
Modeling and Simulation of Large Biological,
Information and Socio-Technical Systems: An
Interaction Based Approach

Chris Barrett Stephen Eubank Madhav Marathe

Virginia Polytechnic Institute and State University, Blacksburg Virginia.

Summary We describe an interaction based approach for computer modeling and
simulation of large integrated biological, information, social and technical (BIST)
systems1 Examples of such systems are urban regional transportationsystems, the
national electrical power markets and grids, gene regulatory networks, the world-
wide Internet, infectious diseases, vaccine design and deployment, theater war, etc.
These systems are composed of large numbers of interacting human, physical, infor-
mational and technological components. These components adapt and learn, exhibit
perception, interpretation, reasoning, deception, cooperation and non-cooperation,
and have economic motives as well as the usual physical properties of interaction.

The theoretical foundation of our approach consists of two parts: (i) mathemat-
ics of complex interdependent dynamic networks, and (ii) mathematical and com-
putational theory of a class of finite discrete dynamical systems calledSequential
Dynamical Systems(SDSs). We then consider engineering principles based on such
a theory. As with the theoretical foundation, they consist of two basic parts: (i) Ef-
ficient data manipulation, including synthesis, integration, storage and regeneration
and (ii) high performance computing oriented system design, development and im-
plementation. The engineering methods allow us to specify,design, and analyze sim-
ulations of extremely large systems and implement them on massively parallel archi-
tectures. As an illustration of our approach, an interaction based computer modeling
and simulation framework to study very large interdependent societal infrastructures
is described.

1 Introduction

This chapter considers an interaction based approach for modeling and simulation
of large scale integrated biological, information, socialand technical (henceforth re-
ferred to as BIST) systems. BIST systems consist of a large number of interacting

1 To appear as a book chapter in the book titledInteractive Computation: the New Paradigm,
Goldin, Smolka, Wegner, Editors, ESptringer Verlag, Sept.2006.
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physical, biological, technological, informational and human/societal components
whoseglobal systemproperties are a result of interactions among representations
of local systemelements. Examples of such systems are urban regional transporta-
tion systems, national electrical power markets and grids,the Internet, peer to peer
networks, adhoc communication and computing systems, generegulatory networks,
public health, etc. The complicated interdependencies andinteractions are inherent
within and among constituent BIST systems. This is exemplified by the recent cas-
cading failure of the electric grid in the northeastern United States. Failure of the
grid led to cascading effects that slowed down Internet traffic, closed down financial
institutions and disrupted the transportation and telecommunication systems.

In the past, mathematical models based on differential equations have often been
used to model complex physical and social systems. Althoughsuch models are valu-
able in terms of providing simple first order explanations, they are not particularly
useful in providing a generative computer model or a causal explanation of the as-
sociated dynamic phenomena. For instance, epidemiologists have traditionally used
coupled differential rate equation based models on completely mixed populations to
understand the spread of diseases. These simple models provide a good prediction
for a number of important epidemiological parameters such as number of sick, in-
fected and recovered individuals in a population. Nevertheless, such epidemiological
models have a number of well known shortcomings. They include: an adhoc value
of the reproduction number, the inability to predict anything about the early phase
of disease spread, and an inability to account for spatial and demographic diversity
in urban populations. Even more important, the models do notprovide any causal
explanation nor do they lead to a generative computational model. As a result, ques-
tions such as identifying potential individuals that can bevaccinated to contain the
epidemic are very hard to analyze; see [22, 33, 46] for additional discussion.

Here, we describe an interaction based approach for modeling and simulation of
BIST systems. The approach uses an endogenous representation of individual agents
together with explicit interaction between these agents togenerate and represent the
causal ecologies in such systems. The approach was developed over the last 12 years
by our group and provides a common framework for three seemingly diverse areas:
(i) representation and analysis of large scale distributedBIST systems, (ii) next gen-
eration computing architectures and (iii) associated distributed information and data
integration architectures.

The interaction-based approach is based on a mathematical and computational
discrete dynamical systems theory called Sequential Dynamical System (SDS).
SDSs provide a formal basis for describing complex simulations by composing sim-
pler ones. They are a new class of discrete, finite dynamical systems and emphasize
questions of what is being computed by systems of interacting elements, as opposed
to the traditional approach of howhard it is to compute a given procedure or class.
Nevertheless, a traditional Turing machine based approachis used for characterizing
the computational complexity of the interacting elements.

We complement the theoretical discussion by describingSimfrastructure : a
practical microscopic interaction-based modeling framework to study very large in-
terdependent societal infrastructures formed by the interaction between the built ur-
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ban infrastructure and spatial movement patterns of individuals carrying out their
day-to-day activities.Simfrastructure has been used to model extremely large in-
frastructures consisting of millions of interacting agents consisting of more than 10
million individual elements. For example, the transportation module withinSimfras-
tructure can represent every individual in the Chicago region at a temporal resolu-
tion of 1 second, and a spatial resolution of approximately 7meters. This region
spans approximately 250 square miles and has more than 400 counties. There are
more than 9 million individuals taking roughly 25 million trips each day. The time
varying social contact network consists of more than 25 million edges and vertices.
The size, scope and multiple time scales of system representation naturally motivates
a high performance computing implementation and requires new engineering design
principles. Individual modules of this system routinely run on clusters comprised of
128 nodes; several of the individual simulations are also being executed on 1000+
node systems.

1.1 Relationship to Interactive Computing

There are at least two reasons why the topic of computer modeling and simulation
of large BIST systems is pertinent to interactive computation. First, as discussed
above, interaction based computer models are natural and the only way to represent
and comprehend the complex dynamics of many BIST systems. Inthe past, com-
puter simulation of physical phenomenon has been a key driver in the development
of current high performance computing systems. Our view is that interaction based
modeling and simulation of BIST systems will serve as a key driver for the develop-
ment of next generation interactive computing platforms. Second, and perhaps more
pertinent to this book, we believe that an interaction basedmodeling of BIST sys-
tems will yield new mathematical and computational techniques that advance the
state of the art of interactive computation. Recently, computer scientists have pro-
posed automata theoretic models, programming languages, and calculi that attempt
to treat interaction, as an atomic element of computation. Several chapters in the
book address these topics in detail. BIST systems naturallydisplay many attributes
of interactive computing such as providing a service ratherthan solving a specific
algorithmic task, inclusion of environment within the computational representation,
etc. Thus a deeper understanding of these inherent properties of BIST systems will
provide new ideas for developing a interactive computing

To further appreciate this, consider for example interdependent societal infras-
tructure systems spanning large urban areas. They are the center of economic, com-
mercial and social activities. The design of these urban areas, their rapid population
growth, and sharing of the limited resources by their inhabitants has led to increased
social interactions [47, 8]. Large scale information delivery, and access systems de-
veloped by today’s computing companies such as Google, Yahoo, Akamai, etc. are
examples of emerging socio-technical information infrastructure systems. Such re-
gional and global scale infrastructure systems are spatially distributed, managed by
different federal, state, and commercial entities and operate at multiple time scales.
Despite this heterogeneity, based on certain basic economic and legal principles,
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these interdependent systems usually work seamlessly to provide uninterrupted ser-
vices to the millions of individuals residing in the urban region. Under any reasonable
definition, these are complex systems whose global behavioris a result of compli-
cated interactions between constituent elements. For example, the spatial distribution
of individuals in an urban region, their movement patterns,and their phone-calling
patterns, all have a direct bearing on the structure and the design of wire-line and
wireless telecommunication networks. A systematic understanding of such systems
must therefore be able to represent the complex interdependencies between individ-
ual constituent elements and their dynamics. The focus is onunderstanding con-
sequences of certain decisions or representing the interactions between individuals
and the infrastructures rather than solving specific algorithmic question. The con-
stituent BIST systems (e.g. transportation and urban populations) are tightly coupled
and co-evolve: they are naturally viewed as large population ecologies. Computa-
tional models developed to represent these systems will necessarily have to clarify
the role of interaction between constituent elements and the environment. This in-
cludes questions of what is being computed, the meaning and role of environment
and acceptance of non-determinism as an elementary phenomenon.

1.2 Organization

The remainder of the chapter is organized as follows. Section 2 contains basic defi-
nitions and preliminary results. In Section 3, we discuss the theoretical foundations
of interaction based simulation and modeling of BIST systems. Section 4 contains
a discussion of the engineering principles necessary for design and implementa-
tion of large BIST system simulations. In Section 5 a practical operational system
based on the theoretical and engineering foundations described in Section 3.1 to 4 is
discussed. Finally, Section 6 contains concluding remarksand directions for future
work.

2 Terminology and Preliminary Results

Informally, computer simulation is the art and science of using computers to calculate
interactions and transactions among many separate algorithmic representations, each
of which might be associated with identifiable “things” in the real world (at least in a
world outside the simulation program). Because of the widespread use of computer
simulations, it is difficult to give a precise definition of a computer simulation that
is applicable to all the various settings where it is used. Nevertheless, it is clear
that simulation has two essential aspects: dynamics generation and mimicry of the
dynamics of another system by the dynamics of the simulationprogram. Thus we
view simulations as comprised of the following: (i) a collection of entities with state
values and local rules for state transitions, (ii) an interaction graph capturing the
local dependency of an entity on its neighboring entities and (iii) an update sequence
or schedule such that the causality in the system is represented by the composition
of local mappings.
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A Sequential Dynamical System(SDS)S over a given domainD of state values
is a triple(G, F, π), whose components are as follows:

1. G(V, E) is a finite undirected graph without multi-edges or self loops.G is re-
ferred to as theunderlying graph of S. We usen to denote|V | andm to denote
|E|. The nodes ofG are numbered using the integers 1, 2,. . ., n.

