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Summary We describe an interaction based approach for computerlingdend
simulation of large integrated biological, informatiomcgl and technical (BIST)
system$ Examples of such systems are urban regional transportsyistems, the
national electrical power markets and grids, gene regulatetworks, the world-
wide Internet, infectious diseases, vaccine design antbgeyent, theater war, etc.
These systems are composed of large numbers of interactingrn physical, infor-
mational and technological components. These compondat and learn, exhibit
perception, interpretation, reasoning, deception, cafm® and non-cooperation,
and have economic motives as well as the usual physical grepef interaction.

The theoretical foundation of our approach consists of teaxisp (i) mathemat-
ics of complex interdependent dynamic networks, and (iijhmaatical and com-
putational theory of a class of finite discrete dynamicateasys calledSequential
Dynamical SystemqSDSs). We then consider engineering principles basedan su
a theory. As with the theoretical foundation, they consfsta® basic parts: (i) Ef-
ficient data manipulation, including synthesis, integnatistorage and regeneration
and (ii) high performance computing oriented system desigaelopment and im-
plementation. The engineering methods allow us to spedifsign, and analyze sim-
ulations of extremely large systems and implement them asively parallel archi-
tectures. As an illustration of our approach, an interadtiased computer modeling
and simulation framework to study very large interdepemdeaietal infrastructures
is described.

1 Introduction

This chapter considers an interaction based approach fdeling and simulation
of large scale integrated biological, information, soaiatl technical (henceforth re-
ferred to as BIST) systems. BIST systems consist of a largebeu of interacting

! To appear as a book chapter in the book titlgeractive Computation: the New Paradigm
Goldin, Smolka, Wegner, Editors, ESptringer Verlag, S2p@6.
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physical, biological, technological, informational andnan/societal components
whoseglobal systemproperties are a result of interactions among representati

of local systemelements Examples of such systems are urban regional transporta-
tion systems, national electrical power markets and gtfis)nternet, peer to peer
networks, adhoc communication and computing systems, iggnuatory networks,
public health, etc. The complicated interdependenciedraedactions are inherent
within and among constituent BIST systems. This is exeneplifiy the recent cas-
cading failure of the electric grid in the northeastern BdiStates. Failure of the
grid led to cascading effects that slowed down Internefitraflosed down financial
institutions and disrupted the transportation and telenanication systems.

In the past, mathematical models based on differentialtenshave often been
used to model complex physical and social systems. Altheaugh models are valu-
able in terms of providing simple first order explanatiohgyt are not particularly
useful in providing a generative computer model or a causala@ation of the as-
sociated dynamic phenomena. For instance, epidemiosdggste traditionally used
coupled differential rate equation based models on comilgletixed populations to
understand the spread of diseases. These simple modeldgrogood prediction
for a number of important epidemiological parameters sichuanber of sick, in-
fected and recovered individuals in a population. Nevéesee such epidemiological
models have a number of well known shortcomings. They irelath adhoc value
of the reproduction number, the inability to predict angthabout the early phase
of disease spread, and an inability to account for spatidldamographic diversity
in urban populations. Even more important, the models dgpnotide any causal
explanation nor do they lead to a generative computationdeh As a result, ques-
tions such as identifying potential individuals that canvaecinated to contain the
epidemic are very hard to analyze; see [22, 33, 46] for amfthfidiscussion.

Here, we describe an interaction based approach for magdatid simulation of
BIST systems. The approach uses an endogenous reprezenfatidividual agents
together with explicit interaction between these agengetwerate and represent the
causal ecologies in such systems. The approach was dedalepethe last 12 years
by our group and provides a common framework for three seglynitiverse areas:
(i) representation and analysis of large scale distribBI&T systems, (ii) next gen-
eration computing architectures and (iii) associateditisted information and data
integration architectures.

The interaction-based approach is based on a mathematidalcanputational
discrete dynamical systems theory called Sequential Dygan$ystem (SDS).
SDSs provide a formal basis for describing complex simaietioy composing sim-
pler ones. They are a new class of discrete, finite dynamystéésis and emphasize
questions of what is being computed by systems of intergefiements, as opposed
to the traditional approach of holard it is to compute a given procedure or class.
Nevertheless, a traditional Turing machine based apprisacded for characterizing
the computational complexity of the interacting elements.

We complement the theoretical discussion by descrit8ngfrastructure: a
practical microscopic interaction-based modeling framéwto study very large in-
terdependent societal infrastructures formed by theatern between the built ur-
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ban infrastructure and spatial movement patterns of iddais carrying out their
day-to-day activitiesSimfrastructure has been used to model extremely large in-
frastructures consisting of millions of interacting ageobnsisting of more than 10
million individual elements. For example, the transpaotatmodule withinSimfras-
tructure can represent every individual in the Chicago region at gteal resolu-
tion of 1 second, and a spatial resolution of approximatetyéters. This region
spans approximately 250 square miles and has more than 408ien There are
more than 9 million individuals taking roughly 25 millionigs each day. The time
varying social contact network consists of more than 25iomiledges and vertices.
The size, scope and multiple time scales of system repiagamhaturally motivates
a high performance computing implementation and requiegsangineering design
principles. Individual modules of this system routinelyron clusters comprised of
128 nodes; several of the individual simulations are alsndg)executed on 1000+
node systems.

1.1 Relationship to Interactive Computing

There are at least two reasons why the topic of computer nmggdahd simulation
of large BIST systems is pertinent to interactive compatatiFirst, as discussed
above, interaction based computer models are natural @nahtly way to represent
and comprehend the complex dynamics of many BIST systentbelpast, com-
puter simulation of physical phenomenon has been a keyrdnube development
of current high performance computing systems. Our viewas interaction based
modeling and simulation of BIST systems will serve as a kéyedffor the develop-
ment of next generation interactive computing platfornecdhd, and perhaps more
pertinent to this book, we believe that an interaction basedeling of BIST sys-
tems will yield new mathematical and computational techeg&jthat advance the
state of the art of interactive computation. Recently, cotaepscientists have pro-
posed automata theoretic models, programming languagesadculi that attempt
to treat interaction, as an atomic element of computati@ve&l chapters in the
book address these topics in detail. BIST systems natudiaplay many attributes
of interactive computing such as providing a service rathan solving a specific
algorithmic task, inclusion of environment within the comt@tional representation,
etc. Thus a deeper understanding of these inherent prepeftBIST systems will
provide new ideas for developing a interactive computing

To further appreciate this, consider for example interdepat societal infras-
tructure systems spanning large urban areas. They arether of economic, com-
mercial and social activities. The design of these urbaasatheir rapid population
growth, and sharing of the limited resources by their intaatis has led to increased
social interactions [47, 8]. Large scale information detiy and access systems de-
veloped by today’s computing companies such as Google,drakkamai, etc. are
examples of emerging socio-technical information infiactiure systems. Such re-
gional and global scale infrastructure systems are spatigtributed, managed by
different federal, state, and commercial entities and agesit multiple time scales.
Despite this heterogeneity, based on certain basic ecanand legal principles,
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these interdependent systems usually work seamlesslytideruninterrupted ser-
vices to the millions of individuals residing in the urbagien. Under any reasonable
definition, these are complex systems whose global beha/eresult of compli-
cated interactions between constituent elements. Forgheathe spatial distribution
of individuals in an urban region, their movement patteams] their phone-calling
patterns, all have a direct bearing on the structure and esigyd of wire-line and
wireless telecommunication networks. A systematic urtdading of such systems
must therefore be able to represent the complex interdepenes between individ-
ual constituent elements and their dynamics. The focus iaraterstanding con-
sequences of certain decisions or representing the iti@madetween individuals
and the infrastructures rather than solving specific algovic question. The con-
stituent BIST systems (e.g. transportation and urban @ipuls) are tightly coupled
and co-evolve: they are naturally viewed as large popuiagicologies. Computa-
tional models developed to represent these systems willssecily have to clarify
the role of interaction between constituent elements aacetivironment. This in-
cludes questions of what is being computed, the meaning@adf environment
and acceptance of non-determinism as an elementary phaoome

1.2 Organization

The remainder of the chapter is organized as follows. Se@icontains basic defi-
nitions and preliminary results. In Section 3, we discussttieoretical foundations
of interaction based simulation and modeling of BIST systeBection 4 contains
a discussion of the engineering principles necessary feigdeand implementa-
tion of large BIST system simulations. In Section 5 a prattaperational system
based on the theoretical and engineering foundationsibesldn Section 3.1to 4 is
discussed. Finally, Section 6 contains concluding remarkkdirections for future
work.

2 Terminology and Preliminary Results

Informally, computer simulation is the art and science afigsomputers to calculate
interactions and transactions among many separate diguocitepresentations, each
of which might be associated with identifiable “things” iretteal world (at least in a
world outside the simulation program). Because of the widesd use of computer
simulations, it is difficult to give a precise definition of amputer simulation that
is applicable to all the various settings where it is usedvextbeless, it is clear
that simulation has two essential aspects: dynamics geme@nd mimicry of the
dynamics of another system by the dynamics of the simulgtfogram. Thus we
view simulations as comprised of the following: (i) a cotiea of entities with state
values and local rules for state transitions, (ii) an intdom graph capturing the
local dependency of an entity on its neighboring entities i) an update sequence
or schedule such that the causality in the system is repieséy the composition
of local mappings.
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A Sequential Dynamical SystenfSDS)S8 over a given domaii of state values
is a triple(G, &, 7), whose components are as follows:

1. G(V, E) is a finite undirected graph without multi-edges or self lnd@p is re-
ferred to as theinderlying graph of 8. We usen to denotdV'| andm to denote
|E|. The nodes of7 are numbered using the integers 1, 2, n.

