
The Appli
ation of Patterns to Con
urrentControl FlowbyCaroline KiersteadA thesispresented to the University of Waterlooin ful�lment of thethesis requirement for the degree ofMaster of Mathemati
sinComputer S
ien
eWaterloo, Ontario, Canada, 2001

Caroline Kierstead 2001

I hereby de
lare that I am the sole author of this thesis.I authorize the University of Waterloo to lend this thesis to other institutionsor individuals for the purpose of s
holarly resear
h.
I further authorize the University of Waterloo to reprodu
e this thesis by pho-to
opying or by other means, in total or in part, at the request of other institutionsor individuals for the purpose of s
holarly resear
h.

iii

The University of Waterloo requires the signatures of all persons using or pho-to
opying this thesis. Please sign below, and give address and date.

v

Abstra
tCon
urren
y is an important programming paradigm to take advantage of the mul-tiple pro
essors available in
urrent
omputers. This essay examines design patternsas a means of organizing the
urrent body of literature on
on
urren
y. A simplepattern
atalog is presented, whi
h divides
on
urrent design patterns into threemain groupings: syn
hronization, mutual ex
lusion, and
lient-server. Within the
ategory of
lient-server patterns, design patterns
an be further subdivided into
lient-side patterns, server-side patterns, and
lient-server intera
tions. This last
ategory neatly
overs the areas missing from the previous two, subsuming bothdelegation and publi
ation patterns. These divisions a

ount for both the
ommonand exoti
 patterns found in
on
urrent programming, without des
ending to thelevel of idioms su
h as semaphores or monitors.
vii

A
knowledgementsI would like to thank my supervisor, Dr. Peter Buhr, for his help and patien
ethroughout this pro
ess. Mi
hael Van Biesbrou
k and Ja
k Rehder have providedsupport, ideas, and the o

asional text book loan. And, of
ourse, my family andfriends for their en
ouragement. Without them, nothing
ould have been done.

ix

Contents1 Introdu
tion 11.1 De�nition . 11.2 Pattern Taxonomies . 31.3 Design Patterns . 62 Con
urren
y Pattern Catalog 152.1 Syn
hronization . 172.1.1 Communi
ation . 212.1.1.1 Number of parti
ipants 212.1.1.2 Dire
tion of Information Flow 232.1.1.3 Asyn
hronous versus Syn
hronous Communi
ation 272.1.1.4 Communi
ation Simpli�
ation 282.2 Mutual Ex
lusion . 302.3 Client-Server Patterns . 352.3.1 Client-Side Patterns . 35xi

2.3.1.1 Proxy . 362.3.1.2 Mediator . 382.3.1.3 Broker . 402.3.1.4 Other . 442.3.2 Server-Side Patterns . 482.3.2.1 Proprietor . 492.3.2.2 Administrator . 532.3.2.2.1 Independent Workers 552.3.2.2.2 Cooperative Workers 602.3.2.2.3 Workers Talking to Clients 642.4 Client-Server Intera
tion Patterns 652.4.1 Delegation Patterns . 652.4.2 Update Patterns . 713 Con
lusion 75A Sample Design Pattern 77A.1 OBSERVER Obje
t Behavioral . 77A.1.1 Intent . 77A.1.2 Also Known As . 77A.1.3 Motivation . 78A.1.4 Appli
ability . 80A.1.5 Stru
ture . 80xii

A.1.6 Parti
ipants . 81A.1.6.0.4 Subje
t 81A.1.6.0.5 Observer 81A.1.6.0.6 Con
reteSubje
t 81A.1.6.0.7 Con
reteObserver 82A.1.7 Collaborations . 82A.1.8 Consequen
es . 83A.1.9 Implementation . 85A.1.10 Sample Code . 91A.1.11 Known Uses . 95A.1.12 Related Patterns . 96Bibliography 97
xiii

List of Tables2.1 Patterns of Parti
ipant Numbers in Communi
ation 222.2 Patterns of Data Flow in Communi
ation 24

xv

List of Figures2.1 Fundamental Intera
tion Patterns 162.2 Pipeline Forms . 272.3 Client-Side Design Patterns . 362.4 Server-Side Design Patterns . 482.5 Delegation Pattern . 662.6 Simple Pipeline with Pipes as Data Conne
tions 662.7 Network Pipelines with Pipes as Data Conne
tions and Repositories 672.8 Forwarder-Re
eiver Intera
tion . 68A.1 Observer Design Pattern Example 79A.2 Observer Design Pattern Stru
ture 81A.3 Observer Design Pattern Intera
tion Diagram 83A.4 Observer Design Pattern Change Manager 90xvii

Chapter 1Introdu
tionThere is no new thing under the sun. { Old Testament 8:304The essen
e of pattern
reation is the
odi�
ation of knowledge for future reuse.Patterns are found in subje
t areas ranging from ar
hite
ture, where noted ar
hi-te
t Christopher Alexander's work provided motivation for pattern work in softwareengineering, to business hierar
hy management, to handbooks su
h as \The CivilEngineering Handbook" or the \Handbook of Chemistry and Physi
s", to the bio-logi
al
lassi�
ation of life. However, in order to dis
uss a pattern, it must �rst bede�ned.1.1 De�nitionBrad Appleton summarizes multiple pattern de�nitions well, stating that\a pattern involves a general des
ription of a re
urring solution to a1

2 CHAPTER 1. INTRODUCTIONre
urring problem replete with various goals and
onstraints. But apattern does more than identify a solution, it also explains why thesolution is needed!"[13℄The most su

in
t de�nition belongs to James O. Coplien: \A pattern is a solutionto a problem in a
ontext" [100℄. However, John Vlissides is qui
k to point outthat this de�nition is in
omplete, sin
e, at a minimum, it leaves out the
on
eptsof re
urren
e, tea
hing, and a name [129℄, whi
h are de�ned as:re
urren
e of the situation makes the solution relevant outside the immediateproblem.tea
hing allows a user to understand the pattern suÆ
iently so that a solution istailored to problem variants. This
on
ept is a

omplishedmostly through thedes
ription and resolution of a
ting for
es, and the appli
ation
onsequen
es.name allows easy referen
e to the pattern. This
on
ept is required for
ommuni-
ation of a shared vo
abulary among parti
ipants.Knutson, Budd, and Cook take the idea of patterns, whi
h are often inventedsolely for a spe
i�
 paradigm su
h as obje
t-oriented programming, further. Theydis
uss the notion of a \true pattern", whi
h is reasonable in any paradigm [72℄.The
ulmination of
urrent pattern development is an in
reasingly
ommon, ifnot
anoni
al, template used by the majority of pattern writers to des
ribe pat-terns. (In some sense, a meta-pattern, des
ribing the general form of an a
tualpattern. This idea of a meta-pattern is not to be
onfused with Pree's metapattern,

1.2. PATTERN TAXONOMIES 3dis
ussed later in this essay.) At a minimum, the pattern must
onsist of a name, astatement of the problem the pattern is intended to solve, the problem's
ontext orappli
ability, a des
ription of the for
es and
onstraints and their intera
tions, thesolution, illustrative examples (whi
h often in
ludes known instan
es of the pat-tern), and any related patterns. Most authors also in
lude a rationale explaininghow and why the pattern works. An example of this format for a spe
i�
 pattern
alled the \Observer" pattern is found in Appendix A.However, having a pattern is not enough. Given the in
reasing number ofpatterns, a means of
lassi�
ation is required in order to redu
e the sear
h timefor an appropriate pattern. Unfortunately, just as there are many de�nitions ofpatterns, there are many
lassi�
ation s
hemes.1.2 Pattern TaxonomiesThe most well-known pattern taxonomy is the one proposed by the GoF 1. Thereare three main
lassi�
ations of patterns in the GoF literature. From low-levelto high-level [69, 25℄, these
onsist of: idioms, design patterns, and ar
hite
turalpatterns.An idiom is a programming language spe
i�
 pattern. It explains a
omponent'simplementation or the relationship among
omponents, using a language's givenfeatures. Nat Pry
e re�nes this as \Idioms are language-spe
i�
 in that the problem1Eri
h Gamma, Ri
hard Helm, Ralph Johnson, and John M. Vlissides wrote the seminal work,\Design Patterns". The patterns
ommunity frequently refers to them by the ni
kname, Gang ofFour , abbreviated to GoF .

4 CHAPTER 1. INTRODUCTIONthey solve, or the
ontext in whi
h those problems are en
ountered, are
aused bythe language" [94℄. Some examples of programming idioms are: nested
lasses inC++, interfa
es in Java, or
ounted pointers 2. An example of a C
oding idiomis while(*dest++ = *sr
++);, whi
h
opies the
ontents of one array to another[77℄.A design pattern is not implementation-spe
i�
 like an idiom. It allows there�nement of a software system's
omponents or their relationship. By des
ribinga frequently o

urring stru
ture of
ommuni
ating
omponents, it solves a generaldesign problem within a parti
ular
ontext. As used by the GoF , the term designpattern (as opposed to pattern), has
ome to apply spe
i�
ally to obje
t and
lassrelationships [77℄. An example of a design pattern is the previously mentioned Ob-server pattern, whi
h de�nes a one-to-many dependen
y among obje
ts. It noti�esand updates all registered dependents automati
ally when the dependent obje
t
hanges state [47℄.An ar
hite
tural pattern spe
i�es an appli
ation's fundamental stru
tural prop-erties. It also provides a set of prede�ned subsystems with known responsibilitiesand interrelationships. It is a high-level strategi
 pattern relevant to large-s
ale
omponents and the system's overall me
hanisms and properties. The Broker pat-tern is an example of an ar
hite
tural pattern used in a distributed system withde
oupled
omponents that intera
t via remote servi
e invo
ations. The broker
omponent is responsible for
ommuni
ation
oordination. Another example of a2This idiom is used to simplify memory re
lamation in the absen
e of garbage
olle
tion. Areferen
e
ounter is introdu
ed into an obje
t body that
ounts the number of referen
es to theobje
t. The obje
t is deleted when the
ounter rea
hes zero.

