Intuitive and Formal Representations:
The Case of Matrices

Martin Pollet!:2*, Volker Sorge?**, and Manfred Kerber?

! Fachbereich Informatik, Universitiit des Saarlandes, Germany
pollet@ags.uni-sb.de, www.ags.uni-sb.de/ pollet
% School of Computer Science, The University of Birmingham, England
{V.Sorge|M.Kerber}@Qcs.bham.ac.uk, www.cs.bham.ac.uk/ {vxs|mmk}

Abstract. A major obstacle for bridging the gap between textbook
mathematics and formalising it on a computer is the problem how to
adequately capture the intuition inherent in the mathematical notation
when formalising mathematical concepts. While logic is an excellent tool
to represent certain mathematical concepts it often fails to retain all the
information implicitly given in the representation of some mathematical
objects. In this paper we concern ourselves with matrices, whose rep-
resentation can be particularly rich in implicit information. We analyse
different types of matrices and present a mechanism that can represent
them very close to their textbook style appearance and captures the in-
formation contained in this representation but that nevertheless allows
for their compilation into a formal logical framework. This firstly allows
for a more human-oriented interface and secondly enables efficient rea-
soning with matrices.

1 Introduction

A big challenge for formalising mathematics on computers is still to choose a rep-
resentation that is on the one hand close to that in mathematical textbooks and
on the other hand sufficiently formal in order to perform formal reasoning. While
there has been much work on intermediate representations via a ‘mathematical
vernacular’ [3,12, 5], most of this work concentrates on representing mathemati-
cal proofs in a way that closely resembles the human reasoning style. Only little
attention has been paid to an adequate representation of concrete mathematical
objects, which captures all the information and intuition that comes along with
their particular notation. Logicians are typically happy with the fact that such
concepts can be represented in some way, whereas users of a formal system are
more concerned with the question, how to represent a concept and how much ef-
fort is necessary to represent it. Depending on the purpose of the representation
it is also important how easy it is to work with it.

In this paper we examine one particular type of mathematical objects, namely
matrices. Let us first take a closer look how the matrix concept is introduced in
a mathematical textbook. Lang [8, p.441] writes:

* The author’s work is supported by EU IHP grant Calculemus HPRN-CT-2000-00102.
** The author’s work is supported by a Marie-Curie Grant from the European Union.

“By an m X n matrix in R one means a doubly indexed family of elements
of R, (aij), (i=1,...,mand j =1,...,n), usually written in the form

(aip --- Qg)
m1 **° Qmn
We call the elements a;; the coefficients or components of the matrix.”

Mathematicians do not work with the definition alone. The definition already
introduces the representation as a rectangular form in which the elements of a
matrix are ordered with respect to their indices. Matrices can be viewed as
collections of row or column vectors, as block matrices, and various types of
ellipses are used to describe the form of a matrix. The different representations
are used to make the relevant information directly accessible and ease reasoning.

Depending on the exact logical language, one would consider a matrix as a tu-
ple consisting of a double indexed function, number of rows, number of columns,
and the underlying ring. And opposed to mathematics, one has to stick to this
definition during all proofs. The (logical) view that a matrix is a tuple, which
mainly bears aspects of a function, is not adequate from a mathematical point of
view. If we look at a concrete matrix such as a 2 X 2 matrix containing only the
zero element this matrix Z is a constant. This means in particular that for any
matrix M, the product M - Z is equal to Z without the necessity to do reason-
ing about tuples and lambda expression. This is analogous to the relationship
between the formal logical and mathematical view of the natural number four,
which logically is the ground term s(s(s(s(0)))), while mathematically it is the
constant symbol 4.

In this paper we show how to abstract from the functional representation
of concrete matrices and how to attach structural information for matrices to
the formal representation by so-called annotated constants. The structural in-
formation can be used for reasoning, which simplifies proof construction since
some of the reasoning steps can be expressed as computations. The connection
to the formal content allows the verification of the abstract proof steps in the
underlying logical calculus.

In the next section we will have a closer look at different types of matrices
that we want to be able to represent. In section 3 we will introduce annotated
constants as an intermediate representation for mathematical objects. In sec-
tion 4 we will discuss how concrete matrices, block matrices and ellipses can
be represented and manipulated as annotated constants. We conclude with a
discussion of related and future work in section 5.