2. For each node of G, JF specifies docal transition function, denoted byyf;.
This function map®° ™! into D, wherey; is the degree of node Letting N(7)
denote the set consisting of nodétself and its neighbors, each input ¢f
corresponds to a member &(3).

3. Finally,n is a permutation of1, 2, ...,n} specifying the order in which nodes
update their states using their local transition functigdgernatively,7 can be
envisioned as a total order on the set of nodes.

A configuration € of § can be interchangeably regarded asarector(cy, co, . . ., ¢p),
where eacle; € D, 1 <17 <mn,orasafunctiot: V — D.

Computationally, each step of an SDS (i.e., the transitiomfone configuration
to another), involves: substeps, where the nodes are processed iisdbaential
order specified by permutation The “processing” of a node consists of computing
the value of the node’s local transition function and chagdfis state to the computed
value. The following pseudo-code shows the computatior@wed in one transition.

for i=1to n do

(i) Node 7(i) evaluatesf,(;. (This computation uses thaurrent values of the
state of noder(:) and those of the neighbors of nodé&).) Let 2 denote the value
computed.

(i) Node (i) sets its state ;) to x.
end-for

We usefFs to denote theglobal transition function associated witl§. This func-
tion can be viewed either as a function that m&Jjsinto D" or as a function that
mapsD" into DV. Fs represents the transitions between configurations, and can
therefore be considered as defining the dynamic behavidD&8f$S A fixed point of
an SDSS is a configuratior® such thatF’s (C) = C.

Thephase spacéPs of an SDSS is a directed graph defined as follows: There
is a node inPg for each configuration of. There is a directed edge from a node
representing configuratiohito that representing configuratiéhif Fs(C) = €.

Itis possible to obtain restricted versions of SDSs by appately restricting the
domainD and/or the local transition functions. We use the notatipqy)-SDS” to
denote an SDS where ‘X’ specifies the restriction on the domuad 'y’ specifies the
restriction on the local transition functions. Thus for eyde, (BooL, Sym)-SDS
are SDS in which domain of state values is Boolean and eaehttansition function
is symmetric. (oL, THRESH)-SDS are SDSs in which the domain of state values
is Boolean and each local transition function is a simpleghold function. And
finally, (BooL, NOR)-SDS are SDSs in which domain of state values is Boolean and
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each local transition function is the NOR functi®@ynchronous Dynamical System
(SyDS), is a special kind of SDSyithout node permutations. In a SyDS, during
each time step, all the nodegnchronouslyompute and update their state values.
Thus, SyDSs are similar to classical CA with the differeritat the connectivity
between cells is specified by an arbitrary graph. The réistnis on domain and local
transition functions for SDSs are applicable to SyDSs a wel

Example 1Consider a (BoL, NOR)-SDS shown in Figure 1 (left). Let =
(a, b, c). Each node, b andc execute the local functioNOR(z, y, z). Phase space
associated with the dynamical system when vertices aretegdtathe orden,b and
cis shown in Figure 1 (right). Each tuple in the ellipse deadte states of the nodes
a, b andc in that order. Notice that the phase space does not have agdoiat It
turns out that SDS with NOR local functions can never havealfp@ints.

A e

Fig. 1. Figure illustrating SDS and its phase space described impbal.

SDSs naturally capture the three essential elements of @uwemsimulation.
The use of simple functions to represent each agent/estityst an equivalent al-
ternate representation of each individual as automata.fdttethat each function
depends locally on the state values of neighboring agerinsesded to capture the
intuition that individual objects comprising a real systesually have only local
knowledge about the system. Finally, a permutation is atradifon of the need to
explicitly encode causal dependency.

The basic SDS model can easily be generalized in a numbenysfiwaluding: (i)
partial orders or schedules specified using formal langsid@eallowing stochastic
local functions or interaction graphs, (iii) time varyin@®S in which the topology
or the local functions vary/evolve in time. These geneadions are important while
modeling realistic BIST systems; see [7, 37, 54, 45, 52, 6B4tiditional details and
examples.

Computational SDS (cSDS) arise naturally when each logaitfan is viewed
procedurally. cSDS are useful for formal specification, andlysis of infrastruc-
ture simulation systems and extend the algebraic theoryoémiical systems in
two important ways. First, we pass from extremely generatsiral and analytical
properties of composed local maps to issues of provablecimghtation of SDS in
computing architectures and specification of interactotwgl symbolic procedures.
This is related to successive reductions of cSDS to proegptimitives, which leads
to a notion of cSDS-based distributed simulation compilgtk provable simulated
dynamics (e.g., for massively parallel or grid computati®econd, the aggregate
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behavior of iterated compositions of local maps that cosgpan SDS can be un-
derstood as a (specific) simulated algorithm together wsthgsociated and inherent
computational complexity. We have called this #igorithmic semanticef an SDS
(equivalently, the algorithmic semantics of a dynamicateyn or a simulation). It is
particularly important to view a composed dynamical systencomputing a speci-
fiable algorithm with provable time and space performance.

2.1 SDSs as Elementary Models of Interactive Computation

The basic definition of SDS together with the above genextitins form an ele-
mentary model of interactive computation. The introdugtdnapter in this book
identifies four distinguishing features of interactive garting, namely

e Computational Problem: A computational problem entaildqrening a task or
providing a service, rather than algorithmically prodgcam answer to a question

e Observable Behavior: A computing component is now modetedas a func-
tional transformation from input to output, but rather innts of an observable
behavior consisting of interaction steps

e Environments: The world or environment of the computatgypdrt of the model,
playing an active part in the computation by dynamicallyying the compu-
tational system, or agent, with the inputs, and consumia@tfiput values from
the system. The environment cannot be assumed to be staticen effectively
computable; for example, it may include humans or other etgmof the real
world

e Concurrency: Computation is concurrent; the computingiagemputes in par-
allel with its environment and with other agents that mayrbi¢ i

SDS and its extensions adequately captures these fourtiabsea distinguish-
ing features and can be used to model practical BIST systEnesfollowing exam-
ple illustrates this point.

Example 2TRANSIMS is a large-scale Federal Highway Administration (FHWA)
funded transportation simulation project [9] that we cealeped over the last 10
years. In this project, an SDS-based approach was used to-siiaulate every ve-
hicle in an urban transportation network (see [82] for an Sp&kcification). Each
roadway is divided into discrete cells. Each cell is 7.5 meteng and one lane
wide. Each cell contains either a vehicle (or a part of a uehior is empty. The
micro-simulation is carried out in discrete time steps veiith step simulating one
second of real traffic. In each time step, a vehicle on the oitwakes decisions
such as accelerate, brake or change lanes, in responseoictifancy of the neigh-
boring cells. We can represent the above model using the &ib&fvork. For ease
of exposition, we assume a single lane circular road thatbeamodeled as a one
dimensional array of cells. In this representation, eadhrepresents a 7.5 meter
segment of the road. The varialjep is used to measure the number of empty cells
between a car and the car ahead of it. In the followingyletenote the speed of
the vehicles in number of cells per unit timeg,,, denote the maximum speed and
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rand as a random number between 0 and 1. Finally;,. denotes the probability
with which a vehicle is slowed by 1 unit. Each iteration cetsbf the following 3
sequential rules that are applied in parallel to all the:cars

1. Acceleration of free vehiclesif v < v,,42, Thenv = v + 1.
2. Braking due to cars in frontilf v > gap, Then v = gap.
3. Stochastic Jitter:If (v > 0) AND (rand < pnoise), Then v = v — 1.

Toillustrate how an SDS based model can be constructed; tainsider a simple
circular one lane road. One vehicle occupies one cell ancltggen velocity. Let
us assume that a vehicle can travel at one of three veladiti¢and2. There aren
vehicles and their initial positions are chosen at randdmeyTare labeled through
m by the order in which they initially appear on the road. Thiera scheduler that
determines the update ordering. A vehicle at ¢alith speedv is updated as shown
in Table 1. This defines the local function at a node in the #waving graph. Thus
a vehicle at cell with speed! that has two free cells ahead moves one cell ahead and
gets the new speed Bf At each time stepwe can derive the associated dependency
graphG(t). The graphG(t) has verticed, 2, ..., m corresponding to the vehicles.
Two vehiclesk and! are connected by an edge if the distance between them at time
t is less than or equal ta,,., = 2. If the distance is larger they are independent by
construction. (A vehicle only depends on what is ahead omdhd.) Thus, for the
configuration in Figure 2, we derive the dependency graptvshio Figure 2.

