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t. A major obsta
le for bridging the gap between textbookmathemati
s and formalising it on a 
omputer is the problem how toadequately 
apture the intuition inherent in the mathemati
al notationwhen formalising mathemati
al 
on
epts. While logi
 is an ex
ellent toolto represent 
ertain mathemati
al 
on
epts it often fails to retain all theinformation impli
itly given in the representation of some mathemati
alobje
ts. In this paper we 
on
ern ourselves with matri
es, whose rep-resentation 
an be parti
ularly ri
h in impli
it information. We analysedi�erent types of matri
es and present a me
hanism that 
an representthem very 
lose to their textbook style appearan
e and 
aptures the in-formation 
ontained in this representation but that nevertheless allowsfor their 
ompilation into a formal logi
al framework. This �rstly allowsfor a more human-oriented interfa
e and se
ondly enables eÆ
ient rea-soning with matri
es.1 Introdu
tionA big 
hallenge for formalising mathemati
s on 
omputers is still to 
hoose a rep-resentation that is on the one hand 
lose to that in mathemati
al textbooks andon the other hand suÆ
iently formal in order to perform formal reasoning. Whilethere has been mu
h work on intermediate representations via a `mathemati
alverna
ular' [3, 12, 5℄, most of this work 
on
entrates on representing mathemati-
al proofs in a way that 
losely resembles the human reasoning style. Only littleattention has been paid to an adequate representation of 
on
rete mathemati
alobje
ts, whi
h 
aptures all the information and intuition that 
omes along withtheir parti
ular notation. Logi
ians are typi
ally happy with the fa
t that su
h
on
epts 
an be represented in some way, whereas users of a formal system aremore 
on
erned with the question, how to represent a 
on
ept and how mu
h ef-fort is ne
essary to represent it. Depending on the purpose of the representationit is also important how easy it is to work with it.In this paper we examine one parti
ular type of mathemati
al obje
ts, namelymatri
es. Let us �rst take a 
loser look how the matrix 
on
ept is introdu
ed ina mathemati
al textbook. Lang [8, p.441℄ writes:? The author's work is supported by EU IHP grant Cal
ulemus HPRN-CT-2000-00102.?? The author's work is supported by a Marie-Curie Grant from the European Union.



\By an m�nmatrix in R one means a doubly indexed family of elementsof R, (aij), (i = 1; : : : ;m and j = 1; : : : ; n), usually written in the form a11 � � � a1n� � �am1 � � � amn!We 
all the elements aij the 
oeÆ
ients or 
omponents of thematrix."Mathemati
ians do not work with the de�nition alone. The de�nition alreadyintrodu
es the representation as a re
tangular form in whi
h the elements of amatrix are ordered with respe
t to their indi
es. Matri
es 
an be viewed as
olle
tions of row or 
olumn ve
tors, as blo
k matri
es, and various types ofellipses are used to des
ribe the form of a matrix. The di�erent representationsare used to make the relevant information dire
tly a

essible and ease reasoning.Depending on the exa
t logi
al language, one would 
onsider a matrix as a tu-ple 
onsisting of a double indexed fun
tion, number of rows, number of 
olumns,and the underlying ring. And opposed to mathemati
s, one has to sti
k to thisde�nition during all proofs. The (logi
al) view that a matrix is a tuple, whi
hmainly bears aspe
ts of a fun
tion, is not adequate from a mathemati
al point ofview. If we look at a 
on
rete matrix su
h as a 2� 2 matrix 
ontaining only thezero element this matrix Z is a 
onstant. This means in parti
ular that for anymatrix M , the produ
t M � Z is equal to Z without the ne
essity to do reason-ing about tuples and lambda expression. This is analogous to the relationshipbetween the formal logi
al and mathemati
al view of the natural number four,whi
h logi
ally is the ground term s(s(s(s(0)))), while mathemati
ally it is the
onstant symbol 4.In this paper we show how to abstra
t from the fun
tional representationof 
on
rete matri
es and how to atta
h stru
tural information for matri
es tothe formal representation by so-
alled annotated 
onstants. The stru
tural in-formation 
an be used for reasoning, whi
h simpli�es proof 
onstru
tion sin
esome of the reasoning steps 
an be expressed as 
omputations. The 
onne
tionto the formal 
ontent allows the veri�
ation of the abstra
t proof steps in theunderlying logi
al 
al
ulus.In the next se
tion we will have a 
loser look at di�erent types of matri
esthat we want to be able to represent. In se
tion 3 we will introdu
e annotated
onstants as an intermediate representation for mathemati
al obje
ts. In se
-tion 4 we will dis
uss how 
on
rete matri
es, blo
k matri
es and ellipses 
anbe represented and manipulated as annotated 
onstants. We 
on
lude with adis
ussion of related and future work in se
tion 5.2 Matri
es { ExamplesIn this se
tion we give an overview of some important 
ases of matri
es and theirrepresentations as they appear in algebra books (e.g. [8, 6℄). We do not intendto give an exhaustive overview. However, we believe that the 
ases 
overed herewill allow for generalisations and adaptations to others. We dis
uss some of the