1.2. PATTERN TAXONOMIES 5
ommon ar
hite
tural pattern is that of the Model-View-Controller (MVC) pat-tern. In the MVC pattern, an intera
tive system is divided into a model (
oredata and fun
tionality), views (information displays for the user), and
ontrollers(pro
ess user input). The user interfa
e is formed by
ontrollers and views. TheMVC propagates
hanges to ensure
onsisten
y between the model and the userinterfa
e.A framework
on
eptually �ts in at the ar
hite
tural pattern level; however, itis broader based than what is implied by an ar
hite
tural pattern. J�ez�equel et al.des
ribe it best as:A framework is a reusable software ar
hite
ture that provides the generi
stru
ture and behavior for a family of software appli
ations, along with a
ontext that spe
i�es their
ollaboration and use within a given domain[69℄.In other words, it is a reusable software ar
hite
ture that a
ts as a template for aworking appli
ation. The framework is
ustomized by implementing or overridingthe missing pie
es, resulting in the �nal appli
ation. Unlike a
lass library,
ontrol
ow is bidire
tional between the framework and the appli
ation. It di�ers from adesign pattern in that it fo
uses on reuse at the level of algorithms, implementation,and detailed design. In
ontrast, design patterns
on
entrate on reuse of re
urringar
hite
tural design themes [33℄. While frameworks
onsist of software, designpatterns represent knowledge about software.Wolfgang Pree adds the term metapattern to the
lassi�
ation terminology. Ametapattern is \a set of design patterns that des
ribes how to
onstru
t frameworks

6 CHAPTER 1. INTRODUCTIONindependent of a spe
i�
 domain" [93℄.1.3 Design PatternsOf the three major
lassi�
ation levels, this essay fo
uses on design patterns. Here-after, the term \pattern" means \design pattern". In addition, this fo
us is nar-rowed further to
on
urrent design patterns starting in Chapter 2. The remainderof this
hapter examines design pattern
ategorizations to lay the groundwork for
ategorization of
on
urrent design patterns.There are many design-pattern
ategorization philosophies. The most promi-nent is the GoF
ategorization. The GoF patterns are solely obje
t-oriented pat-terns. These patterns are subdivided along two axes [47℄. The �rst axis dividespatterns into
reational, stru
tural, and behavioural patterns. The se
ond axis
on-sists of the the s
ope or granularity of the pattern in that it is applied at either the
lass or the obje
t level. If a pattern is applied at the
lass level, it des
ribes therelationship between the
lass and its sub
lasses. While this
lassi�
ation s
hemeis broad enough to �t the majority of design patterns without unne
essarily re-stri
ting them, it is limited to obje
t-oriented patterns. It also su�ers from the fa
tthat it is diÆ
ult, when sear
hing for patterns, to distinguish between behaviouraland stru
tural patterns. That is, when the pattern itself is unknown, it is un
learwhether the pattern applies to
lasses or to obje
ts [125℄.Bus
hmann et al., in [25℄, extend the GoF pattern taxonomy by introdu
inga problem-oriented view of the pattern system. As before, the patterns are �rst

1.3. DESIGN PATTERNS 7organized into ar
hite
tural patterns, design patterns, and idioms. Then, withinea
h of these
ategories, patterns are loosely organized a

ording to purpose. Thepurposes
onsist of: 3From Mud to Stru
ture In
ludes patterns that assist in de
omposing an overallsystem task into
ooperating subtasks.Distributed Systems In
ludes patterns that provide a foundation for systemswhose
omponents are lo
ated in di�erent pro
esses or in several
omponentsand subsystems.Intera
tive Systems In
ludes patterns that provide a foundation for human-
omputer intera
tion systems.Adaptable Systems In
ludes patterns that allow appli
ations to adapt or extendthemselves dynami
ally.Stru
tural De
omposition In
ludes patterns that assist in de
omposing sys-tems or
omplex
omponents into
ooperating parts.Organization of Work In
ludes patterns that express how
omponents intera
tto provide a
omplex servi
e.A

ess Control In
ludes patterns that prote
t and restri
t a

ess to servi
es or
omponents.3The �nal four
ategories were added by Bus
hmann et al. to a

ommodate the remainingGoF patterns not handled by the previous
ategories.

8 CHAPTER 1. INTRODUCTIONManagement In
ludes patterns that manage homogeneous
olle
tions (obje
ts,servi
es, or
omponents) as a group.Communi
ation In
ludes patterns that assist in organizing
ommuni
ation among
omponents.Resour
e Handling In
ludes patterns that assist in managing shared
ompo-nents and obje
ts.Creation In
ludes patterns that assist in obje
t instantiation and re
ursive obje
tstru
tures.Servi
e Variation In
ludes patterns that allow an obje
t or
omponents behav-iour to
hange.Servi
e Extension In
ludes patterns that assist in dynami
ally adding new ser-vi
es to an obje
t or obje
t stru
ture.Adaptation In
ludes patterns that assist in interfa
e and data
onversion.Unfortunately, this
ategorization s
heme is diÆ
ult to work with [125℄. Somepatterns, su
h as the Broker or Observer,
an be used as either an ar
hite
turalor a design pattern. Additional problems result from the fa
t that some patterns�t under several di�erent
ategories. For example, the Pipes and Filters pattern ispla
ed under the Distributed Systems
ategory when it
ould just as easily be usedin a
entralized system. This over-spe
i�
ation may lead a novi
e to not
onsiderusing a pattern outside of the listed
ategory even when it is appropriate.

1.3. DESIGN PATTERNS 9Douglas C. S
hmidt
lassi�es patterns into ta
ti
al and strategi
4 patterns [108℄.Ta
ti
al patterns have a relatively lo
alized impa
t on a software design and aredomain-independent. For example, Singleton, Strategy, State, and Adapter are
lassed as ta
ti
al patterns. Strategi
 patterns signi�
antly in
uen
e software ar-
hite
ture. Some strategi
 patterns are A

eptor, A
tive Obje
t, Rea
tor, andProa
tor.Walter Zimmer [135℄
ategorizes the GoF patterns by their relationships. Therelationships are de�ned as \X uses Y in its solution", \Variant of X uses Y inits solution", and \X is similar to Y ". He notes that even with this s
heme, itis sometimes diÆ
ult to pla
e a parti
ular relationship in exa
tly one
ategory.Another problem arises from the fa
t that the
ategorization depends partly uponsubje
tive
riteria. It also obs
ures the purpose of the design patterns, making ituseful only for someone who is already familiar with the GoF design patterns.James Noble provides a
lassi�
ation s
heme similar to Zimmer's [87℄. He
hooses to divide patterns into primary and se
ondary relationships. The pri-mary relationships
onsist of patterns whi
h use other patterns, patterns whi
hre�ne other patterns, and patterns whi
h address the same problem as anotherpattern. The se
ondary relationships may be inverses of the primary relationships(patterns used or re�ned by other patterns), or new,
omplex relationships. Theseother se
ondary relationships in
lude pattern variants, a pattern variant used byanother pattern, similarity of patterns,
ombination of patterns to solve a problem,4\Strategy: the art of proje
ting and dire
ting the larger military movements and operationsof a
ampaign. Usually distinguished from ta
ti
s, whi
h is the art of handling for
es in battle orin the immediate presen
e of the enemy." Oxford English Di
tionary [116℄

10 CHAPTER 1. INTRODUCTIONone pattern requiring a solution to another pattern, a pattern using itself, and anelaboration of a sequen
e of patterns from the simple to the
omplex. These rela-tionships are an extremely useful taxonomy, but do not help a designer from thestandpoint of determining whi
h patterns are initially required to solve a problem.Walter F. Ti
hy provides an alternative
lassi�
ation [125℄. He divides patternsinto the following problem-solving
ategories:De
oupling These patterns partition a software system into independent
om-ponents that are built,
hanged, repla
ed, and reused independently of ea
hother. Abstra
t Data Types, Client-Server, and En
apsulation patterns areexamples in this
ategory.Variant Management These patterns treat di�erent obje
ts uniformly by fa
-toring out the
ommon elements. The Super
lass, Template, and Visitorpatterns are examples in this
ategory.State Handling These patterns manipulate obje
t state generi
ally. The Single-ton, Flyweight and Memento patterns are examples in this
ategory.Control These patterns
ontrol exe
ution and method sele
tion. The Bla
kboard,Strategy, and Master-Slave patterns are examples in this
ategory.Virtual Ma
hines These patterns simulate pro
essors. The Interpreter, and Rule-based Interpreter patterns are examples in this
ategory.Convenien
e Patterns These patterns simplify
oding. The Convenien
e Class,Default Class, and Null Obje
t patterns are examples in this
ategory.

1.3. DESIGN PATTERNS 11Compound Patterns These patterns are
omposed of other, visible patterns.The Model-View-Controller, Bureau
ra
y, and A
tive-Bridge patterns are ex-amples in this
ategory.Con
urren
y These patterns
ontrol parallel and
on
urrent exe
ution. TheSemaphore, Criti
al Region, and Rea
tor patterns are examples in this
ate-gory.Distribution These patterns solve problems relevant to distributed systems. TheRemote Pro
edure Call, A

eptor and Conne
tor, and Broker patterns areexamples in this
ategory.While these
ategorizations are not as limiting as those proposed by Bus
hmannet. al., it is un
lear how patterns developed in subje
t areas su
h as arti�
ialintelligen
e, or databases would ne
essarily �t these
ategories. As well, these
ategories are supposed to be mutually ex
lusive, but where would a software agentpattern be pla
ed? It
ould be
onsidered part of a
on
urrent or distributed system,or a form of de
oupling. What about the pattern of an agent's intera
tion withboth
lients and servers? None of these
ategorizations truly address the qualitativeaspe
ts of patterns either. Though the relative advantages and disadvantages arelisted, nobody distinguishes between a pattern and a good pattern. That is left upto the user.Fundamentally, if the taxonomy is too broad, it be
omes diÆ
ult to �nd therelevant pattern in the mass of other related patterns. Patterns are potentiallymispla
ed or dupli
ated if the taxonomy is too narrow. On top of this, room for

12 CHAPTER 1. INTRODUCTIONgrowth must be possible, as patterns in new areas are dis
overed.Reasonable broad pattern
ategories are that of Creational, Abstra
tion, De-
oupling, and Intera
tion. These patterns are
lassi�ed obje
tively sin
e they arethe ones best de�ned in terms of purpose.Creational patterns [47℄ abstra
t the instantiation pro
ess by en
apsulating andhiding
reation details. A system using these patterns only needs awarenessof the spe
i�ed abstra
t interfa
e. The Abstra
t Fa
tory, Builder, Fa
toryMethod, Prototype, and Singleton design patterns are all
reational patterns.Abstra
tional and De
oupling patterns often have some overlap sin
e one meansof de
oupling
omponents is to abstra
t them. Abstra
tional patterns en
ap-sulate information, often redu
ing system
omplexity. The Fa
ade, Strategy,Command, and Memento design patterns are examples of abstra
tion pat-terns.De
oupling patterns partition a software system into independent
omponents,whi
h are built,
hanged, repla
ed, and reused independently. The Mediator,Iterator, and Bridge design patterns are examples of de
oupling patterns.Intera
tion patterns spe
ify how system
omponents intera
t and
ommuni
ate.Note that there is some overlap with de
oupling patterns sin
e a de
ouplingpattern invariably spe
i�es how the de
oupled
omponents intera
t. TheObserver, Chain of Responsibility, and Proxy design patterns are examplesof intera
tion patterns.

1.3. DESIGN PATTERNS 13After this point, it is too limiting to try and group patterns by the problemssolved. A more helpful approa
h is to group related patterns where possible andprovide an overall road map.

