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Abstract 

This paper presents a new way of computing inductive invariants 
in sequential designs. The invariants are useful for strengthening 
inductive proofs in difficult unbounded model checking instances. 
The proposed computation is scalable and can flexibly trade 
computational effort for the expressiveness of invariants proved. 
Experimental results on several benchmark families show that the 
proposed strengthening proves many hard properties, unsolved by 
other model checkers. The implementation is publicly available in 
the synthesis and verification system ABC. Runtimes are 
reasonable: the hardest problem with 5K primary inputs, 3K 
registers, and 64K AIG nodes takes 6 minutes.  

1 Introduction 
Model checking [11][28] safety and liveness properties involves 

proving that a safety property holds on all reachable states [2]. 
Many safety properties can be verified by proving the property on 
an inductive superset of reachable states. If the superset can be 
represented compactly, then such a method is easier and more 
scalable than deriving the exact set of reachable states. Finding 
such an inductive superset is called inductive strengthening. 

This paper introduces a new way of deriving and proving an 
additional inductive property, or invariant, that (1) can be 
effective for inductive strengthening and (2) leads to a flexible 
and scalable computation, trading computational effort for 
increased expressive power of the invariant derived. As a 
byproduct, the same invariant can be used as a source of external 
don’t cares for circuit restructuring in sequential logic synthesis. 

The proposed invariant consists of a set of clauses derived using 
m-input cuts of nodes in the sequential circuit. A cut is a boundary 
separating the node from the primary inputs and register outputs. 
Therefore the invariant is expressed in terms of groups of adjacent 
nodes in the network.  

This computation illustrates the synergy between logic 
synthesis and verification [8]. In the past, external don’t cares for 
logic synthesis were obtained by computing the set of unreachable 
states characterized by a function of the register outputs. 
However, even if these can be computed, scalability motivates the 
use of windowing where the computation is temporarily restricted 
to a group of nodes surrounding a node (or another window) to be 
optimized. Thus, to use the external don’t cares, they must be 
projected onto the inputs of the window. Therefore, the useful 
unreachable states have nontrivial projections onto the inputs of 
the windows, which form cuts in the network. The new idea is to 
skip computing the unreachable states and directly compute its 
projections onto various cuts. We expected this invariant to be 
useful for inductive strengthening, which turned out to be true.  

Induction [15][5][12] is a practical model checking method, 
applicable to large designs whose size and logic complexity often 
causes other methods (such as BDD-based reachability, 
interpolation, localization, etc) to fail. A property is inductive if it 
satisfies two conditions: (base case) it holds in the initial state, 
and (inductive case) if it holds in a state, then it holds in all states 
reachable from that state in one transition. Induction is scalable 
because both the base and inductive cases can be formulated as 
incremental instances of Boolean satisfiability (SAT) [12], which 
can be solved efficiently using modern SAT solvers [13].   

The rationale behind inductive strengthening is that a set of 
properties can be inductive when the individual properties are not. 
This is because the conjunction of a set of properties characterizes 
a smaller state space and may exclude states that fail induction for 
individual properties. 

In our method, the properties are clauses plus a target property, 
and the groups of variables participating in the clauses are derived 
using efficient m-cut computation, which is adopted from LUT-
based technology mapping [24]. It avoids exhaustive cut 
enumeration [27] and computes only a small subset of useful cuts 
using priority heuristics similar to those in [14].  

The initial set of candidate clauses is detected using two types 
of random simulation, combinational and sequential. Minterms at 
a cut that appear under combinational but never under sequential 
simulation are recorded. A candidate clause is the complement of 
such a minterm. This initial candidate set is iteratively refined 
using SAT-based induction. The greatest fixed-point yields the 
proposed inductive invariant, which over approximates reachable 
states if the initial state satisfies the invariant. 

To make this computation efficient, a flexible framework has 
been developed for trading the number and expressiveness of the 
set of clauses for computation time. The clauses are proved in 
batches, each of which successively refines the already computed 
approximation of the reachable states. The process is stopped 
when the target property becomes inductive, or when a sufficient 
number of clauses is successfully proved. 

Scalability is achieved by using heuristics for candidate clause 
generation and filtering. One heuristic limits clauses to those 
derived for cuts a few logic levels from the register outputs. 
Inductive proofs for such shallow clauses can be processed 
efficiently by partitioning the design and solving partitions in 
parallel without compromising the completeness of the result. A 
similar approach was used in [25] to partition inductive proofs for 
register correspondence.  

The rest of the paper is organized as follows. Section 2 
describes further background and relations with previous work. 
Section 3 describes the algorithms used for inductive 
strengthening. Section 4 discusses application to logic synthesis. 
Section 5 reports experimental results. Section 6 concludes the 
paper and outlines future work. 



2 Background and Related Research 

A Boolean network is a directed acyclic graph (DAG) with 
nodes corresponding to logic gates and directed edges 
corresponding to wires connecting the gates. The terms Boolean 
network, design and circuit are used interchangeably in this paper.  