representational issues, for whi
h we propose solutions in the subsequent se
tionsof the paper.2.1 Con
rete Matri
esA matrix is a �nite set of entries arranged in a re
tangular grid of rows and
olumns. The number of rows and 
olumns of a matrix is often 
alled the sizeof that matrix. The entries of a matrix are usually elements belonging to somealgebrai
 �eld or ring. Matri
es often o

ur in a very 
on
rete form. That is, theexa
t number of rows and 
olumns as well as the single entries are given. Anexample is the following 2� 3-matrix:M = �3 2 71 0 4�Matri
es of this form are fairly easy to represent and handle ele
troni
ally. They
an simply be linearised into a list of rows, whi
h is indeed the standard inputrepresentation of matri
es for most mathemati
al software, su
h as 
omputeralgebra systems. Sin
e both the size of the matrix is determined and all theelements are given and of a spe
i�
 type, manipulations of the matrix and 
om-putations with the matrix 
an be eÆ
iently performed, even if the 
on
retenumbers are repla
ed by indeterminates su
h as a; b; 
.While 
on
rete matri
es often o

ur in many engineering dis
iplines, puremathemati
s goes normally beyond 
on
rete sizes, but will speak of matri
es ina more generalised fashion.2.2 Blo
k matri
esBlo
k matri
es are matri
es of �xed sizes, typi
ally 2�2 or 3�3, whose elements
onsist of re
tangular blo
ks of elements of not ne
essarily determined size. Thus,blo
k matri
es are in e�e
t shorthand for mu
h larger stru
tures, whose internalformat 
an be 
aptured in a parti
ular pattern of blo
ks. Consider, for instan
e,the general matrix of size (n+ 1)� (n+ 1) given asM = �a vT0 A �in whi
h a 6= 0 is a ring element (s
alar), 0 is the zero ve
tor of size n, vT is thetranspose of an arbitrary ve
tor v of size n, and A is a matrix of size n� n.A blo
k matrix 
an be emulated with a 
on
rete matrix by regarding itselements as matri
es themselves. This 
an be a
hieved by identifying, s
alarswith 1 � 1 matri
es, ve
tors with n � 1 matri
es, and transposed ve
tors with1�n matri
es. While this enables the use of the te
hniques available for 
on
retematri
es to input and represent blo
k matri
es, manipulating blo
k matri
es isnot as straightforward. Sin
e the elements do no longer belong to the samealgebrai
 ring (or indeed to any ring), 
omputations 
an only be 
arried outwith respe
t to a restri
ted set of axioms. In parti
ular, one has to generallyforgo 
ommutativity when 
omputing with the single blo
ks. Again this 
an be



simulated to a 
ertain extend. For instan
e, the inverse of the above matrix
an be 
omputed by using a 
omputer algebra system that 
an deal with non-
ommutativity, as demonstrated in se
tion 4.2. Computations 
on
erning twoblo
k matri
es, su
h as matrix addition or multipli
ation 
an be simulated aswell. However 
are has to be taken that the sizes of the blo
ks are 
ompatible.2.3 EllipsesWhile blo
k matri
es 
an 
apture simple patterns in a matrix in an abstra
tway, more 
omplex patterns in generalised matri
es are usually des
ribed usingellipses. Consider for instan
e the de�nition of the following matrix A:A = 0BBB�a11 b � � � b0 . . . . . . ...... . . . . . . b0 � � � 0 ann1CCCAThe representation stands for an in�nite 
lass of n�n matri
es su
h that wehave a diagonal with elements aii, 1 � i � n, all elements below the diagonalare zero, while the elements above the diagonal are all b. A matrix of this formis usually 
alled an upper triangle matrix.In the 
ontext of matri
es we 
an distinguish essentially two types of ellipses:1. Ellipses denoting an arbitrary but �xed number of o

urren
es of the sameelement, su
h as in (0 � � � 0).2. Ellipses representing a �nite number of similar elements that are enumeratedwith respe
t to a given index set (a1 � � �an)1.Both types of ellipses are primarily pla
eholders for a �nite set of elements thatare either dire
tly given (1) or 
an be inferred given the index set (2).Another important feature of ellipses in the 
ontext of matri
es are theirorientation. While for most mathemati
al obje
ts, su
h as sets or ve
tors, ellipses
an o

