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Abstract. Due to the low entropy of human-memorable passwords, it is not easy to conduct
password authenticated key agreement in a secure manner. Though there are many protocols
achieving this goal, they may require a large amount of computation specifically in the augmented
model which was contrived to resist server compromise. Our contribution in this paper is two fold.
First, we propose a new practical password authenticated key agreement protocol that is efficient
and generic in the augmented model. Our scheme is considered from the practical perspective (in
terms of efficiency) and is provably secure under the Diffie-Hellman intractability assumptions in
the random-oracle model. Our second contribution is more realistic and generic; a conceptually
simple but novel password guessing attack which can be mounted on every three-pass password-
based protocol unless care is taken in both the design and implementation phases. This is due
to the server’s failure to synchronize multiple simultaneous requests. Experimental results and
possible prevention methods are also discussed.

1 Introduction

User authentication is necessary for the typical case that a human being resides as a client
and tries to log on to a remote server machine. The server must be able to determine the
user’s identity reliably over a public or private channel. Password authentication is one of such
methods, in which simply the user memorizes a (short) password while the server maintains
a user profile that associates the user name and the password verifying information. The
intrinsic problem with this method is the memorable password, associated with each user, has
low entropy, so that it is not easy to protect the password information against the notorious
password guessing attacks by which attackers could search the relatively small space of human-
memorable passwords.

Since a pioneering method that resists the password guessing attacks was introduced to
cryptographic protocol developers [24], there has been a great deal of work for password au-
thenticated key agreement, preceded by EKE [5], on the framework of Diffie-Hellman [10].
Readers are referred to [15] for complete references. Compared to the typical authenticated
key agreement, the password-based schemes are more expensive due to the low entropy of
passwords, specifically in the augmented model which was contrived to resist server compro-
mise. Provable security is important but tends to make the schemes harder to be practical in
some cases. From the theoretical perspective, several methods that are much more expensive
but provably secure in the standard model, were presented [12, 18, 19]. From the practical
perspective, the practice-oriented security models are applied for examining the security of
protocols [1–3, 7]. For example, EKE2 and AuthA are provably secure in both the random
oracle and ideal cipher models [3, 4, 8], while PAK and PAK-Z (that improves the efficiency
of PAK-X impressively by specifying a generic digital signature) are in the random oracle
model [7, 25, 26]. However, it is (arguably) still expensive to assume ideal ciphers or digital
signatures along with many costly operations on them, while PAK-Y is reasonably efficient
with Schnorr signature in terms of computational costs [4, 26, 30].
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At present, SPEKE [16], SRP [32], PAK [26], and AMP [21] are being discussed by the
IEEE P1363 Standard Working Group and more recently by the ISO/IEC JTC 1/SC 27
group as practical protocols for standardization on password-based public key cryptographic
techniques [13, 14]. Among them, PAK and SPEKE are ‘three-pass’ protocols, while AMP
and SRP are ‘four-pass’ protocols. The standardization work is valuable in many aspects; for
instance, a new attack called the ‘two-for-one’ guessing attack1 against the four-pass protocols
was found and resolved in the process [13, 31]. Any preference between three-pass and four-
pass is still open for password-based protocols while typical authenticated key agreement such
as STS and SIGMA is three-pass [11, 20].

In this paper, our contribution is two fold from the practical perspective.

1) An efficient three-pass password-based protocol in the augmented model
2) A generic password-guessing attack against three-pass protocols

A password-based protocol designed in the augmented model can resist server compromise.
In other words, an adversary who compromised a password profile from a server cannot
impersonate a user without launching dictionary attacks. For this additional property, the
related protocols (for example, A-EKE, AMP, AuthA, B-SPEKE, PAK-Z, and SRP) are
more expensive than those are not (for instance, EKE, EKE-2, SPEKE, and PAK) in the
augmented model [6, 21, 4, 17, 26, 32]. We observe that the existing provably-secure schemes
are still expensive in the augmented model in terms of the amount of computation, and that
it is desirable to minimize the number of message passes and the size of message blocks for
practice on expensive communication channels. So we design a new three-pass password-based
protocol in the augmented model with both security and efficiency in mind. We achieve this
goal interestingly by a composition under the careful observation of the existing schemes
discussed by the IEEE P1363 Standard Working Group, say without losing the presumed
level of security. We call the protocol TP-AMP and prove its security in the random oracle
model.

On developing the new three-pass password-based protocol, we find a conceptually simple
but novel password guessing attack which can be mounted on every three-pass password-based
protocol by exploiting a small window of vulnerability resulting from a standard technique to
resist on-line guessing attacks, say from counting the number of failed requests. Our attack is
due to the server’s failure to synchronize multiple simultaneous requests, and is unavoidable in
three-pass protocols unless special care is taken in both the design and implementation phases.
We call this attack a many-to-many (or parallel) guessing attack2 because an active attacker
can validate as many password guesses as (s)he makes server instances invoked concurrently,
regardless of its upper limit of on-line guessing. A prototype of the proposed protocol is
implemented to show how our attack works and is prevented. We first consider this attack
and possible resolution in the literature.

This paper is organized as follows. In the following section, the so-called TP-AMP protocol
(our first contribution) is presented. In Section 3, the many-to-many guessing attack (our
second contribution) is described in more detail. In Section 4, security and efficiency of TP-
AMP are discussed. Finally this paper is concluded in Section 5. Appendix A and B are
necessary for providing a formal security argument in more details.
1 An active attacker can validate two password guesses in one impersonation attempt. The first attack against

SRP was discovered by D. Bleichenbacher in 2000, while the similar attack on AMP was by M. Scott [31].
However, both protocols were fixed to resist respective attacks by each original author [13].

2 We first introduced this attack at IEEE P1363.2 meeting and also discussed a few names for it.
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Table 1. Basic Notation

C Client (User) S Server
π Password τC Transformed password for C

← Derivation
R← Random selection

κ, ` Security parameters q Prime of size κ
r Integer co-prime to q p Prime of size ` such that p = rq + 1
Z∗p Multiplicative group of p Gq q-order subgroup of Z∗p
g, ζ Generator of Gq hi, Hi Random oracles
α, β Agreed values ski Session key

2 A Practical Protocol

2.1 Preliminaries

Our principal motivation comes from the fact that password-based protocols designed in the
augmented model are much less efficient than those are not in that model, in terms of either
computation or communication costs. When we regard PAK as a fundamental structure for
three-pass protocols due to its simplicity and clarity, we can easily observe that its augmen-
tation such as PAK-X, PAK-Y, and PAK-Z are far from its intrinsic nature and get much
more complicated in the augmented model [7, 25, 26]. AMP and SRP show better performance
in that model but in four passes [21, 32]. So, our basic idea is to make AMP squeezed into
PAK or PAK augmented by AMP, since AMP is another protocol that can be computed very
efficiently over various numerical groups [21]. However, a simple composition is not sufficient,
and consequently we obtain a new practical protocol by more careful consideration on them.