2. For each nodei of G, F specifies alocal transition function , denoted byfi.
This function mapsDδi+1 into D, whereδi is the degree of nodei. LettingN(i)
denote the set consisting of nodei itself and its neighbors, each input offi

corresponds to a member ofN(i).
3. Finally,π is a permutation of{1, 2, . . . , n} specifying the order in which nodes

update their states using their local transition functions. Alternatively,π can be
envisioned as a total order on the set of nodes.

A configuration C of S can be interchangeably regarded as ann-vector(c1, c2, . . . , cn),
where eachci ∈ D, 1 ≤ i ≤ n, or as a functionC : V → D.

Computationally, each step of an SDS (i.e., the transition from one configuration
to another), involvesn substeps, where the nodes are processed in thesequential
order specified by permutationπ. The “processing” of a node consists of computing
the value of the node’s local transition function and changing its state to the computed
value. The following pseudo-code shows the computations involved in one transition.

for i = 1 to n do
(i) Node π(i) evaluatesfπ(i). (This computation uses thecurrent values of the

state of nodeπ(i) and those of the neighbors of nodeπ(i).) Let x denote the value
computed.

(ii) Nodeπ(i) sets its statesπ(i) to x.
end-for

We useFS to denote theglobal transition function associated withS. This func-
tion can be viewed either as a function that mapsD

n into D
n or as a function that

mapsD
V into D

V . FS represents the transitions between configurations, and can
therefore be considered as defining the dynamic behavior of SDSS. A fixed point of
an SDSS is a configurationC such thatFS(C) = C.

Thephase spacePS of an SDSS is a directed graph defined as follows: There
is a node inPS for each configuration ofS. There is a directed edge from a node
representing configurationC to that representing configurationC′ if FS(C) = C′.

It is possible to obtain restricted versions of SDSs by appropriately restricting the
domainD and/or the local transition functions. We use the notation “(x,y)-SDS” to
denote an SDS where ‘x’ specifies the restriction on the domain and ‘y’ specifies the
restriction on the local transition functions. Thus for example, (BOOL, SYM )-SDS
are SDS in which domain of state values is Boolean and each local transition function
is symmetric. (BOOL, THRESH)-SDS are SDSs in which the domain of state values
is Boolean and each local transition function is a simple-threshold function. And
finally, (BOOL, NOR)-SDS are SDSs in which domain of state values is Boolean and
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each local transition function is the NOR function.Synchronous Dynamical System
(SyDS), is a special kind of SDS,without node permutations. In a SyDS, during
each time step, all the nodessynchronouslycompute and update their state values.
Thus, SyDSs are similar to classical CA with the difference that the connectivity
between cells is specified by an arbitrary graph. The restrictions on domain and local
transition functions for SDSs are applicable to SyDSs as well.

Example 1.Consider a (BOOL, NOR)-SDS shown in Figure 1 (left). Letπ =
(a, b, c). Each nodea, b andc execute the local functionNOR(x, y, z). Phase space
associated with the dynamical system when vertices are updated in the ordera,b and
c is shown in Figure 1 (right). Each tuple in the ellipse denotes the states of the nodes
a, b andc in that order. Notice that the phase space does not have a fixedpoint. It
turns out that SDS with NOR local functions can never have fixed points.

a b

c
111 101 011

000

100 010

001 110

Fig. 1.Figure illustrating SDS and its phase space described in Example 1.

SDSs naturally capture the three essential elements of a computer simulation.
The use of simple functions to represent each agent/entity is just an equivalent al-
ternate representation of each individual as automata. Thefact that each function
depends locally on the state values of neighboring agents isintended to capture the
intuition that individual objects comprising a real systemusually have only local
knowledge about the system. Finally, a permutation is an abstraction of the need to
explicitlyencode causal dependency.

The basic SDS model can easily be generalized in a number of ways including: (i)
partial orders or schedules specified using formal languages, (ii) allowing stochastic
local functions or interaction graphs, (iii) time varying SDS in which the topology
or the local functions vary/evolve in time. These generalizations are important while
modeling realistic BIST systems; see [7, 37, 54, 45, 52, 53] for additional details and
examples.

Computational SDS (cSDS) arise naturally when each local function is viewed
procedurally. cSDS are useful for formal specification, andanalysis of infrastruc-
ture simulation systems and extend the algebraic theory of dynamical systems in
two important ways. First, we pass from extremely general structural and analytical
properties of composed local maps to issues of provable implementation of SDS in
computing architectures and specification of interacting local symbolic procedures.
This is related to successive reductions of cSDS to procedural primitives, which leads
to a notion of cSDS-based distributed simulation compilerswith provable simulated
dynamics (e.g., for massively parallel or grid computation). Second, the aggregate
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behavior of iterated compositions of local maps that comprise an SDS can be un-
derstood as a (specific) simulated algorithm together with its associated and inherent
computational complexity. We have called this thealgorithmic semanticsof an SDS
(equivalently, the algorithmic semantics of a dynamical system or a simulation). It is
particularly important to view a composed dynamical systemas computing a speci-
fiable algorithm with provable time and space performance.

2.1 SDSs as Elementary Models of Interactive Computation

The basic definition of SDS together with the above generalizations form an ele-
mentary model of interactive computation. The introductory chapter in this book
identifies four distinguishing features of interactive computing, namely

• Computational Problem: A computational problem entails performing a task or
providing a service, rather than algorithmically producing an answer to a question

• Observable Behavior: A computing component is now modeled not as a func-
tional transformation from input to output, but rather in terms of an observable
behavior consisting of interaction steps

• Environments: The world or environment of the computation is part of the model,
playing an active part in the computation by dynamically supplying the compu-
tational system, or agent, with the inputs, and consuming the output values from
the system. The environment cannot be assumed to be static, or even effectively
computable; for example, it may include humans or other elements of the real
world

• Concurrency: Computation is concurrent; the computing agent computes in par-
allel with its environment and with other agents that may be in it

SDS and its extensions adequately captures these four essential and distinguish-
ing features and can be used to model practical BIST systems.The following exam-
ple illustrates this point.

Example 2.TRANSIMS is a large-scale Federal Highway Administration (FHWA)
funded transportation simulation project [9] that we co-developed over the last 10
years. In this project, an SDS-based approach was used to micro-simulate every ve-
hicle in an urban transportation network (see [82] for an SDSspecification). Each
roadway is divided into discrete cells. Each cell is 7.5 meters long and one lane
wide. Each cell contains either a vehicle (or a part of a vehicle) or is empty. The
micro-simulation is carried out in discrete time steps witheach step simulating one
second of real traffic. In each time step, a vehicle on the network makes decisions
such as accelerate, brake or change lanes, in response to theoccupancy of the neigh-
boring cells. We can represent the above model using the SDS framework. For ease
of exposition, we assume a single lane circular road that canbe modeled as a one
dimensional array of cells. In this representation, each cell represents a 7.5 meter
segment of the road. The variablegap is used to measure the number of empty cells
between a car and the car ahead of it. In the following, letv denote the speed of
the vehicles in number of cells per unit time,vmax denote the maximum speed and
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rand as a random number between 0 and 1. Finally,pnoise denotes the probability
with which a vehicle is slowed by 1 unit. Each iteration consists of the following 3
sequential rules that are applied in parallel to all the cars:

1. Acceleration of free vehicles:If v < vmax, Then v = v + 1.
2. Braking due to cars in front:If v > gap, Then v = gap.
3. Stochastic Jitter:If (v > 0) AND (rand < pnoise), Then v = v − 1.

To illustrate how an SDS based model can be constructed, let us consider a simple
circular one lane road. One vehicle occupies one cell and hasa given velocity. Let
us assume that a vehicle can travel at one of three velocities: 0, 1 and2. There arem
vehicles and their initial positions are chosen at random. They are labeled1 through
m by the order in which they initially appear on the road. Thereis a scheduleπ that
determines the update ordering. A vehicle at celli with speedv is updated as shown
in Table 1. This defines the local function at a node in the timeevolving graph. Thus
a vehicle at celli with speed1 that has two free cells ahead moves one cell ahead and
gets the new speed of2. At each time stept we can derive the associated dependency
graphG(t). The graphG(t) has vertices1, 2, . . . , m corresponding to the vehicles.
Two vehiclesk andl are connected by an edge if the distance between them at time
t is less than or equal tovmax = 2. If the distance is larger they are independent by
construction. (A vehicle only depends on what is ahead on theroad.) Thus, for the
configuration in Figure 2, we derive the dependency graph shown in Figure 2.