A node n has zero or more fanins, i.e. nodes that are driving n, 
and zero or more fanouts, i.e. nodes driven by n. The primary 
inputs (PIs) are nodes without fanins in the current network. The 
primary outputs (POs) are a subset of nodes of the network. It is 
assumed that each node has a unique integer called node ID.  

A fanin (fanout) cone of node n is a subset of all nodes of the 
network, reachable through the fanin (fanout) edges from the 
given node. A topological order of nodes in the network is an 
order in which any node follows all its fanins.  

If the network is sequential, the memory elements are assumed 
to be D-flip-flops. The terms memory elements, flop-flops, and 
registers are used interchangeably in this paper. The registers are 
assumed to have a fixed binary initial state. If a register has an 
unknown or a don’t-care initial state, it can be transformed to 
have 0-initial state by adding a new PI and a MUX controlled by 
a special register that produces 0 in the first frame and 1 
afterwards. So without loss of generality, we consider only 
registers with a 0 initial state. The set of reachable states includes 
the initial state and all the states reachable from it by any input 
sequence.  

An And-Inverter Graph (AIG) is a Boolean network composed 
of two-input ANDs and inverters represented as complemented 
attributes on the edges. Structural hashing of AIGs ensures that 
all constants are propagated and that each AND-node is 
structurally unique, that is, there is no other node having the same 
fanins (up to permutation). Structural hashing is performed by one 
hash-table lookup when AND-nodes are created and added to an 
AIG manager. When an AIG is modified and incrementally 
rehashed, the changes are propagated to the fanouts, which may 
lead to rehashing large portions of AIG nodes. 

A cut C of node n, called root, is a set of nodes of the network, 
called leaves, such that each path from a PI to n passes through at 
least one leaf. A cut is m-feasible if its size does not exceed m and 
is dominated if it contains a cut of the same root.   

A literal of a Boolean variable is the variable or its 
complement. Given a set of variables x (e.g. the set of leaves of 
cut C), a minterm is a product of literals, one for each variable in 
the set. The complement of a minterm is a clause. A product of 
clauses is a Conjunctive Normal Form (CNF). Boolean 
satisfiability (SAT) is the problem of determining whether a CNF 
represents the constant 0 function. SAT solving is the process of 
solving this problem. SAT-based method is a method that reduces 
a given problem to SAT and solves it using a SAT solver. 

Simulation is a way of computing node values in a circuit under 
given input values. Random simulation uses random or biased 
random input values. Simulation assigns values at the inputs and 
evaluates the internal nodes in a topological order. Simulation is 
typically performed bitwise, where 32 or 64 input patterns are 
evaluated using a single machine operation. Simulation 
information of a node is stored in a bit-string composed of many 
machine words. It is computed by a sequence of bitwise 
operations using the simulation information of the node’s fanins. 

A combinational invariant is a relation among arbitrary signals 
in the network that holds in all states. A sequential invariant is a 
relation that holds in all reachable states. A sequential invariant 
can be seen as a characterization of a set of states for which it 
holds. This set includes the set of reachable states and possibly 

some unreachable states. A typical sequential invariant is equality 
among two registers outputs that does not hold combinationally 
(in all states) but holds sequentially (in all reachable states).  

A candidate sequential invariant is an invariant that has not yet 
been proved (e.g. by induction or interpolation) but is suspected 
to hold (e.g. after several rounds of simulation). Such invariants 
express properties that should be proved, e.g. mutual exclusion of 
the values at two primary outputs. Model checking focuses on 
proving user-specified properties.  

Induction is often used to prove sequential invariants. Its use for 
sequential designs was pioneered in [15] and further developed in 
[5][26][17]. A sequential invariant is inductive when: (base case) 
it holds in the initial state, and (inductive case) if it holds in a 
state, then it holds in all states reachable from that state in one 
transition.  

When an invariant is proved inductively, the base and the 
inductive cases are formulated as SAT instances and solved by a 
SAT solver. The solution is incremental because each property in 
the invariant is checked independently. This can be done 
efficiently using an incremental interface of a modern SAT solver 
[13]. More details on SAT-based induction can be found in [25]. 

The set of all reachable states is an inductive sequential 
invariant. However, not every sequential invariant is inductive. 
For example, consider an unreachable state s that has a transition 
into it from state t. The complement of the minterm composed of 
register variables representing s is a sequential invariant because 
it holds in all reachable states. This invariant is not inductive 
because it holds in t but not in s. The state failing the inductive 
case (in this case t) is called an induction leak.  

Several ways of strengthening induction are known: 
• Extending simple induction to k-step induction (k > 1) [15]. 
• Using unique-state constraints [12]. 
• Using equivalences expressed over register outputs (register 

correspondence) or over arbitrary signals in the network 
(signal correspondence) [15][26][17][25]. 

