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\By an m�nmatrix in R one means a doubly indexed family of elementsof R, (aij), (i = 1; : : : ;m and j = 1; : : : ; n), usually written in the form a11 � � � a1n� � �am1 � � � amn!We all the elements aij the oeÆients or omponents of thematrix."Mathematiians do not work with the de�nition alone. The de�nition alreadyintrodues the representation as a retangular form in whih the elements of amatrix are ordered with respet to their indies. Matries an be viewed asolletions of row or olumn vetors, as blok matries, and various types ofellipses are used to desribe the form of a matrix. The di�erent representationsare used to make the relevant information diretly aessible and ease reasoning.Depending on the exat logial language, one would onsider a matrix as a tu-ple onsisting of a double indexed funtion, number of rows, number of olumns,and the underlying ring. And opposed to mathematis, one has to stik to thisde�nition during all proofs. The (logial) view that a matrix is a tuple, whihmainly bears aspets of a funtion, is not adequate from a mathematial point ofview. If we look at a onrete matrix suh as a 2� 2 matrix ontaining only thezero element this matrix Z is a onstant. This means in partiular that for anymatrix M , the produt M � Z is equal to Z without the neessity to do reason-ing about tuples and lambda expression. This is analogous to the relationshipbetween the formal logial and mathematial view of the natural number four,whih logially is the ground term s(s(s(s(0)))), while mathematially it is theonstant symbol 4.In this paper we show how to abstrat from the funtional representationof onrete matries and how to attah strutural information for matries tothe formal representation by so-alled annotated onstants. The strutural in-formation an be used for reasoning, whih simpli�es proof onstrution sinesome of the reasoning steps an be expressed as omputations. The onnetionto the formal ontent allows the veri�ation of the abstrat proof steps in theunderlying logial alulus.In the next setion we will have a loser look at di�erent types of matriesthat we want to be able to represent. In setion 3 we will introdue annotatedonstants as an intermediate representation for mathematial objets. In se-tion 4 we will disuss how onrete matries, blok matries and ellipses anbe represented and manipulated as annotated onstants. We onlude with adisussion of related and future work in setion 5.2 Matries { ExamplesIn this setion we give an overview of some important ases of matries and theirrepresentations as they appear in algebra books (e.g. [8, 6℄). We do not intendto give an exhaustive overview. However, we believe that the ases overed herewill allow for generalisations and adaptations to others. We disuss some of the



representational issues, for whih we propose solutions in the subsequent setionsof the paper.2.1 Conrete MatriesA matrix is a �nite set of entries arranged in a retangular grid of rows andolumns. The number of rows and olumns of a matrix is often alled the sizeof that matrix. The entries of a matrix are usually elements belonging to somealgebrai �eld or ring. Matries often our in a very onrete form. That is, theexat number of rows and olumns as well as the single entries are given. Anexample is the following 2� 3-matrix:M = �3 2 71 0 4�Matries of this form are fairly easy to represent and handle eletronially. Theyan simply be linearised into a list of rows, whih is indeed the standard inputrepresentation of matries for most mathematial software, suh as omputeralgebra systems. Sine both the size of the matrix is determined and all theelements are given and of a spei� type, manipulations of the matrix and om-putations with the matrix an be eÆiently performed, even if the onretenumbers are replaed by indeterminates suh as a; b; .While onrete matries often our in many engineering disiplines, puremathematis goes normally beyond onrete sizes, but will speak of matries ina more generalised fashion.2.2 Blok matriesBlok matries are matries of �xed sizes, typially 2�2 or 3�3, whose elementsonsist of retangular bloks of elements of not neessarily determined size. Thus,blok matries are in e�et shorthand for muh larger strutures, whose internalformat an be aptured in a partiular pattern of bloks. Consider, for instane,the general matrix of size (n+ 1)� (n+ 1) given asM = �a vT0 A �in whih a 6= 0 is a ring element (salar), 0 is the zero vetor of size n, vT is thetranspose of an arbitrary vetor v of size n, and A is a matrix of size n� n.A blok matrix an be emulated with a onrete matrix by regarding itselements as matries themselves. This an be ahieved by identifying, salarswith 1 � 1 matries, vetors with n � 1 matries, and transposed vetors with1�n matries. While this enables the use of the tehniques available for onretematries to input and represent blok matries, manipulating blok matries isnot as straightforward. Sine the elements do no longer belong to the samealgebrai ring (or indeed to any ring), omputations an only be arried outwith respet to a restrited set of axioms. In partiular, one has to generallyforgo ommutativity when omputing with the single bloks. Again this an be