. z—i—lfree,i_i_l’
(Cell,Speed)i + 1 taken ; + 2 i+ 2free
taken
(4,0) (4,0) (4,1) (4,2)
(3, 1) (%,0) (i4+1,1)[(: +1,2)
(%,2) (4,0) (G4+1,1) (i +2,2)

Table 1. The update rule for a single vehicle

Discussion

e The computational problem at hand is to represent trafficadyios in a city.
There is no explicit algorithmic description of this profmleTraffic is anemer-
gentor simulatedproperty. As discussed in [70, 76], traffic can be viewed as a
chaotic system and thus even its simple properties areainli@ bepredictable

e The description of the driver is not merely contained in theal rules, but is
obtained via composing the time varying explicit interacs with other drivers.
This notion of disaggregated normative agent is discuasghldr in Section 4.1.
Moreover, this interaction is dynamic and the neighborhdwhges all the time.

In other words, the environment s not static. The drivegiiatts continually with
the environment and co-evolves with it.
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/]

Fig. 2. A circular one-lane road divided into cells. A dot indicatkat the given cell is occu-
pied by a vehicle. The dependency grapft = 0) associated to configuration to the left is
shown to the right.

e The computation is inherently concurrent. The update azllesen is important.
For instance, in the case of the single-lane system, upgtitestates from front
to back acts like a perfect predictor and thus never yieldistets of vehicles. On
the other hand, updating from back to front yields more s#ialtraffic dynamics
[68, 70, 76].

The completd RANSIMS system is described in Section 5 and models a num-
ber of other interesting features, including activity lthsaffic modeling, game the-
oretic behavior of individual travelers, co-evolution agftects of large scale trans-
formational changes such as building new highways. The@abrample describes a
simplified version of one of thERANSIMS modules and is intended to convey the
richness inherent in such systems. Nevertheless, the dgalrnges the main point:
SDSs and its extensions can serve as elementary modelgdtive computation.

3 Theoretical Foundations

We describe an elementary theory of interaction based ationk abstracted as
SDS. An elementary theory of simulation should yield themsehat are applica-
ble to a class of simulations rather than to only particulanthers of this class. The
first set of results outlined in Section 3.1 concern the smat properties of the in-
teraction graph. The results arelependenof the update order and the particular
properties of the local functions. Section 3.2 outlinesilisghat depend only on the
properties of the local functions; they are independenhefihteraction graph and
the update order. Finally, in Section 3.3, we discuss reshitt pertain to all the three
components of the definition.

3.1 Effect of BIST Network

Recently there has been a resurgence of research in comgtienrks, driven by
a number of empirical and theoretical studies showing tleétork structure plays
a crucial role in understanding the overall behavior of clempystems. See [23,
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5, 2, 28, 33, 35, 34, 39, 71, 83] and the references thereirefamt results in this

active area. Another recent direction of research has loeggtérmine random graph
models that can generate such networks. Unfortunatelyy withese random graph
models, such as the preferential attachment model, arauitetigor social network

analysis.

Construction of BIST Networks Construction of BIST networks is challenging: in
some cases data is easily available to construct the nesywehile in the majority of
other cases, although such data exists, it is not freelyedolai In yet other cases, the
network has to be constructed by integrating a number ofdifft databases. Finally,
in case of social and ad-hoc networks, it is impossible attiveent time to gather
enough data to construct such networks. Thus simulatioado®ls are required
for generating such networks. We describe two networks lieeesocial contact net-
work and the mobile ad-hoc network. One is a social netwdr,dther is formed
by social interactions and the links are really a matter ofvemtion, but neverthe-
less is best classified as a infrastructure network. Impbeteamples of other BIST
networks that have to be constructed by integrating vaiiigiesmation sources and
simulations include the route level IP network, the Geneotation networks and
Protein-Protein Interaction networks.

Example 3Consider a social network that captures the interactiowdsen individ-
uals moving through an urban region [33, 7]. This informate@an be abstractly
represented by a (vertex and edge) labeled bipartite gkaph whereP is the set
of people andL is the set of locations. If a persgne P visits a locationl € L,
there is an edgép, ¢, label) € E(Gpr) between them, wherkbel is a record of
the type of activity of the visit and its start and end poirEach vertex (person
or location) can also have labels. A person’s various labetsespond to his/her
demographic attributes such as age, income, etc. The labialshed to locations
specify the location’s attributes such as its x and y coaigig, the type of activity
performed, maximum capacity, etc. Note that there can beipleiedges between
a person and a location recording different visits. Figush8ws an example of a
bipartite graph. Part (a) of Figure 3 shows an example of arbitp people-location
graphGpr, with two types of vertex representing four peopl®) denoted by filled
circles and four locationsl(), denoted by squares. Figure 3 parts (b) & (c), show
two distinct projections of the basic network that can bergefiand constructed
from this information. The graphSp andG, induced byGp,. G p is the temporal
people-people-spatial-proximity graph. It connects tndividuals by edges if they
were in spatial proximity during some time of the déy;, is the building-building
temporal graph. Two buildings are joined by an edge in a tieréop if an individual
left one of the buildings in that period and arrived at theeothuilding in the same
time-period. Figure 3 part (d) shows the static projectioh&? andG? resulting
from ignoring time labels.

We point out that simulations appear to be the only way to ttaossuch net-
works. Contrast this with the electrical grid: although ight be hard to obtain the
data, the data certainly exists with government agencid¢pewmate companies.
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Fig. 3. Figure depicting a social contact network described in Epdar. (a) shows the bipar-
tite graphGpr.. (b) and (c) show two distinct temporal projections(dfr,, namelyGp and
G, and (d) shows the static projectios> andG? resulting from ignoring time labels.

Example 4 A synthetic vehicular adhoc telecommunication networkhtamed by
assigning one or more wireless devices to drivers, vehaheisother individuals in
an urban region. Each vertex in the adhoc telecommunicasomork corresponds to
a transceiver and two nodes are joined by an edge if and otiigyfare within each
other’s radio range. Note that to construct such a netwarg,reeeds the following:
a detailed time varying location of transceivers, inforimaton the characteristics
of the transceiver and time varying activity related to ttensceiver (on and off
patterns). Again, as in the case of social contact netwdrishard to get data for
such networks and simulation based data integration amdicremethods appear to
be necessary. We used the section of downtown Portlandp®rsgown in Figure 4
for illustration. More details on the structural propestd realistic vehicular ad-hoc
networks can be found in [13, 14, 25].

Important Notes:

e Notice how various components of network constructionyqdaa role in the
above examples. In Example 3, the underlying populationtaedinfrastruc-
ture remained invariant. We simply varied the interactioteda. In Example 4,
the synthetic individuals had to be endowed with additiataibutes such as a
mobile wireless device. The interaction criteria is diffier and is defined with
respect to the wireless device and is in this case the radgeraf the individual
transceivers (transmitter and a receiver).

e The two networks have differing levels of fidelity in termstefmporal evolu-
tion. In Example 3, if the intended application is diseasgppgation, then time
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Fig. 4. Versions of an adhoc telecommunication network formed lsygaing transceivers to

individuals in cars on a section of Portland road networkuksed in Example 4. (a): Network
topology when all the transceivers were assigned the samerpfp) and (c) show parts of the
network when power control algorithms in [58] were appliededuce the overall interference.

scales could be relatively large, on the order of minutestoé In contrast, the
telecommunication adhoc network formed needs to be repiedand computed
at extremely small time scales (milli-seconds), since Ingsdio range implies
loss in data packets. Notice that as society becomes everdigital, social net-
works can more appropriately be defined not only over indiald but also over
digital devices capable of handling specific tasks.

e While we have not elaborated it here, individual transasivan choose to send
messages to other specific transceivers (e.g. text meszaggshone): this yields
yet another social network with communication devices ades@and an edge
between two devices when they send a message to each otbera$etwork
rides on the top of the rapidly evolving communication netatbat is described
here.

Measurement and Analysis of BIST networks Once a complex network is con-
structed, we study the following interrelated questiomsdiscovering new mea-
sures that provide information about the network’s strreetand dynamics (i)
fast and provable algorithms for computing network measoner very large so-
cial and infrastructure networks. Some important obsematbased on results in
[14, 33, 34, 35] include: (i) Social and infrastructure netks are not necessarily
scale free or small world networks [33, 34, 35], (ii) Strueflumeasures for real
infrastructure and social networks are often differentrfigimilar measures for clas-
sical random networks, and (iii) Social networks have higal clustering. In con-
trast, many physical networks such as power and transptwbnes have very low
clustering coefficient.

We illustrate the range of static analysis by describingdrngmnt structural results
pertaining to social contact networks such as the onesitescn Example 3. See
[33, 34, 35] for a more comprehensive discussion on thisesiibjn the bipartite
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Fig. 5. (a) and (b) Degree distributions of locations and peoplé@éntiipartite grapldz . for
Portland data. The location degrees range fiiaim 7091, people degrees range frairio 15.
(c) Degree distribution of people-people graph projectibtained from the original bipartite
graph.

graphGpy, for the city of Portland, there are615860 (1.6 million) individuals,
181230 (181K) locations, ands060679 (6.1 million) edges. Figure 5 (a) and (b)
shows the degree distributions of the locations and peaptee bipartite graph,
G pr, for the Portland data. Note that a large part of the degreeesexp of locations
follows a power-law distribution, i.en; o« k7, wheren; denotes the number
of locations of degre&; for the Portland dataj =~ 2.8. The degree distribution of
people is roughly Poisson. The degree sequence of peojle pebple-people graph
G p is shown in Figure 5 (c) and looks quite different than therdegsequence of
Gpr. The graphG p for Portland is not fully connected, but has a giant compbnen
with 1615813 people. The clustering coefficieptof Gp: it is about0.57 which is
substantially higher than clustering coefficients forasfructure networks.