(Cell,Speed)i + 1 taken
i+1 free,
i + 2
taken

i + 1,
i + 2 free

(i, 0) (i, 0) (i, 1) (i, 2)
(i, 1) (i, 0) (i + 1, 1) (i + 1, 2)
(i, 2) (i, 0) (i + 1, 1) (i + 2, 2)

Table 1.The update rule for a single vehicle

Discussion

• The computational problem at hand is to represent traffic dynamics in a city.
There is no explicit algorithmic description of this problem. Traffic is anemer-
gentor simulatedproperty. As discussed in [70, 76], traffic can be viewed as a
chaotic system and thus even its simple properties are unlikely to bepredictable.

• The description of the driver is not merely contained in the local rules, but is
obtained via composing the time varying explicit interactions with other drivers.
This notion of disaggregated normative agent is discussed further in Section 4.1.
Moreover, this interaction is dynamic and the neighborhoodchanges all the time.
In other words, the environment is not static. The driver interacts continually with
the environment and co-evolves with it.
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Fig. 2. A circular one-lane road divided into cells. A dot indicatesthat the given cell is occu-
pied by a vehicle. The dependency graphG(t = 0) associated to configuration to the left is
shown to the right.

• The computation is inherently concurrent. The update orderchosen is important.
For instance, in the case of the single-lane system, updating the states from front
to back acts like a perfect predictor and thus never yields clusters of vehicles. On
the other hand, updating from back to front yields more realistic traffic dynamics
[68, 70, 76].

The completeTRANSIMS system is described in Section 5 and models a num-
ber of other interesting features, including activity based traffic modeling, game the-
oretic behavior of individual travelers, co-evolution andeffects of large scale trans-
formational changes such as building new highways. The above example describes a
simplified version of one of theTRANSIMS modules and is intended to convey the
richness inherent in such systems. Nevertheless, the example drives the main point:
SDSs and its extensions can serve as elementary models of interactive computation.

3 Theoretical Foundations

We describe an elementary theory of interaction based simulations abstracted as
SDS. An elementary theory of simulation should yield theorems that are applica-
ble to a class of simulations rather than to only particular members of this class. The
first set of results outlined in Section 3.1 concern the structural properties of the in-
teraction graph. The results areindependentof the update order and the particular
properties of the local functions. Section 3.2 outlines results that depend only on the
properties of the local functions; they are independent of the interaction graph and
the update order. Finally, in Section 3.3, we discuss results that pertain to all the three
components of the definition.

3.1 Effect of BIST Network

Recently there has been a resurgence of research in complex networks, driven by
a number of empirical and theoretical studies showing that network structure plays
a crucial role in understanding the overall behavior of complex systems. See [23,
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5, 2, 28, 33, 35, 34, 39, 71, 83] and the references therein forrecent results in this
active area. Another recent direction of research has been to determine random graph
models that can generate such networks. Unfortunately, many of these random graph
models, such as the preferential attachment model, are not suited for social network
analysis.

Construction of BIST Networks Construction of BIST networks is challenging: in
some cases data is easily available to construct the networks, while in the majority of
other cases, although such data exists, it is not freely available. In yet other cases, the
network has to be constructed by integrating a number of different databases. Finally,
in case of social and ad-hoc networks, it is impossible at thecurrent time to gather
enough data to construct such networks. Thus simulation based tools are required
for generating such networks. We describe two networks here: the social contact net-
work and the mobile ad-hoc network. One is a social network, the other is formed
by social interactions and the links are really a matter of convention, but neverthe-
less is best classified as a infrastructure network. Important examples of other BIST
networks that have to be constructed by integrating variousinformation sources and
simulations include the route level IP network, the Gene annotation networks and
Protein-Protein Interaction networks.

Example 3.Consider a social network that captures the interaction between individ-
uals moving through an urban region [33, 7]. This information can be abstractly
represented by a (vertex and edge) labeled bipartite graphGPL, whereP is the set
of people andL is the set of locations. If a personp ∈ P visits a locationl ∈ L,
there is an edge(p, ℓ, label) ∈ E(GPL) between them, wherelabel is a record of
the type of activity of the visit and its start and end points.Each vertex (person
or location) can also have labels. A person’s various labelscorrespond to his/her
demographic attributes such as age, income, etc. The labelsattached to locations
specify the location’s attributes such as its x and y coordinates, the type of activity
performed, maximum capacity, etc. Note that there can be multiple edges between
a person and a location recording different visits. Figure 3shows an example of a
bipartite graph. Part (a) of Figure 3 shows an example of a bipartite people-location
graphGPL with two types of vertex representing four people (P ) denoted by filled
circles and four locations (L), denoted by squares. Figure 3 parts (b) & (c), show
two distinct projections of the basic network that can be defined and constructed
from this information. The graphsGP andGL induced byGPL. GP is the temporal
people-people-spatial-proximity graph. It connects two individuals by edges if they
were in spatial proximity during some time of the day.GL is the building-building
temporal graph. Two buildings are joined by an edge in a time period if an individual
left one of the buildings in that period and arrived at the other building in the same
time-period. Figure 3 part (d) shows the static projectionsof GS

P andGS
L resulting

from ignoring time labels.
We point out that simulations appear to be the only way to construct such net-

works. Contrast this with the electrical grid: although it might be hard to obtain the
data, the data certainly exists with government agencies and private companies.
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Fig. 3.Figure depicting a social contact network described in Example 3. (a) shows the bipar-
tite graphGPL. (b) and (c) show two distinct temporal projections ofGPL, namelyGP and
GL and (d) shows the static projectionsGS

P andGS

L resulting from ignoring time labels.

Example 4.A synthetic vehicular adhoc telecommunication network is obtained by
assigning one or more wireless devices to drivers, vehiclesand other individuals in
an urban region. Each vertex in the adhoc telecommunicationnetwork corresponds to
a transceiver and two nodes are joined by an edge if and only ifthey are within each
other’s radio range. Note that to construct such a network, one needs the following:
a detailed time varying location of transceivers, information on the characteristics
of the transceiver and time varying activity related to the transceiver (on and off
patterns). Again, as in the case of social contact networks,it is hard to get data for
such networks and simulation based data integration and creation methods appear to
be necessary. We used the section of downtown Portland, Oregon, shown in Figure 4
for illustration. More details on the structural properties of realistic vehicular ad-hoc
networks can be found in [13, 14, 25].

Important Notes:

• Notice how various components of network constructions played a role in the
above examples. In Example 3, the underlying population andthe infrastruc-
ture remained invariant. We simply varied the interaction criteria. In Example 4,
the synthetic individuals had to be endowed with additionalattributes such as a
mobile wireless device. The interaction criteria is different and is defined with
respect to the wireless device and is in this case the radio range of the individual
transceivers (transmitter and a receiver).

• The two networks have differing levels of fidelity in terms oftemporal evolu-
tion. In Example 3, if the intended application is disease propagation, then time
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(a) (b) (c)

Fig. 4. Versions of an adhoc telecommunication network formed by assigning transceivers to
individuals in cars on a section of Portland road network discussed in Example 4. (a): Network
topology when all the transceivers were assigned the same power. (b) and (c) show parts of the
network when power control algorithms in [58] were applied to reduce the overall interference.

scales could be relatively large, on the order of minutes to hours. In contrast, the
telecommunication adhoc network formed needs to be represented and computed
at extremely small time scales (milli-seconds), since lossin radio range implies
loss in data packets. Notice that as society becomes ever more digital, social net-
works can more appropriately be defined not only over individuals but also over
digital devices capable of handling specific tasks.

• While we have not elaborated it here, individual transceivers can choose to send
messages to other specific transceivers (e.g. text messageson a phone): this yields
yet another social network with communication devices as nodes and an edge
between two devices when they send a message to each other. Such a network
rides on the top of the rapidly evolving communication network that is described
here.

Measurement and Analysis of BIST networks Once a complex network is con-
structed, we study the following interrelated questions: (i) discovering new mea-
sures that provide information about the network’s structure and dynamics (ii)
fast and provable algorithms for computing network measures over very large so-
cial and infrastructure networks. Some important observations based on results in
[14, 33, 34, 35] include: (i) Social and infrastructure networks are not necessarily
scale free or small world networks [33, 34, 35], (ii) Structural measures for real
infrastructure and social networks are often different from similar measures for clas-
sical random networks, and (iii) Social networks have high local clustering. In con-
trast, many physical networks such as power and transport networks have very low
clustering coefficient.

We illustrate the range of static analysis by describing important structural results
pertaining to social contact networks such as the ones described in Example 3. See
[33, 34, 35] for a more comprehensive discussion on this subject. In the bipartite
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Fig. 5. (a) and (b) Degree distributions of locations and people in the bipartite graphGPL for
Portland data. The location degrees range from1 to 7091, people degrees range from1 to 15.
(c) Degree distribution of people-people graph projectionobtained from the original bipartite
graph.

graphGPL for the city of Portland, there are1615860 (1.6 million) individuals,
181230 (181K) locations, and6060679 (6.1 million) edges. Figure 5 (a) and (b)
shows the degree distributions of the locations and people in the bipartite graph,
GPL for the Portland data. Note that a large part of the degree sequence of locations
follows a power-law distribution, i.e.,nk ∝ k−β , wherenk denotes the number
of locations of degreek; for the Portland data,β ≈ 2.8. The degree distribution of
people is roughly Poisson. The degree sequence of people in the people-people graph
GP is shown in Figure 5 (c) and looks quite different than the degree sequence of
GPL. The graphGP for Portland is not fully connected, but has a giant component
with 1615813 people. The clustering coefficientp of GP : it is about0.57 which is
substantially higher than clustering coefficients for infrastructure networks.