ur in exa
tly one possible orientation, in two-dimensional obje
ts su
h asmatri
es we 
an distinguish three di�erent orientations: horizontal, verti
al, anddiagonal. Thereby ellipses are not only pla
eholders for single rows, 
olumns ordiagonals but a 
ombination of ellipses together 
an determine the 
ompositionof a whole area within the matrix. For example the intera
tion of the diagonal,horizontal and verti
al ellipses between the three 0s in A determines that thewhole area underneath the main diagonal defaults to 0.Matri
es with ellipses are well suited for manipulation and reasoning at anintuitive abstra
t level. However, already their mere representation poses someproblems. While they 
an be linearised with some e�ort, a two-dimensional rep-resentation of the obje
t is preferable, as this eases to determine the a
tualmeaning of the o

urring ellipses. It is even more 
hallenging to me
hanise ab-stra
t reasoning or abstra
t 
omputations on matri
es with ellipses.1 Here the notion of an index set is not ne
essarily restri
ted to being only a set ofindi
es for a family of terms, but we also use it with a more general meaning ofenumerating a sequen
e of elements as for instan
e in the ve
tor 
ontaining the �rstn powers of a, (a1 � � � an).



2.4 Generalised Matri
esWhile ellipses already provide a powerful tool to express matri
es in a verygeneral form by spe
ifying a large number of possible patterns, one sometimeswants to be even more general than that. Consider for instan
e the followingde�nition of matrix B:B = 0BBB�a11 ? � � � ?0 . . . . . . ...... . . . . . . ?0 � � � 0 ann1CCCA . Also written as:0�a11 ?. . .0 ann1AMatrix B is very similar to A above, with the one ex
eption that the elementsabove the main diagonal are now arbitrary, indi
ated by ?, rather than b. This isa further generalisation as B now des
ribes an upper triangle matrix of variablesizes n � n, where we are only interested in the elements of the main diagonalaii, 1 � i � n, but we don't 
are about the elements above the diagonal. Whilesu
h a matrix 
an be represented with the same representational tools as thematrix A above, it will be more diÆ
ult to deal with when we a
tually want to
ompute or reason with it.In the following we shall des
ribe how we 
an handle 
on
rete matri
es, blo
kmatri
es, and ellipses. In order to extend our approa
h to 
over generalisedmatri
es as well, we would need to handle \don't 
are" symbols, in addition. Wedo not go into this question in this paper.3 Intermediate Representation { Annotated ConstantsIn this se
tion we present the 
on
ept of annotated 
onstants, a me
hanism thatprovides a representational layer that 
an both 
apture the properties of theintuitive mathemati
al representation of obje
ts, as well as 
onne
t these obje
tsto their 
orresponding representation in a formal logi
 framework. Annotated
onstants are implemented in the Omega system [10℄ and therefore the logi
alframework is Omega's simply typed lambda 
al
ulus (
f. [1℄). We have �rstintrodu
ed annotated 
onstants in [11℄ in the 
ontext of mathemati
al obje
ts,su
h as numbers, lists, and permutations. For the sake of 
larity we explain theidea in the following using the mu
h simpler example of �nite sets.Let us assume a logi
al language and a ground term t in this language. Let 
be a 
onstant symbol with 
 = t. An annotated 
onstant is then a triple (
; t; a),in whi
h a is the annotation. The annotation a is any obje
t (making use ofan arbitrary data stru
ture) from whi
h 
 and t 
an be re
onstru
ted. Thinkof 
 as the name of the obje
t, t as the representation within logi
, and a as arepresentation of the obje
t outside logi
.Finite Sets: Finite sets have a spe
ial notation in the mathemati
al verna
ular,for example, the set 
onsisting of the three elements a, b, and 
 is denoted byfa; b; 
g. We 
an de�ne this by giving the set a name, e.g., A, and a de�nition in