Next, we describe two structural measures that providaéunevidence into how
well connectedoday’s urban social networks are. First, consider gragtaegion.
We consider the two standard notions of expansion in thehgtgp The edge ex-
pansion of a subsé&t C P is defined as the ratio

[{e = (u,v) : (u,v)isanedgeand € S,v ¢ S}
5] |

The vertex expansion of a subsgt C P is defined as the rati{u ¢ S :
(u,v) isan edge and € S}|/|S|. The edge (vertex, respectively) expansion:gf

is the minimum, taken over af C P,|S| < |P|/2, of the edge (vertex, respec-
tively) expansion of. The vertex and edge expansions are important graph-tieore
properties that capture fault-tolerance, speed of datedimation in the network,
etc. Roughly, the higher the expansion, the quicker theashbod any phenomena
(disease, gossip, data etc.) along the links of the netvRakdom sampling based
estimates of vertex and edge expansion are shown in FiguflesY -axis plots
the smallest expansion value found among ite, 000 independent samples; the
X-axis plots the set siz6 as a percentage of the total number of vertices in the
graph (the sampling probability). The plots labeled “Vergpansion-2” and “Edge
expansion-2”in Figure 6 show the expansion in the gi@phwhile the plots marked
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“Vertex expansion-1" and “Edge expansion-1”" show the samantjty on a sparser
people-people graph - the graph is made sparser by onlynirgaédges between
individuals who came in contact for at least one hour. Thelgsanake two points:
(i) as expected expansion becomes smaller as the contatt gess sparser, and (ii)
even for sparse contact networks the expansion values #eshigh.

Another important structural measure (informally calihttering is to deter-
mine the ability to disconnect a social or an infrastructneéwork by removing
high connectivity nodes. Figure 6(b) and (c) show thesespiot 3 infrastructure
networks and urban social networks respectively. Notieerémarkable difference
between the plots: they show that while infrastructure oekware prone to targeted
failures, social networks are very robust. Targeted fa#worrespond to removal of
high degree nodes. For social networks, this correspon@sroving individuals by
gquarantining or vaccinating them in case of epidemics, Vgithe number of social
contacts. This connectivity property of the social netwtirkis out to be théchilles
heel while strong connectivity is important for the day-to-dayctioning of the
social system, it is a weakness in controlling the spreachfeictious diseases. In
other words, The high expansion and inability to shatteifsdoetworks implies that
contagious diseases would spread very fast, and making @stection imperative

to control disease.
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Fig. 6. (a) Expansion of the people-people graph: the plots markedéx expansion-2” and
“Edge expansion-2” show the vertex and edge expansion &gthphG p, while “Vertex
expansion-1" and “Edge expansion-1" show the correspanglirantities in the graph obtained
by retaining only those edges that involve an interactiomtdeast 1 hour. This leads to a
much sparser graph and correspondingly lower values aéxearid edge expansions. (b) Plots
showing the relative ease with which we can break infrattiremetworks by removing nodes
of high connectivity. (c) In contrast to (b), figure (c) shathiat urban social networks are very
hard to shatter.

3.2 Effect of Local Functions

In this section, we give examples of results that dependysotethe properties of
the local functions. We give three examples and restricselues to local functions
with Boolean domains; see [19, 15, 21, 51]. Given an SOfver a domairD, two
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configurations], B, and a positive integef, the --REACHABILITY problem is to

decide whethe$ starting in configuratiofi will reach configuratiorB in ¢ or fewer

time steps. We assume thais specified in binary. (It is specified in unary, it is
easy to solve this problem in polynomial time since we carcetesS for ¢ steps

and check whether configuratidh is reached at some step.) Given an Sb&ver

a domainD and two configuration$, B, the REACHABILITY problem is to decide
whethers$ starting in configuratiofi ever reaches the configuratisn (Note that, for
t > |D|™, t--REACHABILITY is equivalentto RACHABILITY .) Given an SDS over

a domainD and a configuratiofi, the FXED POINT REACHABILITY problem is to

decide whethe§ starting in configuratiofi reaches a fixed point.

1. The REACHABILITY and¢-REACHABILITY problems are solvable in polyno-
mial time for (BooL, NOR)-SDSs for which the number of independent sets in
the underlying graph is polynomial. For any@BL, NOR)-SDS, every transient
in the phase space is of length 1 and the phase space doewvadixked points.

2. Givenam-node (RNRING, LINEAR)-SDSS over a finite domaii®, the FXED
POINT REACHABILITY problem for§ can be solved using a number of algebraic
operations that is polynomial in and|D|. When the domaif® is Boolean and
the operators of the unitary semi-ring are OR (+) and AND €¥ch linear local
transition function is either XOR (exclusive or) or XNOR étbomplement of
exclusive or). Thus, thelKED POINT REACHABILITY problem for such SDSs
can be solved efficiently.

3. Lets = (G, F,m) be a (BooL, THRESH)-SDS whose underlying gragh has
n nodes andn edges. From any initial configuratidn 8 reaches a fixed point
after at most (m + n + 1)/2] steps. Thus,-REACHABILITY , REACHABILITY
and FXED POINT REACHABILITY problems for (oL, THRESH)-SDSs can
be solved in polynomial time.

3.3 Composite Analysis of SDS

Finally, we consider examples of composite analysis of SBfflowing [17], we
say that a system is predictable if basic phase space piepsuch as reachability
and fixed point reachability can be determined in time whgpalynomial in the
size of the system specification. It can be shown that verplsit8DSs are computa-
tionally universal for the appropriate space/time comipyexiass (see [15, 21]). For
example there exist constants p, andns such that thé-REACHABILITY , REACH-
ABILITY and HXED POINT REACHABILITY problems for (BboL, SyM)-SDSs are
PSPACEhard, even when all of the following restrictions hold: {@e maximum
node degree in the underlying graph is boundedbyb) The pathwidth (and hence
the treewidth) of the underlying graph is boundediby(c) The number of distinct
local transition functions used is boundedrby

Due to the particular proof technique used, these resultsally extend to yield
general computational universality. For instance, we stiawthe reachability prob-
lem forvery simpleSDS (e.g. SDS in which the domain of state values is Boolean
and each node computes the same symmetric Boolean fun@i®®PACE-hard:
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this implies that the systems are not easily predictabldatt the results imply
that no prediction method is likely to be more efficient thanming the simulation
itself. By allowing an exponential memory at each node aveithg exponentially
many nodes, one can obtd&iXPSPACE-hardness results. An important implication
of this (stated informally) is the followinghe optimal computational strategies for
determining the structural properties of such complex dyital systems are interac-
tion based simulation®loreover the systems for which the hardness results held ar
so simple (essentially, local transition functions canibgpte threshold or inverted
thresholds) that any realistic socio-technical systenikidyl to have such systems
embedded in them. See [17, 66, 40, 85] for additional disonsm this topic.

As another illustration of the general complexity thearegisults that can be ob-
tained as regards to SDSs, we consider the predecess@nedagbroblem. Given
an SDSS and a configuratioR, the REDECESSOR EXISTENCEoOr PRE) problem
(a.k.a pre-image existence problem) is to determine whetteze is a configura-
tion €’ such thatS has a transition frong€’ to €. Apart from the decision version,
we also consider the problems of counting the number of mestors (the count-
ing version, denoted by #HEDECESSOR EXISTENCE deciding if there is a unique
predecessor (the unique version, denoted bydUE-PREDECESSOR EXISTENCE
and if there are two predecessors of the given configuratiegmbiguous version,
denoted by AMBIGUOUS-PREDECESSOR EXISTENCE Using the concept afimul-
taneous local reductionst is possible to obtain results that simultaneously char-
acterize the complexity of theREDECESSOR EXISTENCE#-PREDECESSOR EX
ISTENCE, UNIQUE-PREDECESSOR EXISTENCENd AMBIGUOUS-PREDECESSOR
EXISTENCE problems for SDS and SyDS. The results are summarized inéigu
and are proved in [20]. These are local transformations ghmtltaneously yield
the hardness for decision, counting, unique and ambiguerssons of the problem.
Such a reduction allows us to tightly relate the computaii@omplexity of these
problems; see [30, 49, 50] for more discussion on simultasdocal reductions.
The easiness results are obtained using generic algoritianasxploit the underlying
structure of the interaction graph and the semantics ofaba kransition functions.
The algorithms are generic in the sense that the same bgsidthin can be used
to compute solution to the decision, counting, ambiguowkianique versions of the
problem by merely supplying the appropriate semanticdfesemi-ring operations
that are carried out; see [80].