Next, we describe two structural measures that provide further evidence into how
well connectedtoday’s urban social networks are. First, consider graph expansion.
We consider the two standard notions of expansion in the graph GP . The edge ex-
pansion of a subsetS ⊆ P is defined as the ratio

|{e = (u, v) : (u, v) is an edge andu ∈ S, v 6∈ S}|

|S|
.

The vertex expansion of a subsetS ⊆ P is defined as the ratio|{u /∈ S :
(u, v) is an edge andv ∈ S}|/|S|. The edge (vertex, respectively) expansion ofGP

is the minimum, taken over allS ⊂ P, |S| ≤ |P |/2, of the edge (vertex, respec-
tively) expansion ofS. The vertex and edge expansions are important graph-theoretic
properties that capture fault-tolerance, speed of data dissemination in the network,
etc. Roughly, the higher the expansion, the quicker the spread of any phenomena
(disease, gossip, data etc.) along the links of the network.Random sampling based
estimates of vertex and edge expansion are shown in Figure 6.The Y -axis plots
the smallest expansion value found among the500, 000 independent samples; the
X-axis plots the set sizeS as a percentage of the total number of vertices in the
graph (the sampling probability). The plots labeled “Vertex expansion-2” and “Edge
expansion-2” in Figure 6 show the expansion in the graphGP , while the plots marked
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“Vertex expansion-1” and “Edge expansion-1” show the same quantity on a sparser
people-people graph - the graph is made sparser by only retaining edges between
individuals who came in contact for at least one hour. The graphs make two points:
(i) as expected expansion becomes smaller as the contact graph gets sparser, and (ii)
even for sparse contact networks the expansion values are quite high.

Another important structural measure (informally calledshattering) is to deter-
mine the ability to disconnect a social or an infrastructurenetwork by removing
high connectivity nodes. Figure 6(b) and (c) show these plots for 3 infrastructure
networks and urban social networks respectively. Notice the remarkable difference
between the plots: they show that while infrastructure networks are prone to targeted
failures, social networks are very robust. Targeted failures correspond to removal of
high degree nodes. For social networks, this corresponds toremoving individuals by
quarantining or vaccinating them in case of epidemics, withlarge number of social
contacts. This connectivity property of the social networkturns out to be theAchilles
heel: while strong connectivity is important for the day-to-dayfunctioning of the
social system, it is a weakness in controlling the spread of infectious diseases. In
other words, The high expansion and inability to shatter social networks implies that
contagious diseases would spread very fast, and making early detection imperative
to control disease.
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Fig. 6. (a) Expansion of the people-people graph: the plots marked “Vertex expansion-2” and
“Edge expansion-2” show the vertex and edge expansion for the graphGP , while “Vertex
expansion-1” and “Edge expansion-1” show the corresponding quantities in the graph obtained
by retaining only those edges that involve an interaction ofat least 1 hour. This leads to a
much sparser graph and correspondingly lower values of vertex and edge expansions. (b) Plots
showing the relative ease with which we can break infrastructure networks by removing nodes
of high connectivity. (c) In contrast to (b), figure (c) showsthat urban social networks are very
hard to shatter.

3.2 Effect of Local Functions

In this section, we give examples of results that depend solely on the properties of
the local functions. We give three examples and restrict ourselves to local functions
with Boolean domains; see [19, 15, 21, 51]. Given an SDSS over a domainD, two
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configurationsI, B, and a positive integert, the t-REACHABILITY problem is to
decide whetherS starting in configurationI will reach configurationB in t or fewer
time steps. We assume thatt is specified in binary. (Ift is specified in unary, it is
easy to solve this problem in polynomial time since we can executeS for t steps
and check whether configurationB is reached at some step.) Given an SDSS over
a domainD and two configurationsI, B, the REACHABILITY problem is to decide
whetherS starting in configurationI ever reaches the configurationB. (Note that, for
t ≥ |D|n, t-REACHABILITY is equivalent to REACHABILITY .) Given an SDSS over
a domainD and a configurationI, the FIXED POINT REACHABILITY problem is to
decide whetherS starting in configurationI reaches a fixed point.

1. The REACHABILITY and t-REACHABILITY problems are solvable in polyno-
mial time for (BOOL, NOR)-SDSs for which the number of independent sets in
the underlying graph is polynomial. For any (BOOL, NOR)-SDS, every transient
in the phase space is of length 1 and the phase space does not have fixed points.

2. Given ann-node (FINRING, L INEAR)-SDSS over a finite domainD, the FIXED

POINT REACHABILITY problem forS can be solved using a number of algebraic
operations that is polynomial inn and|D|. When the domainD is Boolean and
the operators of the unitary semi-ring are OR (+) and AND (*),each linear local
transition function is either XOR (exclusive or) or XNOR (the complement of
exclusive or). Thus, the FIXED POINT REACHABILITY problem for such SDSs
can be solved efficiently.

3. LetS = (G, F, π) be a (BOOL, THRESH)-SDS whose underlying graphG has
n nodes andm edges. From any initial configurationI, S reaches a fixed point
after at most⌊(m + n + 1)/2⌋ steps. Thus,t-REACHABILITY , REACHABILITY

and FIXED POINT REACHABILITY problems for (BOOL, THRESH)-SDSs can
be solved in polynomial time.

3.3 Composite Analysis of SDS

Finally, we consider examples of composite analysis of SDS.Following [17], we
say that a system is predictable if basic phase space properties such as reachability
and fixed point reachability can be determined in time which is polynomial in the
size of the system specification. It can be shown that very simple SDSs are computa-
tionally universal for the appropriate space/time complexity class (see [15, 21]). For
example there exist constantsd2, p2 andn2 such that thet-REACHABILITY , REACH-
ABILITY and FIXED POINT REACHABILITY problems for (BOOL, SYM )-SDSs are
PSPACE-hard, even when all of the following restrictions hold: (a)The maximum
node degree in the underlying graph is bounded byd2. (b) The pathwidth (and hence
the treewidth) of the underlying graph is bounded byp2. (c) The number of distinct
local transition functions used is bounded byn2.

Due to the particular proof technique used, these results naturally extend to yield
general computational universality. For instance, we showthat the reachability prob-
lem for very simpleSDS (e.g. SDS in which the domain of state values is Boolean
and each node computes the same symmetric Boolean function)is PSPACE-hard:
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this implies that the systems are not easily predictable. Infact, the results imply
that no prediction method is likely to be more efficient than running the simulation
itself. By allowing an exponential memory at each node or allowing exponentially
many nodes, one can obtainEXPSPACE-hardness results. An important implication
of this (stated informally) is the following:the optimal computational strategies for
determining the structural properties of such complex dynamical systems are interac-
tion based simulations. Moreover the systems for which the hardness results hold are
so simple (essentially, local transition functions can be simple threshold or inverted
thresholds) that any realistic socio-technical system is likely to have such systems
embedded in them. See [17, 66, 40, 85] for additional discussion on this topic.

As another illustration of the general complexity theoretic results that can be ob-
tained as regards to SDSs, we consider the predecessor existence problem. Given
an SDSS and a configurationC, the PREDECESSOR EXISTENCE(or PRE) problem
(a.k.a pre-image existence problem) is to determine whether there is a configura-
tion C′ such thatS has a transition fromC′ to C. Apart from the decision version,
we also consider the problems of counting the number of predecessors (the count-
ing version, denoted by #-PREDECESSOR EXISTENCE), deciding if there is a unique
predecessor (the unique version, denoted by UNIQUE-PREDECESSOR EXISTENCE)
and if there are two predecessors of the given configuration (the ambiguous version,
denoted by AMBIGUOUS-PREDECESSOR EXISTENCE). Using the concept ofsimul-
taneous local reductions, it is possible to obtain results that simultaneously char-
acterize the complexity of the PREDECESSOR EXISTENCE, #-PREDECESSOR EX-
ISTENCE, UNIQUE-PREDECESSOR EXISTENCEand AMBIGUOUS-PREDECESSOR

EXISTENCE problems for SDS and SyDS. The results are summarized in Figure 7
and are proved in [20]. These are local transformations thatsimultaneously yield
the hardness for decision, counting, unique and ambiguous versions of the problem.
Such a reduction allows us to tightly relate the computational complexity of these
problems; see [30, 49, 50] for more discussion on simultaneous local reductions.
The easiness results are obtained using generic algorithmsthat exploit the underlying
structure of the interaction graph and the semantics of the local transition functions.
The algorithms are generic in the sense that the same basic algorithm can be used
to compute solution to the decision, counting, ambiguous and unique versions of the
problem by merely supplying the appropriate semantics for the semi-ring operations
that are carried out; see [80].