• Applying signal correspondence after timeframe expansion, 
hoping this will capture additional equivalences among 
signals across different timeframes in the original design. 

• Using implications of signals in the network [5][9][10]. 
• Using p-th invariants, that is, invariants that hold starting 

from frame p from the initial state (p > 1) [16]. 
• Incrementally computing inductive clauses in terms of 

register variables using counter-examples to induction [7]. 
 We propose using inductive strengthening, based on generating 

an invariant in the form of a set of m-literal clauses. The method 
is a generalization of [9], [10], and [7], as shown in Section 3.4.  

3 Computing inductive invariants 
This section presents a new algorithm for computing inductive 

invariants in a sequential network. The algorithm is presented for 
AIGs but it is equally applicable to general logic networks.  

The overall pseudo-code of the algorithm is shown in Figure 3. 
Details are given in the subsections listed in the parentheses.  

The computation starts by enumerating for each node a subset 
of m-cuts using procedure aigEnumerateCuts (Section 3.1).  

Next, two rounds of simulation are performed. For each cut of 
size m, all 2m value assignments of the cut leaves are considered. 
Simulation information is used to determine if each assignment is 
likely to appear only under unreachable states. A clause derived 
from each such assignment by complementing its literals yields a 
candidate invariant. A number of candidate clauses are collected 
and filtered using simulation information in the procedure 
aigComputeCandidates (Section 3.2).    



A set of clauses representing the candidate invariant is checked 
by the base case and then by an iterative refinement procedure 
performInductiveCase, similar to that of van Eijk [15]. When 
this procedure terminates, the set of remaining clauses, if it is 
non-empty, represents an inductive invariant. If strengthening is 
not sufficient (determined by procedure checkSufficient), another 
round of invariant computation is performed. The candidates 
considered next are those not contained in the already proved set. 
As a result, new invariants that are proved provide ever tighter 
approximations of the state space (Section 3.3). 

 
set of clauses  computeInvariants( aig N, parameters P ) 
{ 
         // compute m-cuts for all nodes 
         aigEnumerateCuts( N, P ); 

          

         // perform two rounds of simulation  
         aigSimulateComb( N, P ); 
         aigSimulateSeq( N, P ); 

          

         // iterate while the set of clauses is not sufficient 
         set of clauses S = ∅; 

while ( !checkSufficient( S ) ) { 
             

                // compute candidate clauses 
                set of clauses C = aigComputeCandidates( N, P ); 

             

                // refine the candidates using the base case 
                C = performBaseCase( C, N, P ); 

                

                // refine the candidates using van Eijk’s loop 
      do { 

                        C = performInductiveCase( C, N, P ); 
       }  
       while ( checkChanges( C ) ); 
             

                 // add newly proved invariant to the set 
                 S = S ∪ C; 

} 
         return S; 
} 

Figure 3. Pseudo-code for computing inductive invariants. 
 

3.1 Cut computation 

For two sets of cuts A and B,  the operation A ◊ B is defined as:  
A ◊ B = { u ∪ v | u ∈ A, v ∈ B, |u ∪ v| ≤ m }. 

Let Φ(n) denote the set of m-feasible cuts of node n. If n is an 
AND node, let n1 and n2 denote its fanins. Φ(n) is computed using 
the sets of cuts of its fanins:  

1 2

{{ }} : PI
( )

{{ }} ( ) ( ) : otherwise
n n

n
n n n

∈ 
Φ =  ∪Φ ◊Φ 

. 

Performing cut computation for the nodes in a topological order 
guarantees that the fanin cuts, Φ(n1) and Φ(n2), are available 
when the node cuts, Φ(n), are computed. The set of computed 
cuts is filtered by removing dominated cuts. This reduces runtime 
and memory without sacrifiying the expressiveness of cuts 
computed. 

The above complete cut enumeration [25] is practical for small 
m (m < 6). For larger m, the above procedure can be 
supplemented with a method to compute a subset of all m-cuts 
meeting some criteria. These cuts are called priority cuts [24]. 
The criterion used to prioritize the cuts for invariant computation 
is to prefer cuts with a larger average number of fanouts of the 
leaves of a cut. A similar criterion was used in [14].  

3.2 Collecting candidates 

Two rounds of simulation are performed, combinational and 
sequential. Combinational simulation assumes random values at 
the primary inputs and register outputs, which are treated as 
additional primary inputs. Sequential simulation assumes random 
values at the primary inputs while the register outputs are set to 
the initial state. This simulation iterates over the circuit several 
times, setting the register outputs to the register inputs computed 
on the previous step. The difference between these two types of 
simulation is that combinational simulation produces values under 
any state while sequential produces values under reachable states. 