simulated to a ertain extend. For instane, the inverse of the above matrixan be omputed by using a omputer algebra system that an deal with non-ommutativity, as demonstrated in setion 4.2. Computations onerning twoblok matries, suh as matrix addition or multipliation an be simulated aswell. However are has to be taken that the sizes of the bloks are ompatible.2.3 EllipsesWhile blok matries an apture simple patterns in a matrix in an abstratway, more omplex patterns in generalised matries are usually desribed usingellipses. Consider for instane the de�nition of the following matrix A:A = 0BBB�a11 b � � � b0 . . . . . . ...... . . . . . . b0 � � � 0 ann1CCCAThe representation stands for an in�nite lass of n�n matries suh that wehave a diagonal with elements aii, 1 � i � n, all elements below the diagonalare zero, while the elements above the diagonal are all b. A matrix of this formis usually alled an upper triangle matrix.In the ontext of matries we an distinguish essentially two types of ellipses:1. Ellipses denoting an arbitrary but �xed number of ourrenes of the sameelement, suh as in (0 � � � 0).2. Ellipses representing a �nite number of similar elements that are enumeratedwith respet to a given index set (a1 � � �an)1.Both types of ellipses are primarily plaeholders for a �nite set of elements thatare either diretly given (1) or an be inferred given the index set (2).Another important feature of ellipses in the ontext of matries are theirorientation. While for most mathematial objets, suh as sets or vetors, ellipsesan our in exatly one possible orientation, in two-dimensional objets suh asmatries we an distinguish three di�erent orientations: horizontal, vertial, anddiagonal. Thereby ellipses are not only plaeholders for single rows, olumns ordiagonals but a ombination of ellipses together an determine the ompositionof a whole area within the matrix. For example the interation of the diagonal,horizontal and vertial ellipses between the three 0s in A determines that thewhole area underneath the main diagonal defaults to 0.Matries with ellipses are well suited for manipulation and reasoning at anintuitive abstrat level. However, already their mere representation poses someproblems. While they an be linearised with some e�ort, a two-dimensional rep-resentation of the objet is preferable, as this eases to determine the atualmeaning of the ourring ellipses. It is even more hallenging to mehanise ab-strat reasoning or abstrat omputations on matries with ellipses.1 Here the notion of an index set is not neessarily restrited to being only a set ofindies for a family of terms, but we also use it with a more general meaning ofenumerating a sequene of elements as for instane in the vetor ontaining the �rstn powers of a, (a1 � � � an).



2.4 Generalised MatriesWhile ellipses already provide a powerful tool to express matries in a verygeneral form by speifying a large number of possible patterns, one sometimeswants to be even more general than that. Consider for instane the followingde�nition of matrix B:B = 0BBB�a11 ? � � � ?0 . . . . . . ...... . . . . . . ?0 � � � 0 ann1CCCA . Also written as:0�a11 ?. . .0 ann1AMatrix B is very similar to A above, with the one exeption that the elementsabove the main diagonal are now arbitrary, indiated by ?, rather than b. This isa further generalisation as B now desribes an upper triangle matrix of variablesizes n � n, where we are only interested in the elements of the main diagonalaii, 1 � i � n, but we don't are about the elements above the diagonal. Whilesuh a matrix an be represented with the same representational tools as thematrix A above, it will be more diÆult to deal with when we atually want toompute or reason with it.In the following we shall desribe how we an handle onrete matries, blokmatries, and ellipses. In order to extend our approah to over generalisedmatries as well, we would need to handle \don't are" symbols, in addition. Wedo not go into this question in this paper.3 Intermediate Representation { Annotated ConstantsIn this setion we present the onept of annotated onstants, a mehanism thatprovides a representational layer that an both apture the properties of theintuitive mathematial representation of objets, as well as onnet these objetsto their orresponding representation in a formal logi framework. Annotatedonstants are implemented in the Omega system [10℄ and therefore the logialframework is Omega's simply typed lambda alulus (f. [1℄). We have �rstintrodued annotated onstants in [11℄ in the ontext of mathematial objets,suh as numbers, lists, and permutations. For the sake of larity we explain theidea in the following using the muh simpler example of �nite sets.Let us assume a logial language and a ground term t in this language. Let be a onstant symbol with  = t. An annotated onstant is then a triple (; t; a),in whih a is the annotation. The annotation a is any objet (making use ofan arbitrary data struture) from whih  and t an be reonstruted. Thinkof  as the name of the objet, t as the representation within logi, and a as arepresentation of the objet outside logi.Finite Sets: Finite sets have a speial notation in the mathematial vernaular,for example, the set onsisting of the three elements a, b, and  is denoted byfa; b; g. We an de�ne this by giving the set a name, e.g., A, and a de�nition in



logi as a ground term. Important knowledge about sets with whih it is appro-priate to reason eÆiently is: sets are equal if they ontain the same elementsregardless of their order, or the union of two sets onsists of the elements whihare a member of one of the sets and so on. This type of set manipulation has notso muh to do with logial reasoning as it has with omputation. The union oftwo sets, for instane, an be very eÆiently omputed and should not be partof the proess of searh for a proof.Annotated onstants for �nite sets are de�ned with the attributesAnnotation for �nite sets: The data struture of sets of the underlying pro-gramming language is used as annotation and the elements of the set arerestrited to losed terms, e.g., the set ontaining the three onstants a, b,and  in the onrete example.Constant symbol: We give the set a name suh as A. Even more appropriatefor our purpose is to generate an identi�er from a dupliate free ordering ofthe elements of the set, for the example Afa;b;g.De�nition: The de�nition of the set orresponds to a lambda term in higher-order logi, e.g., �x (x=a_ x=b _ x=). In order to normalise suh terms itis useful to order the elements of the set, that is, we wouldn't write the termas �x (x=b _ x=a _ x=). Sine the annotation has to represent the objetompletely the formal de�nition an be onstruted from the annotation.The basi funtionality for handling annotated onstants is implemented onthe term level of the Omega system. In �rst approximation, an annotated on-stant is a onstant with a de�nition and has the type of its de�ning term t.As suh it ould be replaed by its de�ning term during the proof or when ex-panding the proof to hek formal orretness. Typially, this is not done, butannotated onstants are manipulated via their annotations. The de�ning termof an annotated term is used only when neessary.The manipulation of operations and veri�ation of properties is realised asproedural annotations to funtions and prediates. A proedural annotation isa triple (f;p; T ), where f is a funtion or prediate of the logial language, pis a proedure of the underlying programming language with the same numberof arguments as f and T is a spei�ation (or tati) for the onstrution ofa formal proof for the manipulation performed by p. The proedure p heksits arguments, performs the simpli�ation, and returns a simpli�ed onstant orterm together with possible onditions for this operation.For example, the proedure for the union of onrete sets fa; bg [ f; dgheks whether the arguments are annotated onstants for onrete sets, andreturns the annotated onstant whih has the onatenation of fa; bg and f; dgas annotation. Analogously the property f1; 2; 3g � Z holds, when all elementsof the annotation of the set are onstants whih have as annotation an integeras data struture.The proof spei�ation T is used to formally justify the performed step.Thereby an annotated onstant is expanded to its formal de�nition and theomputation is reonstruted by tati and theorem appliations. This expansionwill be done only when a low level formal proof is required, ertainly not duringproof searh.