The reason for choosing PAK rather than EKE2 is obviously that the former can formally
be proved by postulating the random oracles only, while the latter requires the additional
assumption of ideal cipher [7, 26, 3]. However, EKE2 or similar schemes that are proved suf-
ficiently secure, can also be applied to constructing the practical augmented protocol in the
way of our composition. In that sense, our construction is quite generic.

In Table 1, we enumerate the notation, in part, to be used in the remaining of this paper.
Additional ones will be self-contained in each part of this paper. Let κ be a general security
parameter (say 160 bits) and ` be a special security parameter for public keys (1024 or 2048
bits). A client C and a server S should agree on algebraic parameters3 related to Diffie-Hellman
key agreement such as p, q, and g. Define Ḡq = {gx mod p|x ∈ Z∗q} where |Ḡq| = q − 1. Let
us often omit ‘mod p’ from the expressions that are obvious in Z∗p. Let {0, 1}∗ denote the
set of finite binary strings and {0, 1}n the set of binary strings of length n. We then define
random oracles such that hi: {0, 1}∗ → {0, 1}κ and Hi: {0, 1}∗ → {0, 1}`. Note that Hi(·) is
a specific random oracle which outputs in a pre-defined subgroup (Gq) only. Their practical

instances are defined as hi(·) = h(i, ·, i) and Hi(·) = (h(i, ·, i)) p−1
q mod p or Hi(·) = ζh(i,·,i)

mod p where h(·) is a strong one-way hash function and ζ is another generator of Gq. Let
ACCEPTABLE(·) denote an acceptable function which may return true if its pre-image satisfies
the given security properties, as defined in Section 2.3. Readers who are not familiar with the
legacy protocols, are referred to the previous work of [7, 13, 21, 25, 26].
3 In spite that PAK, in general, does not require gcd(r, q)=1 and only PAK-R requires it for further random-

ization, we recommend to use a secure prime such that each factor of r except 2 is of size at least κ or a safe
prime such that r = 2 for p = rq + 1 as discussed in [21, 23, 32, 29]. They satisfy gcd(r, q)=1. Specifically,
we observe that TP-AMP shows the best performance with a secure prime, while PAK-Y does with a safe
prime and “arbitrarily” smaller exponents [28].
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client[C, π] server[C, τC(γ′, ν)] on S
〈γ′ = γ−1 mod p, ν = gu mod p〉

x
R← Z∗q

γ ← H0(C, π)
m ← gxγ mod p

C, m−−−−→
abort if ¬ACCEPTABLE(C, m)

y
R← Z∗q

γ′ ← γ−1 mod p µ ← νy mod p
u ← h1(C, π) β ← (mγ′gm)y mod p
w ← u−1(x + m) mod q k1 ← h2(C, S, m, µ, β, γ′)

µ, k1←−−−−−−
α ← µw mod p
k′1 ← h2(C, S, m, µ, α, γ′)
abort if k1 6= k′1
k2 ← h3(C, S, m, µ, α, γ′) k′2 ← h3(C, S, m, µ, β, γ′)

k2−−−−→
abort if k2 6= k′2 or time is out

skC ← h4(C, S, m, µ, α, γ′) skS ← h4(C, S, m, µ, β, γ′)

Fig. 1. TP-AMP (Three-Pass AMP Protocol)

2.2 Proposed Protocol - TP-AMP

TP-AMP stands for the Three-Pass Authenticated key agreement via Memorable Passwords
and is depicted in Figure 1. Let us borrow the name AMP from [21] for our basic motivation.

Protocol Setup On the registration phase, a user chooses a name C and a password π while
the server S saves user’s profile 〈C, τC〉 in its stable storage where γ = H0(C, π), γ′ = γ−1

mod p, u = h1(C, π), ν = gu, and τC = 〈γ′, ν〉. For convenience, S is assumed as an IP address
of the server machine.

Protocol Run A user may type C and π into the client machine. The client (C on behalf of
the user from now on) then chooses x at random from Z∗q (not Z∗p), and computes γ in order
to obtain m = gxγ. The client sends (→) a commitment message 〈C,m〉 to the server.

1. C → S : C, gxγ

After or before sending message 1, the client could compute γ′ and the user’s amplified pass-
word such that w = u−1(x + m) mod q by obtaining u = h1(C, π), and keeps them while
waiting for message 2. In practice, we can hash m so that we have q|h(m) with negligible
probability.

Upon receiving message 1, the server should abort it if ACCEPTABLE (C,m) returns false.
Otherwise, the server fetches 〈C, τC〉 from its storage and chooses y at random from Z∗q
so as to obtain µ = νy. The server then computes β ≡ (mγ′gm)y ≡ g(x+m)y(mod p) and
k1 = h2(C,S,m, µ, β, γ′), and sends a challenge message 〈µ, k1〉 to the client.

2. S → C : νy, h2(C, S, m, µ, β, γ′)
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After or before sending message 2, the server could compute k′2 ← h3(C, S, m, µ, β, γ′) and
keeps it while waiting for message 3. The server should abort if time is run out.

Upon receiving message 2, the client raises µ to the amplified password so that α ≡ µw ≡
gy(x+m)(mod p), and computes k′1 = h2(C, S, m, µ, α, γ′). If k1 is not equal to k′1, the client
should abort this session. Otherwise, the client computes k2 = h3(C, S, m, µ, β, γ′) and sends
a response message k2 to the server.

3. C → S : h3(C, S, m, µ, α, γ′)

After or before sending message 3, the client could compute a session key such that skC =
h4(C,S,m, µ, α, γ′) and deletes any other ephemeral values.

Upon receiving message 3, the server should abort this session if k2 is not equal to k′2.
Otherwise, the server should compute a session key such that skS = h4(C, S, m, µ, β, γ′) and
deletes any other ephemeral values.

As a result, the client and the server could authenticate each other using the passwords
and agree on the same session key skC(= skS) because α ≡ β ≡ g(x+m)y(modp).

2.3 Small Discussion

One can easily see that message 1 is extracted from PAK while message 2 and session key are
motivated by AMP. This protocol performs simple computation in three passes and works
in the augmented model where τC is defined as 〈γ′, ν〉. For efficiency, it would be better to
hash m when we compute β and w, say β = (mγ′gh(m))y and w = u−1(x+h(m)) mod q for a
strong one-way hash function h(·). Also, we could modify β = (mγ′gh(m,µ))y and w = u−1(x+
h(m,µ)) mod q for easier security proof but a client cannot compute w before receiving µ in
this case. For more efficiency, we recommend to use a secure prime for TP-AMP rather than
a safe prime. Security and efficiency of the proposed protocol will be discussed in Section 4.