2 Matrices — Examples

In this section we give an overview of some important cases of matrices and their
representations as they appear in algebra books (e.g. [8,6]). We do not intend
to give an exhaustive overview. However, we believe that the cases covered here
will allow for generalisations and adaptations to others. We discuss some of the

of the paper.

2.1 Concrete Matrices

A matrix is a finite set of entries arranged in a rectangular grid of rows and
columns. The number of rows and columns of a matrix is often called the size
of that matrix. The entries of a matrix are usually elements belonging to some
algebraic field or ring. Matrices often occur in a very concrete form. That is, the
exact number of rows and columns as well as the single entries are given. An
example is the following 2 x 3-matrix:

327
M= <1 0 4)

Matrices of this form are fairly easy to represent and handle electronically. They
can simply be linearised into a list of rows, which is indeed the standard input
representation of matrices for most mathematical software, such as computer
algebra systems. Since both the size of the matrix is determined and all the
elements are given and of a specific type, manipulations of the matrix and com-
putations with the matrix can be efficiently performed, even if the concrete
numbers are replaced by indeterminates such as a, b, c.

While concrete matrices often occur in many engineering disciplines, pure

mathematics goes normally beyond concrete sizes, but will speak of matrices in
a more generalised fashion.

2.2 Block matrices

Block matrices are matrices of fixed sizes, typically 2 x 2 or 3 x 3, whose elements
consist of rectangular blocks of elements of not necessarily determined size. Thus,
block matrices are in effect shorthand for much larger structures, whose internal
format can be captured in a particular pattern of blocks. Consider, for instance,
the general matrix of size (n + 1) x (n + 1) given as

_ (alvT
= (5f)

in which a # 0 is a ring element (scalar), 0 is the zero vector of size n, v7 is the
transpose of an arbitrary vector v of size n, and A is a matrix of size n x n.

A block matrix can be emulated with a concrete matrix by regarding its
elements as matrices themselves. This can be achieved by identifying, scalars
with 1 x 1 matrices, vectors with n x 1 matrices, and transposed vectors with
1 x n matrices. While this enables the use of the techniques available for concrete
matrices to input and represent block matrices, manipulating block matrices is
not as straightforward. Since the elements do no longer belong to the same
algebraic ring (or indeed to any ring), computations can only be carried out
with respect to a restricted set of axioms. In particular, one has to generally
forgo commutativity when computing with the single blocks. Again this can be

simulated to a certain extend. For instance, the inverse of the above matrix
can be computed by using a computer algebra system that can deal with non-
commutativity, as demonstrated in section 4.2. Computations concerning two
block matrices, such as matrix addition or multiplication can be simulated as
well. However care has to be taken that the sizes of the blocks are compatible.

2.3 Ellipses

While block matrices can capture simple patterns in a matrix in an abstract
way, more complex patterns in generalised matrices are usually described using
ellipses. Consider for instance the definition of the following matrix A:

a1 b - b
A= 0 :
D b
0 .- 0 Ann

The representation stands for an infinite class of n x n matrices such that we
have a diagonal with elements a;;, 1 < i < n, all elements below the diagonal
are zero, while the elements above the diagonal are all b. A matrix of this form
is usually called an upper triangle matrix.

In the context of matrices we can distinguish essentially two types of ellipses:

1. Ellipses denoting an arbitrary but fixed number of occurrences of the same
element, such as in (0---0).

2. Ellipses representing a finite number of similar elements that are enumerated
with respect to a given index set (a; - --a,)!.

Both types of ellipses are primarily placeholders for a finite set of elements that
are either directly given (1) or can be inferred given the index set (2).

Another important feature of ellipses in the context of matrices are their
orientation. While for most mathematical objects, such as sets or vectors, ellipses
can occur in exactly one possible orientation, in two-dimensional objects such as
matrices we can distinguish three different orientations: horizontal, vertical, and
diagonal. Thereby ellipses are not only placeholders for single rows, columns or
diagonals but a combination of ellipses together can determine the composition
of a whole area within the matrix. For example the interaction of the diagonal,
horizontal and vertical ellipses between the three 0s in A determines that the
whole area underneath the main diagonal defaults to 0.

