners, with a level of control unavail-
able using conventional input devices. The main character
in the game could be controlled by a real life stuffed animal
likeness of it being moved in front of the camera.

Another possibility is to use the system as an computer
animation tool. A animator can bend a real object the way
he wants his synthesized object to bend. Because the phys-
ical object is actually being bent, there is an innate tactile
response of the object. Using the system this way provides
for a simple and inexpensive form of haptics.

One of the limitations of this system is that the track-

ing is two- dimensional, and all depth foreshortening ef-
fects in tracking must be overcome by the parametric warp-
ing functions used. Complex topologies extending along
the axis of the camera can provide difficulty in the form
of non-homogenous shading effects as well as occlusion.
However, the graphics object is not limited to be two-
dimensional, and can be three-dimensional with the defor-
mations applied to two dimensions. This gives the user the
feeling of manipulating a solid object on the screen.

References
[1] A. Azarbayejani, T. Starner, B. Horowitz, and A.P. Pent-

land. Visually controlled graphics. PAMI, 15(6):602–605,
June 1993.

[2] M. Black and Y. Yacoob. Tracking and recognizing rigid
and non-rigid facial motions using local parametric models
of image motion. Proc. ICCV, 1995.

[3] M.J. Black and A. Rangarajan. On the unification of line
processes, outlier rejection, and robust statistics with appli-
cations in early vision. IJCV, 19(1):57–91, 1996.

[4] A. Blake and M. Isard. 3D position, attitude and shape input
using video tracking of hands and lips. Proc. SIGGRAPH,
1994.

[5] A. Bobick. Movement, activity, and action: The role of
knowledge in the perception of motion. In Proc. Royal Soc.:
Special Issue on Knowledge-based Vision in Man and Ma-
chine, 1997.

6

(a)

(b)

(c)

Figure 4: Animating a three-dimensional animal cracker box via direct manipulation of a spongy object. The video sequence is shown
in row (a). The deformable region used for tracking is in row (b). In row (c) the deformation parameters are applied to two dimensions of
a three-dimensional animal cracker box.

[6] M. La Cascia, J. Isidoro, and S. Sclaroff. Head tracking
via robust registration in texture map images. Proc. CVPR,
1998 (to appear).

[7] T. Darrell and A. Pentland. Space-time gestures.
Proc. CVPR, 1993.

[8] D. DeCarlo and D. Metaxas. The integration of optical flow
and deformable models: Applications to human face shape
and motion estimation. Proc. CVPR, 1996.

[9] I. Essa, T. Darrell, and A. Pentland. Tracking facial motion.
MIT Media Lab, Vision and Modeling TR 272, 1994.

[10] I. Essa and A. Pentland. Coding, analysis, interpretation,
and recognition of facial expressions. PAMI, 19(7):757–
763, 1997.

[11] W. Freeman and C. Weissman. Television control by hand
gestures. In Proc. Intl. Workshop on Automatic Face- and
Gesture- Recognition, 1995.

[12] M. Gleicher. Projective registration with difference decom-
position. Proc. CVPR, 1997.

[13] F. Hampel, E. Ronchetti, P. Rousseeuw, and W. Stehel. Ro-
bust Statistics: The Approach Based on Influence Func-
tions. John Wiley and Sons, 1986.

[14] R. Jain, R. Kasturi, and B. Shunck. Machine Vision.
McGraw-Hill, 1995.

[15] M. Krueger. Virtual Reality II. Addison Wesley, 1990.

[16] P. Maes, T. Darrell, B. Blumberg, and A. Pentland. The alive
system: Wireless, full-body interaction with autonomous
agents. Multimedia Systems, 5(2):105–112, 1997.

[17] D. Metaxas and D. Terzopoulos. Shape and nonrigid mo-
tion estimation through physics-based synthesis. PAMI,
15(6):580 – 591, 1993.

[18] A. Pentland and B. Horowitz. Recovery of non-rigid motion
and structure. PAMI, 13(7):730–742, 1991.

[19] A. Pentland and J. Williams. Good vibrations : Modal
dynamics for graphics and animation. Proc. SIGGRAPH,
23(4):215–222, 1989.

[20] A. Rosenfeld and A. Kak. Digital Picture Processing. Aca-
demic Press, 1976.

[21] J. Ruppert. A Delaunay refinement algorithm for quality 2-
dimensional mesh generation. J. of Algorithms, 18(3):548–
585, 1995.

[22] S. Sclaroff. Modal Matching: A Method for Describing,
Comparing, and Manipulating Digital Signals. PhD thesis,
MIT Media Lab, 1995.

[23] S. Sclaroff and J. Isidoro. Active blobs. Proc. ICCV, 1998.

[24] R. Szeliski. Video mosaics for virtual environments. IEEE
CG&A, 16(2):22–30, 1996.

[25] D. Terzopoulos and K. Waters. Analysis and synthesis of
facial image sequences using physical and anatomical mod-
els. PAMI, 15(6), 1993.

[26] L. Williams. Performance-Driven Facial Animation.
Proc. SIGGRAPH, 24(4):235–242, 1990.

[27] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland.
Pfinder: Real-time tracking of the human body. PAMI,
19(7):780–785, 1997.

7