In the legitimate protocol run, gx and νy are assumed not to be trivial values such as
0 and 1 as in the Diffie-Hellman relatives. We need to define a failure count that must be
manipulated by the server and increased by one when k2 6= k′2. The server should abort
further requests of the client if the (subsequent) failure count exceeds its pre-defined limit, δ.
This is a standard technique for resisting on-line guessing attacks. We also need to define the
special function called ACCEPTABLE(·) since the server should abort when it returns false upon
receiving 〈C, m〉. An example of the function follows:

ACCEPTABLE(·)
INPUT: 〈C, m〉
OUTPUT:
Return false
if C is being served by another instance; /* See Section 3 */

else if the failure count of C is greater than or equal to its limit δ;
else if q|m; /* Check if m 6∈ Z∗p only when hashing m before raising g */

Return true otherwise;

Note that the first condition (for resisting the many-to-many guessing attacks in the next
section) can be considered in very flexible ways, for example, an IP address instead of C,
and can be substituted by a more effective way in the future. This function is valid for
authentication sessions only. Note also that q|m means q divides m, but it might be enough
to assure m ∈ Z∗p only when we hash m for β and w in the protocol.
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adversary server adversary server

C, m−−−−→ C, m−−−−→
C, m′
−−−−→

µ, k1←−−−− C, m′′
−−−→

Disconnect? Time Out?
µ, k1←−−−−

C, m′
−−−−→ µ′, k′1←−−−−

µ′′, k′′1←−−−−
µ′, k′1←−−−−− Disconnect Time Out or Failure

Disconnect? Time Out? (Count Up?)

(a) Sequential Attempts (b) Parallel Attempts
- Exercise - - Real Attack -

Fig. 2. Basic Concept of Many-to-Many Guessing Attacks

3 Many-to-Many Guessing

3.1 A Real World Attack

It is widely recognized that three-pass (say, smaller-pass) protocols are favorable to the chan-
nel efficiency for authenticated key agreement. However, care must be taken for password
authenticated key agreement in a practical sense.

Let us glance over Theorem 1, in advance, that is introduced in Section 4 and proved
in Appendix B. There exists an adversarial advantage that is bounded by qse

N . The similar
results can be found from the closely related work [3, 8, 26]. These advantages imply that the
adversary is reduced to a simple online guessing attacker that can easily be detected and
prevented from exceeding the pre-defined limit, δ, on the number of sequential on-line trials
allowed by the server’s policy. For example, an adversary posing as a user C sends an arbitrary
message 〈C,m〉 to the server, based on her guessed password. The server may respond with
〈µ, k1〉 in the three-pass protocols while only µ in the four-pass protocols. Then, the adversary
is assumed to check her guess with probability bounded by qse

N under the limit δ in three-pass
protocols. Is this standard assumption really true?

Unfortunately, the answer is No! This classical prevention method can be fooled out of
making the adversarial advantage much larger and in some cases disclosing a password, in
a surprisingly simple way. Figure 2 depicts the possible bad events. Our attack is motivated
from the fact that the server is typically implemented as a multi-threaded or multi-process
application for handling many user requests simultaneously, and that the three-pass password-
based protocol is not an exception. As summarized in Figure 2-(a), the adversary is able to
exercise the real attack (that is described in Figure 2-(b)), for example, in order to approximate
the maximum amount of time the server may wait for the third message k2. The adversary
then starts simultaneous authentication sessions, which the server processes independently
in separate threads, and in that amount of time, is able to drive many different initiating
messages based on different password guesses concurrently to the server. The adversary may
get as many replies as allowed in that time boundary, by exceeding δ obviously. Figure 2-(b)
abbreviates this idea. It could be a real world attack from the automated (and multi-threaded)
adversary. The server instances must respond to each request and wait for the replies k2
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from the adversary who can even disconnect without answering, for example, by manually
unplugging the network cable or automatically manipulating the transport layer.

As a result, the adversary is able to gather many triples, 〈m,µ, k1〉, and mount the further
guessing attacks off-line. The adversary is able to check many password guesses over δ while
the server may notice many guessing attempts bounded by δ afterwards. So we call this simple
attack the many-to-many guessing attack4. The window of vulnerability can be thought of as

O(T ) = tS + tC + 2tCS + ε + (δ − 1)ε

where 1) tS is the time between receiving 〈C,m〉 and sending out 〈µ, k1〉 in the server, 2) tC is
the time between receiving 〈µ, k1〉 and sending out k2 in the client, 3) tCS is the time delay for
exchanging messages over a communication channel, 4) ε is the (most influential) additional
waiting time defined by the server considering tC and tCS , and 5) ε is the (most negligible)
amount of time that defines the average time difference between one request and another
subsequent one (so, (δ−1)ε must be the time between the first notice of a failed attempt and
the last one under δ). We address that this window of vulnerability is not negligible and is
sufficient to allow the adversary to gather as many triples as she can fool the protocol out of
being over δ and disclosing the password in the worst case.

3.2 Possible Prevention

We designed the ACCEPTABLE(·) function in Section 2.3 so as to return false if C (or a cor-
responding IP address) is being served already by another server instance upon receiving a
new message 〈C, m〉. Note that the ‘serving’ corresponds to the authentication session only.
This was actually contrived for resisting the many-to-many guessing attack. For the purpose,
a small hash table may be maintained by the server to track the currently served or blocked
clients. The blocking policy should be considered carefully but flexibly. This resolution method
may reduce the window of vulnerability notably but still leaves an issue about DoS (Denial
of Service). Note that there is a recent literature considering DoS attacks on password-based
protocols [9]. Aside from the danger of DoS attacks, a race condition and some bottleneck to
the hash table are now only concerns while they could be negligible by careful consideration.
The possible prevention methods might be considered both in the design and implementation
phases.

In order to examine the reality of our attack, we implement a prototype of TP-AMP
and launch the many-to-many guessing attack on it. We implement both client and server
using CreateThread(·) functions and WinSock in Pentium IV 1.8GHz, 512MB, MS-Windows
platforms. MIRACL is utilized as a mathematical library. As for the ACCEPTABLE(·) function,
we synchronized server threads with regard to serving a user and checking memory table.
Simply a single run for our attack experiments takes 266 to 297 milliseconds. We then drive
multi-threaded clients to starts many simultaneous authentication sessions. We summarize
the experimental results as shown in Figure 3. Let δ = 5 (times) and ε = 3 (seconds). In
the experiments, Figure 3-(a) shows the result of M2M (many-to-many) attacks against a
server without correct ACCEPTABLE(·) function. Until we increase the number of adversarial
client threads to 100, we could observe all requests are stably served and the same number of
4 This attack is negligible in the four-pass protocols since the server does not give sufficient information to

the adversary forward and the client is usually not capable of listening to so many concurrent requests
in the opposite case. Also, the best-known predecessors, EKE [5] and A-EKE [6], avoid this attack very
impressively by not optimizing the protocol steps.
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Fig. 3. M2M Attack Experiments

triples, 〈m,µ, k1〉, are gathered. Up to 200 threads, we could observe that about 110 triples
(130 at peak) are gathered by the adversary, on the average. Say, the M2M attack is very
successful over the boundary of δ. When we increase the size of boundary δ for user convenience
and consider a kind of delay including queueing and propagation delay, we could expect
much better results. However, ACCEPTABLE(·) function could improve the security. Figure 3-(b)
shows the result of M2M attacks against a server with correct ACCEPTABLE(·) function. We
could observe that the adversary cannot gather more than 5 triples regardless of the number
of simultaneous requests greater than δ. The remaining requests are exactly blocked by the
server up to 200 threads. Figure 4 shows that the ACCEPTABLE(·) function does not decrease the
performance of the protocol. Average service time per thread is much faster than the single run
service time due to the optimization with regard to multi-threading. From our experiments,
we could conclude that the M2M attack is realistic and the ACCEPTABLE(·) function is useful
for preventing it.

