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Abstract - In this paper, we have analyzed the convolutional
coded error performance of a 2D-RAKE receiver, in
combination with transmit diversity on the downlink of a
WCDMA system. The analyses assume correlated fading
between receive antenna array elements, and an arbitrary
number of independent but nonidentical resolvable multipaths
combined by the RAKE receiver in the general Nakagami-m
fading channel framework. The closed form expression of
pairwise error probability is given in the simple form of a single
finite limit integral, with the integrand being an elementary
function of array configuration parameters, spatial correlation
and operating environment factors. It is shown that the
combination of coding and spatial-path combining lead to
dramatic performance improvement in various fading
environments.

I. INTRODUCTION

Multiple-input-multiple-output (MIMO) systems are a
natural extension of developments in antenna array
communications. The array gain and spatial diversity
obtained by utilizing multiple receive antennas have been
thoroughly investigated both theoretically [1]-[4] and
experimentally, but the advantages of MIMO
communications which exploit the physical channels
between multiple transmit and receive antennas, denoted as
( ),T RM M , can provide further performance improvements.
It has been shown theoretically [6], [7] that for Rayleigh
fading channels the capacity of a multiple antenna system
increases linearly with the number of antennas. In addition
to the capacity increase, Bjerke, et. al. [8] presented the BER
performance of maximal-ratio combining (MRC) or
selection receive antenna combining, in combination with
transmit diversity, for a (2, 2) WCDMA systems in Rayleigh
fading.

Forward error correction (FEC) coding provides an
alternative method to improve the performance of
communications on wireless fading channels. Performance
analysis of coded CDMA systems in Rayleigh fading
appeared in [9]-[11]. In particular, Diaz and Agusti [9]
presented closed form analytical BER expressions achieved
in a coherent BPSK DS-CDMA system for any power delay
profile and for either selection combining or MRC in
independent Rayleigh fading assuming distinct path SNR’s.
The concatenation of Reed-Solomon and convolutional
codes in asynchronous CDMA with selection antenna
diversity is studied in [11], and the trade-off analysis among

various system parameters under a fixed bandwidth
expansion and a concatenated code constraint requirement is
provided. BER performance and capacity assessment of a
DS-CDMA system with RAKE reception and convolutional
coding under frequency-selective Nakagami fading are given
in [12], based on the hard-decision Viterbi decoding. In [13],
tight upper bounds on the BER of convolutional codes with
soft-decision decoding over independent Nakagami,
Rayleigh and Rician fading multipath channels are
evaluated. However, the analysis doesn’t consider space
diversity and the bound for the Nakagami fading case is
obtained under the constraint that the ratio of the fading
severity parameter and the average path power is the same
for all resolvable paths.

We will first extend the analysis in [8] to the general
Nakagami fading environment with an arbitrary number of
TX and RX antennas. Adopting the Moment Generating
Function approach [2], the uncoded BER expression is
obtained in the form of a one-fold finite-limit integral, with
the integrand being a function of the array configuration, the
channel covariance matrix and the operating environment
factors. Assuming perfect interleaving and soft-decision
maximum-likelihood Viterbi decoding, the exact pairwise
error probability is then derived using the alternative
expression of the Gaussian Q-function [2]. Since the
pairwise error probability is exact, our transfer function
bound is tighter than that in [13] for the independent fading
case, and more general in the framework of MIMO systems.

The paper is organized as follows. In Section II, we will
briefly describe the wideband MIMO channel. Next, the bit
error probability of a 2D-RAKE receiver at the mobile
terminal with an arbitrary number of TX and RX antenna
elements, is presented. The transfer function bound of
convolutional coded BER is derived in Section IV. Section
V presents several numerical examples to demonstrate the
flexibility of evaluating the impact of individual design
parameters on the BER performance. In addition, a trade-off
analysis between the diversity gain and coding gain is
presented. Concluding remarks are given in Section VI.

II. WIDEBAND MIMO CHANNEL

We consider the downlink of a WCDMA system, with
RM antennas at the mobile station (MS) and TM  antennas at

the base station (BS). The general wideband MIMO channel
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can be modeled as a tapped delay line. Assuming there are L
multipath components, the equivalent low-pass vector
channel is expressed as
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contains TM  SIMO channels ( )l
ih , which define the channel

through which the signal is transmitted from TX antenna i to
all RX antennas at delay lτ , and each element ( )l

jih  is the
complex channel coefficient from the transmit antenna i at
the BS to the receive antenna j at MS. We assume that the
paths between each transmit antenna and receive antenna are
independent with identical power delay profile.