What are the advantages of using annotated onstants?Firstly, annotated onstants provide an intermediate representation layer be-tween the intuitive mathematial vernaular and a formal system. With anno-tated onstants it is possible to abstrat from the formal introdution of objets,allow the identi�ation of ertain lasses of objets and enable the aess of rele-vant knowledge about an objet diretly. Annotations an be translated into fullformal logi expressions when neessary, but make it possible to work and reasonwith mathematial objets in a style that abstrats from the formal onstrution.Seondly, annotations allow for user friendly input and output failities. Weextended Omega's input language to provide a markup for an annotated on-stant to indiate the type of the objet it represents. For eah kind of annotatedonstant the term parser is extended by an additional funtion, whih parsesannotations and transforms these annotations into an internal representation.During parsing additional properties an be heked and errors in the spei�a-tion an be deteted. In this way it is possible to extend syntati type heking.An additional output funtion for eah kind of annotated onstant allows to havedi�erent display forms for presenting formulas to the user.Thirdly, proedural annotations enable an eÆient manipulation of annotatedonstants. Theses proedures an aess information without further analysison (lambda) terms (whih de�ne annotated onstants formally) and allows toompute standard funtions and relations very eÆiently. These operations andproperties beome a omputation on the data strutures of annotated onstants.4 Matries as Annotated ConstantsIn this setion we show how annotated onstants an be used to implement thedi�erent representations for matries presented in setion 2.4.1 Conrete MatriesConrete matries of �xed sizes, for example,M = �3 2 71 0 4�an be represented in higher-order logi as a 4-tuple: (f; 2; 4;Z) where f is thelambda expression2 �i�j if i = 1 ^ j = 1 then 3elseif i = 1 ^ j = 2 then 2elseif i = 1 ^ j = 3 then 7elseif i = 2 ^ j = 1 then 1elseif i = 2 ^ j = 2 then 0else 4:2 The onditional if P then m else n an be de�ned in higher-order logi by thedesription operator �. The expression �y S(y) denotes the unique element  suhthat S() holds, if suh a unique element exists. A onditional an thus be de�nedby �k (P ^ (k = m)) _ (:P ^ (k = n)), whih returns m if P holds, else n (for moredetails see [1℄).



When we look at the onrete matrix the information onneted to this rep-resentation is, that the position of all the elements is spei�ed and that thenumber of rows and olumns of the matrix are immediately pereivable. Whenwe look at the formal representation, then even to aess an element at a ertainposition requires reasoning, even non-trivial reasoning when, for example, the�rst ondition is given as f �i�j if P (i; j) then 3 elseif : : : where P (i; j) is someequivalent formulation of i = 1 ^ j = 1.Also in order to multiply two onrete matries, reasoning about the or-responding lambda expressions is neessary. For instane, the transpose of Mis MT =  3 12 07 4!whih an be represented as a 4-tuple (fT ; 4; 2;Z) where fT is the funtion youget by swapping the arguments of f , i.e. �j�i rather than �i�j. The produtM
MT is a matrix (f �4 fT ; 2; 2;Z), in whih the funtion is omputed omponentwise as the sum of produts of ring elements, that is, �i�j if i = 1 ^ j =1 then 3 � 3 + 2 � 2 + 7 � 7 elseif : : :, whih requires onsiderable reasoning toarrive at the result. We argue that although this an be done in logi, it is notappropriate, analogously as it is not appropriate to ompute a produt suh as20 � 15 by reasoning with the de�nition of � in the onstrutors 0 and s over thenatural numbers.We therefore de�ne annotated onstants for onrete matries as follows:Annotation for onrete matries: The data struture of arrays, where theelements are in the logial language and all of them have the same type �.All plaes of the array must be �lled with onstants of the logial language,as for instane in our example matrix M .Constant: A onstant A of the logial language of type Z�Z! �.De�nition: The lambda expression representing a double indexed funtion ofthe form �i�j f(i; j), where i and j range over the integer intervals [1;m℄ and[1; n℄, respetively and every f(i; j) is an element of a ring F . In other wordsf(i; j) orresponds to a matrix entry in the ith olumn and the jth row. Toguarantee that a double indexed funtion atually onstitutes a matrix it hasto ful�l the property Matrix (f;m; n; F ) � 8i 2 [1;m℄; j 2 [1; n℄ : f(i; j) 2 F .A onrete example for suh a lambda expression is the double indexedfuntion representing M above.For annotated onstants representing onrete matries the operations forsummation and multipliation of matries, salar multipliation, and transposinga matrix are annotated by orresponding proedures. With the tati simplifywhih applies all possible simpli�ations spei�ed in annotated proedures, aproof step performing the matrix multipliation M 