4 Security and Efficiency Analysis

In this section, we discuss security and efficiency of TP-AMP.

4.1 Security of TP-AMP

For formal security, we adapt the improved models of [26] and [8]. Our refreshed security
model is described in Appendix A. Readers are referred to it due to the page restriction of
this paper. We prove that the TP-AMP protocol is secure, in the sense that an adversary
attacking the system cannot determine session keys of fresh instances with greater advantage
than that of an online dictionary attack, and cannot determine session keys of semi-fresh
instances with greater advantage than that of an off-line dictionary attack. We define qse, qex,
qre, qco queries as those of type Send, Execute, Reveal, Corrupt, respectively, and qro queries to
be made to the random oracles. Also we define some events related to the adversary making
a password guess. Note that [α, β] means one of α and β is drawn. Also recall that the order
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of Ḡq is q − 1. Security arguments for the following theorems are described in Appendix B.
Readers are referred to it.

Theorem 1. Let P be the TP-AMP protocol with a password dictionary of size N . Fix an
adversary A that runs in time t, and makes qse, qex, qre, qco queries and qro queries. Then for
t′ = O(t + (qro + qse + qex)texp) with texp denoting the computational time for exponentiation
in Gq:

Advake−fs
P (A) ≤ qse

N
+ O((qse + qex)qroAdvCDH

Gq
(t′, qro)) +

O((qse + qex)2)
q − 1

+
O(qse + q2

ro)
2κ

and
Advake−fs.s

P (A) =
qro

N
+ Advake−fs

P (A).

Proof sketch: Our proof will proceed by defining a sequence of games starting at the real
game G0 and ending up at G7. In the beginning we simulate all protocol queries, and remove
possible collisions and lucky events. We then reduce our protocol from solving CDH in a
stringent way, for respective Execute and Send queries. So G5 models passive adversaries,
while G6 does active adversaries. Finally, server compromise is manipulated in G7. 2

Theorem 2. Let P be the TP-AMP protocol with a password dictionary of size N . Fix an
adversary A that runs in time t, and makes qse, qex, qre, qco queries and qro queries. Then for
t′ = O(t + (qro + qse + qex)texp) with texp denoting the computational time for exponentiation
in Gq:

Advma
P (A) ≤ qse

N
+ O((qse + qex)qroAdvCDH

Gq
(t′, qro)) +

O((qse + qex)2)
q − 1

+
O(qse + q2

ro)
2κ

and
Advc2s.s

P (A) =
qro

N
+ Advake−fs

P (A).
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We believe the given security argument in the random oracle model in Appendix B is
sufficient to ensure that TP-AMP is a secure password authenticated key agreement protocol
in the augmented model, though a full proof might be more intricate. A resistance to our real
world attack can be observed by manipulating the ACCEPTABLE(·) function. Since TP-AMP is
simple in its structure, it might also be easy and obvious to examine its security heuristically
but we do not manipulate any heuristic analysis in this paper.

4.2 Efficiency of TP-AMP

We may consider the number of expensive operations, for example, multiple precision multi-
plications (MPM) in Z∗p, in order to analyze the performance of TP-AMP. We approximate
the number of multiplications on average, by assuming the use of a left-to-right binary expo-
nentiation method or a simultaneous exponentiation method (denoted by sim) [27]. A slight
computational difference between squaring and multiplication can be ignored for convenience.

Let κ′ = κ′′ = κ′′′ = κ for secure prime p while κ′ = κ′′ = κ′′′ = ` − 2/3 for safe prime p
for simple analysis. Practically we can set κ′′ = 2κ with intentionally smaller exponents, for
example, x

R← {0, 1}κ′′ and not R← Z∗q for safe prime p though it is not general for security
argument. For the client, γ may take 1.5(`− κ′) while m may need 1.5κ′′ + 1 MPM. For the
server, β may take 1.5(κ + κ′′) + 2 or 2κ′′ + 1(sim) MPM. Finally the client may need 1.5κ′′′

for α. As a result, the client may need 1.5(`− κ′ + κ′′ + κ′′′) + 1 while the server may require
1.5(κ + 2κ′′) + 2 MPM totally. Also if we assume an ideal cipher for γ as like EKE2 and
AuthA [3, 4], the client may need 1.5(κ′′ + κ′′′) MPM only. One can easily see that the TP-
AMP protocol is efficient especially when we use a secure prime, p, since κ′ = κ′′ = κ′′′ = κ.

TP-AMP is comparable to the most closely related protocol PAK-Z (with an efficient
instance Y using Schnorr’s signature [30]) [25, 26] and AuthA [4, 8] in terms of efficiency. In
general (with regard to computation and communications costs), TP-AMP is more efficient
than those related schemes under the same assumption, for example, on a safe or secure
prime with group size exponents, or an ideal cipher. However, when we use a safe prime with
intentionally smaller (say, 160 bits) exponents, PAK-Y shows better in the client, while TP-
AMP does still better in the server. As we mentioned already, TP-AMP can be instantiated
on EKE2 [3, 4, 8] and provide efficiency on that framework. Thus, we would like to address
that TP-AMP is a practical password authenticated key agreement protocol with sufficient
security and generic features in the augmented model.

5 Conclusion

Though three-pass authenticated key agreement protocols may reduce one-round from four-
pass protocols and are easier to apply provable security, we show that they are vulnerable
to the novel many-to-many password guessing attacks if the protocol uses a password as a
long-term secret. From the practical perspective we design and analyze a new three-pass pro-
tocol, TP-AMP, in the augmented model and show several interesting features. In the future
study, we will conduct more intensive work on three-pass and four-pass protocols for password
authenticated key agreement.
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A Security Model

For the formal handling of security, we recall the model of [3] that was designed for the
problem of authenticated key agreement between two parties, a client and a server, sharing a
weak secret. Also we consider the extended parts of [26] and [8] for the augmented model.

A.1 Participants and Keys.