Chapter 2Con
urren
y Pattern CatalogA pattern
atalog is a
olle
tion of related patterns (perhaps onlyloosely or informally related). It typi
ally subdivides the patterns into atleast a small number of broad
ategories and may in
lude some amountof
ross-referen
ing among patterns.A pattern system is a
ohesive set of related patterns whi
h worktogether to support the
onstru
tion and evolution of whole ar
hite
-tures. Not only is it organized into related groups and subgroups atmultiple levels of granularity, it des
ribes the many interrelationshipsamong the patterns and their groupings, and how they may be
ombinedand
omposed to solve more
omplex problems. The patterns in a pat-tern system should all be des
ribed in a
onsistent and uniform styleand need to
over a suÆ
iently broad base of problems and solutions toenable signi�
ant portions of
omplete ar
hite
tures to be built. [13℄15

16 CHAPTER 2. CONCURRENCY PATTERN CATALOGThe remainder of this essay is best des
ribed as a pattern
atalog, rather than apattern system. Though some authors
onsider these patterns ar
hite
tural in na-ture, I believe the appropriate
ontext turns them into design patterns. Within thebroad topi
 of
on
urren
y, I divide design patterns into the following metapattern
ategories: syn
hronization, mutual ex
lusion, and
lient-server (see Figure 2.1).The
lient and server
ooperate to perform a job using some form of syn
hroni-zation or
ommuni
ation pattern. When there are multiple
lients, a

ess to theserver requires mutual ex
lusion. This form of intera
tion is
alled dire
t
ommu-ni
ation. Syn
hronization and mutual ex
lusion may also be required for passiveobje
ts, through whi
h
lients and servers intera
t. This form of intera
tion is
alled indire
t
ommuni
ation.
Passive
Object ServerClient

ServerClient
Direct Communication

Indirect Communication

Mutual Exclusion
Synchronization

Synchronization

Mutual Exclusion

Figure 2.1: Fundamental Intera
tion Patterns

2.1. SYNCHRONIZATION 172.1 Syn
hronizationSyn
hronization o

urs when a task1 waits until another task rea
hes a parti
ularpoint in its exe
ution. The provision of syn
hronization allows
ommuni
ation.Communi
ation may require mutual ex
lusion of a shared resour
e managed by aserver or passive obje
t.Design patterns used to perform syn
hronization:Completion Token In [56℄, the authors introdu
e a token-based syn
hronizationdesign pattern
alled Asyn
hronous Completion Token orMagi
 Cookie. Thispattern allows a
lient to determine that the server has
ompleted an asyn-
hronous a
tion. The token is generally an opaque obje
t passed to the serverby the
lient and returned upon
ompletion of the servi
e. Another variantallows the token to a
t as a syn
hronous
allba
k me
hanism.Servi
es \Waiting For" blo
ks the tasks performing servi
es until a
onditionsu
h as data transferral o

urs [3℄.Rendezvous is a meeting or syn
hronization between two or more tasks at a pre-spe
i�ed pie
e of
ode [8, 113℄. First proposed as a binary rendezvous betweentwo tasks, this idea expanded later to a multiway rendezvous. A multiwayrendezvous allows an arbitrary number of asyn
hronous tasks to rendezvous[28, 16℄. In [49℄, a distin
tion is made between a simple rendezvous and anextended rendezvous. A simple rendezvous is a unidire
tional ex
hange of1Note that the terms \task", \pro
ess", and \thread" in the de�nitions are subsumed by theterm \task".

18 CHAPTER 2. CONCURRENCY PATTERN CATALOGinformation while an extended rendezvous (also referred to as a transa
tion)is a bidire
tional transfer of information.Remote Pro
edure Call (often referred to by the a
ronym RPC) allows a
lientto invoke the exe
ution of an operation on a remote obje
t as if it was a lo
alobje
t. Ideally, the a
tion is transparent to the
lient, whi
h is suspendeduntil the a
tion
ompletes [8, 15, 113℄. Tessier and Keller refer to this as aRemote Operation [123℄. Doug Lea's Request Obje
t , a message
ontaining anen
oding of a method name and marshalled arguments, is an RPC me
hanism[76℄. Burns and Davies talk about a remote invo
ation model [22℄.There are many possible me
hanisms for implementing RPC. In [62℄, a Re-mote Proxy (Proxies are dis
ussed in Se
tion 2.3.1.1) is used on the
lientside to perform RPC transparently.Delta Prolog uses an event goal to ensure both
ommuni
ating tasks are\lo
ked together" before the message is transferred [35℄. Thus, an event goalprovides syn
hronization. Both the sender and re
eiver must use the sameevent goal name, and if using
onditional expressions, they must both evaluateto true. Sin
e a sender
an only rendezvous with one re
eiver at a time, anevent goal provides mutual ex
lusion on the
ommuni
ation
hannel betweenthe sender and the re
eiver by keeping a third task from interfering with theevent goal. (The initial paper on Delta Prolog notes that
ommuni
ation wasimplemented via mailboxes on a VAX/VMS system, while so
kets were usedunder a UNIX 4.2 system [91℄.)

2.1. SYNCHRONIZATION 19Termination Syn
hronization is one of the simplest forms of syn
hronization.A thread is spawned in order to perform work. The results are guaranteed tobe
omplete upon the thread's termination, so the parent thread need onlywait until the
hild thread has ended. Doug Lea refers to this as thread join[76℄. Massingill, Mattson, and Sanders des
ribe this as the ForkJoin pattern[81℄.Obje
t Syn
hronization Pattern This design pattern de
ouples obje
t syn
hro-nization from obje
t
on
urren
y and fun
tionality, allowing di�erent syn
hro-nization poli
ies to be implemented as required. Syn
hronization me
hanismsare en
apsulated with the obje
t, rather than distributed among the
lienttasks. Sin
e they are abstra
ted, they are easily repla
eable. This approa
hallows new poli
ies to be tested and their performan
e observed before a �nalsolution is
hosen. The syn
hronization poli
ies are also separated from the
on
urren
y poli
ies, allowing the
on
urren
y poli
ies to be modi�ed with-out a�e
ting the syn
hronization poli
ies. Based upon the
hosen poli
ies,the Syn
hronizer s
hedules
alling tasks as appropriate.A similar idea is the Obje
t Syn
hronization Pattern, also known as Obje
tCon
urren
y Control , or Obje
t Serialization [101℄.Completion Callba
k A
lient sends a one-way message to a server. When theserver has
ompleted the operation, it sends a one-way
allba
k message tothe
aller [76℄. It may have the same stru
tural design as an Observer. Thispattern is also known as Self-Addressed Stamped Envelope, SASE , and Call-ba
k [12℄. In [36℄, a Callba
k variant is mentioned known as Named Reply.

20 CHAPTER 2. CONCURRENCY PATTERN CATALOGHere, labeling results returned from a
all allows expression of di�erent kindsof results. For example, based upon a
al
ulation's result, the server invokeseither a su

ess or a failure method.Future A

ording to Gregory V. Wilson,A future is simply a
ommitment by a pro
ess to use the resultof a
al
ulation at some later date. When a future is evaluated, anew pro
ess is
reated; when the parent of that pro
ess tries to readthe future's result, it is automati
ally suspended until the
hild hasreturned a value. It is the runtime system's responsibility to de
idewhether to exe
ute a future in parallel with its
reator, or to use alazy evaluation strategy, whi
h only
al
ulates values when needed[132℄.Other authors view a Future simply as an obje
t (rather than a task) a
tingas a virtual representation of the real obje
t. If the data is a

essed beforeit is �lled in, the user blo
ks until the data is �lled in. These two de�nitionsrepresent two di�erent implementation patterns of a Future, one by Lazy Ini-tialization and one by Virtual Proxy [54℄. Futures are also known as promisesin RPC [14℄, early reply [49℄, an A
tive Obje
t [124℄, IOU s [126℄, and wait-by-ne
essity
onstru
tions in Ei�el// (a parallel extension to Ei�el) [76℄. JamesNoble provides two variants of his Result Obje
t, both of whi
h
an a
t as afuture. One is the Future Obje
t , the other is the Lazy Obje
t [86℄.While not intended to a
t as a Future, Ho�ert's Triggered Pla
eholder (or

2.1. SYNCHRONIZATION 21Stub) is a
reational pattern allowing the delay of an obje
t's
reation untila parti
ular method on the obje
t is invoked. In the meantime, a temporarypla
eholder is returned to the invoker. The trigger method returns the realobje
t and deletes the pla
eholder.Syn
hronization is also a requirement for
ommuni
ation sin
e two tasks must
oordinate the information transfer.2.1.1 Communi
ationWhile
ommuni
ation by itself is not a design pattern, there are
ommonalities inform and use that appear frequently enough to be termed a pattern. A strongerargument for the in
lusion of this se
tion is made by noting that many of thestandard design patterns rely not only upon a task hierar
hy, but also upon the
ommuni
ation
ow for the design pattern de�nition.Communi
ation is �rst
ategorized by the number of parti
ipants (see Ta-ble 2.1[15, 131, 115℄) and dire
tion of information
ow (see Table 2.2 [51, 129℄).It
an also be divided into asyn
hronous versus syn
hronous
ommuni
ation.2.1.1.1 Number of parti
ipantsWilson, in [132℄, refers to a broad
ast as a one-to-all repli
ated
ommuni
ation,a useful distin
tion sin
e he also des
ribes a s
atter , also known as a one-to-allpersonalized
ommuni
ation. Here ea
h message type is the same, but the datasent is di�erent.