MT is:



L1. f0; 1; 2; 3; 4; 7g 2 R (open)L2. Ring(R;+; �) (open)L3. P = �62 3131 17� (open)L4. P = �3 2 71 0 4�
� 3 2 71 0 4�T (simplify L1; L2; L3)The line L3 ontains the matrix whih is the result of the simpli�ation.Sine the matries onsist of integers, whih are annotated onstants again,the simpli�ation an ompute the result of arithmeti operations on integers.The lines L1 and L2 ontain the side onditions of the omputation. Notethat the neessary onditions on the size of the matries Matrix (� 3 2 71 0 4 �; 2; 3; R)and Matrix (� 3 2 71 0 4 �T ; 3; 2; R) are available from the annotation and thus an beheked during the expansion of the tati simplify.4.2 Blok matriesA blok matrix of the form M = �a vT0 A � an be formally expressed in logi asa tuple (f; n + 1; n + 1; F ), in whih f is a funtion from the indies into thering, f1; : : : ; n+ 1g � f1; : : : ; n+ 1g ! F de�ned as�i�j if i = 1 ^ j = 1 then aelseif i = 1 ^ 2 � j � n+1 then vj�1elseif 2 � i � n+1 ^ j = 1 then 0else ai�1;j�1If we assume a 6= 0 and det(A) 6= 0, we an then show that the set of matriesof the above form onstitute a subgroup of the group of invertible matries withrespet to matrix multipliation. This is, however, not straightforward using thelambda expression, sine a lot of the strutural information is needed for theargument, whih is lost in the lambda term. What we really want to do is tolift the argument about 2� 2 blok matries to a sound argument about generalmatries.In e�et the argument an be ollapsed into a single omputation. By em-ulating the blok matrix with a 2 � 2 matrix over a non-ommutative ring wean ompute its inverse using the omputer algebra system Mathematia [13℄together with the NCAlgebra pakage [9℄ for non-ommutative algebra. If wereplae the blok matrix with a matrix of the form�a b0 � ; the orresponding inverse matrix is �a�1 �a�1 � b � �10 �1 � :Note that �a�1 � b � �1 an not be further simpli�ed to � ba� , sine matrix mul-tipliation is non-ommutative. This omputation on onrete matries an beused to determine the inverse of the original blok matrix by simply substitutingvT for b and A for : �a�1 �a�1 � vT � A�10 A�1 �



With the additional fat that a�1 and A�1 exist if and only if a 6= 0 anddet(A) 6= 0, the property an be proved.Blok matries are implemented as annotated onstants in the following way:Annotation for blok matries: The data struture of 2� 2 arrays �A BC D�where the elements A;B;C;D are either annotated onstants for matri-es or double indexed lambda funtions. All elements must have the sametype. In addition, for annotated onstants representing matries the follow-ing onditions must hold for the number of rows row(A) = row(B) = r1,row(C) = row(D) = r2, and ol(A) = ol(C) = 1, ol(B) = ol(D) = 2for the number of olumns.Constant: A onstant of type Z�Z! � representing the matrix.De�nition: Blok matries are expanded into a lambda term of the form�i�j if 1 � i � r1 ^ 1 � j � 1 then A(i; j)elseif 1 � i � r1 ^ 1 + 1 � j then B(i; j � 1)elseif r1 + 1 � i ^ 1 � j � 1 then C(i� r1; j)else [i.e.,r1 + 1 � i ^ 1 + 1 � j℄ D(i� r1; j � 1);where the A(:); B(:); C(:); D(:) denote double indexed funtions, possiblygenerated by expansion of onrete matries.The annotated onstants for blok matries allow us to ombine matriesgiven by lambda expressions with onrete matries. The operations for matriesthen work diretly on the individual bloks of the blok matries. Given doubleindexed funtions uij ; vij ; Aij ; Bij the tati simplify applied to the formula inL8 results in the following proof situation:L1. Matrix (uij ; 1; 2; R) (open)L2. Matrix (vij ; 1; 2; R) (open)L3. Matrix (Bij ; 2; 2; R) (open)L4. Matrix (Aij ; 2; 2; R) (open)L5. f0; 1g 2 R (open)L6. Ring(R;+; �) (open)L7. M = 0� (1) uij � (vij 
Bij)�00� Aij 
Bij 1A (open)L8. M = 0� (1) vij�00� Aij1A
0� (1) uij�00� Bij1A (simplify L1; : : : ; L7)Line L7 ontains the result of the matrix multipliation and lines L1 to L6the side onditions on the objets involved, whih annot be inferred from theannotations.We desribe the simpli�ation stepwise. First the sub-bloks of the matriesare multiplied, resulting in0BB� ((1)
 (1))��vij 
�00�� ((1)