Let Clients and Servers be the finite, disjoint, nonempty sets of principals which are modeled
as probabilistic polynomial time algorithms with input/output tapes. A client C ∈ Clients
has a secret password π which is drawn randomly from small space Π of size N . A server
S ∈ Servers has a transformed-password τC which contains an entry per client, where τC

T← π
for C. We call π and τC long-lived-weak keys (LL-keys). They are the same values in the
balanced model, while not in the augmented model.

A.2 Execution of the Protocol.

A protocol, P, is formally a probabilistic algorithm that determines how instances of the
principals behave in response to inputs sent from their environment. The inputs may be given
by an adversary, A, that has complete control over the environment. Formally, the adversary
is a probabilistic algorithm with a distinguished query tape. Queries written on this tape are
answered by principals according to P. An unlimited number of instances of principals are
modeled for multiple execution of the protocol. Instance i of principal U ∈ {C, S} is denoted
by U i and considered as an oracle. The adversary A is able to make various queries to any
instance U i, including random oracle queries:

– Send(U i,M): This query models A sending message M to instance U i. The instance
computes what the protocol says to, and sends back the response to A.

– Execute(Ci, Sj): This query models passive attacks, where A gets access to the execution
of P between Ci and Sj by eavesdropping, so as to output the transcript of the execution.

– Reveal(U i): This query models the compromise of the session key sk held by U i.
– Corrupt(U): This query models the case that π or τC is disclosed, to deal with forward

secrecy. This query may also be used to replace the value of τC used by server S.
– Test(U i): This query models the semantic security of session key sk. It may be asked at

any time during the execution of P, but at most once. It is answered by flipping a coin b.
If b = 1, then sk is returned. Otherwise, a random value is returned as the key.
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A.3 Partnering and Pairing.
When a client or server instance accepts, it may hold a partner-id pid, session-id sid, and
a session key sk. By the time both instances have terminated in a fixed number of flows,
each instance should have accepted. Then instances Ci and Sj are said to be partnered if
both accept, they hold (pid, sid, sk) and (pid ′, sid ′, sk ′), respectively, with pid=S, pid ′=C,
sid=sid ′, and sk=sk ′, and no other instance accepts with session-id equal to sid. Also instances
Ci and Sj are said to be paired with each other if there have been the correct Send queries
before each termination regardless of the final acceptance. We define internal variables for
handling this in the simulation.

A.4 Freshness.

Two notions of freshness are defined to ensure that a session key is not disclosed to the
adversary and to incorporate a requirement for forward secrecy [3, 26].

– An instance U i is nfs-fresh (fresh with no requirement for forward secrecy) unless either
(1) a Reveal(U i) query occurs, (2) a Reveal(U ′j) query occurs where U ′j is the partner of
U i, or (3) a Corrupt(U∗) query occurs where U∗ denotes “somebody” [3].

– An instance U i is fs-fresh (fresh with forward secrecy) unless either (1) a Reveal(U i) query
occurs, (2) a Reveal(U ′j) query occurs where U ′j is the partner of U i, or (3) a Corrupt(U∗)
query occurs before the Test query and a Send(U i,M) query occurs for some string M .

A.5 Semi-freshness.

Two notions of freshness are modified as in [26], in order to consider the resistance to server
compromise. The modification applies to server instances, even if some server has been com-
promised.

– An instance U i is semi-nfs-fresh (semi-fresh with no requirement for forward secrecy)
unless either (1) a Reveal(U i) query occurs, (2) a Reveal(U ′j) query occurs where U ′j is
the partner of U i, (3) a Corrupt(C) query occurs, or (4) U ∈ Clients and a Corrupt(S)
query occurs.

– An instance U i is semi-fs-fresh (fresh with forward secrecy) unless either (1) a Reveal(U i)
query occurs, (2) a Reveal(U ′j) query occurs where U ′j is the partner of U i, (3) a Cor-
rupt(C) query occurs before the Test query and a Send(U i,M) query occurs for some string
M , or (4) U ∈ Clients, a Corrupt(S) query occurs before the Test query and a Send(U i,M)
query occurs for some string M .

A.6 Advantage of the Adversary.

We define the authenticated key exchange (ake) advantage of the adversary against protocol
P as the probability that A correctly guesses the bit b selected in the Test query when the
single Test query was made to some fresh and terminated instance U i. Assuming A outputs
b′, the advantage is defined as follows:

Advake
P (A) def= 2Pr[b = b′]− 1

The probability space is over all the random coins of the adversary and all the oracles. The
protocol is said to be ake-secure if A’s advantage is negligible in the security parameter.
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As defined in [3, 26] we can distinguish Advake-fs
P (A) and Advake-nfs

P (A). Also the notions of
authentication are defined for client-to-server authentication, server-to-client authentication,
and mutual authentication. We define Advc2s

P (A) to be the probability that a server oracle
terminates before any Corrupt query without having a partner oracle. We define Advs2c

P (A) to
be the probability that a client oracle terminates before any Corrupt query without having
a partner oracle. We define Advma

P (A) to be the probability that some oracle terminates
before any Corrupt query without having a partner oracle. For semi-freshness considering
the resistance to server compromise, we can distinguish Advake-fs.s

P (A) and Advake-nfs.s
P (A).

Similarly, we define Advc2s.s
P (A) to be the probability that a server oracle terminates before

any Corrupt query to a client without having a partner oracle.

A.7 Computational Diffie-Hellman.

Let A be a probabilistic polynomial algorithm running in time t to output a list of group
elements. We define

AdvCDH
Gq

(A) def= Pr[(x, y) R← Zq : A(gx, gy) = gxy].

Then we could have
AdvCDH

Gq
(t, n) def= maxA{AdvCDH

Gq
(A)}

where the maximum is taken over all adversaries that run in time at most t and output a list
containing at most n group elements. We often use SuccCDH

Gq
in the literature because CDH

is a computational problem but we prefer AdvCDH
Gq

in order to distinguish it from the success
event of the Test-query. The CDH assumption states that AdvCDH

Gq
(t, n) is negligible for t and

n polynomial in κ.

B Security Proof

Theorem 1 Let P be the TP-AMP protocol with a password dictionary of size N . Fix an
adversary A that runs in time t, and makes qse, qex, qre, qco queries and qro queries. Then for
t′ = O(t + (qro + qse + qex)texp) with texp denoting the computational time for exponentiation
in Gq:

Advake−fs
P (A) ≤ qse

N
+ O((qse + qex)qroAdvCDH

Gq
(t′, qro)) +

O((qse + qex)2)
q − 1

+
O(qse + q2

ro)
2κ

and
Advake−fs.s

P (A) =
qro

N
+ Advake−fs

P (A).