3.4 Formal Specifications and Local Simulation Compliers

Discrete dynamical systems are a natural mathematical language for formally spec-
ifying large scale interacting systems. Recently SDS and abstract state machines
(ASM)2 have been used for formally specifying the several modules of the telecom-
munication system [24, 59]. Ideally, we would like to express the BIST systems us-
ing higher level SDSs, i.e. SDSs with more expressive local functions and interaction
networks. In contrast,simplerSDSs, i.e. SDSs with less expressive local functions

2 Seehttp://www.eecs.umich.edu/gasm/.
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The PRE problem is NP-complete for the following restricted classes of SDSs. In
most cases, the #-PREDECESSOR EXISTENCEproblem is #P-complete, the AMBIGUOUS-
PREDECESSOR EXISTENCEproblem isNP-complete and UNIQUE-PREDECESSOR EXIS-
TENCEproblem isDP-complete (using randomized reductions).

1. Identical and/or restricted class of functions:
a) (BOOL, THRESH)-SDSs where each node computes the samek-simple-threshold

function for anyk ≥ 2,
b) (BOOL, TALLY )-SDSs in which each node computes the samek-tally function for

anyk ≥ 1,
2. Restricted Graphs:

a) SDSs over the Boolean domain where at most one local transition function is not
symmetric and the underlying graph is astar,

b) SDSs over the Boolean domain and the underlying graph is agrid,
c) (BOOL, SYM )-SDSs whose underlying graphs areplanar.

The PRE problem is inP for the following classes of SDSs.

1. for (FIELD , L INEAR)-SDSs, (BOOL, AND)-SDSs and (BOOL, OR)-SDSs with no re-
strictions on the underlying graph,

2. for (BOOL, SYM )-SDSs when underlying graphs have bounded treewidth,
3. for SDSs when underlying graph is simultaneously boundeddegree and and bounded

treewidth with no restriction on the local transition functions (other than that the func-
tions are over finite domain).

Fig. 7. Example of complexity theoretic results that can be proven for special classes of SDS.
Note the inter-play between the graph structure and function complexity. Although the results
are shown only for PRE problem and its variants, it is possible to obtain similar results for
other problems such as garden of eden states, etc. These results also imply analogous results
for Discrete Hopfield networks, concurrent transition systems and other related models.

and regular interaction networks are likely to be more suitable for finding efficient
mappings of the SDSs on HPC architectures. This is because the language (model)
that is most convenient to describe the underlying system might not necessarily be
the best model for actual simulation of the system on a HPC architecture. Thus it is
conceivable that such simpler systems obtained via translation could be mapped on
HPC architectures and the resulting maps could be analyzed for performance bottle-
necks. Simpler systems can potentially also be used to verify the correctness of the
ensuing protocols. To achieve this, such translations should be efficient and preserve
the basic properties across the original and the translatedsystem. The constructions
given as part of the simulation results in [19, 21] can be viewed aslocal simulation
compilersthat transform one type of SDS to a simpler kind of SDS in such away that
(i) the translation is local and efficient and (ii) relevant features of the phase space of
the original SDS are captured appropriately in the phase space of the simpler SDS.
In recent years (see [40, 85, 42, 63] and the references therein), several authors have
suggested buildingcellular automata based computersfor simulating physics. We
believe thatSDS based computersare better suited for simulating BIST systems. In
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[62], Margolus proposes a DRAM based architecture for largescale spatial lattice
computations, also see DeHon [32]. Simulation compilers asdiscussed above will
form the basis for implementing Simfrastructure like simulations on massively par-
allel architectures such as FPGAs. See [82] for a recent study.

3.5 Implications for Other Computational Models

The complexity theoretic results for SDS can be used to yieldlower (and upper)
bounds on the complexity of reachability problems for othercomputational models
of discrete dynamical systems. These include:

1. Classical Cellular Automata (CA), (see for example, [85]) systolic arrays pro-
posed by Kung et al. [56] andgraph automata[72], which are a widely studied
class of dynamical systems in physics and complex systems and have been used
in massively parallel computing architectures.

2. Concurrent transition systems (CTS) have been widely studied as formal models
of concurrent processes. They have been used to specify communication proto-
cols and concurrent programs in the context of distributed computing.

3. Discreterecurrent Hopfield networks[36, 73, 73] which are used in machine
learning and image processing.

The results can be used to characterizations of the complexity of state executabil-
ity problems for CTSs, discrete Hopfield networks and cellular automata in terms of
(i) the power of individual automata, (ii) the size of the alphabet for encoding mes-
sages, (iii) the inter-connection topology and (iv) the method of communication (e.g.
channels, action symbols).

4 Engineering BIST Systems

An important factor in building simulations of BIST systemsis the size and scope
of the systems that need to be represented. For example, infrastructure simulations
should be able to represent over106 entities and cover large geographical areas, the
size of medium sized metropolis. A telecommunication simulation system represent-
ing a medium sized city should be able to represent109 transceivers and1012 packets
per hour. As a result, building such systems requires new engineering principles for
a high resolution HPC oriented representation. Classical methods for representing
agents and their interactions will not scale beyond a certain point. Another interest-
ing problem involves methods related to spatio-temporal data collection, integration
and validation. Building such simulations involves, on theone hand, integrating large
numbers of databases, streaming datasets and results from earlier simulation runs in
a consistent manner and on the other hand, developing efficient methods for storing
and analyzing data that is produced by such simulations. We discuss two interrelated
topics below.
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4.1 Concept of Agency: A Disaggregated Interactive, Normative
Representation

Another issue to consider while implementing large simulations is that of agent
encapsulation. In the past, most work on agent-based simulations has been imple-
mented using object oriented computing languages and as a result people have a
found natural one-to-one mapping of agents onto objects. This simplifies the task of
debugging and implementing the agent based simulation architecture. Unfortunately,
this approach does not scale while implementing large BIST systems. The notion of
agency is much more abstract than usually studied in the literature and is based on
the notion of composition and interaction. By composition,we mean that the func-
tionality associated with an agent is obtained by composing(both structurally and
functionally) its various incarnations or avatars. By interaction, we mean that a spe-
cific functionality of an agent depends on the behavior of other agents interacting
with it. For instance, in the traffic simulation (TRANSIMS ), an agent is sometimes
a driver and sometimes a parent and sometimes an office worker. When assuming
the role of a driver, the agent’s speed is not only dependent on his own rules but
the speed of other drivers around him. The SDS based view again provides a natural
mathematical framework to represent this notion of agency.

PARameterized Approximate Local and Efficient aLgorithms (PARALEL ) pro-
vide a way to address the scaling issue. As discussed above, in simulating large
systems with tens of thousands (or more) of interacting elements, it is computation-
ally infeasible to explicitly represent each entity in detail using, perhaps, naive one
agent-one encapsulated software object representationalideas. A common method
of simulating such systems is to use parameterized representations of entities. The
goal is to capture different behaviors of the system using different sets of parameters.
The concept corresponds to having a normative representation of each abstract agent.
A parameterized representation allows efficient use of computational resources. In-
deed, even in systems with only tens of thousands of entities, the set of potential
interactions among the entities is so large that parameterized representations are de-
sirable, if not absolutely necessary to simulate the interactions in an efficient manner.
The basic ideas behind agent abstraction are found in the concept ofPARALEL al-
gorithms:

• PARameterized, in that a single basic algorithm with a correct set of input pa-
rameters is capable of representing a class of algorithms,

• Approximate, in that their behavior closely approximates anexact algorithm
achieving a given task,

• Local, in that the information required by such algorithms islocal as opposed to
global, and

• Efficient, in that they are very fast and can be executed efficiently on both sequen-
tial and distributed shared memory multiprocessor architectures a-L -gorithms.

The concept of local algorithms is akin to the recently independently introduced
concept of decentralized algorithms [55] and also to the classical concept of dis-
tributed algorithms. The approximate behavior is also pertinent at two levels. At the



20 Barrett et al.

basic level an approximate algorithm closely models the behavior of each physical
entity. At a global level, an approximate solution implies that the composed local
algorithms representing each agent along with the update mechanism approximate
the global system dynamics. The global level of approximation is more important,
although the local level cannot be completely ignored.

Example 5. Normative Drivers in Traffic Simulations. Consider the rules for a
driver update given in Example 2 In spite of their simplicity, these rules produce
fairly realistic traffic flow characteristics and can in the limit, approach the fluid dy-
namics models studied in traffic flow theory [68, 70, 76]. The traffic pattern evolution
as a function of the densityρ = m/n (m is the number of cars in a given a period of
time on a road segment of lengthn measured in number of cells) exhibits a thresh-
old value for congestion. Figure 8 shows illustration of traffic flow characteristics
produced by the above set of rules for a one-lane road with periodic boundary con-
ditions. See [69] for additional discussion.
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Fig. 8. Figures representing various traffic flow characteristics.

4.2 Efficient Storage and Regeneration

The simulations of BIST systems described here produce extremely large quantities
of data. For example, simulating an adhoc packet switched network with a million
moving transceivers for even 15 minutes produces time varying network requiring
gigabytes of memory and packet level data requiring terabytes of memory. It is there-
fore impossible to exhaustively store the data generated while running these simula-
tions. This motivates the need for computationally efficient data storage and methods
with the following requirements: (i) efficiency in terms of space and time complex-
ity and in many cases capability to run in an online setting, and (ii) the stored data
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should have enough information to allow recreation of certain dynamic features ob-
served while running the simulations. We can equivalently view this as a semantic
compression step.

