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Our topic is the manifold of planes that intersect four straight lines in three-
dimensional euclidean space in points of a circle. The solution manifold is of class
seven and contains 24 single lines, four double lines, a triple plane and four dual
conics. We compute the solution manifold’s equation, visualize it and discuss the
special case of the four base lines being contained in a regulus.

1 Introduction

In this text, we study the set L of planes in
three-dimensional euclidean space E3 that in-
tersect four straight lines in points of a circle.
The manifold of solution planes L is, in gen-
eral, of dimension two. Furthermore, there are
numerous ways of seeing that it is algebraic.
We will give two independent proofs for that.
Both also yield the class of L (it is seven).

Our investigations heavily rely on a concept
already used in Schröcker (2004) for studying
the intersection conics of six straight lines.
The present situation is, however, slightly
more complicated and some important modifi-
cations are necessary.

In the projective extension P3 of euclidean
three-space, circles are characterized as bise-
cant conics of the absolute circle. Therefore,
our problem has an obvious projective gener-
alization: Study the set of planes in P3 that
intersect a conic section and four straight lines
in six points of a conic section. Because of its
generality and clarity, we will usually take this
latter point of view. Only for computational

issues (Section 4), the euclidean setting seems
to be more appropriate. This is also the rea-
son why all visualizations in this text refer to
the original circle problem.

After introducing a few basic conventions
and notions in Section 2, we discuss the use
of Pascal’s Theorem for identifying solution
planes (Section 3). It leads to a method for
counting the solution planes in a pencil and,
consequently, to the mentioned result on the
solution manifold’s class (Theorem 1). The ex-
tension of this method to non-generic pencils
of planes in Section 5 yields results on special
planes, pencils of planes and dual conics (sets
of tangent planes of quadratic cones) in L.

In Section 6, we investigate the special case
of the four base lines being contained in a re-
gulus R. The solution manifold splits into the
dual carrier quadric R of R and an algebraic
remainder T of class five. Our main result
concerns the curious intersection of R and T
which consists of eight pencils of planes and a
dual conic.

Section 4 is dedicated to the computation
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of an algebraic equation for L. It uses the
geometry of circles in space and is the basis for
visualization purposes throughout this text.

2 Definitions and conventions

In complex projective space P3 of dimension
three, four straight lines B0, . . . , B3 and a
conic section C are given. The straight lines
Bi will be referred to as base lines the conic C
as base conic. We give the following definition
of fundamental concepts:

Definition 1. A conic section D ⊂ P3 is called
a solution conic, if it intersects each base line
Bi in at least one and the base conic C in at
least two (possibly coinciding) points.

Definition 2. A plane ε ⊂ P3 is called solution
plane, if it contains at least one solution conic.
It is called singular if it contains at least one
singular solution conic and regular otherwise.

The union L of all solution planes is called
solution manifold. As already mentioned, it
is algebraic. Note, however, that the singular
solution planes are not necessarily singular in
algebraic sense.

Unless stated otherwise, we assume a generic
configuration of base lines and base conic.
This ensures that L is of dimension two. In-
stances where all planes of P3 are solution
planes (base lines and base conic have a com-
mon carrier quadric, four base lines or the
base conic and two base lines lie in a common
plane) are of little interest and will not be
dealt with in this text.

3 Pascal’s Theorem

Pascal’s well-known theorem (Figure 1) pro-
vides a simple method for deciding whether a
given plane ε is a solution plane or not. We
let bi := ε ∩ Bi, denote the two intersection
points of ε and C by c0 and c1 and define the
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Figure 1: Pascal’s Theorem.

Pascal points of ε as

p1 := [b0, c0 ] ∩ [b3, c1 ] ,
p2 := [b2, c0 ] ∩ [b1, c1 ] , (1)
p3 := [b0,b1 ]∩ [b2,b3 ] .

Now it would be tempting to say that ε is a
solution plane iff its Pascal points are collinear.
Unfortunately, this is not true – not even when
all Pascal points are well-defined. The follow-
ing problems might occur:
• One of the Pascal points pi is not well-

defined for whatever reason. Planes with
that property will be called special (as op-
posed to ordinary planes).