Proof: Our proof will proceed by defining a sequence of games starting at the real game G0

and ending up at G7. We define the success event in any game Gn:
– Succn: This event occurs if b = b′, where b is the bit involved in the Test-query, and b′ is

the output of the adversary.
Then we proceed with a sequence of games. The first game G0 is equivalent to the real proto-
col P. In the ending games such as G5, G6, and G7, A will be reduced to a straightforward
and negligible attacker.
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Game G0: This is the real protocol in the random oracle model. The oracles including
five random oracles (H0, h1, h2, h3, and h4) and all instances (Ci and Sj) are thus available
to the adversary. By definition,

Advake−fs
tp (A) = 2Pr[Succ0]− 1.

Then we furthermore assume that we choose a random bit b′ if the game aborts or stops
with no answer b′ from the adversary, or the adversary has not finished the game with more
than qse queries or lasts for more than time t where qse and t are predetermined upper-bounds.

Game G1: This is the game of minute simulation for the adversary, so that we simulate all
the oracles for each query in Figure 5. To make our simulation sound, we keep three lists of
transcripts: Lh for random oracle queries to hi() for i ∈ {1, 2, 3, 4} and H0, LA for the random
oracle queries directly asked by the adversary, and LP for the exchanged protocol messages.
Internal variables and states are postulated to be written on the corresponding tapes. We
assume that h1(·) and H0(·) are queried with 〈C, π〉 at most once in the whole games. We also
postulate that the adversary queries hi(·) without loss of generality for i ∈ {2, 3, 4}. The inter-
nal variables, OpenU [i,j] , CloseU [i,j] and AcceptU [i,j] , are all set false initially. Another internal
variable AcceptableSj is set true initially. If OpenCi and OpenSj are all true and there is a
Send(Ci, 〈µ, k1〉) query, then Ci is paired with Sj and thus we have 〈〈C, m〉, 〈µ, k1〉, ∗〉 ∈ LP .
Similarly, if OpenCi and OpenSj are all true and there is a Send(Sj , k2) query only for the
case that a Send(Ci, 〈µ, k1〉) query was asked, then Sj is paired with Ci and thus we have
〈〈C, m〉, 〈µ, k1〉, k2〉 ∈ LP . CloseU [i,j] and AcceptU [i,j] can be used to allege partnering.

From this minute simulation, we can easily see that the game is perfectly indistinguishable
from the real attack game in the random oracle model. Thus we have:

Pr[Succ1] = Pr[Succ0].

Game G2: In this game, we avoid collisions amongst an m or µ value of the current hon-
est choice and those of the previous execution, and amongst the hi(·) queries asked by the
adversary for i ∈ {2, 3, 4}, with probability bounded by the birthday paradox. We can postu-
late random oracle queries H0(C, π) and h1(C, π) are respectively free from mutual collisions
in the information theoretic sense. Let Collχ be the event that an χ value generated by a
Send or Execute query is equal to a value of the previous execution’s corresponding query, or
an input to the previous execution’s succeeding Send query. We play the game in a way to
abort if the event Collm or Collµ occurs. A new list LColl keeps track of m and µ by saving
〈[Ci, Sj ], [in, out], [m,µ]〉 where [χ, ψ] means one of χ and ψ is drawn. The random outputs or
inputs must be checked with LColl for a collision in each simulation of send queries. So, this
game may abort with probability bounded by (qse+qex)2

q−1 . Then we modify the simulation of
the random oracle queries so that we abort the game if hi(·) is directly asked by the adversary
and 〈i, ∗, r〉 ∈ LA for a random answer r ∈ {0, 1}κ and i ∈ {2, 3, 4}. This may make the game
abort with probability bounded by q2

ro
2κ+1 .

The two games G2 and G1 are perfectly indistinguishable unless the unlikely event Collm
or Collµ occurs, or a collision is found by the adversary in hi(·) for i ∈ {2, 3, 4}. So we have:

|Pr[Succ2]− Pr[Succ1]| ≤ O((qse + qex)2)
q − 1

+
O(q2

ro)
2κ+1

.
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Game G3: In this game, we abort the protocol runs if the adversary has been lucky in
guessing the values k1 and k2 without asking the corresponding random oracle queries. We
achieve this aim by adding more steps to processing the Send queries in the simulation.

In processing the Send(Ci, 〈µ, k1〉) query, the client should check if 〈2, C, S, m, µ, α, γ′, k1〉 ∈
LA or 〈〈C, m〉, 〈µ, k1〉, ∗〉 ∈ LP just before setting AcceptCi true (that is, right after checking
that k1 = k′1). If both tests fail, the client should terminate without accepting. In pro-
cessing the Send(Sj , k2) query, the server should check if 〈3, C, S, m, µ, β, γ′, k2〉 ∈ LA or
〈〈C, m〉, 〈µ, k1〉, k2〉 ∈ LP just before setting AcceptSj true (that is, right after checking that
k2 = k′2). If both tests fail, the server should terminate without accepting. This modification
ensures that k1 and k2 will come, in valid form, from either the simulator that traces pairing
or an adversary that has asked correct random oracle queries in all accepted cases.

The two games G3 and G2 are perfectly indistinguishable unless the client rejects the
valid k1 or the server rejects the valid k2. The rejection may happen only if the adversary
has correctly guessed the values k1 and k2 without asking the corresponding random oracle
queries. So we have:

|Pr[Succ3]− Pr[Succ2]| ≤ O(qse)
2κ

.

Game G4: In this game, we abort the protocol runs if the adversary has been lucky in
guessing the values γ′ (or γ) and u (or u−1) without asking the corresponding random oracle
queries. We achieve this aim by modifying the random oracle queries to hi for i ∈ {2, 3, 4}.

Provided that the hi(C, S, m, µ, α, γ′) query was asked by the adversary and 〈0, C, π, γ〉 ∈
Lh for γ = (γ′)−1, it must be checked whether 〈0, C, π, γ〉 ∈ LA and 〈1, C, π, u〉 ∈ LA just
before returning r for i ∈ {2, 3, 4}. If the latter test fails, the game must be aborted. Say,
the simulator is able to determine if the adversary had made a correct guess for u or not by
observing LA. This modification ensures that the adversary should have asked correct random
oracle queries to H0 and h1 for asking correct queries to hi for i ∈ {2, 3, 4}.

The two games G4 and G3 are perfectly indistinguishable unless the protocol aborts in the
random oracle queries. The abortion may happen only if the adversary has correctly guessed
the values γ and u without asking the corresponding random oracle queries. So we have:

|Pr[Succ4]− Pr[Succ3]| ≤ O(qro)
2κ

.

Game G5: In this game, we attempt to solve CDH if the adversary has been lucky in guessing
the password before a Corrupt query and asks Execute(Ci, Sj) and random oracle queries. We
achieve this aim by further modifying the random oracle queries to hi for i ∈ {2, 3, 4} and
using the reduction from CDH. In other words, given a random Diffie-Hellman instance 〈X, Y 〉
such that X ← gx and Y ← gy, we construct an algorithm Ψ that attempts to solve CDH
(i.e., find Z such that Z ← gxy) by running A on the simulation changed in the following
way.