 uij)� (vij 
Bij)��00�
 (1)���Aij 
�00�� ��00�
 uij�� (Aij 
Bij)1CCA :



Already at this point the side onditions regarding the double indexed funtionsuij ; vij ; Aij ; Bij are generated. The requirements for the size an be reonstrutedfrom the sizes of the onrete matries together with the ondition from thematrix multipliation. Then simpli�ation is applied to the ontent of eah sub-blok, starting with simpli�ation of the arguments of an operation.For onrete matries operations are performed as desribed in setion 4.1.For the simpli�ation of operations ontaining both onrete matries and doubleindexed funtions we only onsider the following ases:{ multipliations involving the zero matrix (i.e., a onrete matrix ontainingonly the zero element of the underlying ring) are replaed by the zero matrix;{ summations with the zero matrix are replaed by the double indexed fun-tion;{ multipliation with a onrete diagonal matrix, ontaining the same elementon the diagonal is replaed by salar multipliation with said diagonal ele-ment.Simplifying the above blok matrix with respet to the rules for multipliationthen yields 0� (1)� (0) 1 � uij � (vij 
Bij)�00���00� �0 00 0�� (Aij 
Bij)1AFurther simpli�ation employs the rules for addition and also salar multiplia-tion on 1 � uij resulting in the formula given in L7 of the above proof.The simpli�ation for operations on matries with mixed representationsould also be arried out di�erently, namely by introduing onrete matries,that is �ab�
 uij ! �a � u11 a � u12b � u11 b � u12 �and then apply simpli�ation on the elements of the matrix. For a = b = 0the result will be the same as for our simpli�ation, but in the general ase, theresult is a onrete matrix having elements of the double indexed mixed with theelements of the onrete matrix. This means the struture of the initial blokswould be lost or hard to reognise.While our example works with 3� 3 matries represented as 2� 2 blok ma-tries, the argument an be extended to arbitrary n�nmatries still representedas 2� 2 blok matries of the form:0B� (1) uij 0...0! Aij1CABut in order to do this we need an adequate treatment of ellipses.



4.3 EllipsesWhile blok matries already allow us to ombine onrete matries using ar-bitrary double indexed funtions, they only enable us to ombine retangularshapes. Using ellipses we an further generalise the representation of matries.We then need to generalise also the simpli�ations introdued in the last setionto matries with �xed but arbitrary sizes. If we onsider our example matrixA = 0BBB�a11 b � � � b0 . . . . . . ...... . . . . . . b0 � � � 0 ann1CCCAthen A an be represented in higher-order logi as a 4-tuple: (f; n; n;Z) where forresponds to the lambda expression:�i�j if i = j then aijif i < j then belse 0Compared to the onrete instanes above, the higher-order representation isonise. Nevertheless, in mathematis one develops partiular methods for rea-soning with matries of non-onrete sizes, whih follow a partiular pattern,suh as triangle matries, diagonal matries, and step matries. Sine these pat-terns are not neessarily obvious given the lambda term alone it is desirable tohave the expliit representation of matries with ellipses available for reasoning.Ellipses are realised using annotated onstants as well. They are ategorisedinto horizontal, vertial, and diagonal ellipses and have the following four at-tributes that onnet them within the matrix and determine their meaning:Begin: A onrete element that marks the start of the ellipsis.End: A onrete element that marks the end of the ellipsis.Element: The element the ellipses represents; this an either be a onreteelement suh as 0 or b, or a shemati element suh as a�;�. Here � and �are shemati variables that indiate that they are iterated over.Range: In ase the element is onrete (e.g. 0 or b), no range is given. If theellipsis has a shemati term as element, the integer ranges for the neessaryshemati variables are given. In our example we have 1 � � � n and 1 �� � n meaning that both � and � take values from 1 to n with inrement 1.The values for the attributes are determined during parsing of the expression.Thereby not all ombinations of ellipses are permitted. Essentially, we distinguishthree basi modules a matrix an onsists of:1. points, i.e. single onrete elements.2. lines, i.e. an ellipsis or a sequene of ellipses of the same form together withonrete elements as start and end points. An example of a line omprisedof more than one ellipsis is for instane the main diagonal of A where twodiagonal ellipses onstitute a line from a11 to ann.