Candidate clauses are collected by considering the m-cuts of all 
nodes in the AIG. Each node has two types of simulated 
minterms. A cut is analyzed to determine what values appear at 
the cut inputs. Suppose assignment 0 1 1... mx x x −%% %  appears N times at 
the cut inputs under combinational simulation but does not appear 
under sequential simulation. This indicates that this assignment 
may be produced by N or fewer states that are unreachable from 
the initial state. Thus, this assignment is likely never produced on 
the reachable states and the complement of this assignment, the 
clause 0 1 1... mx x x −∨ ∨ ∨% % % , is likely true for all reachable states. 
All such clauses are accumulated and used as candidates.  

It should be noted that this approach misses some combinational 
minterms due to the fact that combinational simulation is not 
exhaustive, but this only affects the completeness of the method. 
Moreover, since such minterms do not readily appear under 
combinational simulation, they are not likely to substantially 
refine the characterization of the state space.  

Except for small circuits and small values of m, the number of 
candidate clauses can be large. For example, on a circuit with 1K 
registers and 15K AIG nodes, there may be 50K candidate clauses 
computed using the set of all 4-cuts. In such cases, the invariants 
can be filtered by the following heuristic. The larger is N, the 
more likely is that the minterm characterizes unreachable states. 
Our implementation has a user-controlled parameter, which limits 
the number of the highest-scoring clauses considered. This 
heuristic plays an important role in selecting useful candidates.  

The set of candidate clauses can lead to a stronger inductive 
invariant if it is supplemented with the candidate clauses 
expressing one-hotness conditions. These conditions are two-
literal clauses involving register outputs and can be easily 
computed using sequential simulation information. Most of these 
additional clauses cannot be collected as candidates using cuts 
because cuts include literals in the vicinity of some node, while 
one-hotness, if applicable, can relate registers that are far apart.  

We found that adding the candidate one-hotness conditions 
often improves the performance of the algorithm. One reason for 
this is that many industrial designs use one-hot encoding for at 
least some of the registers. 

3.3 Proving candidates 

The well-known van Eijk procedure [15] is used to process the 
candidates and prove some of them. First, those candidates that do 
not satisfy the base case are removed. Second, the inductive case 
is performed by asserting the clauses in the first frame and 
checking them in the next frame. The counter-examples are used 
to refine the remaining properties to be proved. The failing 
clauses are removed and refinement is iterated as long as the set 
of clauses keeps changing. When a fixed point is reached, the 
resulting set, if it is non-empty, represents an inductive invariant.  



To derive a sufficiently tight invariant, the van Eijk procedure 
can be applied to one set after another. An invariant proved in a 
previous run is assumed in the next run. Since the previous 
clauses form an invariant, there is no need to re-prove them; only 
new clauses need to be proved. This results in accumulating 
clauses, which increasingly refine the invariant. New candidate 
clauses are collected only if they refine the current invariant. If 
cuts of the given size (m) do not yield additional clauses, the cut 
size can be increased to find new candidates to continue refining 
the invariant. This strengthening enhances van Eijk’s procedure 
and allows tighter invariants to be found efficiently. 

The “sufficiency” of the resulting invariant depends on the 
application. In model checking, it is sufficient if the invariant 
implies the target property. In logic synthesis, it is sufficient if it 
contains “enough” flexibility to do substantial logic restructuring.  

In model checking, the procedure can stop as soon as the proved  
invariant implies the target property. For this, the target property 
is added to the set of candidate clauses. If the property remains in 
the fixed point, it is proved. Otherwise, a new set of clauses is 
considered that provides a tighter approximation of the reached 
state set and has a better chance to prove the target property. 

3.4 Comparison with previous work 

For a description of other SAT-based approaches to model 
checking, refer to [28] and for an overview of recent work in 
induction strengthening refer to [10][7]. 

The proposed approach can be seen as a generalization of three 
previous approaches [9][10][7]. The following is a comparison: 
• Computation of m-cuts scales better than that of implications 

between signal pairs because priority cuts [24] only take 
linear-time in circuit size to compute while computing 
implications takes quadratic-time [10]. 

• The m-literal clauses have more expressive power because 
implications used in [9][10] are two-literal clauses. 

• Our flexible framework for inductively proving groups of 
m-literal clauses is similar to [9], with novel heuristics to 
prioritize clauses according to their expressive power. 

• The m-clauses are computed in terms of internal variables 
rather than register outputs as done in [7], which increases 
the expressive power of the invariants. 

• The m-clause candidates are computed by simulation rather 
than from counter-examples as done in [7], which is less 
time-consuming and avoids the risk of not having inductive 
sub-clauses. 

• The inductive proof for m-clauses, with the cuts limited to a 
few levels from the register outputs, can use partitioning 
similar to [25] which increases the possibility that the 
proposed approach works for designs of any size. 

• Adding signal-correspondence and one-hotness invariants, 
which was not used in [9][10][7] gives additional strength to 
the proposed approach.  

4 Application to Logic Synthesis 
The inductive invariants proved by this method compactly 

represent unreachable state information useful as flexibility in 
circuit restructuring during logic synthesis with don’t-cares [21]. 