22 CHAPTER 2. CONCURRENCY PATTERN CATALOG
Re
eive Send Des
riptionFrom : To1 : 1 Also known as \one to one"
ommuni
ation. The Pipesand Filter design pattern is an example of this form of
ommuni
ation.1 : N Also known as \one to many"
ommuni
ation. If the set ofre
ipients is restri
ted, this form of
ommuni
ation is termeda multi
ast . It is termed a broad
ast if \everybody" is sentthe message. When the Observer pattern
ommuni
ation
hangesto more than one registered re
ipient, it is an example of thisform of
ommuni
ation.N : 1 Also known as \any to one"
ommuni
ation. Most Client-Server intera
tions are an example of this form of
ommuni
ation sin
e there are usually multiple
lientsrequesting a servi
e from a server.N : M Also known as \many to many"
ommuni
ation. The Client-Server pattern also �ts this form of
ommuni
ation whenea
h
lient broad
asts for the �rst available server.Table 2.1: Patterns of Parti
ipant Numbers in Communi
ation

2.1. SYNCHRONIZATION 23Bobby Woolf provides a pattern for broad
asting or multi
asting messages,though it has other purposes. Obje
t Re
ursion, also known as Re
ursive Del-egation distributes the pro
essing of a request over a stru
ture by polymorphi
delegation [134℄. In this fashion, it
an broad
ast a message to all nodes in a linkedstru
ture.2.1.1.2 Dire
tion of Information FlowIn [51℄, all four basi

ows are presented, but it is
arefully pointed out that inward-and outward-dire
ted
ommuni
ation are not
ommonly used due to the ineÆ
ien-
ies introdu
ed by the polling or blo
king
hara
teristi
s of most operating systems.In general, push and pull models of
ommuni
ation data
ow are the ones mostfrequently dis
ussed sin
e they
over the standard means of transferring informa-tion. However, [43℄ presents several other intera
tion patterns, in
luding the pushand model models:Round Robin Polling uses the pull intera
tion pattern to poll multiple devi
esin sequen
e. It requires that the data providers are trustworthy and fault-tolerant.Opaque Intera
tion Patterns are patterns in whi
h the
aller is unable to mon-itor the
allee's progress. These patterns are subdivided into syn
hronous andasyn
hronous versions. In Syn
hronous Opaque Communi
ation, the
allerwaits until
allee returns
ontrol. In Asyn
hronous Opaque Communi
ation,the
aller is allowed to
ontinue with other work while the
allee may or may

24 CHAPTER 2. CONCURRENCY PATTERN CATALOGDire
tion Des
riptionForward consumertransducerproducer

receive

send

send

receive
control
flow

control
flow

data flow data flowAlso known as pro
ess driven
ommuni
ation or the push model.Ba
kward control
flow

control
flow

data flow data flow

consumertransducerproducer

receive

send

receive

sendAlso known as data driven or
all by need or the pull model.Inward control
flow

control
flow

data flow data flow

consumertransducerproducer

receive

send

receive

send

Outward control
flow

control
flow

data flow data flow

consumertransducerproducer

receive

send

receive

sendTable 2.2: Patterns of Data Flow in Communi
ation

2.1. SYNCHRONIZATION 25not handle the message asyn
hronously.Monitorable Intera
tion The
aller is informed of the
allee's progress if theexe
ution time varies widely. The
aller
an either request the
urrent status(Pull-Monitorable Intera
tion pattern) or the
allee
an send periodi
 statusreports (Push-Monitorable Intera
tion pattern).Abortable Intera
tion Either party involved in the
ommuni
ation (or both) hasthe
apability of de
iding to abort the message pro
essing. Variant intera
tionpatterns su
h as Abortable Asyn
hronous Opaque, Abortable Monitorable,Abortable Pull-Monitorable, and Abortable Push-Monitorable also exist.Handshaking intera
tion patterns break a large amount of data into a series ofmessages. The
aller
ontrols the ex
hange (Caller-Controlled Handshaking),or the
allee (Callee-Controlled Handshaking)
ontrols the ex
hange, or both
ontrol the ex
hange (Dual-Controlled Handshake). The
ontrolling partyde
ides when the sequen
e of messages is terminated.Andrews provides three
ommuni
ation patterns for intera
ting peers:
entral-ized, symmetri
, and ring [8℄. In the
entralized approa
h, a task a
ts as a
entral
oordinator for the other tasks. All tasks in the symmetri

ommuni
ation pat-tern perform the same algorithm, and thus
ommuni
ate in the same symmetri
pattern. Finally, in a ring, ea
h task re
eives a message from its prede
essor andsends a message to its su

essor. The last task a
ts as the prede
essor to the �rsttask. Thus, the
entralized approa
h is a form of inward-dire
ted
ommuni
ation.The other two forms rely upon the push and pull models of intera
tion. Intera
t-

26 CHAPTER 2. CONCURRENCY PATTERN CATALOGing peers are used to solve iterative parallel problems su
h as ex
hanging valuesto determine the maximum and minimum values, and matrix multipli
ation. Theauthors of [31℄ list a Peer-Peer pattern used in
ight
ontrol systems to determine
ight path interse
tions.Andrews also presents the heartbeat, pipe, and probe/e
ho intera
tion patterns[7, 8℄. In the heartbeat pattern, pro
esses o

asionally ex
hange data using asend and then re
eive intera
tion. This pattern is parti
ularly useful when data isdivided among workers who are responsible for updating spe
i�
 se
tions of datawhere new values depend upon values held by either the workers or their immediateneighbours. These problems arise in areas as diverse as parallel sorting, matrixmultipli
ation grid
omputations or region labeling in image pro
essing,
ellularautomata in simulation of biologi
al growth, or solving partial di�erential equations.The pipe intera
tion pattern in
orporates the notion of streams [15, 18, 127,115℄. In the pipe intera
tion pattern, data
ows between pro
esses using a re
eiveand then send intera
tion. The pipe is open-ended,
losed, or
ir
ular in nature(see Figure 2.2). In an open pipeline, the input sour
e and output destination arenot spe
i�ed. A
losed pipeline is an open pipeline
onne
ted to a
oordinatorproviding the input for the �rst task and re
eiving the output of the last task. A
ir
ular pipeline has the last task a
ting as the sour
e of input to the �rst task. Thisform of intera
tion o

urs in areas su
h as UNIX pipes, prime number generation(the Sieve of Eratosthenes), and distributed ve
tor or matrix multipli
ation.Finally, in the probe/e
ho pattern, the probe is equivalent to a send, while thee
ho is equivalent to a re
eive. This disseminates and
olle
ts information in graphs

2.1. SYNCHRONIZATION 27
...W W

n1
...W W

n1

Coordinator

...W W
n1

Open CircularClosed

Figure 2.2: Pipeline Formsand trees, a
ting as the
on
urrent analog of a depth-�rst sear
h. This pattern isused in broad
asting to all nodes in a network, and in
onstru
ting the topology of anetwork. Grady Boo
h provides two additional forms of
ooperative
ommuni
ationte
hniques, remote pro
edure
alls (dis
ussed as a syn
hronization te
hnique) and
lient-server intera
tion (see Se
tion 2.3) [18℄. In [115℄, Shaw en
apsulates thesepatterns in her ar
hite
tural pattern, Communi
ating Pro
esses, sin
e it does notspe
ify the parti
ular
ommuni
ation topology, delivery requirements, number ofparti
ipants, or syn
hronization.2.1.1.3 Asyn
hronous versus Syn
hronous Communi
ationThere are two main forms of
ommuni
ation, asyn
hronous and syn
hronous. Inasyn
hronous
ommuni
ation, the sender does not blo
k upon sending a message,unlike syn
hronous
ommuni
ation. The message's re
ipient blo
ks until the mes-sage is re
eived.An asyn
hronous message passing pattern is the Bat
h Communi
ation Stylesin
e it allows both the sender and re
eiver to be asyn
hronous. Here the message

28 CHAPTER 2. CONCURRENCY PATTERN CATALOGfrom the sender is stored and forwarded to the re
eiver [131℄. Doug Lea listspolling (repeatedly querying some
ondition) and balking (refusal to pro
eed if somepre
ondition is not met) as two useful
ommuni
ation te
hniques [76℄. Strangelyenough, Mark Grand has promoted the balking te
hnique from a
ommuni
ationte
hnique to a
on
urren
y design pattern [53℄.Events, as well as messages,
an a
t as a form of
ommuni
ation [76℄. Aarsten,Elia, and Menga refer to this as A
tions Triggered by Events [3℄. Ti
hy do
umentsthe Event-Based Integration design pattern allowing parti
ipants to register interestin
ommon data or event
hannels [124℄. Shaw dis
usses a similar ar
hite
turalpattern, Impli
it Invo
ation. The Impli
it Invo
ation pattern allows a
olle
tionof a
ting tasks to potentially trigger the exe
ution of other tasks based upon thenoti�
ation of system events [115℄.2.1.1.4 Communi
ation Simpli�
ationFinally, here are some patterns used to simplify
ommuni
ation.Distributed Symmetri
 IPC en
apsulates the usual means of
onne
ting twopeers, via one peer making an a

ept
all while the other peer makes a
onne
t
all, into a single
onne
t
all. The
alling task
an ask for either a
onne
tionto a spe
i�ed task, or to all tasks in a list. The pattern uses the Client-ServerRule to de
ide whi
h task of the
ommuni
ating pair takes the role of Client,and whi
h takes the role of Server. No assumption is made about the order oftask start-up. The Client-Server Rule assigns the roles in su
h a fashion as toavoid role
on
i
ts. Iterative ba
k-o�s are used when making the
onne
tions,

2.1. SYNCHRONIZATION 29until either all
onne
tions are made or a timeout o

urs.This pattern allows a network of peer tasks to
onne
t with ea
h other, with-out using a
ommuni
ation server. The authors, however, are qui
k to pointout that more realisti
ally, one task a
ts as a master, dire
ting and initiatingthe
onne
tions. The master is then responsible for providing fault toleran
efor the
onne
tions.Composite Message is a de
oupling pattern. It de�nes an abstra
t form of amessage and a proto
ol for
ommuni
ation between tasks and the base system.In this fashion, it de
ouples tasks that should be loosely
oupled and lo
alizestask intera
tions for tightly
oupled tasks [105℄.Command wraps a request into an obje
t passed to the server [47℄. The Command
an be stored in a history list or manipulated in other ways. A Commandis an obje
t-oriented repla
ement for a Callba
k. Sin
e its lifetime may beindependent of the original request, it
an be transferred to a di�erent taskfor pro
essing.Eskelin provides a variant known as Interruptible Command or Override Cur-rent Pro
essing [42℄. Based on Command, it provides \a me
hanism for eÆ-
iently interrupting a
urrently exe
uting
ommand in favor of the exe
utionof a new
ommand." In parti
ular, only the most re
ently requested
om-mand exe
utes when multiple
ommands are invoked. The
ommand itselfo

urs frequently, and takes a great deal of time to pro
ess.Composite Call is similar to Command. The pattern
olle
ts multiple opera-

30 CHAPTER 2. CONCURRENCY PATTERN CATALOGtions to be performed into a single a
tion performed by another task (whi
hmay be lo
ated in another pro
ess, or another network node). This pattern
ontains the server intera
tion in the sense that it knows the a
tions theserver must perform. Though it may
ontain several operations, the
lientneed only send it on
e [90℄, whi
h improves the system eÆ
ien
y by redu
ingthe amount of
ommuni
ation required. It
an also allow the server to bedynami
ally extended in terms of the servi
e provided. For example,
onsidera �le server performing both reads and writes. It is more eÆ
ient for the
lient to send the entire loop that exe
utes the reads and writes over to theserver for pro
essing than make the requests individually.2.2 Mutual Ex
lusionMutual Ex
lusion is the prevention of multiple tasks from a

essing a
riti
al se
tionat the same time. A
riti
al se
tion
onsists of a pairing of
ode and shared data.Patterns with the intent of providing mutual ex
lusion are:Syn
hronizer provides mutual ex
lusion on shared resour
es for multiple tasks[60℄.2 Mutual ex
lusion is provided via a
onstru
t
alled a
riti
al se
tion3,guarded methods, or mutual ex
lusion te
hniques su
h as transa
tions.2Within the paper, the authors use the term syn
hronization when the
ontext
learly indi-
ates that the intended meaning is the provision of mutual ex
lusion. Hen
e, the design patternmisnomer.3Histori
ally, this
onstru
t is
alled a \
riti
al region" to di�erentiate it from the logi
al notionof a
riti
al se
tion [20℄.