Matrices with ellipses are well suited for manipulation and reasoning at an
intuitive abstract level. However, already their mere representation poses some
problems. While they can be linearised with some effort, a two-dimensional rep-
resentation of the object is preferable, as this eases to determine the actual
meaning of the occurring ellipses. It is even more challenging to mechanise ab-
stract reasoning or abstract computations on matrices with ellipses.

! Here the notion of an index set is not necessarily restricted to being only a set of
indices for a family of terms, but we also use it with a more general meaning of
enumerating a sequence of elements as for instance in the vector containing the first
n powers of a, (a'---a").

2.4 Generalised Matrices

While ellipses already provide a powerful tool to express matrices in a very
general form by specifying a large number of possible patterns, one sometimes
wants to be even more general than that. Consider for instance the following
definition of matrix B:

a1
. . . ail *
B = 0 S . Also written as:
: ' C X O ann
0 -+ 0 ap,

Matrix B is very similar to A above, with the one exception that the elements
above the main diagonal are now arbitrary, indicated by x, rather than b. This is
a further generalisation as B now describes an upper triangle matrix of variable
sizes n x n, where we are only interested in the elements of the main diagonal
a;i, 1 <1 <mn, but we don’t care about the elements above the diagonal. While
such a matrix can be represented with the same representational tools as the
matrix A above, it will be more difficult to deal with when we actually want to
compute or reason with it.

In the following we shall describe how we can handle concrete matrices, block
matrices, and ellipses. In order to extend our approach to cover generalised
matrices as well, we would need to handle “don’t care” symbols, in addition. We
do not go into this question in this paper.

3 Intermediate Representation — Annotated Constants

In this section we present the concept of annotated constants, a mechanism that
provides a representational layer that can both capture the properties of the
intuitive mathematical representation of objects, as well as connect these objects
to their corresponding representation in a formal logic framework. Annotated
constants are implemented in the Omega system [10] and therefore the logical
framework is Omega’s simply typed lambda calculus (cf. [1]). We have first
introduced annotated constants in [11] in the context of mathematical objects,
such as numbers, lists, and permutations. For the sake of clarity we explain the
idea in the following using the much simpler example of finite sets.

Let us assume a logical language and a ground term ¢ in this language. Let ¢
be a constant symbol with ¢ = ¢. An annotated constant is then a triple (¢, ¢, a),
in which a is the annotation. The annotation a is any object (making use of
an arbitrary data structure) from which ¢ and ¢ can be reconstructed. Think
of ¢ as the name of the object, ¢ as the representation within logic, and a as a
representation of the object outside logic.

Finite Sets: Finite sets have a special notation in the mathematical vernacular,
for example, the set consisting of the three elements a, b, and ¢ is denoted by
{a, b, c}. We can define this by giving the set a name, e.g., A, and a definition in

logic as a ground term. Important knowledge about sets with which it is appro-

priate to reason efficiently is: sets are equal if they contain the same elements

regardless of their order, or the union of two sets consists of the elements which
are a member of one of the sets and so on. This type of set manipulation has not
so much to do with logical reasoning as it has with computation. The union of
two sets, for instance, can be very efficiently computed and should not be part
of the process of search for a proof.

Annotated constants for finite sets are defined with the attributes

Annotation for finite sets: The data structure of sets of the underlying pro-
gramming language is used as annotation and the elements of the set are
restricted to closed terms, e.g., the set containing the three constants a, b,
and c in the concrete example.

Constant symbol: We give the set a name such as A. Even more appropriate
for our purpose is to generate an identifier from a duplicate free ordering of
the elements of the set, for the example Ay, 5 .1

Definition: The definition of the set corresponds to a lambda term in higher-
order logic, e.g., Ax. (z=a V x=bV xz=c). In order to normalise such terms it
is useful to order the elements of the set, that is, we wouldn’t write the term
as Az, (r=bV z=a V x=c). Since the annotation has to represent the object
completely the formal definition can be constructed from the annotation.

The basic functionality for handling annotated constants is implemented on
the term level of the Omega system. In first approximation, an annotated con-
stant is a constant with a definition and has the type of its defining term ¢.
As such it could be replaced by its defining term during the proof or when ex-
panding the proof to check formal correctness. Typically, this is not done, but
annotated constants are manipulated via their annotations. The defining term
of an annotated term is used only when necessary.