The potential gain from applying space-time processing
is strongly dependent on the spatial correlation coefficient.
Considering that only the immediate surroundings of the
antenna array impose the correlation between array elements
[7], we model the correlation among receiver and transmitter
array elements independently from one another. It is
assumed that BS antennas are sufficiently separated, so that
the transmitted signals are uncorrelated. In the following
analysis, we focus on the spatial correlation between RX
antennas at MS, defined as

                            
2 2,jk ji kih hρ =< >  .   (3)

In numerical examples, we will use the spatial
correlation derived from a truncated Gaussian power
azimuth spectrum [4], which is a function of antenna
spacing, mean angle-of-arrival and the angle spread. For an
M-element uniform linear array with omnidirectional
elements, we have
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where ( )lϕv  represents the array response vector in terms of
the azimuthual angle lϕ . In a Nakagami fading channel, the
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envelopes with pdf given in [14] as
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where Γ(.) is the Gamma function, 2
l lαΩ =  is the average

power on the lth path, the phase φl is uniformly distributed
over the range [0,2π), and ml ≥ 1/2 is the fading parameter,
with the special case ml = 1 corresponding to the Rayleigh
distribution. Following [5], an exponential Multipath
Intensity Profile (MIP) is assumed in the analysis, i.e.

0
l

l e δ−Ω = Ω , where 0Ω  is the average signal strength
corresponding to the first incoming path, and δ is the rate of
average power decay, with 0δ =  corresponding to constant
MIP assumption.

III. BIT ERROR PERFORMANCE OF 2D-RAKE
RECEIVER IN MIMO SYSTEMS

For the purpose of illustration, the simple dual transmit
diversity space-time block code proposed by Alamouti [15]
is adopted in the analysis. Alamouti [15] has shown that the
maximum likelihood (ML) estimates of the transmitted data
are identical to the ML estimates obtained in a system with a
single transmit antenna and dual receive antennas.
Therefore, the SINR at the output of 1D-RAKE receiver can
be expressed as

                             ( )
1

1, 2,
0

1
2

L

l l
l

γ γ γ
−

=

= +� , (6)

where the factor ½ is due to sharing of the transmitted signal
power between two antennas.

Combining both transmit and receive diversity, and
assuming perfect channel vector estimation and MRC
combining, the instantaneous SINR at the output of 2D-
RAKE receiver is given by
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where 1,j lγ  and 2,j lγ  are the SINRs of the lth path signal
from the 1st and 2nd TX antenna to the jth receive antenna,
respectively. Since the channels from different TX antennas
to the receiver array are assumed to be independent and
identically distributed, the characteristic functions of 1,j lγ
and 2,j lγ  have the same form as given in [4], i.e.
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where 
RMI is R RM M×  dimension identity matix, ( )l

sR

denotes the R RM M×  dimension spatial correlation matrix,
and l b e lE Nγ = ⋅Ω  is the average SINR per receive antenna
contributed from the lth path. Note that bE  is the energy per
transmitted bit and eN  is the equivalent power spectral
density including AWGN noise and the total interference,
which can be approximated as a spatially and temporally
white Gaussian noise [5]. Since we assume that all
resolvable paths fade independently, the characteristic
function of γ is simply
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           (9)
The average bit error probability in the presence of

fading is obtained by averaging the conditional error
probability ( | ) ( 2 )P e Qγ γ= [16] over the pdf of γ, where
Q(x) is the Gaussian Q-function. Using the alternative
representation of Q(x) given in [2], the average BER can
then be written as
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  (10)
It is straightforward to show that the BER of a general

( ),T RM M MIMO system can be extended from (10) as
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It is necessary to point out that the derivation of (10) is
based on the use of space-time block codes from orthogonal
designs. However, [17] proved that for complex orthogonal
designs, only 2TM =  Alamouti-code can provide the
maximum possible transmission rate and full diversity. For

2TM > , the space-time block codes can give full diversity,
but lose up to half of the theoretical bandwidth efficiency.
Therefore, the generation from (10) to (11) is only valid for
real constellation, or with the loss in bandwidth for complex
constellation.