3.4 Formal Specifications and Local Simulation Compliers

Discrete dynamical systems are a natural mathematicaligeyfor formally spec-
ifying large scale interacting systems. Recently SDS arsfratt state machines
(ASM)? have been used for formally specifying the several moduléseotelecom-
munication system [24, 59]. Ideally, we would like to exméise BIST systems us-
ing higher level SDS$.e. SDSs with more expressive local functions and inteyac
networks. In contrasgimplerSDSs, i.e. SDSs with less expressive local functions

2 Seehtt p: / / www. eecs. um ch. edu/ gasni .
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The PRE problem is NP-complete for the following restricted classes of SDSs.| In
most cases, the #H#EDECESSOR EXISTENCProblem is #-complete, the AMBIGUOUS-
PREDECESSOR EXISTENCHroblem isNP-complete and MIQUE-PREDECESSOR EXIS
TENCEproblem isD¥-complete (using randomized reductions).
1. Identical and/or restricted class of functions:
a) (BooL, THRESH)-SDSs where each node computes the sarsanple-threshold
function for anyk > 2,
b) (BooL, TALLY )-SDSs in which each node computes the sé&rtally function for
anyk > 1,
2. Restricted Graphs
a) SDSs over the Boolean domain where at most one local ti@n$iinction is not
symmetric and the underlying graph istar,
b) SDSs over the Boolean domain and the underlying graplgigla
c) (BooL, Sym)-SDSs whose underlying graphs gtanar.
The RRE problem is inP for the following classes of SDSs.
1. for (FIELD, LINEAR)-SDSSs, (BoL, AND)-SDSs and (BoL, OR)-SDSs with no re-
strictions on the underlying graph,
2. for (BooL, Sym)-SDSs when underlying graphs have bounded treewidth,
3. for SDSs when underlying graph is simultaneously bourdtgtee and and bounded
treewidth with no restriction on the local transition fuiecis (other than that the fung-
tions are over finite domain).

Fig. 7. Example of complexity theoretic results that can be prowerspecial classes of SDS.
Note the inter-play between the graph structure and funattmnplexity. Although the results
are shown only for RE problem and its variants, it is possible to obtain similautes for
other problems such as garden of eden states, etc. Thedts edsa imply analogous results
for Discrete Hopfield networks, concurrent transition eyss and other related models.

and regular interaction networks are likely to be more $létdor finding efficient
mappings of the SDSs on HPC architectures. This is becaadariguage (model)
that is most convenient to describe the underlying systeghtmiot necessarily be
the best model for actual simulation of the system on a HP@itecture. Thus it is
conceivable that such simpler systems obtained via tréimisleould be mapped on
HPC architectures and the resulting maps could be analyrgrbfformance bottle-
necks. Simpler systems can potentially also be used toywiéf correctness of the
ensuing protocols. To achieve this, such translationsldhmuefficient and preserve
the basic properties across the original and the transtatstém. The constructions
given as part of the simulation results in [19, 21] can be e@wslocal simulation
compilersthat transform one type of SDS to a simpler kind of SDS in sughythat

(i) the translation is local and efficient and (ii) relevam&fures of the phase space of
the original SDS are captured appropriately in the phaseespfithe simpler SDS.
In recent years (see [40, 85, 42, 63] and the referencedneseveral authors have
suggested buildingellular automata based computédia simulating physics. We
believe thatSDS based computease better suited for simulating BIST systems. In
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[62], Margolus proposes a DRAM based architecture for lacgde spatial lattice
computations, also see DeHon [32]. Simulation compilerdissussed above will
form the basis for implementing Simfrastructure like siatidns on massively par-
allel architectures such as FPGAs. See [82] for a recenystud

3.5 Implications for Other Computational Models

The complexity theoretic results for SDS can be used to yimhkr (and upper)
bounds on the complexity of reachability problems for otb@mputational models
of discrete dynamical systems. These include:

1. Classical Cellular Automata (CA), (see for example, [&jstolic arrays pro-
posed by Kung et al. [56] angraph automatd72], which are a widely studied
class of dynamical systems in physics and complex systethhare been used
in massively parallel computing architectures.

2. Concurrent transition systems (CTS) have been widetlietias formal models
of concurrent processes. They have been used to specify goitation proto-
cols and concurrent programs in the context of distributedputing.

3. Discreterecurrent Hopfield networkf36, 73, 73] which are used in machine
learning and image processing.

The results can be used to characterizations of the contplehstate executabil-
ity problems for CTSs, discrete Hopfield networks and callalutomata in terms of
(i) the power of individual automata, (ii) the size of thelzdpet for encoding mes-
sages, (iii) the inter-connection topology and (iv) the Imegkof communication (e.g.
channels, action symbols).

4 Engineering BIST Systems

An important factor in building simulations of BIST systemsshe size and scope
of the systems that need to be represented. For examplastinfcture simulations
should be able to represent ovuél® entities and cover large geographical areas, the
size of medium sized metropolis. A telecommunication satioh system represent-
ing a medium sized city should be able to repredéhtransceivers ant'2 packets
per hour. As a result, building such systems requires newneagng principles for
a high resolution HPC oriented representation. Classiehaous for representing
agents and their interactions will not scale beyond a aegaint. Another interest-
ing problem involves methods related to spatio-temportl dallection, integration
and validation. Building such simulations involves, ondime hand, integrating large
numbers of databases, streaming datasets and resultsdrben simulation runs in
a consistent manner and on the other hand, developing effitiethods for storing
and analyzing data that is produced by such simulations.i¥éaisk two interrelated
topics below.
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4.1 Concept of Agency: A Disaggregated Interactive, Normate
Representation

Another issue to consider while implementing large simaitat is that of agent
encapsulation. In the past, most work on agent-based diansgahas been imple-
mented using object oriented computing languages and asu#t people have a
found natural one-to-one mapping of agents onto objects. Silmplifies the task of
debugging and implementing the agent based simulatioritecttire. Unfortunately,
this approach does not scale while implementing large B\&Tesns. The notion of
agency is much more abstract than usually studied in theditee and is based on
the notion of composition and interaction. By compositise, mean that the func-
tionality associated with an agent is obtained by compogiogh structurally and
functionally) its various incarnations or avatars. By mtgion, we mean that a spe-
cific functionality of an agent depends on the behavior oEptigents interacting
with it. For instance, in the traffic simulatiof RANSIMS), an agent is sometimes
a driver and sometimes a parent and sometimes an office waken assuming
the role of a driver, the agent’s speed is not only dependeriti® own rules but
the speed of other drivers around him. The SDS based view ggavides a natural
mathematical framework to represent this notion of agency.

PARameterized Approximate Local and Efficient aLgorithARALEL ) pro-
vide a way to address the scaling issue. As discussed abowimulating large
systems with tens of thousands (or more) of interacting efes) it is computation-
ally infeasible to explicitly represent each entity in detsing, perhaps, naive one
agent-one encapsulated software object representatdssd. A common method
of simulating such systems is to use parameterized repedsers of entities. The
goalis to capture different behaviors of the system usiffgréint sets of parameters.
The concept corresponds to having a normative representasteach abstract agent.
A parameterized representation allows efficient use of edgatjpnal resources. In-
deed, even in systems with only tens of thousands of entitiesset of potential
interactions among the entities is so large that paranzegriepresentations are de-
sirable, if not absolutely necessary to simulate the ictéyas in an efficient manner.
The basic ideas behind agent abstraction are found in theeppofPARALEL al-
gorithms:

e PARameterized, in that a single basic algorithm with a corretio$ input pa-
rameters is capable of representing a class of algorithms,

e Approximate, in that their behavior closely approximateseaact algorithm
achieving a given task,

e Local, in that the information required by such algorithmecal as opposed to
global, and

e Efficient, in that they are very fast and can be executed efffisi®n both sequen-
tial and distributed shared memory multiprocessor archites ak -gorithms.

The concept of local algorithms is akin to the recently iretggently introduced
concept of decentralized algorithms [55] and also to thesital concept of dis-
tributed algorithms. The approximate behavior is alsoipent at two levels. At the
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basic level an approximate algorithm closely models theabiei of each physical
entity. At a global level, an approximate solution impliéat the composed local
algorithms representing each agent along with the updathamésm approximate
the global system dynamics. The global level of approxiorais more important,
although the local level cannot be completely ignored.

Example 5. Normative Drivers in Traffic Simulations. Consider the rules for a
driver update given in Example 2 In spite of their simplicitiyese rules produce
fairly realistic traffic flow characteristics and can in timait, approach the fluid dy-
namics models studied in traffic flow theory [68, 70, 76]. Titadfic pattern evolution
as a function of the density= m/n (m is the number of cars in a given a period of
time on a road segment of lengthmeasured in number of cells) exhibits a thresh-
old value for congestion. Figure 8 shows illustration offtcaflow characteristics
produced by the above set of rules for a one-lane road witleglierboundary con-
ditions. See [69] for additional discussion.
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Fig. 8. Figures representing various traffic flow characteristics.

4.2 Efficient Storage and Regeneration

The simulations of BIST systems described here producemsly large quantities
of data. For example, simulating an adhoc packet switch&dank with a million
moving transceivers for even 15 minutes produces time rgrygetwork requiring
gigabytes of memory and packet level data requiring teesbgt memory. Itis there-
fore impossible to exhaustively store the data generatéié wmning these simula-
tions. This motivates the need for computationally effitaata storage and methods
with the following requirements: (i) efficiency in terms gface and time complex-
ity and in many cases capability to run in an online settimgl @i) the stored data
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should have enough information to allow recreation of ¢erdgnamic features ob-
served while running the simulations. We can equivalenigywthis as a semantic
compression step.