The manipulation of operations and verification of properties is realised as
procedural annotations to functions and predicates. A procedural annotation is
a triple (f,p,T), where f is a function or predicate of the logical language, p
is a procedure of the underlying programming language with the same number
of arguments as f and T is a specification (or tactic) for the construction of
a formal proof for the manipulation performed by p. The procedure p checks
its arguments, performs the simplification, and returns a simplified constant or
term together with possible conditions for this operation.

For example, the procedure for the union of concrete sets {a,b} U {c,d}
checks whether the arguments are annotated constants for concrete sets, and
returns the annotated constant which has the concatenation of {a, b} and {c, d}
as annotation. Analogously the property {1,2,3} C Z holds, when all elements
of the annotation of the set are constants which have as annotation an integer
as data structure.

The proof specification T is used to formally justify the performed step.
Thereby an annotated constant is expanded to its formal definition and the
computation is reconstructed by tactic and theorem applications. This expansion
will be done only when a low level formal proof is required, certainly not during
proof search.

What are the advantages of using annotated constants?

Firstly, annotated constants provide an intermediate representation layer be-
tween the intuitive mathematical vernacular and a formal system. With anno-
tated constants it is possible to abstract from the formal introduction of objects,
allow the identification of certain classes of objects and enable the access of rele-
vant knowledge about an object directly. Annotations can be translated into full
formal logic expressions when necessary, but make it possible to work and reason
with mathematical objects in a style that abstracts from the formal construction.

Secondly, annotations allow for user friendly input and output facilities. We
extended Omega’s input language to provide a markup for an annotated con-
stant to indicate the type of the object it represents. For each kind of annotated
constant the term parser is extended by an additional function, which parses
annotations and transforms these annotations into an internal representation.
During parsing additional properties can be checked and errors in the specifica-
tion can be detected. In this way it is possible to extend syntactic type checking.
An additional output function for each kind of annotated constant allows to have
different display forms for presenting formulas to the user.

Thirdly, procedural annotations enable an efficient manipulation of annotated
constants. Theses procedures can access information without further analysis
on (lambda) terms (which define annotated constants formally) and allows to
compute standard functions and relations very efficiently. These operations and
properties become a computation on the data structures of annotated constants.

4 Matrices as Annotated Constants

In this section we show how annotated constants can be used to implement the
different representations for matrices presented in section 2.

4.1 Concrete Matrices

Concrete matrices of fixed sizes, for example,
327
M= <1 0 4)
can be represented in higher-order logic as a 4-tuple: (f,2,4,7) where f is the

s A2
lambda expression™ —yi5; if i=1Aj=1 then3

elseif i =1Aj =2 then 2
elseif 1=1Aj=3 thenT7
elseif i=2Aj =1 thenl
elseif i=2Aj=2 then 0
else 4.

2 The conditional if P then m else n can be defined in higher-order logic by the
description operator ¢. The expression ty.S(y) denotes the unique element ¢ such
that S(c) holds, if such a unique element exists. A conditional can thus be defined
by tk.(P A (k =m))V (=P A (k = n)), which returns m if P holds, else n (for more
details see [1]).

When we look at the concrete matrix the information connected to this rep-
resentation is, that the position of all the elements is specified and that the
number of rows and columns of the matrix are immediately perceivable. When
we look at the formal representation, then even to access an element at a certain
position requires reasoning, even non-trivial reasoning when, for example, the
first condition is given as f Ai\j. if P(i,j) then 3 elseif ... where P(i,j) is some
equivalent formulation of i = 1A 5 = 1.

Also in order to multiply two concrete matrices, reasoning about the cor-
responding lambda expressions is necessary. For instance, the transpose of M

is
31
MT=1(20
74

which can be represented as a 4-tuple (f7,4,2,7) where f* is the function you
get by swapping the arguments of f,i.e. AjAi rather than Ai\j. The product M ®
MT™ is a matrix (f *4 f7,2,2,7), in which the function is computed component
wise as the sum of products of ring elements, that is, Aidj. if 1 = 1A =
1 then 3-3+4+2-247-7 elseif ..., which requires considerable reasoning to
arrive at the result. We argue that although this can be done in logic, it is not
appropriate, analogously as it is not appropriate to compute a product such as
20 - 15 by reasoning with the definition of - in the constructors 0 and s over the
natural numbers.