2.2. MUTUAL EXCLUSION 31Mark Grand lists a variant, the Single Threaded Exe
ution pattern, that isde�ned as providing mutual ex
lusion on method
alls when
on
urrent invo-
ations are made [53℄.Mi
hel Raynal mentions the idea of a
entral
oordinator [97℄. The
en-tral
oordinator is the boundary between the two basi
 forms of distributedmutual-ex
lusion algorithms in his taxonomy: permission and token-basedalgorithms. Pro
esses ask the
oordinator for permission before entering the
riti
al se
tion, and permission
an be integrated into a token managed bythe
oordinator. The Lo
k Server , also known as a Lo
k Manager , works inthe same fashion [63℄.While the previous patterns
onstitute forms of
riti
al region, the next vari-ants of the Syn
hronizer are
loser in form to a
onditional
riti
al region4. In[55℄, the Syn
hronizer sele
ts all requests satisfying its syn
hronization
on-straints and assigns ea
h of them to a thread, using either a thread-per-requestor a thread-per-obje
t poli
y.5The A
tor model also uses a Syn
hronizer, a spe
ial kind of a
tor that observesand limits invo
ations a

epted by a group of a
tors [5℄. It syn
hronizes agroup of a
tors by delaying the invo
ations of shared a
tors until the spe
i�edrestri
tions (temporal ordering, as well as atomi
ity) are met.Double-Che
ked Lo
king pattern provides mutual ex
lusion in a thread-safe4A
onditional
riti
al region provides mutual ex
lusion like a
riti
al region, but adds the
apability of spe
ifying a
ondition that must be true before entry to the
riti
al region is allowed.5Thread-per-request allo
ates a thread to every request. Thread-per-obje
t allo
ates one threadto every obje
t re
eiving requests, thus all the requests to one obje
t are serialized.

32 CHAPTER 2. CONCURRENCY PATTERN CATALOGmanner while attempting to redu
e
ontention and overhead [111℄. For ex-ample, it
an avoid dupli
ating the initialization of an obje
t by multiplethreads. This o

urs when one thread re
ognizes that the obje
t requiresinitialization but another thread has already started initialization. Both theLazy Initialization and Virtual Proxy patterns
an use it [54℄.Lo
al Serialization Pattern serializes a

ess to shared resour
es having
oarse-grained operations. Obje
t
on
urren
y
ontrol poli
ies are de
oupled fromobje
t-spe
i�
 algorithm semanti
s and
on
urren
y generation poli
ies. Itis also known as: Criti
al Se
tion, Lo
al Atomi
ity, and Obje
t Con
urren
yControl [102℄.Patterns used to implement mutual ex
lusion:Transa
tion is an operation, usually a
omposite of several a
tions, that mustbe performed atomi
ally, i.e., uninterrupted by the a
tions of other tasks.Grasson presents a variant of his Syn
hronizer pattern that uses Transa
tionsby adding a Coordinator obje
t to enfor
e two-phase lo
king and transa
-tion identi�ers asso
iated with obje
t requests [55℄. In [60℄, three forms oftransa
tions are listed:Optimisti
 Transa
tion aborts the operation if serializability is
ompro-mised. No blo
king is performed. This approa
h should only be usedwhen other te
hniques (sharing poli
ies, mutual ex
lusion, et
.) avoid
on
i
t, or
ontention is low.

2.2. MUTUAL EXCLUSION 33Two-Phase Lo
king Transa
tion lo
ks a resour
e when it is read or writ-ten. If more than one resour
e is to be modi�ed, multiple lo
ks may needto be a
quired in the lo
k
olle
tion phase. If the lo
k is only releasedwhen the transa
tion is
ompleted, deadlo
k may result. This problem
an be avoided by releasing the lo
k and restarting the lo
k
olle
tionphase when it is dis
overed that a required lo
k has already been ob-tained by another task.Multiversion Two-Phase Lo
king Transa
tion
opies the resour
e be-fore it is updated. All updates are
onsolidated su
h that serializabilityis preserved when the transa
tion su

essfully terminates.In [49℄, a Transa
tion is also des
ribed as an extended rendezvous.Lo
k Patterns provides some simple lo
king patterns, ea
h designed to balan
ethe for
es of memory laten
y, memory size, memory bandwidth, granularity,and fairness in di�erent fashions [83℄.Test-and-Set Lo
k uses a test-and-set based lo
king primitive when
on-tention is low, fairness and performan
e are unimportant, or memorysize is a limiting fa
tor.Queued Lo
k uses a queued-lo
k primitive to solve the problem of high
ontention and meet a stri
t fairness restri
tion.Reader/Writer Lo
k deals with a
lassi
 problem in
on
urren
y. Multipletasks
an read a shared resour
e, or a single task
an write to it. Theread and write operations must be mutually ex
lusive. This problem

34 CHAPTER 2. CONCURRENCY PATTERN CATALOGis a restri
ted form of Parallel Fastpath, where an aggressive lo
kingpattern is used for the majority of the work (the Fastpath), and a more
onservative lo
king s
heme is used for the remainder.Three possible types of lo
ks are presented:Queued Reader/Writer Lo
k uses a queued-reader/writer-lo
k prim-itive. It solves the problem of moderate to high read-to-write ratio,a high degree of
ontention, and where fairness is important.Counted Reader/Writer Lo
k uses a
ounter-reader/writer-lo
k prim-itive. The lo
k maintains the
umulative number of requests and
ompletions for the readers and writers. Ea
h requester must re-member the
urrent number of requests, in
rement the appropriaterequest
ounter, and then wait for all prior
on
i
ting requests to
omplete. Readers wait for all prior write requests to
omplete,while writers wait for all prior requests to
omplete. It solves theproblem of moderate to high read-to-write ratio, a high degree of
ontention, and
oarse-grained parallelism.Distributed Reader/Writer Lo
k uses a per-CPU lo
k for readersand an additional lo
k to serialize writers. A reader a
quires only itsown CPU lo
k, while a writer must a
quire the writer serializationlo
k as well as ea
h of the reader-side CPU lo
ks. It solves theproblem of a high read-to-write ratio, and high read-
ontention.Douglas C. S
hmidt o�ers a Strategized Lo
king pattern to provide mutualex
lusion; but, it allows an appli
ation or servi
e to
on�gure the implemen-

2.3. CLIENT-SERVER PATTERNS 35tation
hoi
e.[109℄Some authors
lassify the me
hanisms used to provide mutual ex
lusion andsyn
hronization as design patterns. For example, Douglas C. S
hmidt lists a designpattern for a Monitor Obje
t , also known as a Thread-safe Passive Obje
t [110℄.While it is true that some of these
an be implemented in multiple fashions, andthus they
ould be
onsidered abstra
tions, they do not qualify as full-
edged designpatterns.2.3 Client-Server PatternsClient-Server is the most basi
 design pattern in this
ategory [51, 131, 133, 9℄.Sin
e Clients and Servers are simply roles, tasks may sometimes a
t as a Client,and sometimes a
t as a Server. A Client makes a request of a Server.Under the division of
lient-server design patterns
an be found
lient- andserver-side patterns. Note that patterns on the
lient-side do not a�e
t the server,and vi
e versa.2.3.1 Client-Side PatternsOn the
lient-side, the design patterns interpose an intermediary between the
lientand the server (see Figure 2.3). The presen
e of the intermediary may be trans-parent to the
lient (Proxy and related design patterns), or not (Mediator andrelated design patterns). From the view-point of the server, the intermediary isjust another
lient.

36 CHAPTER 2. CONCURRENCY PATTERN CATALOG
Client Servermediary

Inter-Figure 2.3: Client-Side Design Patterns2.3.1.1 ProxyThe most basi
 form of transparent intermediary is that of the Proxy [103℄. As thename suggests, it represents an obje
t or task to the user. Thus, it must presentthe same interfa
e as the original. James O. Coplien's Handle-Body idiom underliesthe Proxy pattern sin
e it adds a level of indire
tion to hide the underlying details,separating the interfa
e of a
lass from its body. The \handle" is the proxy, whilethe \body" is the underlying obje
t [32℄.The Proxy design pattern exists under many di�erent names, and with manyvariations. The GoF
alls this a Surrogate [47℄. Wolf and Liu refer to it as a \ghostpattern" [133℄. Doug Lea notes that a Proxy is a variant of the GoF Adapter6pattern, where the Adapter has the same interfa
e as its delegate [76℄. There areseveral notable Proxy variants. TheGoF list virtual, remote, and prote
tion proxies[47℄. Hans Rohnert adds the
a
he, syn
hronization,
ounting, and �rewall proxies[103℄.Virtual Proxy allows lazy
onstru
tion of an obje
t. When pro
essing or loadinga
omponent is
ostly, it is only performed upon demand. The Virtual Proxy6An Adapter
onverts the interfa
e of a
lass into an interfa
e
lients need [47℄.

2.3. CLIENT-SERVER PATTERNS 37hides whether or not the
omponent is fully loaded from the
lient, and loadsas ne
essary. It
an thus implement Futures.Ca
he Proxy allows multiple lo
al
lients to share results from the outside byextending the proxy with a data area to temporarily hold results. The
a
hemust be maintained and refreshed.Remote Proxy provides a lo
al representation for an obje
t in a di�erent addressspa
e. The request's arguments are pa
kaged into a message and transmittedtransparently to the \real" body
lass in the foreign name spa
e. Coplienrefers to this type of proxy as an Ambassador [32℄. Heuser and Fernandezdes
ribe the RPC Client design pattern as an elaboration of the RemoteProxy. Marquardt presents the Transparent Remote A

ess design pattern[80℄. Bus
hmann and Meunier list the Proxy-Original design pattern [24℄.Prote
tion Proxy prote
ts the original from unauthorized a

ess by
he
king thea

ess rights of every
lient. A similar pattern is the Authenti
ator , whi
h
an provide a negotiation proto
ol as part of the a

ess proto
ol [21℄.Syn
hronization Proxy (whi
h should more properly be
alled a Mutual Ex
lu-sion Proxy)
ontrols multiple simultaneous
lient a

esses using an appropri-ate mutual ex
lusion s
heme, depending upon the allowed operations.Counting Proxy maintains the number of referen
es to the original obje
t anddeletes the original when the
ount rea
hes zero. Thus, it automati
allydeletes obsolete obje
ts.