The next step is efficient (re)-generation of data (including networks). Genera-
tion of random graphs and random data sets allow us to test scalability as well as the
semantic properties of simulations. Re-generated data is necessary to recreate data
that could not be stored while running the larger simulations. Re-generation methods
can be viewed as reduced simulations; they allow one to generate certain dynamics
of interest without resorting to expensive runs of the largesimulation. For example,
in [12] a system is described to store and regenerate statistically equivalent packet
streams arriving at their destination succinctly using signal theoretic and statistical
methods. The size of the stored model is much smaller than theoriginal data. The re-
generation step uses the Markov Chain Monte-Carlo method. The regenerated packet
sequences are statistically indistinguishable from the original packet sequence when
compared using basic quality of service measures such as throughput, jitter, skips,
repeats, etc. The methods appear to yield compression ratios of over 100,000 while
being able to recover many of the measures within 1% error. Similar methods can be
devised to store and regenerate large BIST networks. The compression methods store
structural properties of the network. The regeneration methods then use stochastic
methods to re-generate the graphs. The random graphs so generated are ”similar”
to the original networks and can be constructed in a fractionof the time required to
construct original networks.

5 A Practical Interaction Based System: Modeling
Interdependent Urban Infrastructures

As an example of the theoretical framework described in the preceding sections,
we will describeSimfrastructure : a high-performance service oriented agent based
modeling and simulation system for representing and analyzing interdependent in-
frastructures. See [4, 26, 27, 29, 44, 57, 61, 31, 75, 86] and additional references
in the following sections for other examples of similar efforts.Simfrastructure can
represent and analyze interdependent urban infrastructures including transportation,
telecommunication, public health, energy, financial (commodity markets)3. In con-
junction with a representation of the urban population dynamics and the details of
the built infrastructure, such modeling systems can be viewed asfunctioning virtual
cities. A unique feature of tools such asSimfrastructure is their ability to repre-
sent entire urban populations at the level of individuals, including their activities,
movements and locations. The ability to generate an urban population, move each
person on a second-by-second basis, and monitor the individual’s interaction with
others and the physical infrastructures enables the understanding of infrastructure
operations and interdependencies at an extreme but practical level of detail.

3 Seehttp://ndssl.vbi.vt.edu/ for more details.
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A connected collection of such urban infrastructure simulations allow analysis of
urban infrastructure interdependencies through integrated functional data flow archi-
tectures. In brief, this functionality derives from population-mobility data generated
by the simulation and modeling framework for the transportation sector. The simula-
tion produces a synthetic population with demographics assigned to every individual.
We track the second-by-second activities and locations of each individual by tying
population information to detailed maps of urban infrastructures. This information
drives each of the infrastructure simulations and is sharedamong the various infras-
tructure sector modules through a common interface. This also allows us to provide
feedback between modules regarding infrastructure changes that arise in one sec-
tor during the course of a simulation and are likely to affectthe behavior of other
infrastructures. With the ability to simulate multiple infrastructures and their inter-
dependencies in large urban regions, these systems provideplanners and decision
makers with an unprecedented modeling and analysis capability. Figure 9 shows a
schematic view of the interdependent infrastructure simulation architecture.

5.1 A Service Oriented Architecture of Simfrastructure

We have recently completed a design and initial prototype implementation ofSim-
frastructure using web services based globally scalable architecture. The new de-
sign of the system specifically aims to scale Simfrastructure to represent entire coun-
tries and over time entire global populations. The only way to achieve such unprece-
dented scalability is to use web services architecture combined with Grid Comput-
ing infrastructure. We have recently demonstrated the design by constructing ex-
tremely detailed proto-populations of individuals residing in states along the US
Eastern seaboard consisting of approximately 100 Million individuals. This archi-
tecture takes care of ensuring that the simulations have thedata that they need to
operate, allow direct discovery of available services, andfacilitate the integration of
new services. The system design allows simulation modules to be run on any avail-
able computation resource in a way that is transparent to theuser. The use of existing
web services standards, allows any architecture or programming language to be sup-
ported.

The newly developed architecture makes it easy for organizations to add their
own simulations and analysis tools into the system. One novel aspect of the archi-
tecture is the ability for different organizations to host the same simulation applied
to different geographic areas. These instances will be ableto communicate through
web services to collaborate on a larger problem. For instance, a transportation system
simulation could be run at each Metropolitan Planning Organization (MPO) covering
the local urban region. The simulations running at each MPO could then exchange
the traffic exiting each local area and entering an adjacent area. This exchange could
be expanded to include bus, rail, and air traffic to aid in epidemiological modeling at
the national level. Note that the system formed in this way isnot predetermined, but
is self-organized based on the currently available services.

The architecture also allows the implementation of a particular service to be
easily updated or replaced without affecting current usersof the service. Multiple
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providers of a service can co-exist, each with a different trade-off (e.g., resolution
vs. execution time). The request for a service will be decoupled from the execution
of the service so that a user simply makes a request that a service be performed.
Attached to the request are conditions that must be met such as monetary cost, com-
pletion time, security requirement, etc. These requests need not be computational,
but may be for services provide by other individuals or organizations. Software bro-
kers examine these requests and match them to available resources.

Urban 

Dynamics
Population 

Telecommunication

Economics

Transport Public Health

Market &Electricity

Fig. 9. A schematic diagramSimfrastructure : an interdependent urban infrastructure simu-
lation and modeling framework.

Currently,Simfrastructure has working models for the following infrastruc-
tures: (i) Synthetic populations and urban environments, (ii) transportation, (iii) com-
modity markets, (iv) integrated telecommunication, (v) public health, (vi) electrical
power. Below we describe each of these modules briefly. We will end the section
with illustrative use cases.

5.2 Synthetic Protopopulations and Urban Environment Representation

A detailed population mobility and the associated built urban infrastructure is the
central piece of such simulations. It provides a common interface for the flow of in-
formation between all the infrastructure sector simulations. All information describ-
ing the synthetic population and elements of the built urbanenvironment resides in
this module. In addition, changes in the urban infrastructure that arise during the
course of a simulation and constrain activities and locations of the population pass
between the modules through this module, where sector-specific information is trans-
formed into a common format. The module makes information available to the other
infrastructure simulations in the form of a consistent datastructure, called proto-
populations: they are synthetic populations whose resolution, fidelity and quality can
be varied depending on the nature of the application.

A protopopulation is a collection of synthetic people, eachassociated with de-
mographic variables drawn from any of the demographics available and extracted
from the census [16, 77, 78]. Protopopulations can represent a person, a vehicle, or
an infrastructure element such as a hospital or a switch. Here, for illustration, we will
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concentrate on creation of synthetic urban populations. Figure 10 shows a schematic
diagram. Joint demographic distributions can be reconstructed from marginal distri-
butions available in typical census data using an iterativeproportional fitting (IPF)
technique. Each synthetic individual is placed in a household with other synthetic
people and each household is placed geographically in such away that a census of
the synthetic population is statistically indistinguishable from the original census, if
aggregated to the block group level. Synthetic populationsare thus statistically indis-
tinguishable from the census data. Since they are synthetic, the privacy of individuals
within the population is protected. Thesynthetic individualscarry with them a com-
plete range of demographic attributes collected from the census data, including vari-
ables such as income level and age. Next, a set of activity templates for households is
created, based on several thousand responses to an activityor time-use survey. These
activity templates include the types of activities each household member performs
and the time of day they are performed.

Fig. 10.Schematic diagram showing how various databases are integrated to create a synthetic
population.

Each synthetic household is then matched with one of the survey households,
using a decision tree based on demographics such as the number of workers in the
household, number of children of various ages, etc. Next, the synthetic household
is assigned the activity template of its matching survey household. For each house-
hold and each activity performed by this household, a preliminary assignment of a
location is made based on observed land-use patterns, tax data, etc. This assignment
must be calibrated against observed travel-time distributions. However, the travel-
times corresponding to any particular assignment of activities to locations cannot
be determined analytically. Indeed, the urban transportation system is a canonical
example of complex system wherein global behavior arises from simple local inter-
actions. Using techniques from combinatorial optimization, machine learning and
agent based modeling we then refine the population, their activity locations and their
itineraries [9].
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The time varying, spatially placed, synthetic population constructed in the above
manner can be enhanced for other uses. For instance, we used data fusion techniques
to assign these individuals: telecommunication devices (cell phones, pagers, etc.),
time varying demand for electricity, water and other such commodities. Note that
such data is impossible to collect and can only be created using methods described
here.

This produces synthetic individuals that just like real individuals can now call
other individuals, consume various resources during the day and carry out other ac-
tivities like eating, socializing, shopping, etc. An important point to note here is that
such data is impossible to collect by mere measurements or surveys: it is the output
of the agent based models such as the ones developed in [9].