3. triangles, i.e. a ombination of a horizontal, a vertial and a diagonal line.Sine we only allow for one type of diagonal ellipsis, the we an get exatlytwo di�erent types of isoseles right triangles: � � � � �. . . ...� �... . . .� � � � �Both start and end elements of an ellipsis are determined by searhing fora onrete element in the respetive diretion (i.e., left/right, up/down, et.)while ignoring other ellipses. Both element and range are omputed given thestart and end: If the start and end terms are the same then this term is takento be the element the ellipsis represents and no range needs to be omputed. Inase they are not the same we try to ompute a shemati term using uni�ation.Although the uni�ation fails it will provide us with a disagreement set on thetwo terms, whih an be used to determine the position of possible shemativariables. If the disagreement set is sensible, that is, it onsists only of termsrepresenting integers, the shemati term is onstruted and the ranges for theshemati variables are omputed.We illustrate how exatly ranges are omputed with the help of some ex-amples. Consider the vetor (an1 � � � a1n), the shemati term is then a�� and theranges are � 2 f1; : : : ; ng and � 2 fn; : : : ; 1g. Sine these ranges are both overthe integer and ompatible, in the sense that they are of the same length, theellipsis is fully determined. As an example of inompatible ranges onsider thevetor (ak1 � � �a1n); without further information on n and k the omputation ofthe ellipsis will fail. Currently the inrement of the range sets is always assumedto be 1. The omputation of possible index sets is urrently more a pragmatione and rather simple. It is de�nitely not omplete sine there are many morepossible uses of indies oneivable in our ontext.An ellipsis is said to be omputable if we an determine both begin and endelement, if the element is either a onrete element or a shemati term, and ifsensible and ompatible integer ranges an be omputed. Otherwise parsing ofan ellipsis will fail. An ellipsis within a matrix gets the same type as the elementsof that matrix. This means ellipses are generally treated as ordinary terms of thematrix, in partiular with respet to input, display, and internal representation.For instane, our example matrix A is input as the 4� 4 matrix((a(1,1) b hdots b )(0 ddots ddots vdots )(vdots ddots ddots b )(0 hdots 0 a(n,n)))and is also represented internally as a 4� 4 array. However, the simpli�ationsan use the information provided by the ellipsis during the reasoning proess.When a matrix ontaining ellipses is expanded into a lambda term the expan-sion algorithm translates the ellipses into appropriate onditions for the if-then-else statements. Thereby the matrix is �rst sanned and broken down into itsomponents, i.e. points, lines, and triangles. These an then be assoiated withorresponding index sets and translated into a lambda expression. For instanethe diagonal ellipsis in our example matrix A above an be simply translatedinto the onditional if i = j then aij , while the areas above and below the main



diagonal where a horizontal, a vertial, and a diagonal ellipsis bound the areain whih all the elements are either 0 or b. In an additional optimisation stepneighbouring triangles are ompared and an be ombined to form retangularareas.The simpli�ation for operations on matries are extended to the ases wherematries ontain ellipses. For example, the sum of matries where both matriesontain ellipses at the same positions results in a matrix ontaining the sum ofonrete elements and the ellipses between those elements. The multipliationof a diagonal matrix ontaining the same element on the diagonal is redued tosalar multipliation with this element.5 ConlusionsFormal representations of mathematial objets often do not model all impor-tant aspets of that objet. Espeially some of the strutural properties maybe lost or hard to reognise and reonstrut. In our work we investigated thesestrutural properties for the ase of matries where there exist di�erent rep-resentations for di�erent purposes. Eah representation has ertain reasoningtehniques attributed to it.We modelled the strutural knowledge about onepts with the help of anno-tations, whih are used to identify objets and to store information about them.We