We therefore define annotated constants for concrete matrices as follows:

Annotation for concrete matrices: The data structure of arrays, where the
elements are in the logical language and all of them have the same type a.
All places of the array must be filled with constants of the logical language,
as for instance in our example matrix M.

Constant: A constant A of the logical language of type Z x Z — «.

Definition: The lambda expression representing a double indexed function of
the form AiAj. f (7, j), where i and j range over the integer intervals [1, m] and
[1,n], respectively and every f(i,) is an element of a ring F. In other words
f(i,j) corresponds to a matrix entry in the it column and the jth row. To
guarantee that a double indexed function actually constitutes a matrix it has
to fulfil the property Matriz(f,m,n,F) =Vi € [1,m],j € [1,n]: f(i,j) € F.
A concrete example for such a lambda expression is the double indexed
function representing M above.

For annotated constants representing concrete matrices the operations for
summation and multiplication of matrices, scalar multiplication, and transposing
a matrix are annotated by corresponding procedures. With the tactic simplify
which applies all possible simplifications specified in annotated procedures, a
proof step performing the matrix multiplication M ® M7 is:

L. {0,1,2,3,4,7} € R (open)
L. Ring(R,+,) (open)

62 31
Ls. P = (31 17) (open)
T
327 327 A
L,., P= (104>®<104> (simplify L1, L2, L3)

The line L3 contains the matrix which is the result of the simplification.
Since the matrices consist of integers, which are annotated constants again,
the simplification can compute the result of arithmetic operations on integers.
The lines L; and Ls contain the side conditions of the computation. Note
that the necessary conditions on the size of the matrices Matriz((}37),2,3, R)

and Matriz((3 2 Z)T, 3,2, R) are available from the annotation and thus can be

checked during the expansion of the tactic simplify.

4.2 Block matrices
alvT
0l A

a tuple (f,n + 1,n + 1, F), in which f is a function from the indices into the
ring, {1,...,n+ 1} x {1,...,n+ 1} — F defined as

A block matrix of the form M = (> can be formally expressed in logic as

AiAj. if i=1Aj=1 then a
elseif i =1A2<j<n+1 thenv; 4
elseif 2<i<n+1Aj=1 then0
else ;1,1

If we assume a # 0 and det(A) # 0, we can then show that the set of matrices
of the above form constitute a subgroup of the group of invertible matrices with
respect to matrix multiplication. This is, however, not straightforward using the
lambda expression, since a lot of the structural information is needed for the
argument, which is lost in the lambda term. What we really want to do is to
lift the argument about 2 x 2 block matrices to a sound argument about general
matrices.

In effect the argument can be collapsed into a single computation. By em-
ulating the block matrix with a 2 X 2 matrix over a non-commutative ring we
can compute its inverse using the computer algebra system Mathematica [13]
together with the NCAlgebra package [9] for non-commutative algebra. If we
replace the block matrix with a matrix of the form

—1

ab - .. f(a —a '-b-c!
0 ¢ ,the corresponding inverse matrix is 0 o .

Note that —a~'-b-¢~! can not be further simplified to — -,

tiplication is non-commutative. This computation on concrete matrices can be
used to determine the inverse of the original block matrix by simply substituting

vT for b and A for ¢
a-l —a 1.7 . 41
(%)

since matrix mul-

With the additional fact that a=! and A~! exist if and only if @ # 0 and
det(A) # 0, the property can be proved.
Block matrices are implemented as annotated constants in the following way:

Annotation for block matrices: The data structure of 2 x 2 arrays <é g

where the elements A, B,C, D are either annotated constants for matri-
ces or double indexed lambda functions. All elements must have the same
type. In addition, for annotated constants representing matrices the follow-
ing conditions must hold for the number of rows row(A4) = row(B) = r,
row(C) = row(D) = rq, and col(A) = col(C) = ¢1, col(B) = col(D) = ¢z
for the number of columns.

Constant: A constant of type Z x Z — « representing the matrix.

Definition: Block matrices are expanded into a lambda term of the form

Nidj. if 1<i<r A1<j<e then A(i,j)
elseif 1<i<r ANer+1<j then B(i,j— 1)
elseif ri +1 < AN1<j<e then C(i —rq,))

else [ie,r +1<iAc+1<j] D@i—ri,j—c)

where the A(.), B(.),C(.), D(.) denote double indexed functions, possibly
generated by expansion of concrete matrices.