38 CHAPTER 2. CONCURRENCY PATTERN CATALOGFirewall Proxy en
apsulates the prote
tion and networking
ode needed to
om-muni
ate with a potentially hostile environment.A Proxy
an also be used as a Gateway [75℄. A Gateway serves as a midpointbetween
lient-
ontrolled and server-
ontrolled a
tivation poli
ies, repa
kaging a setof methods split into di�erent servi
es.2.3.1.2 MediatorAnother form of intermediary design pattern is the Mediator . A Mediator is a taskthat en
apsulates,
ontrols, and
oordinates the intera
tions of a group of tasks[47℄. Sin
e all tasks in the group now only need to know about the mediator,instead of about ea
h other, the number of inter
onne
tions is redu
ed. By pla
inga mediator between peers, loose
oupling is in
reased [100℄. Name servers andrelays are examples of Mediators [36℄. By this de�nition, an Administrator is alsoa Mediator (Administrators are dis
ussed in Se
tion 2.3.2.2). The following listdes
ribes a number of variants on the Mediator design pattern.Courier assists
ommuni
ation between two administrators so that neither blo
kswaiting for a message re
eipt or reply [50℄. In [36℄, the authors dis
uss aWaiter allowing the invoker to
ontinue without blo
king while the waiterblo
ks for it. A similar notion is that of the Forwarder [22℄, also knownas the Forwarder-Re
eiver [25℄. A Forwarder is an intermediary betweentwo tasks. It a
ts as an agent for the
lient, blo
king on the
lient's behalfif the
onta
ted task is not ready to re
eive the
all. In [59℄, the authors

2.3. CLIENT-SERVER PATTERNS 39use what they
all a Courier design pattern to solve the problem of passingarbitrary requests and information through a �xed interfa
e. Information isnow pa
kaged as an obje
t itself and passed as an argument among tasks,through the Courier intermediary. By expanding the types of messages sent,interfa
es need not be
hanged as often. As well, other message-sendingstrategies su
h as broad
asting
an be implemented.Gateway a Mediator that de
ouples
ooperating peer tasks throughout a network.In this fashion, they intera
t without having dire
t dependen
ies on ea
hother.7Emissary represents the
lient task to the server task. It is
hosen by the
lientwho
on�gures it to rea
t to events that o

ur while the server pro
esses the
lient's request. The Emissary
an intera
t with the
lient to obtain furtherinformation as ne
essary upon re
eiving messages from the server [52℄.Mediator-Worker uses the Mediator to de
ouple
ooperating Worker tasks, thusremoving dire
t dependen
ies. It
an also be used to present a front for more
omplex fun
tionality by allowing individual servi
es to be
ombined [24℄.Event Channel mediates among event produ
ers (referred to as suppliers) andevent
onsumers. This approa
h allows a supplier to deliver events to one ormore
onsumers without requiring any of the parti
ipants to be aware of ea
hother [96℄.7S
hmidt's ACE proje
t papers.

40 CHAPTER 2. CONCURRENCY PATTERN CATALOGShopper design pattern allows a
onsumer to obtain an arbitrary number of itemsfrom a produ
er without additionally
oupling them together. The
onsumerpasses a list of obje
ts to the Shopper who obtains the obje
ts from theproviders using some sort of sele
tion strategy. The information on how tolo
ate or rendezvous with the produ
ers may be provided by the
onsumer,the produ
er, or the Shopper [38℄.Data Filter �lters
lient requests in a distributed system, a

ording to prede�nedpoli
ies maintained in some sort of poli
y or
lient database. The �ltering
anbe performed lo
ally or remotely [46℄. Used in
ombination with the Body-guard, Authenti
ator, and RPC Client design patterns, an Obje
t Filter andA

ess Control pattern
an be
onstru
ted. This pattern provides registered
lients, through a variety of network proto
ols, with a �ltered data streamwhose
ontent may be sensitive and require a

ess
ontrol [58℄.2.3.1.3 BrokerThe Broker design pattern de
ouples
lients and servers. It is
lassi�ed by [25, 120℄as an ar
hite
tural pattern for use in a stru
tured distributed system where re-mote invo
ation is the main means of intera
tion. Servers register with the broker.Clients a

ess the servers by sending requests to the broker who lo
ates the appro-priate server, forwards the request to it, and transmits the results as well as anyex
eptions ba
k to the
lient. An example of use is the CORBA (Common Obje
tRequest Broker Ar
hite
ture) Obje
t Request Broker.Stal lists �ve Broker implementation variants:

2.3. CLIENT-SERVER PATTERNS 41Dire
t Communi
ation Broker System allows the
lient to
ommuni
ate di-re
tly with the remote broker instead of passing the request to a lo
al brokerwho is then responsible for forwarding it. Another possibility is that
lients
ommuni
ate dire
tly with the server on
e the broker noti�es the
lient of theavailable server
ommuni
ation
hannel.Message Passing Broker System passes on messages from the
lient to theserver. The server uses the message type to determine the servi
e to perform.This approa
h is used in systems where message passing is used instead ofRemote Pro
edure Calls.Trader System allows the broker to determine whi
h server or servers
an providethe request, instead of forwarding the
lient request to exa
tly one uniquelyidenti�ed server.Adapter Broker System uses an adapter layer to hide the broker's interfa
e.This layer is responsible for registering and intera
ting with the servers. Al-lowing multiple adapter layers enables di�erent server implementation strate-gies.Callba
k Broker System
auses the broker to be the driving for
e in the sys-tem. When an event arrives, the broker invokes the
allba
k method of theappropriate
lient or server. Thus, there is no need to distinguish betweenthe
lients and servers.Olson des
ribes four Broker variants [100℄.

42 CHAPTER 2. CONCURRENCY PATTERN CATALOGTrans
eiver-Par
el is designed for a peer-to-peer intera
tion rather than
lient-server. The broker is deliberately kept as simple as possible, only aware of\par
els" (a par
el
ontains whatever method
alls are needed to
ause there
eiver to do the bidding of the sender). As well, all tasks in the system(in
luding the broker) should use the same
ommuni
ation method, whi
his deliberately kept simple. Upon re
eipt of a par
el, the broker noti�es there
eiving task by invoking its exe
ute method, passing the address of thepar
el as an argument. The re
eiver then invokes the visit method on thepar
el.Going Postal is similar to the Trans
eiver-Par
el in that the broker is kept assimple as possible. De
oupling,
exibility, and extensibility are essential,though eÆ
ien
y is not
onsidered
ru
ial. The broker is now responsible forregistering tasks, re
eiving par
els, and routing them as appropriate. It usesa registrar obje
t and a routing obje
t to a

omplish its duties. This patternis also known as Broker as Intermediary.Going to Court is used when the broker appli
ation is distributed a
ross pro-
esses and/or pro
essors, but how it might be distributed may vary. In e�e
t,every task uses at least one broker for
ommuni
ation. Ea
h broker shouldhave a proxy for ea
h type of task it has in its own address spa
e. The proxyis responsible for marshalling par
els routed to it and forwarding them toa gateway that re
onstru
ts the original par
els and routes them to its lo
albroker. This pattern is also known as Broker as Divor
e Attorney (In a ReallyUgly Divor
e).

2.3. CLIENT-SERVER PATTERNS 43Going to the Chapel is used when the basi
 broker ar
hite
ture is too ineÆ
ient.Now the broker serves to \introdu
e" the two tasks who then
ommuni
atedire
tly. The broker is noti�ed when the
ommuni
ation is
omplete. Thispattern is also known as Broker as Mat
hmaker .S
hneider dis
usses a similar idea, the Mat
hmaker [113℄. The Mat
hmakera
ts as a
learing house to pair up asyn
hronous request and reply messages toimplement syn
hronous
ommuni
ation. Andrews refers to the Mat
hmakeras a Centralized Clearing House [7℄.In [78℄, the authors refer to another form of Mat
hmaker, the Pat
h Panel .Some other variants of the broker are:Dispat
her provides lo
ation transparen
y in a distributed environment throughuse of a name servi
e. The Dispat
her hides
ommuni
ation
onne
tion detailsbetween
lient and server [119, 25℄.A similar idea is presented in [31℄ as Sender-Pass Through-Re
eiver . Thispattern passes the Sender's request through the intermediary, whi
h forwardsit to a Re
eiver.Manager-Agent pattern is similar to the Broker pattern, in that managed re-sour
es are grouped into agents that are a

essed by managers who per-form management operations. Agents are responsible for monitoring theirresour
es and notifying managers of ex
eptional behaviour. Unlike the Bro-ker, the Manager-Agent does not have the
on
epts of servi
e lo
ation and

44 CHAPTER 2. CONCURRENCY PATTERN CATALOGtransparen
y provided by the Broker. Additionally, either party
an initiate
ommuni
ation asyn
hronously [123℄.Entity Broker [128℄. The authors use it to mediate between the user interfa
e,business obje
t, and persisten
e manager layers in an appli
ation.Swit
hboard manages
onne
tions among
lients and devi
e
ouriers. The
lientrequests a
onne
tion to a parti
ular devi
e from the Swit
hboard. TheSwit
hboard asso
iates the appropriate devi
e
ourier with the
lient. It thentransfers information between the
lient and the devi
e
ourier. The devi
e
ourier obtains input from the devi
e server [122℄.2.3.1.4 OtherOther intermediary patterns in
lude:Curried Obje
t to store the
onstant or slowly varying arguments from the origi-nal
ommuni
ation proto
ol. This approa
h provides a simpler proto
ol sin
ethese arguments are eliminated. The Curried Obje
t stores the original serverobje
t, and forwards messages to this obje
t. In the forwarding pro
ess, itpasses along the stored arguments and updates the slowly varying arguments[86℄.Fa
ade provides a uni�ed interfa
e to a set of interfa
es in a subsystem. It de�nes ahigher-level interfa
e that makes the subsystem easier to use sin
e an obje
trepresents many others. It di�ers from a Mediator in that it abstra
ts asubsystem of obje
ts to provide a more
onvenient interfa
e and its proto
ol

2.3. CLIENT-SERVER PATTERNS 45is unidire
tional [47℄. A Fa
ade makes requests of the subsystem
lasses butnot vi
e versa, unlike a Mediator.Mailbox is a task that a
ts as a temporary bu�er between two tasks. It allows thea
tive pro
ess to pass data asyn
hronously (via the mailbox). If the bu�er isfull or empty, attempts to add or remove messages
ause the invoker to blo
k[22℄.Warden mediates between proxies and transporters in a distributed environment.It \simpli�es the management of obje
t sharing over a network, and providesmessage dispat
hing
onforman
e and assignment of a

ess rights in non-lo
alenvironments, to prevent the in
orre
t a

ess to an obje
t in
ollaborativeappli
ations" [34℄. Hays, Loutrel and Fernandez also refer to this pattern asa Bodyguard [58℄.Router de
ouples input me
hanisms from output me
hanisms. This de
ouplingenables it to route data
orre
tly without blo
king a Gateway and allows itto
ustomize its
on
urren
y strategies [107℄.Proa
tor simpli�es asyn
hronous appli
ation development. It integrates the de-multiplexing8 of
ompletion events and the dispat
hing of the
orrespondingevent handlers. These are de
oupled from the servi
es performed in responseto events. Its pro-a
tive event dispat
hing model allows multiple
on
urrent8In ele
tri
al engineering, a demultiplexer is a
ir
uit that re
eives information on a singleinput line, and transmits this information along one sele
ted output line. The
orrespondingmultiplexer sele
ts input from one of many input lines and dire
ts it to a single output line. Asused in this pattern, the demultiplexer re
eives (and probably serializes) multiple simultaneousevents or messages and dispat
hes them as appropriate.