In answering the Execute(Ci, Sj) query, the respective values are set as

m ← Xgθ, µ ← Y ϑ, k′1 ← k1
R← {0, 1}κ, k′2 ← k2

R← {0, 1}κ and skC ← skS
R← {0, 1}κ,

where θ, ϑ
R← Z∗q and ACCEPTABLE(C, m) is evaluated, rather than asking the Send queries

internally. So the values OpenU [i,j] and CloseU [i,j] must be false and the simulator does not
ask random oracle queries in this case. Subsequent random oracle queries by the adversary
are backpatched for consistency.
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In answering the random oracle queries hi(C, S, m, µ, [α, β], γ′) for i ∈ {2, 3, 4}, provided
that 〈0, C, π, γ〉 ∈ LA and 〈1, C, π, u〉 ∈ LA for a correct password π and γ such that γ =
(γ′)−1, it must be checked whether at least one of OpenU [i,j] and CloseU [i,j] is true. If the
latter test fails, we stop the game and can say the adversary succeeds.

Then A may finish with asking the Execute(Ci, Sj) and random oracle queries such as
H0(C, π), h1(C, π), and hi(C, S, m, µ, [α, β], γ′) for either one of i ∈ {2, 3, 4}. As a result, the
game stops and A succeeds. Recall that gρ = H0(C, π) and u = h1(C, π). In Ψ , the list LA
and the oracles’ internal tapes are parsed, and the value

σϑ−1uY ρ−θ−m

is added to the list of values Z, where σ = [α, β]. Note that σ can be picked up with probability
O( 1

qro
).

The two games G5 and G4 are perfectly indistinguishable unless the adversary has cor-
rectly guessed the password and asked the Execute(Ci, Sj) and corresponding random oracle
queries. The event happens with probability bounded by CDH for collecting the list elements.
Let t′ be the running time of Ψ and note that t′ = O(t + (qro + qse + qex)texp). So we have:

|Pr[Succ5]− Pr[Succ4]| ≤ O(qroAdvCDH
Gq

(t′, qro)).

Game G6: In this game, we attempt to solve CDH (though it can fail in some case) if the
adversary has been lucky in guessing the password before a Corrupt query and asks Send and
random oracle queries. When solving CDH fails, we derive the probability boundary directly.
We again use the reduction from CDH and modify the simulation of the corresponding queries,
so that the algorithm Φ attempting to solve CDH may run A on the simulation.

The modification is simple; given a random Diffie-Hellman instance 〈X, Y 〉, in each part
of processing Send queries in the simulation, the following derivations are substituted for the
original ones and the corresponding random oracle queries are all removed.

m ← Xgθ, µ ← Y ϑ, k′1 ← k1
R← {0, 1}κ, k′2 ← k2

R← {0, 1}κ and skC ← skS
R← {0, 1}κ,

where θ, ϑ
R← Z∗q . So the simulator will never ask random oracle queries in this game.

In answering the random oracle queries hi(C, S, m, µ, σ, γ′) for i ∈ {2, 3, 4}, the internal
variables must be checked in the following ways.

(1) Provided that only one of OpenCi and OpenSj is true, CloseCi is true when OpenCi is true,
and 〈0, C, π, γ〉 6∈ LA and 〈1, C, π, u〉 6∈ LA for a correct password π (say, γ 6= (γ′)−1 and
σ 6= CDH(mγ′, µu−1

) ·µu−1m mod p due to game G4), we define this event as NullOpen. We
furthermore record #NullOpen (which was initially set zero) by increasing one so that we
can track the number of failed guesses without detection, if the same incorrect password
was not claimed previously in LA. Thus we can easily see that the probability for the next
NullOpen event is bounded by 1− 1

N−#NullOpen where #NullOpen ≤ qse. We terminate the
protocol runs without accepting in this case.

(2) If 〈0, C, π, γ〉 ∈ LA and 〈1, C, π, u〉 ∈ LA for a correct password π and γ such that γ =
(γ′)−1, we abide by the following rules for each case attempting to solve CDH.
• If both OpenCi and OpenSj are true, the case is very similar to that of game G5. So

it is obvious that the probability is bounded by O(qseqroAdvCDH
Gq

(t′, qro)), since Φ may
collect the list of Z using the ι−th query in a random index ι ∈ {1, 2, · · ·, qse}.
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• If only one of OpenCi and OpenSj is true and CloseCi is true when OpenCi is true, the
adversary succeeds perfectly but CDH is only solvable for 〈X, µu−1〉 or 〈mγ′, Y 〉, say not
for 〈X,Y 〉 in this case. This must be the mentioned failed case for solving CDH under
the adversary’s correct password guess. Hence, we do not consider CDH in this case, but
rather we stop the game by defining the event, OnLine. When we consider #NullOpen
and previous NullOpen events, the OnLine may happen with probability approximately
bounded by #NullOpen

N−#NullOpen

∏#NullOpen−1
i=0 (1− 1

N−i) = #NullOpen
N since we have considered

and avoided all collisions in the previous games. Due to the definition of fresh and
semi-fresh oracles, there could be no reveal query. Since skC ← skS

R← {0, 1}κ, the
success probability of the adversary is 1

2 unless OnLine occurs in this case. Thus, we
have Pr[OnLine]+ 1

2Pr[¬OnLine] as the adversary’s success probability in this case. One
can easily derive the direct probability boundary such as 1

2+ qse

2N since #NullOpen ≤ qse.
• Otherwise and if AcceptableSj is true, the game is exactly the same as the previous

game, G5. So it is obvious that the probability is bounded by O(qroAdvCDH
Gq

(t′, qro)).
If AcceptableSj is false, the adversary fails without any advantage.

The two games G6 and G5 are indistinguishable unless the adversary has correctly guessed
the password and asked at least one of Send(Ci,Start) and Send(Si, 〈C,m〉) along with cor-
responding random oracle queries. So we have:

|Pr[Succ6]− Pr[Succ5]| ≤ qse

2N
+ O(qseqroAdvCDH

Gq
(t′, qro)).

Game G7: In this game, we consider Corrupt queries. Thus, fresh and semi-fresh oracles will
only imply fs-fresh and semi-fs-fresh oracles, respectively, in this game. When a Corrupt query
is made to a fresh or semi-fresh client, π will be answered, while to a fresh or semi-fresh
server, γ′ and ν will be answered. In each case, we will modify the games to the correspond-
ing “corrupted” games. We define a corrupted game as a game where Execute queries and
corresponding random oracle queries are only allowed to the adversary for our measurement.
This game could model the notion of forward secrecy. We also define a semi-corrupted game
as a game where Send(Sj , 〈C, m〉) queries and corresponding random oracle queries are only
allowed to the adversary for our measurement. This game could model the resistance against
server compromise. All disallowed or unexpected queries are answered by following the rules
defined in the previous games as much as possible, while the modified game can be con-
sidered as a kind of mini game without those queries. These will make our modified game
indistinguishable from the previous games unless specific events occur in the corrupted games.