The annotated constants for block matrices allow us to combine matrices
given by lambda expressions with concrete matrices. The operations for matrices
then work directly on the individual blocks of the block matrices. Given double
indexed functions w;j,vij, A;j, Bi; the tactic simplify applied to the formula in
Lg results in the following proof situation:

L,. Matriz(uij,1,2,R) (open)
L,. Mairiz(vij, 1,2, R) (open)
L3. Matriz(B;j,2,2,R) (open)
Ly. Matriz(Ai;,2,2, R) (open)
Ls. {0,1} e R (open)
Le¢. Ring(R,+,") (open)
(1) |uij @ (vij ® Bij)

L;. M= 0 open

7 <0 Aij ® Bij (p)

(1) |vij (1) |ui
Ls. M= ((8) Aij)@ (<8>‘37> (simplify L1, ...,L7)

Line L; contains the result of the matrix multiplication and lines L; to Lg
the side conditions on the objects involved, which cannot be inferred from the
annotations.

We describe the simplification stepwise. First the sub-blocks of the matrices
are multiplied, resulting in

swe (we(0)) | Wswew o8

|
(0o (e (D)) o cha

Already at this point the side conditions regarding the double indexed functions
Ui, Vij, Aij, Bij are generated. The requirements for the size can be reconstructed
from the sizes of the concrete matrices together with the condition from the
matrix multiplication. Then simplification is applied to the content of each sub-
block, starting with simplification of the arguments of an operation.

For concrete matrices operations are performed as described in section 4.1.
For the simplification of operations containing both concrete matrices and double
indexed functions we only consider the following cases:

— multiplications involving the zero matrix (i.e., a concrete matrix containing
only the zero element of the underlying ring) are replaced by the zero matrix;

— summations with the zero matrix are replaced by the double indexed func-
tion;

— multiplication with a concrete diagonal matrix, containing the same element
on the diagonal is replaced by scalar multiplication with said diagonal ele-
ment.

Simplifying the above block matrix with respect to the rules for multiplication
then yields

(D@ (0) |1-ui; @ (vij ® Bij)

() @)I(35) = aem

Further simplification employs the rules for addition and also scalar multiplica-
tion on 1 - u;; resulting in the formula given in L7 of the above proof.

The simplification for operations on matrices with mixed representations
could also be carried out differently, namely by introducing concrete matrices,

that is
a B a-uyp a- U9
®ul'7_)<b'U]]b'U]2>

and then apply simplification on the elements of the matrix. For a = b = 0
the result will be the same as for our simplification, but in the general case, the
result is a concrete matrix having elements of the double indexed mixed with the
elements of the concrete matrix. This means the structure of the initial blocks
would be lost or hard to recognise.

While our example works with 3 x 3 matrices represented as 2 x 2 block ma-
trices, the argument can be extended to arbitrary n x n matrices still represented
as 2 x 2 block matrices of the form:

But in order to do this we need an adequate treatment of ellipses.

4.3 Ellipses

While block matrices already allow us to combine concrete matrices using ar-
bitrary double indexed functions, they only enable us to combine rectangular
shapes. Using ellipses we can further generalise the representation of matrices.
We then need to generalise also the simplifications introduced in the last section
to matrices with fixed but arbitrary sizes. If we consider our example matrix

ap, b -+ b
a—1 0 ;
ST
0 -+ 0 apn

then A can be represented in higher-order logic as a 4-tuple: (f,n,n,Z) where f
corresponds to the lambda expression:

)\7)\]. if 1=7 then Qjj
if 1< thenbd
else 0

Compared to the concrete instances above, the higher-order representation is
concise. Nevertheless, in mathematics one develops particular methods for rea-
soning with matrices of non-concrete sizes, which follow a particular pattern,
such as triangle matrices, diagonal matrices, and step matrices. Since these pat-
terns are not necessarily obvious given the lambda term alone it is desirable to
have the explicit representation of matrices with ellipses available for reasoning.

Ellipses are realised using annotated constants as well. They are categorised
into horizontal, vertical, and diagonal ellipses and have the following four at-
tributes that connect them within the matrix and determine their meaning:

Begin: A concrete element that marks the start of the ellipsis.