implemented the di�erent representations for matries as annotated on-stants and showed how basi simpli�ations are performed. The representationsfor blok matries and ellipses allow us to represent matries of a general form.Annotations are also used for manipulations of objets. Instead of dedution onformulas, many manipulations an be redued to omputations on annotations.Sine we are able to express general matries, we an express general propertiesand theorems based on our formalism. With simpli�ations performed on gen-eralised matries we are now able to express omplex reasoning in the form ofomputational steps. In future work we want to investigate how this an furtheraid in the onstrution of atual proofs. Remember that we urrently deal an-notated onstants, that is, only with ground terms. Thus, it would be useful toextend the work in a way that allows also to deal with variables.Annotations preserve the orretness by their implementation as onstantsof the formal language. The proof onstrution is split into a phase where stepsare performed based on the riher knowledge ontained in annotations and averi�ation phase where these steps are expanded to alulus level proofs. Theexpansion is urrently only implemented for a subset of the operations. Theexpansion mehanism for proof steps using annotations needs to be simpli�edand generalised. The use of anonial forms should help keeping this expansionsimple.Our work ompares to de Bruijn's idea of a mathematial vernaular [3℄,whih should allow to write everything mathematiians do in informal reason-ing, in a omputer assisted system as well. In this tradition, Elbers looked in [4℄at aspets of onneting informal and formal reasoning, in partiular the in-tegration of omputations into formal proofs. Kamareddine and Nederpelt [5℄



have formalised de Bruijn's idea further. While the approah to a mathematialvernaular is general, to our knowledge no attempt has been made to inorpo-rate onrete objets like matries diretly. In the Theorema system Kutsia [7℄has worked with sequene variables whih stand for symbols of exible arity.Sequene variables have some similarities to our ellipses. However, as opposedto sequene variables our ellipses allow only �xed interpretations. Moreover se-quene variables an be viewed as an extension of the logial system whihallows to deal with these expressions within the logi. The main emphasis of ourwork is to allow for representation within logi and extra-logial manipulationof expressions at the same time. Bundy and Rihardson [2℄ introdued a generaltreatment for reasoning about lists with ellipses in a way that they onsider anellipsis as a shema whih stands for in�nitely many expressions and a proofabout ellipses stands for in�nitely many proofs, whih an be generated from ameta-argument.Referenes1. P. B. Andrews. An Introdution to Mathematial Logi and Type Theory: To TruthThrough Proof. Kluwer, 2nd edition, 2002.2. A. Bundy and J. Rihardson. Proofs about lists using ellipsis. In Pro. of the 6thLPAR, volume 1705 of LNAI, p. 1{12. Springer, 1999.3. N. G. de Bruijn. The mathematial vernaular, a language for mathematis withtyped sets. In Seleted Papers on Automath, p. 865{935. Elsevier, 1994.4. H. Elbers. Conneting Informal and Formal Mathematis. PhD thesis, EindhovenUniversity of Tehnology, 1998.5. F. Kamareddine and R. Nederpelt. A re�nement of de Bruijn's formal language ofmathematis. Journal of Logi, Language and Information, 13(3):287{340, 2004.6. M. K�oher. Lineare Algebra und analytishe Geometrie. Springer, 1992.7. T. Kutsia. Uni�ation with sequene variables and exible arity symbols and itsextension with pattern-terms. In Pro. of AICS'2002 & Calulemus'2002, volume2385 of LNAI. Springer, 2002.8. S. Lang. Algebra. Addison-Wesley, Seond Edition, 1984.9. NCAlgebra 3.7 | A Nonommutative Algebra Pakage for Mathematia. Availableat http://math.usd.edu/~nalg/.10. Omega Group. Proof development with Omega. In Pro. of CADE{18, volume2392 of LNAI, p. 143{148. Springer, 2002.11. M. Pollet and V. Sorge. Integrating omputational properties at the term level. InPro. of Calulemus'2002, p. 78{83, 2003.12. M. Wenzel and F. Wiedijk. A Comparison of Mizar and Isar. J. of AutomatedReasoning, 29(3{4):389{411, 2002.13. S. Wolfram. The Mathematia book. Wolfram Media, In., 5th edition, 2003.