The following are advantages of this approach compared to 
using other types of sequential flexibility: 
• Complete set of unreachable states 
Except for small circuits, the reachable state set is hard or 
impossible to obtain. BDD-based methods for computing this 
set mostly fail on circuits with more than a 50-100 registers. 

Another disadvantage is that, if the unreachable state 
information represented with BDDs is used in sequential 
synthesis, sequential equivalence checking (SEC) is very hard 
because it doubles the number of registers. In contrast, when the 
proposed invariants are used, sequential verification tends to be 
easier because the inductive nature of the invariants tends to 
increase inductiveness of the associated SEC problems.  
• Equivalences in terms of internal signals 
Signal equivalences in terms of internal signals (signal 
correspondences) have been shown to be a powerful vehicle for 
capturing sequential flexibility. Sequential synthesis based on 
this flexibility can lead to substantial reductions in area and 
register count [25]. However, the best use of this flexibility for 
circuit restructuring, is to collapse the equivalent nodes into a 
single node and remove the others. This reduces the circuit but 
does not allow for a more fine-grain circuit restructuring 
afforded by the m-cut invariants. This is why signal equivalence 
should be computed and used as a preprocessing step before 
using the proposed inductive invariant. 
• Implications in terms of internal signals 
Signal implications among internal signals provide additional 
expressive power, compared to signal equivalences and can be 
useful in logic synthesis [9]. Detection of implications can be 
done similarly to the proposed invariants, using simulation 
information. However, m-literal clauses are more expressive 
compared to implications (2-literal clauses). In addition, 
collecting implications is harder and may require a procedure 
quadratic in the number of nodes, while collecting m-literal 
clauses is linear when priority cuts are used.   

5 Experimental Results 
The proposed algorithms are implemented in ABC [1] as 

command indcut. The SAT solver is a modified version of 
MiniSat-C_v1.14.1 [13]. The workstation used has two dual-core 
AMD Opteron 2218 CPUs with 16Gb RAM, and runs x86_64 
GNU/Linux. Only one core was used in the experiments. 

Experiments were performed using several suites of model 
checking benchmarks: (1) Intel benchmarks from the hardware 
model checking competition at CAV ’07 [4], (2) a set of PicoJava 
II benchmarks [19], and (3) TIP benchmarks [12]. The model 
checking competition [4] included three other benchmark suites: 
(a) the TIP benchmarks, (b) the AMBA benchmarks (all unsat), 
and (c) the L2S benchmarks (9 unsat cases). The unsat cases from 
the latter two suites could be solved easily using signal 
correspondence (command ssw) [25] after combinational 
synthesis (command dcompress2). Since the proposed algorithm 
is developed as a method to be applied when other methods fail, 
we do not report its performance on the AMBA and L2S suites. 

Command indcut was used in all reported experiments with the 
following default set of parameters: induction depth (K = 1), cut 
size (M = 4), the limit on the number of candidate clauses 
collected (C = 5000), the maximum level of the nodes whose cuts 
are considered (L = 8), the number of times invariant computation 
was iterated (B  = 1). 

5.1 Intel benchmarks 

This set includes 42 unsat model checking benchmarks, out of 
which only 9 were solved by solvers submitted to the model 
checking competition [4]. The proposed algorithm solved the 
complete set of 42 benchmarks in 40 minutes. The detailed results 
are reported in Table 5.1.  

The following notation is used in the table. Column “Example” 
lists the name of a benchmark. Columns “PI”/”PO”/”Reg”/”AIG” 



show the number of primary inputs, primary outputs, registers and 
2-input AND nodes in the And-Inverter Graph (AIG) that 
represented the circuit after fast preprocessing that was done 
using commands scl –l and dcompress2 in ABC. The first of these 
commands performs sequential cleanup, merges registers with 
identical combinational inputs and sweeps away stuck-at-constant 
registers. Column “Cut” shows the total number of 4-input cuts 
computed for the AIG. Columns “Clauses” shows the number of 
clauses. Subcolumns “Cand” and “Proved” list candidate clauses 
collected and clauses proved inductively, respectively.  

Finally, the runtime in seconds is reported in the last three 
columns. These columns contain the runtime of preprocessing, the 
runtime of the inductive case, and the total runtime of command 
indcut. The preprocessing runtime involves cut computation, 
candidate clause generation, and filtering clauses using the base 
case of the inductive procedure (bounded model checking). 

5.2 PicoJava benchmarks 

The complete set of PicoJava benchmarks includes 20 unsat 
problems. After preprocessing with register sweep (command scl 
–l), combinational synthesis (command dcompress2) and signal 
correspondence (command ssw), 9 out 20 problems were already 
solved. This preprocessing for the complete set of 20 problems 
took 214 seconds.  

The remaining 11 benchmarks after preprocessing were solved 
by command indcut. The detailed results are shown in Table 5.2 
where the notation is the same as in Table 5.1. 