• The plane ε is tangent to the base conic
C. In this case, the points c0 and c1 co-
incide and Pascal’s Theorem in the ver-
sion of Equation 1 will always (and usually
wrongly) identify ε as a solution plane.
Despite these exceptional cases, Pascal’s

Theorem is still an excellent tool for identify-
ing solution planes and we can at least state

Proposition 1. Special planes and ordinary
planes with collinear Pascal points that are
not tangent to C are always solution planes.

Tangent planes of C cannot be judged by
means of Equation 1. Of course it is possible
to use different Pascal points for the solution
plane test. This will, however, not be neces-
sary in this text.

We want to use Pascal’s Theorem for count-
ing the ordinary solution planes in a pen-
cil of planes. For that purpose we choose
the pencil axis E and a rational quadratic
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parametrization c0(t) of C. It defines a
quadratic parametrization ε(t) := [E, c0(t) ]
of the pencil of planes through E and in-
duces rational parameterized equations for
the points bi(t) ∈ Bi, c1(t) ∈ C and pi(t)
from Equation 1.

As t varies in the parameter space C∪{∞},
the trajectory of the point pi(t) is a rational
curve Pi. Generic position of E provided, ev-
ery plane ε through E and hence every point
of P3 belongs to two parameter values, while
the points of P1 and P2 belong to one one pa-
rameter only. The curves Pi will be called the
Pascal curves to the straight line E. The de-
gree of bi(t) and c1(t) is two, the degree pi of
pi(t) will be determined soon (in Lemma 1).

A second rational parametrization of the
pencil of planes through E is obtained as

ϕ(t) : u(t) = p0(t) ∧ p1(t) ∧ p2(t).

The plane coordinate vector u(t) is propor-
tional to the induced rational parameteriza-
tion v(t) of ε(t) and of degree p = p1 +p2 +p3.
Since v(t) is quadratic, there exist p− 2 zeros
t0, . . . , tp+1 of u(t). Two of them describe tan-
gent planes of C. The remaining values corre-
spond to the ordinary solution planes through
E. Because two parameter values ti and tj
describe the same plane, the total number of
solution planes in the generic case is given as

%(E) := (p− 4)/2. (2)

If E is in a general position, all its solution
planes are ordinary and %(E) equals the class
of L. From these considerations, it follows that
L is algebraic. The class will be known as soon
as we can compute %(E) for generic arguments:

Lemma 1. The parameterizations pi(t) of the
Pascal curves Pi associated to a generic pencil
axis E are of degree six.

Proof. We begin with the Pascal curve P3.
It lies in the intersection of the quadrics
[E,B0, B1 ] and [E,B2, B3 ] (i.e., the carrier
quadric of the regulus defined by E, Bi and
Bj) and is therefore a twisted cubic. Since
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Figure 2: The algebraic correspondence on E.

every point of P3 belongs to two parameter
values, the degree of p3(t) is really six.

The first and second Pascal curve are gener-
ated in identical ways. Therefore, it is enough
to study only one of them, say P1. In contrast
to P3, it has to be counted with multiplicity
one. Consequently, P1 and p1(t) are of equal
degree p1. For a generic parameter value t,
the plane ε(t) intersects P1 in p1 points, two
of which are not contained in E. The inter-
section points of E and P1 are found as fixed
points of an algebraic (2, 2)-correspondency α
on E, relating a point

e = E ∩ [ c0(t0),b0(t0) ]
= E ∩ [ c0(t1),b0(t1) ]

to the intersection points ei of E and the span
of c1(ti) and b3(ti) (Figure 2). By Chasles’
principle of correspondence (see for example
Müller and Krames, 1931, p. 259) there exist
four fixed points of α. Hence, the degree of P1

is 4 + 2 = 6. �

As a consequence of Lemma 1 we have com-
puted the degree of ϕ(t) as deg(ϕ) = p1 +p2 +
p3 = 18. By Equation 2 we find %(E) = 7 and
the proof of this section’s central theorem is
finished:

Theorem 1. The solution manifold L is alge-
braic and of class seven.
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Remark. Schröcker (2004) shows that the man-
ifold of planes that intersect six straight lines
in points of a conic section is of class eight. If
two of the straight lines intersect, a bundle of
planes splits off and the remaining manifold is
of class seven. In this sense, Theorem 1 holds
for a singular base conic as well.