logi
 as a ground term. Important knowledge about sets with whi
h it is appro-priate to reason eÆ
iently is: sets are equal if they 
ontain the same elementsregardless of their order, or the union of two sets 
onsists of the elements whi
hare a member of one of the sets and so on. This type of set manipulation has notso mu
h to do with logi
al reasoning as it has with 
omputation. The union oftwo sets, for instan
e, 
an be very eÆ
iently 
omputed and should not be partof the pro
ess of sear
h for a proof.Annotated 
onstants for �nite sets are de�ned with the attributesAnnotation for �nite sets: The data stru
ture of sets of the underlying pro-gramming language is used as annotation and the elements of the set arerestri
ted to 
losed terms, e.g., the set 
ontaining the three 
onstants a, b,and 
 in the 
on
rete example.Constant symbol: We give the set a name su
h as A. Even more appropriatefor our purpose is to generate an identi�er from a dupli
ate free ordering ofthe elements of the set, for the example Afa;b;
g.De�nition: The de�nition of the set 
orresponds to a lambda term in higher-order logi
, e.g., �x (x=a_ x=b _ x=
). In order to normalise su
h terms itis useful to order the elements of the set, that is, we wouldn't write the termas �x (x=b _ x=a _ x=
). Sin
e the annotation has to represent the obje
t
ompletely the formal de�nition 
an be 
onstru
ted from the annotation.The basi
 fun
tionality for handling annotated 
onstants is implemented onthe term level of the Omega system. In �rst approximation, an annotated 
on-stant is a 
onstant with a de�nition and has the type of its de�ning term t.As su
h it 
ould be repla
ed by its de�ning term during the proof or when ex-panding the proof to 
he
k formal 
orre
tness. Typi
ally, this is not done, butannotated 
onstants are manipulated via their annotations. The de�ning termof an annotated term is used only when ne
essary.The manipulation of operations and veri�
ation of properties is realised aspro
edural annotations to fun
tions and predi
ates. A pro
edural annotation isa triple (f;p; T ), where f is a fun
tion or predi
ate of the logi
al language, pis a pro
edure of the underlying programming language with the same numberof arguments as f and T is a spe
i�
ation (or ta
ti
) for the 
onstru
tion ofa formal proof for the manipulation performed by p. The pro
edure p 
he
ksits arguments, performs the simpli�
ation, and returns a simpli�ed 
onstant orterm together with possible 
onditions for this operation.For example, the pro
edure for the union of 
on
rete sets fa; bg [ f
; dg
he
ks whether the arguments are annotated 
onstants for 
on
rete sets, andreturns the annotated 
onstant whi
h has the 
on
atenation of fa; bg and f
; dgas annotation. Analogously the property f1; 2; 3g � Z holds, when all elementsof the annotation of the set are 
onstants whi
h have as annotation an integeras data stru
ture.The proof spe
i�
ation T is used to formally justify the performed step.Thereby an annotated 
onstant is expanded to its formal de�nition and the
omputation is re
onstru
ted by ta
ti
 and theorem appli
ations. This expansionwill be done only when a low level formal proof is required, 
ertainly not duringproof sear
h.



What are the advantages of using annotated 
onstants?Firstly, annotated 
onstants provide an intermediate representation layer be-tween the intuitive mathemati
al verna
ular and a formal system. With anno-tated 
onstants it is possible to abstra
t from the formal introdu
tion of obje
ts,allow the identi�
ation of 
ertain 
lasses of obje
ts and enable the a

ess of rele-vant knowledge about an obje
t dire
tly. Annotations 
an be translated into fullformal logi
 expressions when ne
essary, but make it possible to work and reasonwith mathemati
al obje
ts in a style that abstra
ts from the formal 
onstru
tion.Se
ondly, annotations allow for user friendly input and output fa
ilities. Weextended Omega's input language to provide a markup for an annotated 
on-stant to indi
ate the type of the obje
t it represents. For ea
h kind of annotated
onstant the term parser is extended by an additional fun
tion, whi
h parsesannotations and transforms these annotations into an internal representation.During parsing additional properties 
an be 
he
ked and errors in the spe
i�
a-tion 
an be dete
ted. In this way it is possible to extend synta
ti
 type 
he
king.An additional output fun
tion for ea
h kind of annotated 
onstant allows to havedi�erent display forms for presenting formulas to the user.Thirdly, pro
edural annotations enable an eÆ
ient manipulation of annotated
onstants. Theses pro
edures 
an a

ess information without further analysison (lambda) terms (whi
h de�ne annotated 
onstants formally) and allows to
ompute standard fun
tions and relations very eÆ
iently. These operations andproperties be
ome a 
omputation on the data stru
tures of annotated 
onstants.4 Matri
es as Annotated ConstantsIn this se
tion we show how annotated 
onstants 
an be used to implement thedi�erent representations for matri
es presented in se
tion 2.4.1 Con
rete Matri
esCon
rete matri
es of �xed sizes, for example,M = �3 2 71 0 4�
an be represented in higher-order logi
 as a 4-tuple: (f; 2; 4;Z) where f is thelambda expression2 �i�j if i = 1 ^ j = 1 then 3elseif i = 1 ^ j = 2 then 2elseif i = 1 ^ j = 3 then 7elseif i = 2 ^ j = 1 then 1elseif i = 2 ^ j = 2 then 0else 4:2 The 
onditional if P then m else n 
an be de�ned in higher-order logi
 by thedes
ription operator �. The expression �y S(y) denotes the unique element 
 su
hthat S(
) holds, if su
h a unique element exists. A 
onditional 
an thus be de�nedby �k (P ^ (k = m)) _ (:P ^ (k = n)), whi
h returns m if P holds, else n (for moredetails see [1℄).