Table 5.2 shows that, for many benchmarks, the computation of 
candidate clauses was stopped after reaching the limit (5000). 
Approximately 45% of the candidates were proved inductively. 
Although the set of proved clauses is incomplete, it was sufficient 
to imply the target property for all of the considered problems.  

5.3 TIP benchmarks 

These benchmarks are among the smallest and the most well-
studied model checking benchmarks [12]. The original set of 158 
testcases includes both sat and unsat problems. First, this set was 
filtered by removing all problems provable by signal 
correspondence with induction depth K = 4 (command ssw -F 4) 
or disproved by BMC of depth 100 (command bmc –F 100). This 
led to a subset containing 51 “hard” TIP problems.  

Applying indcut with default settings these 51 problems solved 
41 of them, with runtime for each benchmark not exceeding 1 
second. Interestingly, some of the benchmarks solved by indcut 
could also be proved by signal correspondence with very large 
induction depth. Thus, cmu_periodic_N could be proved by 
ssw -F 96 (K = 96) in 30 sec, while indcut solved it in 0.2 sec.  

The 10 remaining benchmarks not solved by indcut are: 
cmu_dme1_B, cmu_dme2_B, irst_dme4_B, irst_dme5_B, 
irst_dme6_B, nusmv_dme1-16_B, nusmv_dme2-16_B, 
texas_two_proc_6_E, vis_coherence_3_E, vis_coherence_4_E. 
These benchmarks could not be solved by indcut even when we 
modified the default set of parameters. In all cases, a subset of 
clauses was proved inductively, but the resulting invariant was 
not sufficient to imply the target property, while other candidate 
clauses implying it were not inductive. We believe that none of 
the model checkers submitted to the model checking competition 
[4] was able to solve these 10 benchmarks. 

6 Conclusions and Future Work 
This paper proposes a new method for inductively strengthening 

model checking of safety properties. The method supplements 
existing methods and is useful for proving hard unsat problems. 

In combination with other synthesis and verification algorithms 
implemented in ABC, the proposed method solved 334 of the 344 
benchmarks from the model checking competition [4]. The 
remaining 10, plus another 27 of the 344 problems solved by the 
proposed method, were not solved by any of the entrants in the 15 
minutes allowed for each example. The hardest Intel example 
took 6 minutes while the hardest PicoJava example took 10 
seconds.  

In summary, the contributions of this paper are:  
• A new efficient method for expressing candidate invariants 

using m-clauses formulated for the nodes in the circuit. 
• A scalable hierarchical approach to proving the candidate 

invariants, which trades off computational effort for the 
number and expressiveness of invariants generated. 

• Experiments using several benchmark suites to show that 
the proposed method can solve many difficult problems. 

Future work will include: 
• Further experiments and fine tuning using benchmarks 

contributed by industrial collaborators. 
• Integrating the induction strengthening engine into robust 

equivalence and model checkers. 
• Using the computed invariant clause sets as don’t-cares for 

circuit restructuring in logic synthesis. 
• Performing direct comparison with industrial model 

checkers. 

Acknowledgements 
This work was supported in part by SRC contracts 1361.001 

and 1444.001, NSF grant CCF-0702668, and the California Micro 
Program with industrial sponsors Actel, Altera, Calypto, Intel, 
Magma, Synopsys, Synplicity, and Xilinx.  

References 
[1] Berkeley Logic Synthesis and Verification Group. ABC: A System 

for Sequential Synthesis and Verification. Release 70930. 
http://www-cad.eecs.berkeley.edu/~alanmi/abc 

[2]  A. Biere, C. Artho, V. Schuppan, “Liveness checking as safety 
checking”. Proc. Intl. Workshop on Formal Methods for Industrial 
Critical Systems (FMICS'02), ENTCS, Vol. 66(2). 

[3] A. Biere. AIGER format and toolbox. http://fmv.jku.at/aiger/ 
[4] A. Biere and T. Jussila. Hardware model checking competition at 

CAV’06. http://fmv.jku.at/hwmcc/ 
[5] P. Bjesse and K. Claessen. “SAT-based verification without state 

space traversal”. Proc. FMCAD'00. LNCS, Vol. 1954, pp. 372-389. 
[6] P. Bjesse and J. Kukula, “Automatic generalized phase abstraction 

for formal verification”, Proc. ICCAD’06, pp. 1076-1082.  
[7] A. R. Bradley and Z. Manna, “Checking safety by inductive 

generalization of counterexamples to induction”, Proc. FMCAD ’07. 
[8] R. Brayton, “The synergy between logic synthesis and equivalence 

checking”, Keynote at FMCAD’07. http://www.cs.utexas.edu/users/ 
hunt/FMCAD/2007/presentations/fmcad07_brayton.ppt 

[9] M. L. Case, A. Mishchenko, and R. K. Brayton, "Inductively finding 
a reachable state space over-approximation", Proc. IWLS '06, pp. 
172-179. http://www.eecs.berkeley.edu/~alanmi/publications/ 
2006/iwls06_inv.pdf 

[10] M. L. Case, A. Mishchenko, and R. K. Brayton, "Automated 
extraction of inductive invariants to aid model checking", Proc. 
FMCAD '07, pp. 165-172. http://www.eecs.berkeley.edu/~alanmi/ 
publications/2007/fmcad07_ind.pdf 

[11]  E. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 
1999. 