An alternative proof for Theorem 1 will be
given in Section 4. Instead of synthetic reason-
ing, it uses straightforward computation. Note
further that the presented concept goes far be-
yond the result of Theorem 1. In Section 5 we
will use it extensively for investigating special
plane sets in L.

4 The algebraic equation

As we are approaching more “depictable” prop-
erties of L, it is time for a few remarks on
the computation of its algebraic equation and
its visualization. We propose an approach via
the classic geometry of circles in space (see
for example Coolidge, 1971). It is not elemen-
tary but lucid and straightforward. In contrast
to the preceding sections, we will use the eu-
clidean setting.

4.1 Circle geometry

We consider the mapping γ from the set of
euclidean planes and spheres into P4, de-
fined as follows: The sphere Σ with center
m = (1:a :b :c)T and radius r is mapped to
the point

γ(Σ) = (µ + 1:2a :2b :2c :µ− 1)T

with µ = a2 + b2 + c2− r2. The γ-image of the
plane ε : ax + by + cz + d = 0 is the point

γ(ε) = (−d :a :b :c :−d)T.

Embedding E3 in E4 ⊂ P4 via the natural iden-
tification

(1 :x :y :z)T 7→ (1 :x :y :z :0)T

reveals the geometric meaning of γ: We denote
the unit hypersphere in E4 ⊂ P4 by M and the

stereographic projection of E3 ⊂ E4 from its
north pole n by σ. Now, it is not difficult to
verify (see Paluszny and Bühler, 1998):

Proposition 2. The γ-image of a sphere (or
plane) Σ is the pole of the span of Σ’s stere-
ographic projection onto the unit hypersphere
M ⊂ E4.

A circle D ⊂ E3 is incident with a one-para-
metric set of spheres (a pencil of spheres). Via
γ, this pencil is transformed into a straight line
γ(D) that can be addressed as the γ-image of
D. Similarly, we call the straight line γ(L),
whose points correspond to the planes of the
pencil of planes through a straight line L, the
γ-image of L. It lies in the tangent hyperplane
N of M in the north-pole n. In this way, the
geometry of circles in space is transformed to
the line geometry of P4.

Since all spheres through a given point have
stereographic images in hyperplanes through a
point of M, their γ-images are located in the
corresponding tangent hyperplane and we find

Proposition 3. Two circles D,E ⊂ E3 have
a common point, if their γ-images span a tan-
gent hyperplane of M. They have two common
points, if the span of γ(D) and γ(E) is a two-
dimensional plane.

Note that Proposition 3 is still valid, if D is
a straight line. If we agree on a common point
∞ of all planes in E3 (conformal closure of E3),
it also holds for two straight lines.

4.2 Computing the equation

Proposition 3 can be used for a straightfor-
ward computation of the algebraic equation of
L: Via γ, the four base line Bi correspond to
straight lines Hi ⊂ N . Together with a further
point u = (−u3 :u0 :u1 :u2 :−u3)

T of N (the γ-
image of an undetermined plane ε in P3), the
straight line Hi spans a plane ηi that is inci-
dent with two tangent hyperplanes of M: The
north-pole hyperplane N and a further hyper-
plane Ti. The computation of Ti is a linear
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problem, its coefficients are rational of degree
two in the coordinates ui of u.

By Proposition 3, the point u is the γ-image
of a solution plane if and only if the hyper-
planes Ti are in special position. With the help
of an arbitrary hyperplane V = (v0 : . . . :v4)

T,
this can be tested by evaluating the equation

det(T0, T1, T2, T3,V) = 0. (3)

It is algebraic of degree eight and describes
the union of the solution manifold L with a
bundle of planes (the γ-pre-images of N ∩ V).
The equation of L is found by splitting off the
linear component

−(v0 + v4)u0 + v1u1 + v2u2 + v3u3 = 0.