The next step is efficient (re)-generation of data (inclgdietworks). Genera-
tion of random graphs and random data sets allow us to tdsislits as well as the
semantic properties of simulations. Re-generated datadessary to recreate data
that could not be stored while running the larger simulaidte-generation methods
can be viewed as reduced simulations; they allow one to gémeertain dynamics
of interest without resorting to expensive runs of the Iagigeulation. For example,
in [12] a system is described to store and regenerate gtaligtequivalent packet
streams arriving at their destination succinctly usingualgheoretic and statistical
methods. The size of the stored model is much smaller thaorihi@al data. The re-
generation step uses the Markov Chain Monte-Carlo methoglrdgenerated packet
sequences are statistically indistinguishable from thgral packet sequence when
compared using basic quality of service measures such agghput, jitter, skips,
repeats, etc. The methods appear to yield compressios @timver 100,000 while
being able to recover many of the measures within 1% erronil&i methods can be
devised to store and regenerate large BIST networks. The@ssion methods store
structural properties of the network. The regeneratiorhodt then use stochastic
methods to re-generate the graphs. The random graphs soatgghare "similar”
to the original networks and can be constructed in a fraatidhe time required to
construct original networks.

5 A Practical Interaction Based System: Modeling
Interdependent Urban Infrastructures

As an example of the theoretical framework described in ttezgxing sections,
we will describeSimfrastructure : a high-performance service oriented agent based
modeling and simulation system for representing and amadyinterdependent in-
frastructures. See [4, 26, 27, 29, 44, 57, 61, 31, 75, 86] dditianal references
in the following sections for other examples of similar effoSimfrastructure can
represent and analyze interdependent urban infrastegctncluding transportation,
telecommunication, public health, energy, financial (cardity markets. In con-
junction with a representation of the urban population dyica and the details of
the built infrastructure, such modeling systems can be eteasfunctioning virtual
cities A unique feature of tools such &mfrastructure is their ability to repre-
sent entire urban populations at the level of individuaisjuding their activities,
movements and locations. The ability to generate an urbanlption, move each
person on a second-by-second basis, and monitor the indiksdnteraction with
others and the physical infrastructures enables the utaaheling of infrastructure
operations and interdependencies at an extreme but @betiel of detail.

3 Seehtt p: // ndssl . vbi . vt. edu/ for more details.
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A connected collection of such urban infrastructure siroites allow analysis of
urban infrastructure interdependencies through intedriatnctional data flow archi-
tectures. In brief, this functionality derives from popiga-mobility data generated
by the simulation and modeling framework for the transga@tesector. The simula-
tion produces a synthetic population with demographidgassl to every individual.
We track the second-by-second activities and locationsofi éndividual by tying
population information to detailed maps of urban infrastuwes. This information
drives each of the infrastructure simulations and is shanedng the various infras-
tructure sector modules through a common interface. Ths @lows us to provide
feedback between modules regarding infrastructure clsatigd arise in one sec-
tor during the course of a simulation and are likely to affibet behavior of other
infrastructures. With the ability to simulate multiple ia$tructures and their inter-
dependencies in large urban regions, these systems prpladeers and decision
makers with an unprecedented modeling and analysis cégabiure 9 shows a
schematic view of the interdependent infrastructure satiah architecture.

5.1 A Service Oriented Architecture of Simfrastructure

We have recently completed a design and initial prototypgaémentation ofSim-
frastructure using web services based globally scalable architecture.nBw de-
sign of the system specifically aims to scale Simfrastr@dinirepresent entire coun-
tries and over time entire global populations. The only wagthieve such unprece-
dented scalability is to use web services architecture @oadbwith Grid Comput-
ing infrastructure. We have recently demonstrated thegdelsy constructing ex-
tremely detailed proto-populations of individuals resglin states along the US
Eastern seaboard consisting of approximately 100 Millimdividuals. This archi-
tecture takes care of ensuring that the simulations haveldte that they need to
operate, allow direct discovery of available services, facditate the integration of
new services. The system design allows simulation modalés trun on any avail-
able computation resource in a way that is transparent togée The use of existing
web services standards, allows any architecture or pragiaglanguage to be sup-
ported.

The newly developed architecture makes it easy for orgtinizmato add their
own simulations and analysis tools into the system. Onelrespect of the archi-
tecture is the ability for different organizations to hdst same simulation applied
to different geographic areas. These instances will betaldemmunicate through
web services to collaborate on a larger problem. For instamtransportation system
simulation could be run at each Metropolitan Planning Oizgtion (MPO) covering
the local urban region. The simulations running at each MB@dcthen exchange
the traffic exiting each local area and entering an adjaaeat &his exchange could
be expanded to include bus, rail, and air traffic to aid in epitblogical modeling at
the national level. Note that the system formed in this wayoispredetermined, but
is self-organized based on the currently available sesvice

The architecture also allows the implementation of a paldicservice to be
easily updated or replaced without affecting current uséithe service. Multiple
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providers of a service can co-exist, each with a differeaderoff (e.g., resolution
vs. execution time). The request for a service will be detedifrom the execution
of the service so that a user simply makes a request that &asdie performed.
Attached to the request are conditions that must be met suatoaetary cost, com-
pletion time, security requirement, etc. These requestsl m®t be computational,
but may be for services provide by other individuals or oigations. Software bro-
kers examine these requests and match them to availableceso

@
Electricity Population |&——e& Markelfg‘
Dynamics Economics

Fig. 9. A schematic diagranSimfrastructure: an interdependent urban infrastructure simu-
lation and modeling framework.

Public Health

Currently, Simfrastructure has working models for the following infrastruc-
tures: (i) Synthetic populations and urban environmeiiysténsportation, (iii) com-
modity markets, (iv) integrated telecommunication, (vblizihealth, (vi) electrical
power. Below we describe each of these modules briefly. Weentd the section
with illustrative use cases.

5.2 Synthetic Protopopulations and Urban Environment Repesentation

A detailed population mobility and the associated builtaurtinfrastructure is the
central piece of such simulations. It provides a commorrfate for the flow of in-
formation between all the infrastructure sector simufaill information describ-
ing the synthetic population and elements of the built urbavironment resides in
this module. In addition, changes in the urban infrastmgcthat arise during the
course of a simulation and constrain activities and locetiof the population pass
between the modules through this module, where sectoifgpatormation is trans-
formed into a common format. The module makes informatiailalle to the other
infrastructure simulations in the form of a consistent dsttacture, called proto-
populations: they are synthetic populations whose resoipfidelity and quality can
be varied depending on the nature of the application.

A protopopulation is a collection of synthetic people, easkociated with de-
mographic variables drawn from any of the demographicdavai and extracted
from the census [16, 77, 78]. Protopopulations can reptesparson, a vehicle, or
an infrastructure element such as a hospital or a switche Herillustration, we will
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concentrate on creation of synthetic urban populatiorggifei10 shows a schematic
diagram. Joint demographic distributions can be recoadfrom marginal distri-
butions available in typical census data using an itergineportional fitting (IPF)
technique. Each synthetic individual is placed in a houkktith other synthetic
people and each household is placed geographically in swaydhat a census of
the synthetic population is statistically indistinguibleafrom the original census, if
aggregated to the block group level. Synthetic populatwashus statistically indis-
tinguishable from the census data. Since they are syntligiprivacy of individuals
within the population is protected. Tisgnthetic individualgarry with them a com-
plete range of demographic attributes collected from timsige data, including vari-
ables such as income level and age. Next, a set of activitpltaas for households is
created, based on several thousand responses to an amtitiitye-use survey. These
activity templates include the types of activities eachdedwld member performs
and the time of day they are performed.

Urban Infrastructure
. Transportation Network
. Transit Routes/Schedules
. Land Use & Accessibility

Population
. Demographics
. Household Structure

Activities

. Times
Types

. Location

. Travel Mode

= Database Creation

= Query Processing
= Data Fusion & Filtering

Route Plans
. Times

. Locations Specialized
Population

Traffic Simulation
. Times .
. Traveler Locations . Geo Coordinates

Vehicle Status . Other information

Device Ownership Model Additional
. HH Ownership iliti i
. Optional Specification

Fig. 10.Schematic diagram showing how various databases areateggo create a synthetic
population.

Each synthetic household is then matched with one of theegumeuseholds,
using a decision tree based on demographics such as the nafmkerkers in the
household, number of children of various ages, etc. Negtsimthetic household
is assigned the activity template of its matching surveysebiold. For each house-
hold and each activity performed by this household, a piakny assignment of a
location is made based on observed land-use patterns, t@xed@ This assignment
must be calibrated against observed travel-time disiohst However, the travel-
times corresponding to any particular assignment of d&/ito locations cannot
be determined analytically. Indeed, the urban transgortatystem is a canonical
example of complex system wherein global behavior arisws gimple local inter-
actions. Using techniques from combinatorial optimizatimachine learning and
agent based modeling we then refine the population, théuitgdbcations and their
itineraries [9].



Modeling Large Biological and Socio-Technical Systems 25

The time varying, spatially placed, synthetic populationstructed in the above
manner can be enhanced for other uses. For instance, weatsefdsion techniques
to assign these individuals: telecommunication deviced fthones, pagers, etc.),
time varying demand for electricity, water and other suchmemdities. Note that
such data is impossible to collect and can only be createdyusethods described
here.

This produces synthetic individuals that just like realiudlals can now call
other individuals, consume various resources during tlyeadd carry out other ac-
tivities like eating, socializing, shopping, etc. An imgamt point to note here is that
such data is impossible to collect by mere measurementsegyai it is the output
of the agent based models such as the ones developed in [9].