When we look at the 
on
rete matrix the information 
onne
ted to this rep-resentation is, that the position of all the elements is spe
i�ed and that thenumber of rows and 
olumns of the matrix are immediately per
eivable. Whenwe look at the formal representation, then even to a

ess an element at a 
ertainposition requires reasoning, even non-trivial reasoning when, for example, the�rst 
ondition is given as f �i�j if P (i; j) then 3 elseif : : : where P (i; j) is someequivalent formulation of i = 1 ^ j = 1.Also in order to multiply two 
on
rete matri
es, reasoning about the 
or-responding lambda expressions is ne
essary. For instan
e, the transpose of Mis MT =  3 12 07 4!whi
h 
an be represented as a 4-tuple (fT ; 4; 2;Z) where fT is the fun
tion youget by swapping the arguments of f , i.e. �j�i rather than �i�j. The produ
tM
MT is a matrix (f �4 fT ; 2; 2;Z), in whi
h the fun
tion is 
omputed 
omponentwise as the sum of produ
ts of ring elements, that is, �i�j if i = 1 ^ j =1 then 3 � 3 + 2 � 2 + 7 � 7 elseif : : :, whi
h requires 
onsiderable reasoning toarrive at the result. We argue that although this 
an be done in logi
, it is notappropriate, analogously as it is not appropriate to 
ompute a produ
t su
h as20 � 15 by reasoning with the de�nition of � in the 
onstru
tors 0 and s over thenatural numbers.We therefore de�ne annotated 
onstants for 
on
rete matri
es as follows:Annotation for 
on
rete matri
es: The data stru
ture of arrays, where theelements are in the logi
al language and all of them have the same type �.All pla
es of the array must be �lled with 
onstants of the logi
al language,as for instan
e in our example matrix M .Constant: A 
onstant A of the logi
al language of type Z�Z! �.De�nition: The lambda expression representing a double indexed fun
tion ofthe form �i�j f(i; j), where i and j range over the integer intervals [1;m℄ and[1; n℄, respe
tively and every f(i; j) is an element of a ring F . In other wordsf(i; j) 
orresponds to a matrix entry in the ith 
olumn and the jth row. Toguarantee that a double indexed fun
tion a
tually 
onstitutes a matrix it hasto ful�l the property Matrix (f;m; n; F ) � 8i 2 [1;m℄; j 2 [1; n℄ : f(i; j) 2 F .A 
on
rete example for su
h a lambda expression is the double indexedfun
tion representing M above.For annotated 
onstants representing 
on
rete matri
es the operations forsummation and multipli
ation of matri
es, s
alar multipli
ation, and transposinga matrix are annotated by 
orresponding pro
edures. With the ta
ti
 simplifywhi
h applies all possible simpli�
ations spe
i�ed in annotated pro
edures, aproof step performing the matrix multipli
ation M 
MT is:



L1. f0; 1; 2; 3; 4; 7g 2 R (open)L2. Ring(R;+; �) (open)L3. P = �62 3131 17� (open)L4. P = �3 2 71 0 4�
� 3 2 71 0 4�T (simplify L1; L2; L3)The line L3 
ontains the matrix whi
h is the result of the simpli�
ation.Sin
e the matri
es 
onsist of integers, whi
h are annotated 
onstants again,the simpli�
ation 
an 
ompute the result of arithmeti
 operations on integers.The lines L1 and L2 
ontain the side 
onditions of the 
omputation. Notethat the ne
essary 
onditions on the size of the matri
es Matrix (� 3 2 71 0 4 �; 2; 3; R)and Matrix (� 3 2 71 0 4 �T ; 3; 2; R) are available from the annotation and thus 
an be
he
ked during the expansion of the ta
ti
 simplify.4.2 Blo
k matri
esA blo
k matrix of the form M = �a vT0 A � 
an be formally expressed in logi
 asa tuple (f; n + 1; n + 1; F ), in whi
h f is a fun
tion from the indi
es into thering, f1; : : : ; n+ 1g � f1; : : : ; n+ 1g ! F de�ned as�i�j if i = 1 ^ j = 1 then aelseif i = 1 ^ 2 � j � n+1 then vj�1elseif 2 � i � n+1 ^ j = 1 then 0else ai�1;j�1If we assume a 6= 0 and det(A) 6= 0, we 
an then show that the set of matri
esof the above form 
onstitute a subgroup of the group of invertible matri
es withrespe
t to matrix multipli
ation. This is, however, not straightforward using thelambda expression, sin
e a lot of the stru
tural information is needed for theargument, whi
h is lost in the lambda term. What we really want to do is tolift the argument about 2� 2 blo
k matri
es to a sound argument about generalmatri
es.In e�e
t the argument 
an be 
ollapsed into a single 
omputation. By em-ulating the blo
k matrix with a 2 � 2 matrix over a non-
ommutative ring we
an 
ompute its inverse using the 
omputer algebra system Mathemati
a [13℄together with the NCAlgebra pa
kage [9℄ for non-
ommutative algebra. If werepla
e the blo
k matrix with a matrix of the form�a b0 
� ; the 
orresponding inverse matrix is �a�1 �a�1 � b � 
�10 
�1 � :Note that �a�1 � b � 
�1 
an not be further simpli�ed to � ba�
 , sin
e matrix mul-tipli
ation is non-
ommutative. This 
omputation on 
on
rete matri
es 
an beused to determine the inverse of the original blo
k matrix by simply substitutingvT for b and A for 
: �a�1 �a�1 � vT � A�10 A�1 �



With the additional fa
t that a�1 and A�1 exist if and only if a 6= 0 anddet(A) 6= 0, the property 
an be proved.Blo
k matri
es are implemented as annotated 
onstants in the following way:Annotation for blo
k matri
es: The data stru
ture of 2� 2 arrays �A BC D�where the elements A;B;C;D are either annotated 
onstants for matri-
es or double indexed lambda fun
tions. All elements must have the sametype. In addition, for annotated 
onstants representing matri
es the follow-ing 
onditions must hold for the number of rows row(A) = row(B) = r1,row(C) = row(D) = r2, and 
ol(A) = 
ol(C) = 
1, 
ol(B) = 
ol(D) = 
2for the number of 
olumns.Constant: A 
onstant of type Z�Z! � representing the matrix.De�nition: Blo
k matri
es are expanded into a lambda term of the form�i�j if 1 � i � r1 ^ 1 � j � 
1 then A(i; j)elseif 1 � i � r1 ^ 
1 + 1 � j then B(i; j � 
1)elseif r1 + 1 � i ^ 1 � j � 
1 then C(i� r1; j)else [i.e.,r1 + 1 � i ^ 
1 + 1 � j℄ D(i� r1; j � 
1);where the A(:); B(:); C(:); D(:) denote double indexed fun
tions, possiblygenerated by expansion of 
on
rete matri
es.The annotated 
onstants for blo
k matri
es allow us to 
ombine matri
esgiven by lambda expressions with 
on
rete matri
es. The operations for matri
esthen work dire
tly on the individual blo
ks of the blo
k matri
es. Given doubleindexed fun
tions uij ; vij ; Aij ; Bij the ta
ti
 simplify applied to the formula inL8 results in the following proof situation:L1. Matrix (uij ; 1; 2; R) (open)L2. Matrix (vij ; 1; 2; R) (open)L3. Matrix (Bij ; 2; 2; R) (open)L4. Matrix (Aij ; 2; 2; R) (open)L5. f0; 1g 2 R (open)L6. Ring(R;+; �) (open)L7. M = 0� (1) uij � (vij 
Bij)�00� Aij 
Bij 1A (open)L8. M = 0� (1) vij�00� Aij1A
0� (1) uij�00� Bij1A (simplify L1; : : : ; L7)Line L7 
ontains the result of the matrix multipli
ation and lines L1 to L6the side 
onditions on the obje
ts involved, whi
h 
annot be inferred from theannotations.We des
ribe the simpli�
ation stepwise. First the sub-blo
ks of the matri
esare multiplied, resulting in0BB� ((1)
 (1))��vij 
�00�� ((1)
 uij)� (vij 
Bij)��00�
 (1)���Aij 
�00�� ��00�
 uij�� (Aij 
Bij)1CCA :



Already at this point the side 
onditions regarding the double indexed fun
tionsuij ; vij ; Aij ; Bij are generated. The requirements for the size 
an be re
onstru
tedfrom the sizes of the 
on
rete matri
es together with the 
ondition from thematrix multipli
ation. Then simpli�
ation is applied to the 
ontent of ea
h sub-blo
k, starting with simpli�
ation of the arguments of an operation.For 
on
rete matri
es operations are performed as des
ribed in se
tion 4.1.For the simpli�
ation of operations 
ontaining both 
on
rete matri
es and doubleindexed fun
tions we only 
onsider the following 
ases:{ multipli
ations involving the zero matrix (i.e., a 
on
rete matrix 
ontainingonly the zero element of the underlying ring) are repla
ed by the zero matrix;{ summations with the zero matrix are repla
ed by the double indexed fun
-tion;{ multipli
ation with a 
on
rete diagonal matrix, 
ontaining the same elementon the diagonal is repla
ed by s
alar multipli
ation with said diagonal ele-ment.Simplifying the above blo
k matrix with respe
t to the rules for multipli
ationthen yields 0� (1)� (0) 1 � uij � (vij 
Bij)�00���00� �0 00 0�� (Aij 
Bij)1AFurther simpli�
ation employs the rules for addition and also s
alar multipli
a-tion on 1 � uij resulting in the formula given in L7 of the above proof.The simpli�
ation for operations on matri
es with mixed representations
ould also be 
arried out di�erently, namely by introdu
ing 
on
rete matri
es,that is �ab�
 uij ! �a � u11 a � u12b � u11 b � u12 �and then apply simpli�
ation on the elements of the matrix. For a = b = 0the result will be the same as for our simpli�
ation, but in the general 
ase, theresult is a 
on
rete matrix having elements of the double indexed mixed with theelements of the 
on
rete matrix. This means the stru
ture of the initial blo
kswould be lost or hard to re
ognise.While our example works with 3� 3 matri
es represented as 2� 2 blo
k ma-tri
es, the argument 
an be extended to arbitrary n�nmatri
es still representedas 2� 2 blo
k matri
es of the form:0B� (1) uij 0...0! Aij1CABut in order to do this we need an adequate treatment of ellipses.