46 CHAPTER 2. CONCURRENCY PATTERN CATALOGevents to be started so that the thread performing the operation is outsideof the appli
ation; hen
e, the appli
ation is not required to have multiplethreads. It invokes event handlers de�ning
ompletion hooks. The Proa
-tor pattern is used in su
h pla
es as the ACE proje
t, and I/O CompletionPorts in Windows NT. It is related to both the Rea
tor and Observer de-sign patterns, though the Rea
tor is an alternative
on
urren
y approa
h[95, 108, 107℄.Rea
tor serializes event handling from multiple sour
es within an appli
ation atthe level of event demultiplexing. This approa
h allows single-threaded ap-pli
ations to wait on event handles, demultiplex events, and dispat
h eventhandlers eÆ
iently. It invokes event handlers de�ning initiation hooks. Theevent handlers must ex
hange messages �xed or bounded in size without re-quiring blo
king I/O and the messages must be pro
essed in a relatively shortperiod of time. The Rea
tor design pattern
an eliminate the need for more
ompli
ated threading, syn
hronization, or lo
king within an appli
ation. Itis related to the Observer design pattern and similar to Fa
tory Callba
kthough it is behavioural in nature instead of
reational [108, 107, 123℄.In some sense, a Demon may be
onsidered a form of Rea
tor. A Demon is\A portion of a program that is not invoked expli
itly, but that lies dormantwaiting form some
ondition(s) to o

ur." Unlike a Daemon, a Demon isusually a pro
ess within a program rather than a program in an operatingsystem. Demons are frequently used in arti�
ial intelligen
e program. For ex-ample, demons might implement inferen
e rules in a knowledge-manipulation

2.3. CLIENT-SERVER PATTERNS 47program. As information is added, the demon appropriate to the type of infor-mation a
tivates and
reates additional information by applying its inferen
erules to the information [10℄.An A
tive Obje
t
an implement the Rea
tor. An A
tive Obje
t enables amethod to exe
ute in a thread of
ontrol separate from the one that originallyinvoked it. This fa
t requires the implementation of a rendezvous poli
y.This design pattern is also known as a Con
urrent Obje
t or a Serializer [74℄.Rumbaugh et al. state that \an a
tor is an a
tive obje
t that drives thedata
ow graph by produ
ing or
onsuming values. A
tors are atta
hed tothe inputs and outputs of a data
ow graph. In a sense, the a
tors lie on theboundary of the data
ow graph but terminate the
ow of data as sour
es andsinks of data, and so are sometimes
alled terminators" [104℄. In [75℄, DougLea states that \Listener-based obje
ts are also sometimes
alled Rea
tors,Obje
t Adapters, Guardians, Skeletons, Exe
utives and Demultiplexers." Henotes that they may also server as Parsers, and Builders. He adds in [76℄ thatan A
tive Obje
t is also known as an A
tor . The authors of [73℄, however,point out that the
on
ept of A
tors is more general, as originally envisionedby Carl Hewitt and later expanded on by Gul Agha. Here, A
tors
onsist ofa so
iety of
ooperating agents who
ommuni
ate by asyn
hronous messagepassing. Thus, an A
tive Obje
t is only one possible implementation of anA
tor [5℄.Pro
ess Control regulates a physi
al,
ontinuous pro
ess. Input
omes from pro-
ess variables, input variables, manipulated variables, and sensors. Be
ause

48 CHAPTER 2. CONCURRENCY PATTERN CATALOGthe
ontroller is now de
oupled from the pro
ess, it
an be easily repla
ed[124℄.2.3.2 Server-Side PatternsHistori
ally, Gentleman, Shepard and Thoreson list two basi
 forms of servers, aProprietor and an Administrator [51℄ (see Figure 2.4).
Server Resource

Proprietor

Server Worker

Worker

Worker

Client

AdministratorFigure 2.4: Server-Side Design Patterns

2.3. CLIENT-SERVER PATTERNS 492.3.2.1 ProprietorA Proprietor owns and manages some resour
e (Andrews and S
hneider refer to asimilar idea as a Caretaker in [9℄). The only way other tasks
an perform oper-ations on the resour
e is to request that the Proprietor perform the operation ontheir behalf. The Proprietor thus provides mutual ex
lusion on the resour
e, andpossibly some form on syn
hronization. There are many variants on the theme ofa Proprietor design pattern:Leasing manages resour
es in a fault-tolerant distributed system. Clients requesta

ess to the resour
e for a �nite period of time. On
e the granted leaseexpires, the
orresponding resour
e is freed. The holder of the lease is able torequest a lease extension if the lease has not yet expired. It
an also
an
el alease on
e it has �nished with the resour
e [67℄.Lo
k Server provides mutual ex
lusion in a distributed system. It allows ea
h
lient to work with a
onsistent view of the shared resour
e sin
e ea
h
lientmust obtain a lo
k for the resour
e before pro
eeding, and must return thelo
k upon
ompletion. It is also known as a Lo
k Manager [63℄.Lookup provides a lookup servi
e in a distributed system. Servi
es register withtheir referen
es and asso
iated properties. The lookup server determines themost appropriate servi
e or servi
es based upon
lient requests. MultipleLookup servers
an be
ombined into a Federation of lookup servi
es [66℄.Manager handles a
olle
tion of obje
ts. It takes
are of
reation, destru
tion, andmanipulation of the obje
ts. A
lient requests the obje
t from the Manager

50 CHAPTER 2. CONCURRENCY PATTERN CATALOGand then intera
ts dire
tly with the obje
t. On
e the operation is
omplete,the
lient returns the obje
t to the Manager [124, 118℄. Gehani and M
Get-tri
k present a similar
on
ept known as a Guardian [49℄. Operations on theresour
es are performed by exe
uting the provided handlers.In [114℄, the authors des
ribe a Task Manager to handle thread
reation andtermination. By en
apsulating these servi
es, the domain
ode is renderedportable, and
on
urren
y strategies are easily
hanged sin
e only the TaskManager
ode needs to be re-written.Tessier and Keller introdu
e the Manager-Agent pattern. It de
entralizes themanagement of resour
es, simplifying
ontrol in a distributed system. AnAgent is in
harge of a group of resour
es related by some
riteria. The Agentrepresents the resour
es to the rest of the management system and may takeon some managerial aspe
ts for the resour
e as well. The Manager handlessome management fun
tion over the entire system. There may exist multipleManagers, and Agents may report to more than one Manager [123℄.Repository provides a
entral data stru
ture for a
omplex body of informationthat must be established, augmented, and maintained. Multiple
lients needto a

ess and manipulate the data, often
on
urrently. A large,
entralized,transa
tion-oriented database is an example of a repository. The Bla
kboard ,dis
ussed in Se
tion 2.3.2.2, is a related pattern [124, 115℄. Hu and Gill,in [65℄, dis
uss the notion of a Library, whi
h is similar. Here, the Libraryde
ouples the
reation of a new obje
t from the retrieval of an existing obje
tfrom the repository
a
he.

2.3. CLIENT-SERVER PATTERNS 51Resour
e Ex
hanger manages resour
es shared among multiple server tasks. Atsome point, when a server requests a resour
e, su
h as a bu�er, it must handover another instan
e of the resour
e in ex
hange. This requirement allows theResour
e Ex
hanger to maintain a
onstant pool of resour
es and minimizedelay times. In addition, servers build up a
redit (or la
k of it) with theResour
e Ex
hanger. Servers with a high load eventually use up their
redit,whi
h allows low load servers to be pro
essed. This s
heme thus redu
es theoverall server load, and allo
ates resour
es fairly [106℄.Servi
e Con�gurator enables the
on�guration and re
on�guration of
ommu-ni
ation servi
es at any point in time without a�e
ting other servi
es. Allservi
es must have a uniform interfa
e for
on�guration and
ontrol. It
an ini-tiate, suspend, resume, and terminate servi
es dynami
ally. It is also knownas a Super-server [68℄.A

eptor de
ouples passive
onne
tion from the servi
e after the
onne
tion isestablished. It
reates, a

epts, and a
tivates a new handler whenever anevent dispat
her noti�es it that a
onne
tion has arrived from a
lient [107℄.Conne
tor de
ouples a
tive servi
e from the task's servi
e after the servi
e isinitialized. It allows the servi
es to evolve independently and transparentlyfrom the me
hanisms used to establish the
onne
tions. It a
ts as a fa
torythat assembles the resour
es ne
essary for a syn
hronous or asyn
hronous
onne
tion [107℄.Command Pro
essor separates the request for a servi
e from its exe
ution. The

52 CHAPTER 2. CONCURRENCY PATTERN CATALOGrequests are managed as separate obje
ts, whi
h are s
heduled for exe
ution.Additional servi
es su
h as requesting storage of
ommands for later rollba
kmay also be done [117, 124℄. It is also referred to as Controller-Command in[24℄ though the authors later refer to it as a Command Pro
essor in [25℄.View Handler assists in managing the views of appli
ation-spe
i�
 data or multi-ple windows provided by a software system. It allows
lients to open, manipu-late, and dispose of views. It also
oordinates dependen
ies among views andorganizes their updates (frequently, views are updated in a priority ordering).Sin
e the updates are performed by the data supplier at the view's request,it is the supplier who is responsible for notifying all dependent
omponents(whi
h
ould in
lude the View Handler as well as views) about a
hange toits internal data. A variant of the View Handler uses Command obje
ts tokeep the handler independent of spe
i�
 view interfa
es [25℄.Sponsor-Sele
tor allows a
lient to request the appropriate resour
e from theSele
tor. In turn, the Sele
tor broad
asts requests to Sponsors who rate theirresour
es and return the ratings. The Sele
tor uses the ratings to sele
t theresour
e that is returned to the
lient for use [130℄.Gatekeeper-Request-Resour
e passes a request for a resour
e to a Gatekeeperwho manages the resour
es and passes on the request to the appropriateResour
e. The Resour
e then pro
esses the request [31℄.