Thus, the algebraic equation of L is of degree
seven. This provides a second, computational,
proof for Theorem 1.

Remark. It would be possible to compute the
algebraic equation of L in a completely el-
ementary way, using only concepts of basic
euclidean geometry (intersection of straight
planes and lines, planes of symmetry. . . ).
From a pragmatic point of view, this is en-
tirely satisfactory. We presented a different
way because of some theoretical deficiencies
of the elementary approach. In particular, a
computational proof for Theorem 1 is not that
easy: The elementary computation results in
an algebraic equation of high degree, i.e., it
describes unwanted components. Of course,
they can easily be eliminated but – in contrast
to the approach via circle geometry – it is not
easy to justify this in an accurate manner. Fur-
thermore, the circle geometry seems to have
some potential for deriving further results in
related questions (compare also Section 8).

4.3 A few words on visualization

In Figure 3, an example of the solution mani-
fold for a generic base line and base conic confi-
guration is displayed. In order to produce this
picture we
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Figure 3: Visualization of the solution manifold in
the general case.

1. computed the algebraic equation of L as has
been described,

2. chose a suitable affine sheet (by substitut-
ing, for example, u0 = 1, u1 = x, u2 = y,
u2 = z and

3. fed the resulting equation into a ray-tracing
program.
This implies the interpretation of plane coor-

dinates as point coordinates. In other words,
the surface depicted in Figure 3 is obtained
from L by polarization at the complex sphere
with equation

x2
0 + x2

1 + x2
2 + x2

3 = 0.

In real euclidean space, this transformation is
the composition of the polarization at the unit
sphere and the reflection at the origin.

Pencils of planes in L are transformed into
straight lines (different from the pencil axes),
the tangent planes of quadratic cones into
conic sections. Examples of that can be seen
in Figure 3. Their meaning will be revealed in
the coming section.

5 Special planes, lines and cones

We continue with the investigation of pencils
of planes through a straight line and other spe-
cial plane sets in L. The setting is switched
back to projective space.
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If a pencil of planes through a straight line L
is contained in the solution manifold L, we say
for short that L is contained in L. Examples
of straight lines in L are easily spotted. We
find
• the four base lines Bi,
• their two transversals T0 and T1 (not neces-

sarily real),
• the six straight lines Uij in the plane of C

that intersect Bi and Bj and
• the sixteen straight lines V0i, . . . , V3i, that

meet C and three base lines Bj , Bk, Bl

(where {i, j, k, l} = {0, 1, 2, 3}).
The solution planes through these lines are ex-
clusively singular. In Figure 3, the four base
lines Bi and the lines Uij in the plane of C
are depicted. Since the latter lie in a com-
mon plane, their representatives are concur-
rent. The base line transversals T0 and T1 as
well as the straight lines Vij are complex.

5.1 Double lines

A glance at Figure 3 suggests that the base
lines Bi are actually double lines of L. In or-
der to prove this, we use the concept of Sec-
tion 3. We choose a generic transversal E
of B0 and B3 and study the pencil of planes
through E. Its only special solution planes
are ε0 = [ E,B0 ] and ε1 = [ E,B3 ]. For rea-
sons of symmetry, their multiplicities as ele-
ments of L are identical. As in Section 3, a
quadratic parametrization c(t) of C leads to
Pascal curves P1, P2 and P3. This time, P1 is
a conic (part of the intersection curve of the
two quadratic cones through C), P2 is rational
of degree six and P3 is a quadratically param-
eterized straight line. Thus, we have %(E) = 3
and the multiplicity of ε0 and ε1 is

deg(L)− %(E)
2

=
7− 3

2
= 2.

Hence, B0 and B3 are double lines. By similar
means one can show that the other straight
lines on L are usually of multiplicity one. Thus,
we can state:

Theorem 2. In general, the solution manifold
L contains 28 straight lines: The four base
lines, their two transversals, the six straight
lines in the plane of C that intersect two base
lines and the sixteen transversals of C and
three base lines. The base lines are double
lines of L.