End: A concrete element that marks the end of the ellipsis.

Element: The element the ellipses represents; this can either be a concrete
element such as 0 or b, or a schematic element such as a, ¢. Here x and &
are schematic variables that indicate that they are iterated over.

Range: In case the element is concrete (e.g. 0 or b), no range is given. If the
ellipsis has a schematic term as element, the integer ranges for the necessary
schematic variables are given. In our example we have 1 < ¢ < n and 1 <
x < n meaning that both £ and y take values from 1 to n with increment 1.

The values for the attributes are determined during parsing of the expression.
Thereby not all combinations of ellipses are permitted. Essentially, we distinguish
three basic modules a matrix can consists of:

1. points, i.e. single concrete elements.

2. lines, i.e. an ellipsis or a sequence of ellipses of the same form together with
concrete elements as start and end points. An example of a line comprised
of more than one ellipsis is for instance the main diagonal of A where two
diagonal ellipses constitute a line from a1 to ayy,.

3. triangles, i.e. a combination of a horizontal, a vertical and a diagonal line.
Since we only allow for one type of diagonal ellipsis, the we can get exactly
-0 .
two different types of isosceles right triangles: : :
. o---0

Both start and end elements of an ellipsis are determined by searching for
a concrete element in the respective direction (i.e., left/right, up/down, etc.)
while ignoring other ellipses. Both element and range are computed given the
start and end: If the start and end terms are the same then this term is taken
to be the element the ellipsis represents and no range needs to be computed. In
case they are not the same we try to compute a schematic term using unification.
Although the unification fails it will provide us with a disagreement set on the
two terms, which can be used to determine the position of possible schematic
variables. If the disagreement set is sensible, that is, it consists only of terms
representing integers, the schematic term is constructed and the ranges for the
schematic variables are computed.

We illustrate how exactly ranges are computed with the help of some ex-
amples. Consider the vector (af ---al), the schematic term is then a} and the
ranges are £ € {1,...,n} and x € {n,...,1}. Since these ranges are both over
the integer and compatible, in the sense that they are of the same length, the
ellipsis is fully determined. As an example of incompatible ranges consider the
vector (af ---al); without further information on n and k the computation of
the ellipsis will fail. Currently the increment of the range sets is always assumed
to be 1. The computation of possible index sets is currently more a pragmatic
one and rather simple. It is definitely not complete since there are many more
possible uses of indices conceivable in our context.

An ellipsis is said to be computable if we can determine both begin and end
element, if the element is either a concrete element or a schematic term, and if
sensible and compatible integer ranges can be computed. Otherwise parsing of
an ellipsis will fail. An ellipsis within a matrix gets the same type as the elements
of that matrix. This means ellipses are generally treated as ordinary terms of the
matrix, in particular with respect to input, display, and internal representation.
For instance, our example matrix A is input as the 4 x 4 matrix

((a(1,1) b hdots b)
(0 ddots ddots vdots)
(vdots ddots ddots b)
(0 hdots O a(n,n)))

and is also represented internally as a 4 x 4 array. However, the simplifications
can use the information provided by the ellipsis during the reasoning process.
When a matrix containing ellipses is expanded into a lambda term the expan-
sion algorithm translates the ellipses into appropriate conditions for the if-then-
else statements. Thereby the matrix is first scanned and broken down into its
components, i.e. points, lines, and triangles. These can then be associated with
corresponding index sets and translated into a lambda expression. For instance
the diagonal ellipsis in our example matrix A above can be simply translated
into the conditional if ¢ = j then a;;, while the areas above and below the main

diagonal where a horizontal, a vertical, and a diagonal ellipsis bound the area
in which all the elements are either 0 or b. In an additional optimisation step
neighbouring triangles are compared and can be combined to form rectangular
areas.

The simplification for operations on matrices are extended to the cases where
matrices contain ellipses. For example, the sum of matrices where both matrices
contain ellipses at the same positions results in a matrix containing the sum of
concrete elements and the ellipses between those elements. The multiplication
of a diagonal matrix containing the same element on the diagonal is reduced to
scalar multiplication with this element.

5 Conclusions

Formal representations of mathematical objects often do not model all impor-
tant aspects of that object. Especially some of the structural properties may
be lost or hard to recognise and reconstruct. In our work we investigated these
structural properties for the case of matrices where there exist different rep-
resentations for different purposes. Each representation has certain reasoning
techniques attributed to it.