[12] N. Een and N. Sörensson, “Temporal induction by incremental SAT 
solving”, Proc. BMC’03, ENTCS, Vol. 89(4). 

[13] N. Een and N. Sörensson, “An extensible SAT-solver”. SAT ‘03. 
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat 

[14] N. Een, “Cut sweeping”, Cadence Technical Report 2007. 
http://minisat.se/downloads/CutSweeping.ps.gz 

[15] C. A. J. van Eijk. “Sequential equivalence checking based on 
structural similarities”, IEEE TCAD, Vol. 19(7), July 2000, pp. 814-
819. 

[16] F. Lu and K.-T. Cheng. “Sequential equivalence checking based on 
k-th invariants and circuit SAT solving”. Proc. HLDVT’05. 

[17] F. Lu and T. Cheng. “IChecker: An efficient checker for inductive 
invariants”. Proc. HLDVT ’06, pp. 176-180. 

[18] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, "Robust 
boolean reasoning for equivalence checking and functional property 
verification", IEEE Trans. CAD, Vol. 21(12), 2002, pp. 1377-1394. 

[19] K. L. McMillan and N. Amla, “Automatic abstraction without 
counterexamples.” Proc. TACAS ‘03, LNCS, Vol. 2619, Springer, 
pp. 2-17. 

[20] K. L. McMillan. “Interpolation and SAT-Based model checking”. 
Proc. CAV’03, pp. 1-13. 

[21] A. Mishchenko and R. Brayton, "SAT-based complete don't-care 
computation for network optimization", Proc. DATE '05, pp. 418-
423. 

[22] A. Mishchenko, S. Chatterjee, and R. Brayton, "DAG-aware AIG 
rewriting: A fresh look at combinational logic synthesis", Proc. DAC 

'06, pp. 532-536. http://www.eecs.berkeley.edu/~alanmi/ 
publications/2006/dac06_rwr.pdf 

[23] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een, 
"Improvements to combinational equivalence checking", Proc. 
ICCAD '06, pp. 836-843 http://www.eecs.berkeley.edu/~alanmi/ 
publications/2006/iccad06_cec.pdf 

[24] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, 
“Combinational and sequential mapping with priority cuts”, Proc. 
ICCAD ’07, pp. 354-361. http://www.eecs.berkeley.edu/~alanmi/ 
publications/ 2007/iccad07_map.pdf 

[25] A. Mishchenko, M. Case, R. Brayton, and S. Jang, "Scalable and 
scalably-verifiable sequential synthesis", Submitted DAC'08. http:// 
www.eecs.berkeley.edu/~alanmi/publications/2008/dac08_vss.pdf 

[26] H. Mony, J. Baumgartner, V. Paruthi, and R. Kanzelman. 
“Exploiting suspected redundancy without proving it”. Proc. 
DAC’05, pp. 463-466. 

[27] P. Pan and C.-C. Lin, “A new retiming-based technology mapping 
algorithm for LUT-based FPGAs,” Proc. FPGA ’98, pp. 35-42. 

[28] M. Prasad, A. Biere, and A. Gupta. ”A survey of recent advances in 
SAT-based formal verification”, Intl. Journal on Software Tools for 
Technology Transfer (STTT), Springer 2005, Vol. 7 (2), pp. 156-173. 
http://fmv.jku.at/papers/PrasadBiereGupta-STTT-7-2-2005.pdf 

[29] E. Sentovich et al. “SIS: A system for sequential circuit synthesis”. 
Tech. Rep. UCB/ERI, M92/41, ERL, Dept. of EECS, UC Berkeley, 
1992. 

 
 

 

 

Table 5.2. Experimental results for PicoJava benchmarks [19]. 

Clauses Runtime, sec 
Example PI PO Reg AIG Cut Cand Proved Iter Prepro Induct Total 

pj005 439 1 342 7486 29855 4706 2686 4 3.00 2.36 5.36 
pj006 1277 1 703 17542 28881 5000 1762 4 3.21 4.70 7.91 
pj007 396 1 314 7224 28865 5000 2522 4 2.90 1.75 4.65 
pj008 446 1 338 7555 29722 4682 2712 4 2.99 1.71 4.70 
pj009 336 1 269 6844 27092 5000 1955 6 2.69 1.69 4.38 
pj010 366 1 295 7493 27128 5000 2171 5 2.75 1.68 4.43 
pj015 1322 1 775 18964 33495 5000 1575 5 3.78 6.62 10.40 
pj016 1190 1 671 17000 28214 5000 2535 4 3.07 5.41 8.48 
pj017 626 1 440 12345 11290 5000 1613 4 1.35 2.62 3.97 
pj018 514 1 386 9461 9619 5000 2248 5 1.09 2.03 3.12 
pj019 476 1 383 10467 40885 4322 2415 5 4.06 2.43 6.49 
Ratio      1.00 0.45  0.50 0.50 1.00 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 5.1. Experimental results for Intel benchmarks [4]. 