5.3 Transportation Sector

Large scale microscopic simulation of transportation systems has become possible
over the last few years. See [31, 75, 9] for examples of efforts in this regard. A
prototypical question that can be studied with such simulations is the economic and
social impact of building a new freeway in a large metropolitan area. Systems such
asTRANSIMS conceptually decompose the transportation planning task into three
time scales.

First, a large time-scale associated with land use and demographic distribution
as a characterization of travelers. In this phase, demographic information is used to
createactivitiesfor travelers. Activity information typically consists ofrequests that
travelers be at a certain location at a specified time. They include information on
travel modes available to the traveler. A synthetic population is endowed with demo-
graphics matching the joint distributions given in census data. Observations are made
on the daily activity patterns of several thousand households (from survey data).
These patterns are used as templates and associated with synthetic households with
similar demographics. The locations at which activities are carried out are estimated
while taking into account observed land use patterns, travel times, and dollar costs
of transportation. Second, an intermediate time-scale consists of planning routes and
trip-chains to satisfy the activity requests. This module finds minimum cost paths
through the transportation infrastructure consistent with constraints on mode choice.
An example constraint might be: “walk to a transit stop, taketransit to work using
no more than 2 transfers and no more than 1 bus” [9]. Finally, avery short time-scale
is associated with the actual execution of trip plans in the network. This is done by a
simulation that moves cellular automata corresponding to the travelers through a very
detailed representation of the urban transportation network [68] . Examples 2 and 5
have already discussed some of these aspects. The simulation resolves traffic down
to 7.5 meters and times down to 1 second. It provides an updated estimate of link
costs, including the effects of congestion, to the Router and location estimation algo-
rithms, which produce new plans. This feedback process continues iteratively until
convergence to a steady state in which no one can find a better path in the context
of everyone else’s decisions. The resulting traffic patterns are matched to observed
traffic.



26 Barrett et al.

ANALYST
TOOLBOX

Household and 
Commercial
Activity

Disaggregation

Intermodal
Route

Planner

Transportation
Microsimulation

Environmental
Simulation

Land Use And
Demographic

Representation

Transportation
System

Representation

Transportation
Infrastructure
And Policy Change

Land Use  And
Demographic
Forecast

Fig. 11.Data flow in theTRANSIMS simulation system, proceeding from left to right. Input
data comes from the U.S. census and metropolitan planning organizations. We generate a syn-
thetic population whose demographics match the census; give each household an appropriate
set of activities; plan routes through the network; and estimate the resulting travel times. The
dotted lines represent feedback pathways, along which dataflows from right to left, in the
system.

A substantial effort has been spent on calibration and validation of the output
produced byTRANSIMS ; see [9, 68] for details. First, the design of the system is
based on SDS. Second, various microscopic and macroscopic quantities produced
by TRANSIMS have been validated in the city of Portland; including (i) traffic in-
variants such as flow density patterns and jam wave propagation, (ii) macroscopic
quantities, such as activities and population densities inthe entire city, number of
people occupying various locations in a time varying fashion, time varying traffic
density split by trip purpose and various modal choices overhighways and other
major roads, turn counts, number of trips going between zones in a city, etc.

An Interaction Based Viewpoint. TheTRANSIMS system has been designed us-
ing an interaction-based approach to capture the causes of observed traffic patterns.
For each individual, his endogenous attributes are derivedfrom the census data and
his endogenous goals are derived from the activity patterns. His endogenous proce-
dures or behavior consist of methods for finding specific locations to perform his
desired activities, specific algorithms for finding routes to go from one location to
another and specific rules used for driving. When such an endogenous individual
interacts with the infrastructure and other individuals, we get traffic. The particular
locations that an individual chooses, or the routes he takesare not determined solely
by his endogenous attributes; they are a result of his goals,methods and his interac-
tion with other individuals and the infrastructure. Similarly, the causal explanation
of traffic or the question of who is at a given location at a given time, is given not
only by the description of the individuals and the infrastructure, but also by the in-
teraction amongst them. Thus consequences of large transformational changes such
as a cascading power failure or infectious diseases can be understood in terms of the
net effect of the interactions.
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This is very different than traditional statistical modelsthat fit parameters to given
observations. Such systems that rely on observation and direct measurement of traf-
fic cannot extrapolate into hypothetical scenarios precisely because they have no
representation of the multitude of forces and interactionsthat lie behind each ob-
servation. As a simple example, theTRANSIMS methodology tells us how many
people would be likely to use a new freeway if it were constructed. In doing so it
captures what by now is well known as induced/latent demand.An observationally
based system cannot extrapolate well beyond the circumstances in which it has been
observed. Similarly, this approach will allow us to simulate the effects of changes in
behavior or use of infrastructure on the overall social dynamics.

5.4 Telecommunication Sector

The telecommunication modeling environment is an extension of the AdHopNet
[13, 24], designed to model extremely large, complex telecommunication networks
made up of cellular networks, public switched telephone networks (PSTNs), Inter-
net (IP) networks, and ad hoc mesh networks. It is an end-to-end simulation system,
meaning that all aspects of the communication system are represented. Although
simulations have been used for over four decades for representing and analyzing
telecommunication systems, the use of high performance computing oriented simu-
lations of very large telecommunication systems is a relatively new subject area; see
[4, 29] for examples.

The system has been specifically designed to be interoperable with other infras-
tructure simulations and is useful for representing the complete system comprising
the information and communication networks. It is also designed for technologi-
cal scaling – as we move towards ubiquitous computing, telecommunication and
computing networks with billions of heterogeneous transceivers. Such an integrated
system can be used to evaluate federal policies on the use andoperation of telecom-
munication infrastructures, especially in regards to potential effects of the policies on
national security. It can also be used to discover and respond to new vulnerabilities
that could occur while deploying adhoc and integrated networks, i.e., networks of
mobile radio devices that present a constantly evolving telecommunication network.
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Fig. 12.Overall design of the telecommunication modeling module.

The modeling environment decomposes the telecommunication system into four
basic time scales. The first module places devices and individuals throughout the
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urban region. It then generates the positions of transceivers at various times of the
coarse simulation clock. This module also allows transceivers to become idle for
some period of time and to rejoin the network at a later time. The module also pro-
vides for new transceivers to join the network and existing transceivers to leave the
network permanently. Wireline devices are placed permanently at various locations
based on the publicly available information.

In the second step, each device (e.g. phone, computers, etc)is assigned data ses-
sions: the sessions are consistent with the kind of devices,their locations and their
users. The sessions generated are statistically identicalto the sessions generated in
an urban region of interest. The next step consists of constructing a (time-varying)
telecommunication network. Due to the various technologies used, these networks
are dynamic and their topology varies significantly depending on the kind of tech-
nology used. This corresponds to intermediate time scale. Finally, at the finest time
scale, voice or data is moved over the dynamic network; this aspect uses packet/voice
data simulation methods based on flow techniques or discretedynamical systems.
The data is then stored succinctly using signal theoretic methods; Markov chain
methods are then used to regenerate statistically equivalent packet streams. An aux-
iliary module is concerned with construction, analysis andregeneration of integrated
telecommunication networks. The module synthesizes publicly available data sets
in conjunction with population mobility information to construct the complete set
of networks used in a telecommunication system: wireline, wireless, ad-hoc and the
packet switched IP networks.

5.5 Public Health

The public health module (calledEpiSims) of the integrated system simulates the
spread of disease in urban areas. It details the demographicand geographic distribu-
tions of disease and provides decision makers with information about (1) the conse-
quences of a biological attack or natural outbreak, (2) the resulting demand for health
services, and (3) the feasibility and effectiveness of response options. See [22, 33, 34]
for further details.Simdemics, an extension ofEpiSims, is designed to model gen-
eral reaction diffusion process such as vector borne diseases and simulation of social
norms and fads.

Both EpiSims andSimdemicswork by creating a social-network representing
details of contacts between individuals based on their activity patterns which are
provided byTRANSIMS . The system provides estimates of how disease will spread
through a population depending on how it is introduced, how vulnerable people are,
what responses are applied, and when responses are implemented.

The module simulates the movement of each individual from location to location
in a large urban area as he or she goes about daily activities.The individuals are
synthetic; they do not represent specific people, but a census taken on the entire
synthetic population would be statistically indistinguishable from the actual census.
On the other hand, the locations visited by individuals are real street addresses and
reflect actual land-use patterns in the city.
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The modeling environment associates a state of health with each individual be-
ing simulated. An individual’s demographics determine his/her response to exposure
and infection. For example, anyone over the age of 32 is assumed to have been vac-
cinated for smallpox. Exposure occurs in either of two ways:through contact with an
infectious person or by visiting a contaminated location. The simulation user can in-
troduce contamination at a location as an exogenous event inthe simulation. Whether
a person is infectious depends on when that person was exposed and their individual
response to infection. By varying a few parameters, users can model many different
diseases.