5.2 The base conic plane

Similar (and even simpler) reasoning shows
that the plane ω of C is a triple plane of L:
We assume this time that the straight line E
lies in ω and that the pencil of planes through
E is parameterized linearly by ε(t). Because
the intersection points of ε(t) with C remain
fixed, the corresponding pascal curves P1, P2

and P3 are, in that order, of degree one, one
and three. Thus, there exist four solution
planes besides ω through E and we find

Theorem 3. The base conic plane ω is a triple
plane of the solution manifold L.

The triple plane of L is visualized in Fig-
ure 3. It corresponds to the intersection point
of the straight lines Uij and is a triple point of
the displayed surface. As far as the euclidean
circle problem is concerned, there exist two
noteworthy corollaries to Theorem 1 and The-
orem 3:

Corollary 1 (euclidean setting). In general,
a pencil of parallel planes contains four eu-
clidean solution planes while a pencil with fi-
nite axis contains seven.

Corollary 2 (euclidean setting). The mani-
fold of planes that intersect the four sides of
a spatial quadrilateral in points of a circle con-
sists of four bundles of planes and the tangent
planes of a cubic curve in the plane at infinity.

Proof. The bundles of planes through the
quadrilateral’s vertices are singular compo-
nents of the solution manifold. The remaining
component is of class three and has ω as a
plane of multiplicity three or higher. Hence,
it is a cubic dual cone with “vertex” ω. This
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plane set in a euclidean interpretation is de-
scribed in the theorem. �

5.3 Dual conics

Besides the straight lines enumerated in Theo-
rem 2, we also find dual conics (set of tangent
planes of a quadratic cone) in L. Consider the
bundle of planes through g0 := ω ∩ B0. It
intersects the solution manifold in the three
straight lines U01, U02, U03, the double line B0

and a remainder C0 of class two, i.e., a dual
conic.

The geometric meaning of C0 is related to
the quadric Q0, spanned by the base lines
B1, B2 and B3. Since every tangent plane of
Q0 through g0 is a (singular) solution plane,
the dual conic C0 is the tangent cone of Q0

with vertex g0. All in all, four quadratic cones
C0, . . . , C3 of that type are contained in L. In
Figure 3, two of them are visualized as conic
sections.

6 Four base lines in a regulus

So far we have assumed a generic configuration
of the base lines B0, . . . , B3 and the base conic
C (with exception of Corollary 2). In this sec-
tion, we will study a special configuration of
particular interest. We assume that the four
base lines are contained in a regulus R. The
carrier quadric of R be denoted by Q, the set
of its tangent planes (a dual quadric) by R.

The solution manifold L splits into R and
a remainder T of class five – a curious pair of
dual manifolds, as we shall see. In Figure 4,
an example is depicted. Apparently, the inter-
section of T and R contains a quadratic dual
conic C – visualized as a conic section – and
the four base lines. The latter property is no
surprise: Bi is a double line of L, a single line
of R and hence a single line of T as well. The
first property is a consequence of the follow-
ing lemma and the fact that there exist four
base line transversals W0, . . . ,W3 that also in-
tersect C. It can be proved by following the
concept of Section 3.
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Figure 4: The four base lines lie in a regulus.

Lemma 2. A transversal of the four base lines
and the base conic is a double line of L.

Note that Lemma 2 is also valid if they base
lines are not contained in a regulus. We sum-
marize its consequences in

Theorem 4. If the four base lines lie in a re-
gulus, the solution manifold splits into a dual
quadric R and a remaining dual manifold T
of degree five. The intersection of R and T
consists of eight straight lines (the four base
lines and four of their transversals) and a dual
conic.

It is well known that there exist six pen-
cils of parallel planes (four of them com-
plex) whose planes intersect a given euclidean
quadric Q in circles. By projective general-
ization we find that T contains six pencils of
planes that have not been mentioned in Theo-
rem 2. Their axes Xi are the diagonals of the
quadrangle formed by the intersection points
of Q and C (see also Figure 4, where the two
real straight lines X0 and X1 are displayed).
All in all, T contains a total of at least 16
straight lines.