(1) By the definition of fresh and semi-fresh oracles, a Corrupt query must be made by an
adversary to the client oracle definitely after the Test query. Thus, we assume such a
Corrupt(C) query was made by an adversary after the Test query but in the old games.
Then, we could modify the current game to another corrupted game in a way to reply
with old transcripts having the same OpenU [i,j] values (say, true or false) through the
random index ι ∈ {1, 2, · · ·, qse + qex} when an Execute query is asked. Due to game G5, A
may finish with asking the Execute(Ci, Sj) and random oracle queries such as H0(C, π),
h1(C, π), and hi(C, S, m, µ, [α, β], γ′) for either one of i ∈ {2, 3, 4}. As a result, the game
stops and A succeeds. One can easily see that the success probability is bounded by
O((qse + qex)qroAdvCDH

Gq
(t′, qro)), since Ψ as a result may collect the list of Z using the

random index ι ∈ {1, 2, · · ·, qse + qex}.
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(2) If a Corrupt query is made by the adversary before the Test query in this game, it must
be the Corrupt query with regard to semi-fresh server. Say, it must be the Corrupt(S)
query regardless of timeliness to the Test query. In this case, we modify this game to the
semi-corrupted game in the following ways.
• In answering the random oracle queries hi(C,S,m, µ, [α, β], γ′) for i ∈ {2, 3, 4}, pro-

vided that a Send(Sj , 〈C,m〉) query is made by the adversary, 〈1, C, π, u〉 6∈ LA for
a correct password π, and 〈i, C, S,m, µ, %, γ′〉 ∈ LA for % = (mγ′gm)y, we stop the
game and the adversary automatically succeeds. From the information theoretic per-
spective, this is a lucky event bounded by O(qse)

q−1 . This is because the discrete loga-
rithm of γ is eventually necessary for choosing m in a pre-defined subgroup. If we set
β = (mγ′gh(m,µ))y and w = u−1(x+h(m,µ)) mod q as we discussed in Section 2.3, we
could observe the boundary is modified to O(qro)

2κ .
• If random oracle queries to H0 and h1 are made with the correct password, the game

stops and the adversary automatically succeeds. Since γ′ and ν are already given to
the adversary, (s)he may ask corresponding random oracle queries as much as (s)he
can. Due to game G6, this event may happen with probability bounded by qro

2N .

The two games G7 and G6 are indistinguishable unless the adversary has asked a Corrupt
query and Execute or Send queries along with corresponding random oracle queries. So we
have for fresh oracles:

|Pr[Succ7]− Pr[Succ6]| ≤ O((qse + qex)qroAdvCDH
Gq

(t′, qro)).

Also we have for semi-fresh oracles:

|Pr[Succ7]− Pr[Succ6]| ≤ qro

2N
+

O(qse)
q − 1

+
O(qro)

2κ
+ O((qse + qex)qroAdvCDH

Gq
(t′, qro)).

Summary: From the sequence of games above, we could aggregate the probability gaps
among the games. By definition we could have Pr[Succn] = 1

2 + Advake
P (A;n)

2 . Thus we have
Advake

P (A) ≤ 2
∑6

i=0 |Pr[Succi+1]− Pr[Succi]|. As a result, we prove

Advake−fs
P (A) ≤ qse

N
+ O((qse + qex)qroAdvCDH

Gq
(t′, qro)) +

O((qse + qex)2)
q − 1

+
O(qse + q2

ro)
2κ

and

Advake−fs.s
P (A) =

qro

N
+ Advake−fs

P (A). 2

Theorem 2 Let P be the TP-AMP protocol with a password dictionary of size N . Fix an
adversary A that runs in time t, and makes qse, qex, qre, qco queries and qro queries. Then for
t′ = O(t + (qro + qse + qex)texp) with texp denoting the computational time for exponentiation
in Gq:

Advma
P (A) ≤ qse

N
+ O((qse + qex)qroAdvCDH

Gq
(t′, qro)) +

O((qse + qex)2)
q − 1

+
O(qse + q2

ro)
2κ

and
Advc2s.s

P (A) =
qro

N
+ Advake−fs

P (A).

Proof: The same argument can be achieved as Theorem 1. 2
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Queries hi(q) for i ∈ {1, 2, 3, 4} H0(q)

Simulation If 〈i, q, r〉 6∈ Lh: If 〈0, q, R〉 6∈ Lh:

r
R← {0, 1}κ ρ

R← Z∗q
Add 〈i, q, r〉 to Lh R ← gρ mod p

If the query was asked by A: Add 〈0, q, R〉 to Lh

Add 〈i, q, r〉 to LA If the query was asked by A:
Return r Add 〈0, q, R〉 to LA

Return R

Send(Ci, Start) Send(Ci, 〈µ, k1〉) Send(Sj , 〈C, m〉)
x

R← Z∗q γ ← H0(C, π) If ¬ACCEPTABLE(C, m):
γ ← H0(C, π) γ′ ← γ−1 mod p Abort (AcceptableSj ← False)
m ← gxγ mod p u ← h1(C, π) Else:

Return 〈C, m〉 α ← µu−1(x+m) mod p y
R← Z∗q

Update LP k′1 ← h2(C, S, m, µ, α, γ′) u ← h1(C, π)
OpenCi ← True If k1 = k′1: µ ← (gu)y mod p

AcceptCi ← True γ ← H0(C, π)
k2 ← h3(C, S, m, µ, α, γ′) γ′ ← γ−1 mod p
skC ← h4(C, S, m, µ, α, γ′) β ← (mγ−1gm)y mod p
Return k2 k1 ← h2(C, S, m, µ, β, γ′)
Update LP Return 〈µ, k1〉

Terminate (CloseCi ← True) Update LP
OpenSj ← True

Send(Sj , k2) Execute(Ci, Sj)

γ ← H0(C, π) 〈C, m〉 ← Send(Ci, Start)
γ′ ← γ−1 mod p 〈µ, k1〉 ← Send(Sj , 〈C, m〉)
k′2 ← h3(C, S, m, µ, β, γ′) k2 ← Send(Ci, 〈µ, k1〉)
If k2 = k′2: Send(Sj , k2)

AcceptSj ← True Return 〈〈C, m〉, 〈µ, k1〉, k2〉
skS ← h4(C, S, m, µ, β, γ′)

Terminate (CloseSj ← True)

Reveal(U i) Test(U i) Corrupt(U)

If AcceptUi : sk ← Reveal(U i) If U = C:

Return skU b
R← {0, 1} Return π

If b = 0: Else if U = S:

sk
R← {0, 1}κ γ ← H0(C, π)

Return sk u ← h1(C, π)
πC ← 〈γ−1 mod p, gu mod p〉
Return πC

Fig. 5. Simulation of Oracles