Since ( )l
sR  is positive definite, it can be easily shown that

(11) can be rewritten as
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where ,{ , 0.. 1, 1.. }l i Rl L i Mλ = − =  are the eigenvalues of
( )l
sR .

IV. COMBINED CODING AND DIVERSITY

FEC techniques such as convolutional coding are
employed in mobile radio communication systems in order
to protect the information against severe fading due to
multipath propagation. The convolutional codes will be
denoted by ( , , )Ln k C , where n is the number of encoded
output bits per k binary input information bits, and LC  is the
code constraint length. Following the usual transfer function
bound [16] for maximum likelihood decoding over
memoryless channels, the average bit error probability of a
rate cr k n=  linear convolutional code may be bounded as
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where freed is the free distance of the code, the { }dβ  are the
coefficients in the expansion of the derivative of ( , )T D N ,
the transfer function of the code, evaluated at N = 1 [18].

2 ( )P d  is the average pairwise error probability of selecting

an incorrect path 'x  in the trellis that merges with the all-

zero path x  for the first time, and 'x  differs from x  in d
positions 1 2, , di i i� .

Since the coded bits in the two paths are identical except
in the d positions, the euclidean metric may be written as

1
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=
=� , where ( )niε denotes the energy of ni th

bit. Thus, the conditional pairwise error probability for
BPSK modulated signals is simply ( )2 ( , ') eQ x x Nε . For

a (1, RM ) system in an L-path selective fading channel, we
have
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taken with respect to the channel states n� . Since we
assumed that ideal interleaving and deinterleaving make the

n� s i.i.d. random variables, the average over { n� } can be
computed as the product of averages. Consequently, the
characteristic function of the overall SINR can be
represented by the product of the characteristic function of
each codesymbol’s SINR. Following the similar derivation
in Section III, the average pairwise error probability for a
( ),T RM M  system can be written as
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V. NUMERICAL EXAMPLES

In this section, we present selected numerical results to
determine the effects of different code rates and constraint
lengths on the coded DS-CDMA system gain in correlated
Nakagami-m fading channels, and to illustrate the benefits of
combined coding and diversity techniques. It is assumed that
the total transmit power is fixed, regardless of the number of
transmit antenna elements, and uniform power is allocated to
each transmit antenna. In order to emphasize the space
diversity gain due to combining only, BER versus SNR per
bit will be plotted, under the condition that the total average
received SNR is fixed regardless of the value of RM . In
addition, constant MIP and identical path fading parameters
are employed in the following examples.

Table I lists the parameters of several low rate maximum
free distance codes [18]. Since the upper bound computed by
using the first six terms of the series expansion of the bounds
in (13) very accurately approximates the simulation result as
demonstrated in [13], we will only sum the pairwise error
probabilities for the six shortest Hamming distances as the
coded BER upper bound. For a fair comparison between the
coded and uncoded system, the total energy used for
transmitting k information bits is assumed to be equal to that
used for transmitting n coded bits. That is to say, if bE  is the
energy of the information bit.
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Table I   Maximum free distance convolutional codes

n k
LC freed

2 1 7 10
2 1 4 6
3 1 4 10
4 1 4 13

Fig. 1 shows the uncoded BER and coded BER, using  a
(2, 1, 7) code, of a (2, 2) system in different Nakagami
fading channels with two resolvable paths. The performance
improvement achieved by coding is shown to be very
impressive. Since the free distance 10freed =  results in a
coding gain which has the similar effect as introducing 10th

order diversity, the coded system has an effective order of
diversity equal to ( )T R freeM m M L d× × × × . This also results
in more significant coding gain in severe fading channels.

Next in Fig. 2, we consider two RX antennas separated
by 1/4 wavelength, with an angular spread of 60oσ = ,
(which gives a spatial correlation of approximately 0.53,)
operating in the flat fading or selective fading channel with

0.75m = . The comparison between applying the (2,1,7) and
the (2,1,4) codes indicates that by increasing the
convolutional code constraint length, the performance
becomes better due to the larger free distance. The
achievable coding gain is smaller in the case of L=4
multipath components compared with signaling over the
frequency nonselective channel.