5.3 Transportation Sector

Large scale microscopic simulation of transportationayst has become possible
over the last few years. See [31, 75, 9] for examples of effortthis regard. A
prototypical question that can be studied with such sinmiatis the economic and
social impact of building a new freeway in a large metropoliarea. Systems such
asTRANSIMS conceptually decompose the transportation planning taskivree
time scales.

First, a large time-scale associated with land use and dexpbig distribution
as a characterization of travelers. In this phase, dembgragformation is used to
createactivitiesfor travelers. Activity information typically consists ofquests that
travelers be at a certain location at a specified time. Theljde information on
travel modes available to the traveler. A synthetic popaiteis endowed with demo-
graphics matching the joint distributions given in censatadObservations are made
on the daily activity patterns of several thousand housih@from survey data).
These patterns are used as templates and associated witietgyhouseholds with
similar demographics. The locations at which activities@arried out are estimated
while taking into account observed land use patterns, litawes, and dollar costs
of transportation. Second, an intermediate time-scalsistsof planning routes and
trip-chains to satisfy the activity requests. This modutel$i minimum cost paths
through the transportation infrastructure consisterth witnstraints on mode choice.
An example constraint might be: “walk to a transit stop, takasit to work using
no more than 2 transfers and no more than 1 bus” [9]. Finallgrg short time-scale
is associated with the actual execution of trip plans in #gvork. This is done by a
simulation that moves cellular automata correspondinigadravelers through a very
detailed representation of the urban transportation métjé®] . Examples 2 and 5
have already discussed some of these aspects. The simulasiolves traffic down
to 7.5 meters and times down to 1 second. It provides an updstimate of link
costs, including the effects of congestion, to the Routdrlacation estimation algo-
rithms, which produce new plans. This feedback processrages iteratively until
convergence to a steady state in which no one can find a bettieiirpthe context
of everyone else’s decisions. The resulting traffic pagteme matched to observed
traffic.
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Fig. 11. Data flow in theTRANSIMS simulation system, proceeding from left to right. Input
data comes from the U.S. census and metropolitan plannganations. We generate a syn-
thetic population whose demographics match the census;egigh household an appropriate
set of activities; plan routes through the network; anchestie the resulting travel times. The
dotted lines represent feedback pathways, along whichfitata from right to left, in the
system.

A substantial effort has been spent on calibration and atbd of the output
produced byTRANSIMS; see [9, 68] for details. First, the design of the system is
based on SDS. Second, various microscopic and macroscogitities produced
by TRANSIMS have been validated in the city of Portland; including @ffic in-
variants such as flow density patterns and jam wave promagdti) macroscopic
quantities, such as activities and population densitighénentire city, number of
people occupying various locations in a time varying fashtime varying traffic
density split by trip purpose and various modal choices dwghways and other
major roads, turn counts, number of trips going betweenzana city, etc.

An Interaction Based Viewpoint. TheTRANSIMS system has been designed us-
ing an interaction-based approach to capture the causdssefwed traffic patterns.
For each individual, his endogenous attributes are defivad the census data and
his endogenous goals are derived from the activity pattétissendogenous proce-
dures or behavior consist of methods for finding specifictiooa to perform his
desired activities, specific algorithms for finding routegyp from one location to
another and specific rules used for driving. When such an gatmus individual
interacts with the infrastructure and other individuals, get traffic. The particular
locations that an individual chooses, or the routes he tatesot determined solely
by his endogenous attributes; they are a result of his goa#hods and his interac-
tion with other individuals and the infrastructure. Simljathe causal explanation
of traffic or the question of who is at a given location at a gitiene, is given not
only by the description of the individuals and the infrastruwe, but also by the in-
teraction amongst them. Thus consequences of large tramstional changes such
as a cascading power failure or infectious diseases canderstnod in terms of the
net effect of the interactions.
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This is very different than traditional statistical modglat fit parameters to given
observations. Such systems that rely on observation aadtdireasurement of traf-
fic cannot extrapolate into hypothetical scenarios précisecause they have no
representation of the multitude of forces and interactiiwas lie behind each ob-
servation. As a simple example, tAiRANSIMS methodology tells us how many
people would be likely to use a new freeway if it were congedcIn doing so it
captures what by now is well known as induced/latent demaAndbservationally
based system cannot extrapolate well beyond the circueesan which it has been
observed. Similarly, this approach will allow us to simel#te effects of changes in
behavior or use of infrastructure on the overall social dyita.

5.4 Telecommunication Sector

The telecommunication modeling environment is an extensiothe AdHopNet
[13, 24], designed to model extremely large, complex tetf@ooinication networks
made up of cellular networks, public switched telephonevogis (PSTNS), Inter-
net (IP) networks, and ad hoc mesh networks. It is an enditiosenulation system,
meaning that all aspects of the communication system amesepted. Although
simulations have been used for over four decades for remiegeand analyzing
telecommunication systems, the use of high performanceuting oriented simu-
lations of very large telecommunication systems is a nedftinew subject area; see
[4, 29] for examples.

The system has been specifically designed to be interogenathl other infras-
tructure simulations and is useful for representing the ete system comprising
the information and communication networks. It is also gesd for technologi-
cal scaling — as we move towards ubiquitous computing, ¢ahesunication and
computing networks with billions of heterogeneous train&rs. Such an integrated
system can be used to evaluate federal policies on the usepamndtion of telecom-
munication infrastructures, especially in regards to ptigteffects of the policies on
national security. It can also be used to discover and responew vulnerabilities
that could occur while deploying adhoc and integrated netsid.e., networks of
mobile radio devices that present a constantly evolvirgctahmunication network.
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Fig. 12.Overall design of the telecommunication modeling module.

The modeling environment decomposes the telecommunicsyistem into four
basic time scales. The first module places devices and thdils throughout the
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urban region. It then generates the positions of transteatevarious times of the
coarse simulation clock. This module also allows trangrsito become idle for

some period of time and to rejoin the network at a later tintee Module also pro-

vides for new transceivers to join the network and existiagsceivers to leave the
network permanently. Wireline devices are placed permiiynahvarious locations

based on the publicly available information.

In the second step, each device (e.g. phone, computerss aggigned data ses-
sions: the sessions are consistent with the kind of devibes, locations and their
users. The sessions generated are statistically idetdidhe sessions generated in
an urban region of interest. The next step consists of cactstg a (time-varying)
telecommunication network. Due to the various technolgised, these networks
are dynamic and their topology varies significantly depegdin the kind of tech-
nology used. This corresponds to intermediate time scaallf, at the finest time
scale, voice or data is moved over the dynamic network; #pset uses packet/voice
data simulation methods based on flow techniques or disdsgtamical systems.
The data is then stored succinctly using signal theoretithauks; Markov chain
methods are then used to regenerate statistically eqoiyadeket streams. An aux-
iliary module is concerned with construction, analysis eegkeneration of integrated
telecommunication networks. The module synthesizes gybdivailable data sets
in conjunction with population mobility information to cetruct the complete set
of networks used in a telecommunication system: wireliniesh&ss, ad-hoc and the
packet switched IP networks.

5.5 Public Health

The public health module (callégpiSims) of the integrated system simulates the
spread of disease in urban areas. It details the demograpthigeographic distribu-
tions of disease and provides decision makers with infaonatbout (1) the conse-
quences of a biological attack or natural outbreak, (2)éisalting demand for health
services, and (3) the feasibility and effectiveness ofwasp options. See [22, 33, 34]
for further detailsSimdemics an extension oEpiSims, is designed to model gen-
eral reaction diffusion process such as vector borne désesrsd simulation of social
norms and fads.

Both EpiSims and Simdemicswork by creating a social-network representing
details of contacts between individuals based on theivictpatterns which are
provided byTRANSIMS. The system provides estimates of how disease will spread
through a population depending on how it is introduced, haimerable people are,
what responses are applied, and when responses are impéginen

The module simulates the movement of each individual frozation to location
in a large urban area as he or she goes about daily activiifesindividuals are
synthetic; they do not represent specific people, but a cetaen on the entire
synthetic population would be statistically indistinguable from the actual census.
On the other hand, the locations visited by individuals aad street addresses and
reflect actual land-use patterns in the city.
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The modeling environment associates a state of health waith andividual be-
ing simulated. An individual’'s demographics determinétigs response to exposure
and infection. For example, anyone over the age of 32 is asduahave been vac-
cinated for smallpox. Exposure occurs in either of two walyugh contact with an
infectious person or by visiting a contaminated locatiome Simulation user can in-
troduce contamination at a location as an exogenous evtrg simulation. Whether
a person is infectious depends on when that person was ekpndeheir individual
response to infection. By varying a few parameters, usersreadel many different
diseases.