Clauses Runtime, sec 
Example PI PO Reg AIG Cut Cand Proved Iter Prepro Induct Total 

intel_001 31 1 23 162 631 284 273 1 0.06 0.00 0.06 
intel_002 72 1 44 632 2427 397 387 1 0.20 0.01 0.21 
intel_003 82 1 47 739 2953 474 450 2 0.25 0.00 0.25 
intel_004 82 1 41 479 1628 438 431 1 0.15 0.00 0.15 
intel_005 165 1 69 1290 4333 343 315 1 0.40 0.00 0.40 
intel_006 345 1 182 2394 6023 913 873 2 0.56 0.03 0.59 
intel_007 1302 1 608 10192 39845 2655 2588 2 3.54 0.32 3.86 
intel_009 5400 1 2924 64112 144072 3418 1710 6 45.79 314.31 360.10 
intel_010 534 1 367 6096 19820 1820 1686 2 1.85 0.56 2.41 
intel_011 528 1 361 6015 19420 1901 1851 2 1.82 0.49 2.31 
intel_012 5874 1 3153 61530 136138 3863 1435 5 14.61 36.10 50.71 
intel_013 13284 1 7134 138310 306933 5000 1298 8 44.80 227.61 272.41 
intel_014 4293 1 2376 43362 100189 3841 1331 8 10.80 34.20 45.00 
intel_015 548 1 381 5621 18019 1993 1912 2 1.68 0.37 2.05 
intel_016 2232 1 1353 19701 60045 5000 1620 15 6.06 43.68 49.74 
intel_017 613 1 401 4192 12285 2196 1780 2 1.15 0.43 1.58 
intel_018 486 1 321 4537 13722 1578 1518 2 1.26 0.27 1.53 
intel_019 505 1 338 4669 14437 1617 1554 2 1.33 0.29 1.62 
intel_020 349 1 233 3837 11864 1030 1006 2 1.10 0.13 1.23 
intel_021 360 1 244 3949 12619 1099 1044 2 1.16 0.19 1.35 
intel_022 525 1 358 5865 19424 1762 1684 2 1.84 0.48 2.32 
intel_023 353 1 240 3872 12763 1266 1218 2 1.18 0.17 1.35 
intel_024 352 1 239 3887 12720 1181 1129 2 1.18 0.14 1.32 
intel_025 1112 1 654 9343 29196 3011 2921 2 2.75 0.75 3.50 
intel_026 486 1 349 4118 11337 1787 1722 2 1.04 0.17 1.21 
intel_027 5127 1 2783 56164 121856 4030 1477 8 13.25 39.93 53.18 
intel_028 7426 1 3951 77104 168010 3588 1480 6 18.57 55.44 74.01 
intel_029 559 1 389 5804 18626 2024 1938 2 1.73 0.45 2.18 
intel_030 5400 1 2922 64053 145282 3021 2701 2 43.55 75.02 118.57 
intel_031 523 1 359 5960 19031 1899 1724 3 1.78 0.79 2.57 
intel_032 890 1 636 10532 34871 5000 1002 27 3.48 33.39 36.87 
intel_033 4419 1 2414 53334 119353 3368 2873 2 32.56 53.63 86.19 
intel_034 3292 1 2413 20944 52652 5000 2557 2 5.53 12.46 17.99 
intel_035 4407 1 2414 52786 121561 2970 2671 2 33.00 48.50 81.50 
intel_036 5807 1 3179 68984 157770 3527 2163 3 51.18 167.81 218.99 
intel_037 5911 1 3196 62306 138475 4120 1380 7 14.95 54.87 69.82 
intel_038 8992 1 4888 86703 198254 5000 954 5 21.04 94.87 115.91 
intel_039 9493 1 5170 89510 209100 5000 1690 5 27.18 110.21 137.39 
intel_040 9499 1 5179 88096 203717 5000 1497 4 20.90 70.60 91.50 
intel_041 9261 1 5022 88455 204509 5000 1347 5 24.03 99.74 123.77 
intel_042 8994 1 4884 86659 198813 5000 1382 4 22.72 80.21 102.93 
intel_043 7213 1 3830 74804 162046 3513 1561 5 18.15 42.28 60.43 
Ratio      1.00 0.71  0.57 0.43 1.00 

 