Three codes with the same constraint length 4LC =  and
different coding rates applied in (1,1) and (1,2) systems are
compared in Fig. 3. Independent antenna branches in a two-
path, 0.75m =  fading channel are assumed. It is not
surprising that for a fixed number of RX antennas, the
performance is improved with decreasing code rate. On the
other hand, the more powerful the code, the smaller the gain
realized by space-path diversity. For example, at BER= 10-5,
dual RX antennas provide 1.4dB and 0.7dB diversity gain
when applying 1 2,  1 4cr =  codes, respectively. This fact
leads to the conclusion that with powerful codes, the main
purpose of the 2D-RAKE receiver is to collect the power
distributed in various propagation paths, not to improve the
performance by introducing additional diversity.

Finally, Fig. 4 illustrates the BER performance of
different coding and diversity schemes versus the average
received SINR of a 1D-RAKE receiver, i.e. 1

0

L
b e ll

E N −

=
⋅ Ω� .

Specifically, we consider the single TX and RX antenna
system employing codes (2,1,7) and (2,1,4), and a (1, 2)
system with or without coding, in 1.25m =  fading channel.
To illustrate the trade-off between space-path diversity gain
and coding gain, we allow the total received power to be
proportional to the number of receive antennas. For dual RX

diversity, two angular spreads 60oσ =  and 25o are assumed,
giving spatial correlations equal to 0.53 and 0.82,
respectively. It is observed that the performance with
antenna diversity alone is better than the coded system with
a single antenna up to a certain SNR threshold, and above
which the performance is degraded relative to the coded
single antenna case. The threshold depends on various
factors, such as fading severity, the coding scheme, the
spatial correlation and the number of TX/RX antennas.
Thus, adding diversity, especially at a low SNR level, can
effectively reduce the number of bit errors at the
convolutional decoder input, thus the advantages of coding
can be fully exploited.

VI. CONCLUSION

We derived the BER of a general MIMO system using
maximal ratio combining and open loop transmit diversity in
correlated Nakagami fading channels. In addition, we
incorporated the exact pairwise error probability into the
transfer function bound, so that the well known performance
advantages of convolutional codes in Rayleigh fading are
extended to the general MIMO system in frequency selective
Nakagami fading. The effective order of diversity
(asymptotic slope) is equal to the product of four
fundamental design parameters (the number of both the TX
and RX antennas, the number of RAKE fingers and the free
distance of the convolutional code) and also the fading
channel parameter. Our results are sufficiently general and
apply to cases where the instantaneous SNR’s of the
resolvable multipaths come from different Nakagami
families, as well as dissimilar average SNR’s from multipath
components.
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Fig. 1 Uncoded and coded BER of a (2, 2) system in different
Nakagami fading channels with two resolvable paths.

Fig. 2   Performance in flat fading (L=1) or selective fading (L=4)
channel with two RX antennas separated by 1/4 wavelength,

angular spread 60oσ = .

Fig. 3 Performance comparison employing three convolutional
codes with the same constraint length and different coding rates:

(2,1,4), (3,1,4) and (4,1,4).

Fig. 4 Performance comparison of different coding and diversity
schemes in the 1.25m =  fading channel.

0 5 10 15
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR per bit(dB)

av
er

ag
e 

BE
R

m=0.5 

m=1 

m=2 

m=3 

no coding 

with coding 

0 5 10 15
10

- 8

10
- 7

10
- 6

10
- 5

10
- 4

10
- 3

10
- 2

10
- 1

10
0

SNR per bit(dB)

av
er

ag
e 

B
ER

CL=7 

CL=4 

L=1, no coding 

L=4, no coding 

 _ _ : L=1
___ : L=4 

0 2 4 6 8 10
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR per bit(dB)

av
er

ag
e 

B
ER

(1, 1) 

(1, 2) 

. 
: r=1/2 
: r=1/3 
: r=1/4 

0 2 4 6 8 10 12 14
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR per bit(dB)

av
er

ag
e 

B
ER

Mr=1, with coding 

CL=4 

CL=7 

Mr=2, with coding 

CL=4 
CL=7 

Mr=2, no coding 

_  _ : correlation = 0.53
___ :  correlation = 0.82 

1963


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