4.3 EllipsesWhile blo
k matri
es already allow us to 
ombine 
on
rete matri
es using ar-bitrary double indexed fun
tions, they only enable us to 
ombine re
tangularshapes. Using ellipses we 
an further generalise the representation of matri
es.We then need to generalise also the simpli�
ations introdu
ed in the last se
tionto matri
es with �xed but arbitrary sizes. If we 
onsider our example matrixA = 0BBB�a11 b � � � b0 . . . . . . ...... . . . . . . b0 � � � 0 ann1CCCAthen A 
an be represented in higher-order logi
 as a 4-tuple: (f; n; n;Z) where f
orresponds to the lambda expression:�i�j if i = j then aijif i < j then belse 0Compared to the 
on
rete instan
es above, the higher-order representation is
on
ise. Nevertheless, in mathemati
s one develops parti
ular methods for rea-soning with matri
es of non-
on
rete sizes, whi
h follow a parti
ular pattern,su
h as triangle matri
es, diagonal matri
es, and step matri
es. Sin
e these pat-terns are not ne
essarily obvious given the lambda term alone it is desirable tohave the expli
it representation of matri
es with ellipses available for reasoning.Ellipses are realised using annotated 
onstants as well. They are 
ategorisedinto horizontal, verti
al, and diagonal ellipses and have the following four at-tributes that 
onne
t them within the matrix and determine their meaning:Begin: A 
on
rete element that marks the start of the ellipsis.End: A 
on
rete element that marks the end of the ellipsis.Element: The element the ellipses represents; this 
an either be a 
on
reteelement su
h as 0 or b, or a s
hemati
 element su
h as a�;�. Here � and �are s
hemati
 variables that indi
ate that they are iterated over.Range: In 
ase the element is 
on
rete (e.g. 0 or b), no range is given. If theellipsis has a s
hemati
 term as element, the integer ranges for the ne
essarys
hemati
 variables are given. In our example we have 1 � � � n and 1 �� � n meaning that both � and � take values from 1 to n with in
rement 1.The values for the attributes are determined during parsing of the expression.Thereby not all 
ombinations of ellipses are permitted. Essentially, we distinguishthree basi
 modules a matrix 
an 
onsists of:1. points, i.e. single 
on
rete elements.2. lines, i.e. an ellipsis or a sequen
e of ellipses of the same form together with
on
rete elements as start and end points. An example of a line 
omprisedof more than one ellipsis is for instan
e the main diagonal of A where twodiagonal ellipses 
onstitute a line from a11 to ann.



3. triangles, i.e. a 
ombination of a horizontal, a verti
al and a diagonal line.Sin
e we only allow for one type of diagonal ellipsis, the we 
an get exa
tlytwo di�erent types of isos
eles right triangles: � � � � �. . . ...� �... . . .� � � � �Both start and end elements of an ellipsis are determined by sear
hing fora 
on
rete element in the respe
tive dire
tion (i.e., left/right, up/down, et
.)while ignoring other ellipses. Both element and range are 
omputed given thestart and end: If the start and end terms are the same then this term is takento be the element the ellipsis represents and no range needs to be 
omputed. In
ase they are not the same we try to 
ompute a s
hemati
 term using uni�
ation.Although the uni�
ation fails it will provide us with a disagreement set on thetwo terms, whi
h 
an be used to determine the position of possible s
hemati
variables. If the disagreement set is sensible, that is, it 
onsists only of termsrepresenting integers, the s
hemati
 term is 
onstru
ted and the ranges for thes
hemati
 variables are 
omputed.We illustrate how exa
tly ranges are 
omputed with the help of some ex-amples. Consider the ve
tor (an1 � � � a1n), the s
hemati
 term is then a�� and theranges are � 2 f1; : : : ; ng and � 2 fn; : : : ; 1g. Sin
e these ranges are both overthe integer and 
ompatible, in the sense that they are of the same length, theellipsis is fully determined. As an example of in
ompatible ranges 
onsider theve
tor (ak1 � � �a1n); without further information on n and k the 
omputation ofthe ellipsis will fail. Currently the in
rement of the range sets is always assumedto be 1. The 
omputation of possible index sets is 
urrently more a pragmati
one and rather simple. It is de�nitely not 
omplete sin
e there are many morepossible uses of indi
es 
on
eivable in our 
ontext.An ellipsis is said to be 
omputable if we 
an determine both begin and endelement, if the element is either a 
on
rete element or a s
hemati
 term, and ifsensible and 
ompatible integer ranges 
an be 
omputed. Otherwise parsing ofan ellipsis will fail. An ellipsis within a matrix gets the same type as the elementsof that matrix. This means ellipses are generally treated as ordinary terms of thematrix, in parti
ular with respe
t to input, display, and internal representation.For instan
e, our example matrix A is input as the 4� 4 matrix((a(1,1) b hdots b )(0 ddots ddots vdots )(vdots ddots ddots b )(0 hdots 0 a(n,n)))and is also represented internally as a 4� 4 array. However, the simpli�
ations
an use the information provided by the ellipsis during the reasoning pro
ess.When a matrix 
ontaining ellipses is expanded into a lambda term the expan-sion algorithm translates the ellipses into appropriate 
onditions for the if-then-else statements. Thereby the matrix is �rst s
anned and broken down into its
omponents, i.e. points, lines, and triangles. These 
an then be asso
iated with
orresponding index sets and translated into a lambda expression. For instan
ethe diagonal ellipsis in our example matrix A above 
an be simply translatedinto the 
onditional if i = j then aij , while the areas above and below the main