The dual conic C in the intersection ofR and
T (Theorem 4) has a very simple geometric
meaning: Its planes are tangent to Q along
the intersection of Q and ω. In order to see
this, we have to understand how the concept
of Pascal curves works in our special case:
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In general, the first and second Pascal
curves P1 and P2 are still rational of degree
six. The third Pascal curve is a straight line
because the intersection of the two quadrics
[E,B0, B1 ] and [E,B2, B3 ] is highly reducible:
It consists of E, two transversals of E and the
base lines and a fourth straight line P3. Thus,
we have %(E) = 5 for a generic pencil axis
E. If E is a tangent of the intersection conic
of ω and Q, the Pascal curves P1 and P2

are straight lines (compare the proof of Theo-
rem 3). The third Pascal curve P3 is even more
degenerate: It is a single point because the
quadrics [E,B0, B1 ] and [E,B2, B3 ] touch
along E and a transversal of E. Since the
multiplicity of ω as element of L is still three
(Theorem 3), there exists a second special so-
lution plane of T through E – the tangent
plane of Q.

Theorem 5. The dual conic in the intersection
of T and R (compare Theorem 4) consists of
the tangent planes of Q along its intersection
with the base conic plane ω.

If the quadric Q has ω as tangent plane we
make two further observations:
1. The intersection of Q and ω consists of two

straight lines E and F . One of them, say
E, intersects the four base lines.

2. Two of the four base line transversals that
also meet the base conic C coincide with E.

Hence, E is a triple line of T and the intersec-
tion of T with R consists only of straight lines.
We state this as a corollary to Theorem 4 and
use the euclidean setting for its formulation:

Corollary 3 (euclidean setting). If the four
base lines are skew generators of a hyperbolic
paraboloid, the intersection of R and T con-
sists of eight straight lines, one of them of mul-
tiplicity three.

An example is depicted in Figure 5. Six
straight lines of the intersection are clearly vi-
sible, among them the triple line of T . The
two further lines are complex.
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Figure 5: The four base lines lie on a hyperbolic
paraboloid.

7 Concyclic base lines on a cylindroid

A curious base line configuration with re-
ducible solution manifold L has been described
in Stachel (1995), though under a slightly dif-
ferent viewpoint. The author characterizes
those quadrupels of pairwise skew straight
lines that are tangent to a one-parameter fam-
ily of spheres. Besides the obvious solution of
four generators of a hyperboloid of revolution
there also exist special quadrupels of concyclic
generators on a cylindroid (Plücker conoid) Ψ.
Every tangent planes of Ψ intersects the con-
cyclic generators in four points of a circle and
is hence a solution plane. The solution mani-
fold L splits into the tangent plane manifold
C of Ψ and a remainder D of class four. A
dual view of both plane manifolds is depicted
in Figure 6

The line at infinity G of Ψ intersects all four
base lines and the base conic (circle at infinity)
twice. Its multiplicity as element of L is four.
Since it is a double line of C, it is also a dou-
ble line of D – a fact that can be observed in
Figure 6.

The intersection of C and D consists of the
double line G, counted with multiplicity four,
the four base lines and a remainder of class
four.
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Figure 6: Concyclic generators on a cylindroid.

8 Future research

We have studied the manifold of planes that in-
tersect four straight lines in points of a circle,
we computed its algebraic equation, showed
that it is of class seven and presented a gen-
eral concept for the investigation of pencils of
planes, quadratic cones etc. on the solution
manifold. However, some questions in this con-
text remain open.

In particular, we only considered solution
planes. At least in the euclidean setting, also
the solution circles themselves or geometric ob-
jects associated to them (congruence of axes,
surface of midpoints) might be of interest. Pos-
sibly, the geometry of circles in space as used
in Subsection 4.1 is an appropriate tool for in-
vestigations of this kind.

In the projective setting, we suggest a more
general viewpoint that comprises the investi-
gations of Schröcker (2004) and the present
text: For all integers n ∈ {0, . . . , 3} determine
the planes that intersect n conic sections and
6 − 2n straight lines in six points of a conic
section. The known results for n = 0 and
n = 1 (compare Theorem 1 and its subsequent
remark) indicate that the class of the solution
manifold is 8−n. A study of the missing cases
n = 2 and n = 3 shall be left to a separate
paper.
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