A simulated person’s state of health may affect his or her actions. They may
seek treatment at a nearby hospital or clinic, or they may stay home instead of pur-
suing certain activities. In addition, the user may specifyactions that affect simu-
lated people, such as mass or targeted vaccination/treatment/prophylaxis and isola-
tion. Targeted responses are automated within the simulations: people are chosen at
a user-specified rate from a list of symptomatic people; their contacts are found by
following their schedule; and the contacts are then treatedand/or isolated.

activities

population

partition

schedule

initial healthdisease
snapshot

events

summary

(from TRANSIMS)

simulation

Fig. 13.Data flow in the epidemiology simulation system. Input data comes from two sources:
the user’s disease model and information about the social network. Stand-alone tools operate
on the disease model and the population’s demographics to produce the initial state of health
for everyone in the simulation. Another tool converts a listof activities and locations organized
by person into a schedule of events (primarily arrivals and departures) organized by location.
The final preparation step estimates an optimal partition ofresources among computational
nodes. The simulation itself executes events in strict timeorder and propagates disease in
accordance with the user’s disease model.

5.6 Commodity Markets

Sigma is an agent-based, microscopic, computational modeling framework to study
commodity markets. Systems such asSigmaoffer several advantages to an economist
interested in studying commodity markets, including (i) exact knowledge of what is
exogenous and what is endogenous in the experiment, (ii) complete control on the
amount of information accessible to the players, (iii) clear delineation of what infor-
mation is public and private as well as what assumptions are reasonable to include.
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The economist can not only study the system in equilibrium, but can also study the
transient dynamics that lead to equilibrium conditions.

Sigma uses an interaction based computing approach to study the micro level
behavior of the market and its players. The computational framework provides user,
the ability to control individuals’ preferences, behavior, market elements, trading
mechanisms etc. This facilitates the study of different economic structures, strate-
gies, policies and institutions in isolation. It can currently simulate a restructured
electricity market. Three kinds of markets are modeled; centralized, decentralized,
and a real-time (spot) market. The models employ economic theory-based methods
and capture the dynamics of supply and demand in a market driven economy. New
approaches that facilitate a wide range of experiments witha high degree of realism,
include:

1. Flexible methods of aggregating individual consumers and producers into hier-
archies in order to represent buyers and suppliers in residential, commercial, and
wholesale markets

2. Heterogeneous demand profiles with elastic and inelasticcomponents using
time, location,activity, and demographic data for all individual consumers in a
synthetic population

3. User-selectable economic clearing mechanisms to accommodate an array of
market types, including Vickrey auction, double auction, and marginal price
clearing.

The system simulates the activities (bidding, contracts, prices, etc.) of individual
market players. The market model is driven by dynamic demandprofiles that reflect
the changing needs of individuals in an urban population. The model can be cou-
pled to physical flow models for commodities that require physical clearing (such
as electricity). The tool uses population dynamics and activity location data from
a population dynamics simulation such asTRANSIMS . This information ties the
market simulations to the urban infrastructure. Markets, among other things, are sen-
sitive indicators of infrastructure disruptions and can beused to gauge public mood
and awareness in crisis situations. The overall design ofSigma is depicted schemat-
ically in Figure 14. The framework, due to scaling requirements, has a parametric
representation for buyers as well as sellers. This allows one to represent a number of
realistic, individualistic, behavioral features that aretypically assumed away in clas-
sical economic literature due to mathematical intractability. These include dropping
classical Cournot oligopolists’ assumptions, perfect rationality, information symme-
try between consumers and generators, etc.

Sigma is a detailed simulation based analysis tool for simulatinglarge commod-
ity markets such as electricity markets. Markets are among other things, sensitive
indicators of infrastructure disruptions and can be used togauge public mood and
awareness in crisis situations. The system can currently simulate large commodity
markets such as the electric power market. It can be used to analyze effects of differ-
ent regulatory changes, the impact of changes in consumer behavior on the clearing
price, impact of price caps on demand and supply, market efficiency, generators’ bid-
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Fig. 14.Schematic diagram of the commodity market simulation system.

ding strategies etc. Another important use for such tools istheir ability to analyze the
effect of different market clearing rules on clearing prices.

The system simulates the activities (bidding, contracts, prices, etc.) of individual
market players. The market model is driven by dynamic demandprofiles that reflect
the changing needs of individuals in an urban population. The model can be coupled
to physical flow models for commodities that require physical clearing. The tool
uses population dynamics and activity location data from a population dynamics
simulation such asTRANSIMS . This information ties the market simulations to the
urban infrastructure. The overall design of such a tool is depicted schematically in
Figure 14. It consists of three main components that form a coupled system:

1. the electrical power grid, with associated elements including generators, substa-
tions, transmission grids and their related electrical characteristics.

2. a market consisting of market entities, including buyers, sellers, the power ex-
change (where electricity trades are carried out at varioustime/size scales), the
independent system operator (ISO) and the market clearing rules and strategies.

3. an activity based individual power demand creator that yields spatio-temporal
distribution of the power consumed.

Such simulations, due to scaling requirements, have a parametric representation
for buyers as well as sellers. They allow for a number of realistic behavioral features
that are typically assumed away in classical economic literature due to mathematical
intractability. These include dropping classical Cournotoligopolist’s assumptions,
perfect rationality, symmetric information between consumers and generators, etc.

5.7 An Illustrative Use Case

The following use case built aroundEpiSims and Simfrastructure demonstrates
how such modeling tools can be used for situational Awareness and consequence
Analysis in the event of epidemics. In this scenario, duringa heat wave in a city,
terrorists shut down portions of the public transit system and a hospital emergency
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room during the morning rush hour. At the same time, they spread a harmless but
noticeable aerosol at two commuter rail stations. These events, occurring nearly si-
multaneously, foster a chaotic, if not panic-stricken, mood in the general public.

EpiSims in conjunction withSimfrastructure can be used for situation assess-
ment and consequence analysis. This is done by estimating the demand by demo-
graphics at emergency rooms and clinics under a variety of hypotheses to distinguish
effects of the heat wave from those of a putative bio-attack.To accomplish this, sev-
eral kinds of information is integrated: (i) population demographics and household
structure, (ii) population mobility and transit timetables, (iii) hospital locations and
capacities, (iv) natural history of various infectious diseases, (v) historical heat wave
casualties, and (vi) (potential) surveillance data. We then estimate the demographics
(age, gender, and home location) of people likely to have been in the two stations
when they were “attacked”. These are the people who would show up first for treat-
ment if indeed a bio-attack had occurred. They also would serve as the subpopula-
tion to seed with disease in a simulation. Biases in their demographics compared to
a random sample of the population will induce persistent biases in the set of peo-
ple infected at any time that cannot be captured by models assuming homogeneous
mixing. We estimate demand at hospitals, assuming that people would arrive at a
hospital near their home location. We further estimate whether each hospital had
sufficient capacity to meet the demand. Historically, the most likely casualties of a
heat wave are elderly people living alone with few activities outside the home. This
information, combined with demographic and household structure data, allows us to
estimate demand for health services created by the heat waveby demographic and
location. For situation assessment, we note the obvious differences between these
two demand patterns. In an actual event, comparison with admissions surveillance
data would allow quick disambiguation between the two.

We estimate the likely spread of disease for several different pathogens by demo-
graphic and location. Furthermore, we can implement several suggested mitigating
responses, such as closing schools and/or workplaces, or quarantining households
with symptomatic people. Knowledge of the household structure permits an excep-
tionally realistic representation of the consequences of these actions. For example, if
schools are closed, a care-giver will also need to stay home in many households. Or
if households are quarantined when a member becomes symptomatic, we can esti-
mate the immediate economic impact using the household incomes for exactly those
households affected. Similarly, the economic impact of casualties with known demo-
graphics leads to a cost-benefit analysis for proposed interventions. In a similar study
that we recently undertook, we found enormous differences in cost for interventions
with similar numbers of casualties. Information on casualties can be fed back into
the representation of the urban environment to evaluate effects on interdependent
infrastructure.

The use case demonstrates the need for an interaction based modeling and sim-
ulation approach: such an approach captures physical inter-dependencies between
infrastructures as well as implicit human-mediated interdependencies existing be-
tween infrastructures. For example, the demand for coolingon a hot summer day can
strain the energy distribution system, forcing it to operate in a less robust regime.
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Furthermore, the consequences of decisions made to mitigate accidents depend on
the demand being serviced at the moment. Thus a decision to brown-out New York’s
financial district while maintaining service to residential areas has completely differ-
ent effects at midnight on a Saturday than at 2 PM on a Wednesday. Practical decision
support environments based on modeling environments such asSimfrastructure can
evaluate such situation-dependent consequences.

6 Concluding Remarks

We described an interaction based approach to modeling and simulations of large
scale socio-technical, biological and information systems. The theoretical founda-
tions of this approach were based on sequential dynamical systems (SDS) and theory
of large scale complex networks. Engineering principles are derived from such a the-
ory. These engineering principles allow us to design simulations for extremely large
systems and implement them on massively parallel architectures. As an illustration,
we describedSimfrastructure : a practical interaction based modeling tool to study
large interdependent urban infrastructures. Large scale high performance computing
oriented simulations for these systems are already operational; the simulations and
the underlying systems would greatly benefit from further advances in interactive
computing.

We are also currently exploring two broad research areas to further develop the
interaction based design and analysis of extremely large heterogeneous systems: (i)
discrete microscopic modeling and simulation of biological systems [52, 45, 54] and
(ii) robust nanoscale design and computation.
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