A simulated person’s state of health may affect his or heioast They may
seek treatment at a nearby hospital or clinic, or they maystane instead of pur-
suing certain activities. In addition, the user may speaeifjions that affect simu-
lated people, such as mass or targeted vaccination/tratprephylaxis and isola-
tion. Targeted responses are automated within the simakatpeople are chosen at
a user-specified rate from a list of symptomatic peopleyth@mtacts are found by
following their schedule; and the contacts are then treateldor isolated.

disease ———>————— initial health

1 I
/ Ak : snapshot :
1 1
population | 1 |
E %: Sflt]et':i\ue : summary :
1 activities ! . X
! partition : events :

1 1

\(from TRANSIMS)

Fig. 13.Data flow in the epidemiology simulation system. Input dataes from two sources:
the user’s disease model and information about the socialonke. Stand-alone tools operate
on the disease model and the population’s demographicotupe the initial state of health
for everyone in the simulation. Another tool converts adfsdctivities and locations organized
by person into a schedule of events (primarily arrivals aggiagtures) organized by location.
The final preparation step estimates an optimal partitioresburces among computational
nodes. The simulation itself executes events in strict tirder and propagates disease in
accordance with the user’s disease model.

5.6 Commodity Markets

Sigmais an agent-based, microscopic, computational modelangéwork to study
commodity markets. Systems suctsagmaoffer several advantages to an economist
interested in studying commodity markets, including (ixedknowledge of what is
exogenous and what is endogenous in the experiment, (iiptencontrol on the
amount of information accessible to the players, (iii) cl@alineation of what infor-
mation is public and private as well as what assumptionseasanable to include.
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The economist can not only study the system in equilibrium can also study the
transient dynamics that lead to equilibrium conditions.

Sigmauses an interaction based computing approach to study ttr® teivel
behavior of the market and its players. The computatiomah&work provides user,
the ability to control individuals’ preferences, behayiorarket elements, trading
mechanisms etc. This facilitates the study of differentnecoic structures, strate-
gies, policies and institutions in isolation. It can cutigrsimulate a restructured
electricity market. Three kinds of markets are modelediredined, decentralized,
and a real-time (spot) market. The models employ econorsiar{hbased methods
and capture the dynamics of supply and demand in a marketrdegeonomy. New
approaches that facilitate a wide range of experimentsaitigh degree of realism,
include:

1. Flexible methods of aggregating individual consumers@moducers into hier-
archies in order to represent buyers and suppliers in nesédecommercial, and
wholesale markets

2. Heterogeneous demand profiles with elastic and inelasticponents using
time, location,activity, and demographic data for all indual consumers in a
synthetic population

3. User-selectable economic clearing mechanisms to accoiaw® an array of
market types, including Vickrey auction, double auctiond anarginal price
clearing.

The system simulates the activities (bidding, contracisep, etc.) of individual
market players. The market model is driven by dynamic denpaofiles that reflect
the changing needs of individuals in an urban populatiore fitodel can be cou-
pled to physical flow models for commodities that require $bgl clearing (such
as electricity). The tool uses population dynamics andviigtiocation data from
a population dynamics simulation such BRANSIMS. This information ties the
market simulations to the urban infrastructure. Marketsgag other things, are sen-
sitive indicators of infrastructure disruptions and carubed to gauge public mood
and awareness in crisis situations. The overall desig@igrhais depicted schemat-
ically in Figure 14. The framework, due to scaling requiretsehas a parametric
representation for buyers as well as sellers. This allovestomepresent a number of
realistic, individualistic, behavioral features that gngically assumed away in clas-
sical economic literature due to mathematical intractigbirhese include dropping
classical Cournot oligopolists’ assumptions, perfegoratlity, information symme-
try between consumers and generators, etc.

Sigmais a detailed simulation based analysis tool for simulalinge commod-
ity markets such as electricity markets. Markets are amdhgrahings, sensitive
indicators of infrastructure disruptions and can be useglatiage public mood and
awareness in crisis situations. The system can curremtlylate large commodity
markets such as the electric power market. It can be usedtgzmeffects of differ-
ent regulatory changes, the impact of changes in consurhewtog on the clearing
price, impact of price caps on demand and supply, marketesffig, generators’ bid-
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ding strategies etc. Another important use for such todlseis ability to analyze the
effect of different market clearing rules on clearing psice

The system simulates the activities (bidding, contraatsep, etc.) of individual
market players. The market model is driven by dynamic denpaofiles that reflect
the changing needs of individuals in an urban populatioe. Mldel can be coupled
to physical flow models for commodities that require phyisetaaring. The tool
uses population dynamics and activity location data fronopupation dynamics
simulation such a§RANSIMS. This information ties the market simulations to the
urban infrastructure. The overall design of such a tool gicted schematically in
Figure 14. It consists of three main components that formugplea system:

1. the electrical power grid, with associated elementsiigiolg generators, substa-
tions, transmission grids and their related electricatatizristics.

2. a market consisting of market entities, including buyeedlers, the power ex-
change (where electricity trades are carried out at vatioey/size scales), the
independent system operator (ISO) and the market clearlag and strategies.

3. an activity based individual power demand creator thaldgi spatio-temporal
distribution of the power consumed.

Such simulations, due to scaling requirements, have a gramepresentation
for buyers as well as sellers. They allow for a number of stialbehavioral features
that are typically assumed away in classical economialitee due to mathematical
intractability. These include dropping classical Couraligopolist’s assumptions,
perfect rationality, symmetric information between cangsus and generators, etc.

5.7 An lllustrative Use Case

The following use case built arouriebiSims and Simfrastructure demonstrates
how such modeling tools can be used for situational Awarema@s consequence
Analysis in the event of epidemics. In this scenario, dudnigeat wave in a city,
terrorists shut down portions of the public transit systerd a hospital emergency
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room during the morning rush hour. At the same time, theyagpieharmless but
noticeable aerosol at two commuter rail stations. Thesatsyeccurring nearly si-
multaneously, foster a chaotic, if not panic-stricken, choothe general public.

EpiSimsin conjunction withSimfrastructure can be used for situation assess-
ment and consequence analysis. This is done by estimatndetmand by demo-
graphics at emergency rooms and clinics under a varietypdtigses to distinguish
effects of the heat wave from those of a putative bio-atticlaccomplish this, sev-
eral kinds of information is integrated: (i) population degnaphics and household
structure, (ii) population mobility and transit timetas|€iii) hospital locations and
capacities, (iv) natural history of various infectiousadises, (v) historical heat wave
casualties, and (vi) (potential) surveillance data. We the&timate the demographics
(age, gender, and home location) of people likely to haven lieéhe two stations
when they were “attacked”. These are the people who would sipofirst for treat-
ment if indeed a bio-attack had occurred. They also wouldesas the subpopula-
tion to seed with disease in a simulation. Biases in theiragaphics compared to
a random sample of the population will induce persistensdsan the set of peo-
ple infected at any time that cannot be captured by modelsyv@ag homogeneous
mixing. We estimate demand at hospitals, assuming thatlpeequld arrive at a
hospital near their home location. We further estimate tmveeach hospital had
sufficient capacity to meet the demand. Historically, thestikely casualties of a
heat wave are elderly people living alone with few actigtmitside the home. This
information, combined with demographic and household:stine data, allows us to
estimate demand for health services created by the heathyastemographic and
location. For situation assessment, we note the obvioferdifces between these
two demand patterns. In an actual event, comparison withissilons surveillance
data would allow quick disambiguation between the two.

We estimate the likely spread of disease for several diftgyathogens by demo-
graphic and location. Furthermore, we can implement ségeggested mitigating
responses, such as closing schools and/or workplaces,aparmining households
with symptomatic people. Knowledge of the household stmgcpermits an excep-
tionally realistic representation of the consequenceleadé actions. For example, if
schools are closed, a care-giver will also need to stay hameny households. Or
if households are quarantined when a member becomes symaiitome can esti-
mate the immediate economic impact using the householdariasdor exactly those
households affected. Similarly, the economic impact ofieiges with known demo-
graphics leads to a cost-benefit analysis for proposed/gmiéions. In a similar study
that we recently undertook, we found enormous difference®st for interventions
with similar numbers of casualties. Information on casasltan be fed back into
the representation of the urban environment to evaluagxtsffon interdependent
infrastructure.

The use case demonstrates the need for an interaction baskdimg and sim-
ulation approach: such an approach captures physicatdefgendencies between
infrastructures as well as implicit human-mediated intég@ehdencies existing be-
tween infrastructures. For example, the demand for coaing hot summer day can
strain the energy distribution system, forcing it to opernat a less robust regime.
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Furthermore, the consequences of decisions made to mitigaidents depend on
the demand being serviced at the moment. Thus a decisioowmbout New York’s
financial district while maintaining service to residehtieeas has completely differ-
ent effects at midnight on a Saturday than at 2 PM on a WedgeBdactical decision
support environments based on modeling environments sttimdrastructure can
evaluate such situation-dependent consequences.

6 Concluding Remarks

We described an interaction based approach to modelingiemdagions of large
scale socio-technical, biological and information systeirhe theoretical founda-
tions of this approach were based on sequential dynamistdsig (SDS) and theory
of large scale complex networks. Engineering principlesarived from such a the-
ory. These engineering principles allow us to design sitrana for extremely large
systems and implement them on massively parallel architest As an illustration,
we describe@®imfrastructure: a practical interaction based modeling tool to study
large interdependent urban infrastructures. Large séglegerformance computing
oriented simulations for these systems are already opesdtithe simulations and
the underlying systems would greatly benefit from furthevaates in interactive
computing.

We are also currently exploring two broad research areasrtber develop the
interaction based design and analysis of extremely lartgrdgeneous systems: (i)
discrete microscopic modeling and simulation of biologgystems [52, 45, 54] and
(i) robust nanoscale design and computation.
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