We modelled the structural knowledge about concepts with the help of anno-
tations, which are used to identify objects and to store information about them.
We implemented the different representations for matrices as annotated con-
stants and showed how basic simplifications are performed. The representations
for block matrices and ellipses allow us to represent matrices of a general form.
Annotations are also used for manipulations of objects. Instead of deduction on
formulas, many manipulations can be reduced to computations on annotations.
Since we are able to express general matrices, we can express general properties
and theorems based on our formalism. With simplifications performed on gen-
eralised matrices we are now able to express complex reasoning in the form of
computational steps. In future work we want to investigate how this can further
aid in the construction of actual proofs. Remember that we currently deal an-
notated constants, that is, only with ground terms. Thus, it would be useful to
extend the work in a way that allows also to deal with variables.

Annotations preserve the correctness by their implementation as constants
of the formal language. The proof construction is split into a phase where steps
are performed based on the richer knowledge contained in annotations and a
verification phase where these steps are expanded to calculus level proofs. The
expansion is currently only implemented for a subset of the operations. The
expansion mechanism for proof steps using annotations needs to be simplified
and generalised. The use of canonical forms should help keeping this expansion
simple.

Our work compares to de Bruijn’s idea of a mathematical vernacular [3],
which should allow to write everything mathematicians do in informal reason-
ing, in a computer assisted system as well. In this tradition, Elbers looked in [4]
at aspects of connecting informal and formal reasoning, in particular the in-
tegration of computations into formal proofs. Kamareddine and Nederpelt [5]

have formalised de Bruijn’s idea further. While the approach to a mathematical
vernacular is general, to our knowledge no attempt has been made to incorpo-
rate concrete objects like matrices directly. In the Theorema system Kutsia [7]
has worked with sequence variables which stand for symbols of flexible arity.
Sequence variables have some similarities to our ellipses. However, as opposed
to sequence variables our ellipses allow only fixed interpretations. Moreover se-
quence variables can be viewed as an extension of the logical system which
allows to deal with these expressions within the logic. The main emphasis of our
work is to allow for representation within logic and extra-logical manipulation
of expressions at the same time. Bundy and Richardson [2] introduced a general
treatment for reasoning about lists with ellipses in a way that they consider an
ellipsis as a schema which stands for infinitely many expressions and a proof
about ellipses stands for infinitely many proofs, which can be generated from a
meta-argument.

References

1. P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof. Kluwer, 2nd edition, 2002.

2. A. Bundy and J. Richardson. Proofs about lists using ellipsis. In Proc. of the 6th
LPAR, volume 1705 of LNAI p. 1 12. Springer, 1999.

3. N. G. de Bruijn. The mathematical vernacular, a language for mathematics with
typed sets. In Selected Papers on Automath, p. 865-935. Elsevier, 1994.

4. H. Elbers. Connecting Informal and Formal Mathematics. PhD thesis, Eindhoven
University of Technology, 1998.

5. F. Kamareddine and R. Nederpelt. A refinement of de Bruijn’s formal language of
mathematics. Journal of Logic, Language and Information, 13(3):287-340, 2004.

6. M. Kocher. Lineare Algebra und analytische Geometrie. Springer, 1992.

7. T. Kutsia. Unification with sequence variables and flexible arity symbols and its
extension with pattern-terms. In Proc. of AICS’2002 € Calculemus’2002, volume
2385 of LNAIL Springer, 2002.

8. S. Lang. Algebra. Addison-Wesley, Second Edition, 1984.

9. NCAlgebra 3.7 — A Noncommutative Algebra Package for Mathematica. Available
at http://math.ucsd.edu/ ncalg/.

10. Omega Group. Proof development with Omega. In Proc. of CADE 18, volume
2392 of LNAI p. 143 148. Springer, 2002.

11. M. Pollet and V. Sorge. Integrating computational properties at the term level. In
Proc. of Calculemus’2002, p. 78-83, 2003.

12. M. Wenzel and F. Wiedijk. A Comparison of Mizar and Isar. J. of Automated
Reasoning, 29(3 4):389 411, 2002.

13. S. Wolfram. The Mathematica book. Wolfram Media, Inc., 5th edition, 2003.