diagonal where a horizontal, a verti
al, and a diagonal ellipsis bound the areain whi
h all the elements are either 0 or b. In an additional optimisation stepneighbouring triangles are 
ompared and 
an be 
ombined to form re
tangularareas.The simpli�
ation for operations on matri
es are extended to the 
ases wherematri
es 
ontain ellipses. For example, the sum of matri
es where both matri
es
ontain ellipses at the same positions results in a matrix 
ontaining the sum of
on
rete elements and the ellipses between those elements. The multipli
ationof a diagonal matrix 
ontaining the same element on the diagonal is redu
ed tos
alar multipli
ation with this element.5 Con
lusionsFormal representations of mathemati
al obje
ts often do not model all impor-tant aspe
ts of that obje
t. Espe
ially some of the stru
tural properties maybe lost or hard to re
ognise and re
onstru
t. In our work we investigated thesestru
tural properties for the 
ase of matri
es where there exist di�erent rep-resentations for di�erent purposes. Ea
h representation has 
ertain reasoningte
hniques attributed to it.We modelled the stru
tural knowledge about 
on
epts with the help of anno-tations, whi
h are used to identify obje
ts and to store information about them.We implemented the di�erent representations for matri
es as annotated 
on-stants and showed how basi
 simpli�
ations are performed. The representationsfor blo
k matri
es and ellipses allow us to represent matri
es of a general form.Annotations are also used for manipulations of obje
ts. Instead of dedu
tion onformulas, many manipulations 
an be redu
ed to 
omputations on annotations.Sin
e we are able to express general matri
es, we 
an express general propertiesand theorems based on our formalism. With simpli�
ations performed on gen-eralised matri
es we are now able to express 
omplex reasoning in the form of
omputational steps. In future work we want to investigate how this 
an furtheraid in the 
onstru
tion of a
tual proofs. Remember that we 
urrently deal an-notated 
onstants, that is, only with ground terms. Thus, it would be useful toextend the work in a way that allows also to deal with variables.Annotations preserve the 
orre
tness by their implementation as 
onstantsof the formal language. The proof 
onstru
tion is split into a phase where stepsare performed based on the ri
her knowledge 
ontained in annotations and averi�
ation phase where these steps are expanded to 
al
ulus level proofs. Theexpansion is 
urrently only implemented for a subset of the operations. Theexpansion me
hanism for proof steps using annotations needs to be simpli�edand generalised. The use of 
anoni
al forms should help keeping this expansionsimple.Our work 
ompares to de Bruijn's idea of a mathemati
al verna
ular [3℄,whi
h should allow to write everything mathemati
ians do in informal reason-ing, in a 
omputer assisted system as well. In this tradition, Elbers looked in [4℄at aspe
ts of 
onne
ting informal and formal reasoning, in parti
ular the in-tegration of 
omputations into formal proofs. Kamareddine and Nederpelt [5℄



have formalised de Bruijn's idea further. While the approa
h to a mathemati
alverna
ular is general, to our knowledge no attempt has been made to in
orpo-rate 
on
rete obje
ts like matri
es dire
tly. In the Theorema system Kutsia [7℄has worked with sequen
e variables whi
h stand for symbols of 
exible arity.Sequen
e variables have some similarities to our ellipses. However, as opposedto sequen
e variables our ellipses allow only �xed interpretations. Moreover se-quen
e variables 
an be viewed as an extension of the logi
al system whi
hallows to deal with these expressions within the logi
. The main emphasis of ourwork is to allow for representation within logi
 and extra-logi
al manipulationof expressions at the same time. Bundy and Ri
hardson [2℄ introdu
ed a generaltreatment for reasoning about lists with ellipses in a way that they 
onsider anellipsis as a s
hema whi
h stands for in�nitely many expressions and a proofabout ellipses stands for in�nitely many proofs, whi
h 
an be generated from ameta-argument.Referen
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