2.3. CLIENT-SERVER PATTERNS 532.3.2.2 AdministratorAn Administrator hides worker tasks in the same way that a Proprietor hidesa resour
e(s). The Administrator
an delegate work to these worker tasks, and
on
urren
y is improved further by ensuring that it is the workers who blo
k whenrequesting work instead of the Administrator [50, 48℄. Ideally, an Administratoronly blo
ks when it has no work or management to perform.The Administrator has two means of
ontrolling workers. It
an
reate Workersas needed and terminate them when the work is done, or it
an
reate an initial poolof Worker tasks that are used as ne
essary [51℄. There are several design patternsrelated to the issue of Worker
reation. These
onsist of [92, 108℄:Thread per Request
reates a thread for ea
h
lient request, allowing all
lientrequests to run
on
urrently.Thread Pool handles requests for an unlimited number of
lients, using limitedstateless server resour
es. If the request
annot be
urrently �lled, it is blo
keduntil a thread is returned to the pool. This pattern is also known as a Re-sour
e Pool [60℄. The variant known as Client-Server-Servi
e allows
lientsto monitor the request's progress sin
e the server publi
izes its state [3, 1℄.Douglas C. S
hmidt's \Thread Pool" is an example of a Resour
e Pool.Thread per Session
reates a thread for ea
h
lient session, handling all of that
lient's requests. This pattern is also known as Thread per Conne
tion.Some examples of worker tasks are:

54 CHAPTER 2. CONCURRENCY PATTERN CATALOGNoti�er whi
h noti�es the Administrator that an event has o

urred [50℄.Timer whi
h noti�es the Administrator of an amount of elapsed time [50℄.Courier whi
h allows the Administrator to
ommuni
ate without blo
king for areply [50℄.Assassin whi
h deletes other tasks for the Administrator [19℄. The Evi
tor is anAssassin variant. It removes idle servants based on a Least Re
ently Usedalgorithm. It
an be extended to support distributed garbage
olle
tion, inorder to re
laim the spa
e o

upied by unused servants [61℄. Henning de-s
ribes using an Evi
tor variant for a Trader. That variant uses a separatereaper thread to get rid of the unused servants.A similar pattern is the Undertaker [40℄, whi
h handles dangling referen
epointers not re
ognized by the system as garbage, or the Vulture [11℄, whi
his responsible for terminating unauthorized software servi
es and logons.Cheriton presents a Death Proprietor for pro
essing requests to destroy tasks.It also sends messages to the System Proprietor to re
laim the resour
es ofdestroyed tasks [29℄.Overseer whi
h manages other workers tasks [19℄.Se
retary and Dire
tor where the Se
retary
ontains the set of all
ommon statevariables a

essed by the Dire
tors, and the Dire
tor makes requests of theSe
retary, whi
h then is responsible for
oordinating the Dire
tor based uponthe stored state information. Dijkstra uses \the metaphor of dire
tors and a

2.3. CLIENT-SERVER PATTERNS 55
ommon se
retary be
ause in the dire
tor{se
retary relation in real-life orga-nization it's also un
lear who is the master and who is the slave!" [37℄.Shell and Tenant is an abstra
tion pattern for workers [51℄. The Shell task takeson the role of any type of worker (known as a Tenant) based upon the infor-mation it re
eives from the Administrator.2.3.2.2.1 Independent WorkersMost patterns that rely upon solving a problem using independent workers
olle
tevents or job requests into some sort of queue. These patterns in
lude:Distributed Bag of Tasks uses a \bag" that
ontains independent work requestsand is shared by multiple worker tasks. Ea
h worker repeatedly removes workfrom the bag and
ompletes it. The pro
essing of the request may generatemore work requests to pla
e in the bag. The manager implements the bag,hands out work,
olle
ts the results, and dete
ts termination [8℄.Magee and Kramer, in [79℄, refer to this as a Supervisor-Worker pattern.They note that is also known under the names Repli
ated Worker [7℄, Pro
essFarm [22℄, and Agenda Parallelism [26℄.Work Crew
onsists of a �xed set of worker tasks. The workers remove jobsfrom a queue, where jobs
onsist of
omputational work. If the worker
ansubdivide the job, it will do so, pla
ing all pie
es but the one it is working onba
k in the job queue. When the worker has
ompleted its pie
e, it
he
ks tosee if all of the help requests have been answered. If they have not, it works

56 CHAPTER 2. CONCURRENCY PATTERN CATALOGon the next pie
e. The
y
le
ontinues until the entire job has been
ompleted[98℄.Manager-Agent is used to regroup a number of heterogeneous resour
es, whoseinterfa
es
annot be modi�ed to one homogeneous interfa
e, under the super-vision and
ontrol of an Agent. The Agent represents the resour
es to therest of the management system. If so desired, the Agent
an be responsiblefor managing
ertain aspe
ts of the resour
es. Ea
h Agent reports to oneor more Managers, who handle some management fun
tion over the entiresystem. The Agent performs operations on the resour
es on behalf of therequesting Manager. If the Agent noti
es
hanges in its resour
es requiringthe Manager to be noti�ed, it reports the
hanges [123℄.Master-Slave introdu
es redundan
y, fault toleran
e, safety and
orre
tness. TheMaster task delegates work to independent Slave tasks and
omputes a �nalresult from the results the Slaves return. The Master, when
al
ulating the�nal result, may use di�erent strategies for sele
ting among the Slave-returnedresults. These strategies in
lude: taking the �rst result returned, taking theresult the majority returned, taking the average of all the returned results,taking a result returned from a Slave that did not fail, or sometimes de
liningto sele
t any result (for example, if they all returned di�erent results). TheSlaves may also use di�erent strategies for providing the servi
e for whi
hthey are responsible [24, 123, 48℄. In [36℄, this design pattern is also referredto as host-helper . Variants listed in [25℄ in
lude:

2.3. CLIENT-SERVER PATTERNS 57Obje
t Group by Ma�eis uses the Master-Slave variant that provides group
ommuni
ation and fault toleran
e in a distributed environment.Master-Slave Pattern for Parallel Compute Servi
es by Brooks
on-
entrates on des
ribing how the Slaves
an be implemented as pro
esses.Slaves as Threads by Kleiman, Shah, and Smaalders investigates usingthreads to implement the Slave task.Workpool Model by Knopp and Rei
h uses a Workpool of Workers,
or-responding to the idea of Slaves, to handle
lient requests. The requestfun
tion sent by the
lient
orresponds to the Master.Gaggles by Bla
k and Immel builds upon the Master-Slave pattern to userepli
ated servi
e obje
ts. The servi
e obje
ts are represented by theGaggle, whi
h forwards
lient requests to one of the repli
ated servi
eobje
ts.Bus
hmann, in [23℄, states that the Master-Slave design pattern is based onthe A
tor-Agent-Supplier variant of the A
tor-Supplier design pattern. This
onne
tion
an be seen if the
lient requesting the servi
e takes on the role ofthe A
tor, the Master takes on the role of the Agent, and the Slaves a
t asthe Suppliers.Pa
herie and J�ez�equel see the Master-Slave design pattern as one possiblere�nement of their Operator design pattern, also known as Ubiquitous Agent[89℄.Wilson dis
usses another variant, the Crystalline Model , also known as Single

58 CHAPTER 2. CONCURRENCY PATTERN CATALOGProgram, Multiple Data or SPMD [132℄. This pattern
onsists of a �nite setof worker tasks, more
annot be
reated dynami
ally, and a single
ontroller.The worker tasks are organized in a regular topology sin
e ea
h
ommuni
atesonly with a dire
t neighbour. They ea
h have their own data spa
e and workindependently until a
ommuni
ation event arrives, at whi
h point they mustall parti
ipate. The
ontroller is also independent, and
an
ommuni
atedire
tly with any of the workers.A variant of the Master-Slave for mobile
omputing, Supervisor-Worker , isdis
ussed in [45℄. The pattern is designed to prote
t mobile agents fromhaving unauthorized tasks a
quire or alter information. This prote
tion isa

omplished by building a
entral knowledge-base and management uniton top of the Master-Slave pattern, whi
h ensures all information is pro
ess
orre
tly, and at the right times. The parti
ipants in the pattern
onsist of theAgent, the Supervisor, and the Worker. The Agent is mobile, and has its own
onstraint manager keeping tra
k of the
onstraints for the work the Agentis supposed to a

omplish. The Supervisor divides up the work,
ontrols theworkers, and merges reports. It develops work
ompletion strategies,
reatessubdivisions of the work, and keeps tra
k of required information su
h asmerge
onstraints, and Worker assignments. The Worker
ompletes the jobassigned by the Supervisor and sends reports to the Supervisor.Cela and Alfonso examine the standard
entralized version and two dis-tributed versions of a Master-Slave pattern to solve pre
onditions of SparseApproximate Inverses [27℄. In the distributed versions, the Slaves
ommu-

2.3. CLIENT-SERVER PATTERNS 59ni
ate among ea
h other to assist in solving the problem sin
e the data hasalready been distributed. In the �rst version, a Slave answers a request fordata only when it sends a request. In the other version, a Slaves answers arequest for data only when a user de�ned signal arrives.EmbarrassinglyParallel pattern uses a
olle
tion of
on
urrent, independenttasks to solve a problem [82℄. In parti
ular, it attempts to organize the
omputation so that ea
h task
ompletes at about the same time. Tasks thatare faster take on a larger share of the
omputation. These tasks may behomogeneous, or heterogeneous. During exe
ution, more tasks may be
re-ated, depending upon the problem being solved. The authors des
ribe threevariants of this pattern.1. Sub-solutions are a

umulated in a shared data stru
ture. The tasks areno longer
ompletely independent sin
e they share and must syn
hronizea

ess to the data stru
ture.2. A termination
ondition other than all tasks
ompleting exists. This
ondition is parti
ularly useful when an overall solution
an be obtainedwithout having to solve all subproblems.3. Not all subproblems are initially known. This situation o

urs whensubproblems are generated while solving other subproblems.This pattern is also known as Master-Worker , or Task Queue.Two additional patterns, the SeparableDependen
ies and the Geometri
De-
omposition patterns are also presented. The �rst is related to Embarassing-

60 CHAPTER 2. CONCURRENCY PATTERN CATALOGlyParallel in that the tasks have dependen
ies, whi
h when removed, allowthe problem to be solved using the EmbarassinglyParallel pattern. The otheris used when the
on
urren
y is based on parallel updates of se
tions of a de-
omposed data stru
ture, and the update of ea
h se
tion requires data fromthe other se
tions.Leader/Followers is used to eÆ
iently pro
ess events arriving frommultiple eventsour
es shared by multiple tasks. One task, the Leader, waits for an event.The Followers queue themselves, awaiting their turn as Leader. When theLeader dete
ts an event, it promotes a Follower as the new Leader, and thenpro
esses the event. This demultiplexes and dispat
hes the event to the des-ignated event handler. Upon
ompletion, the task takes on the role of aFollower [112℄.2.3.2.2.2 Cooperative WorkersThe following design patterns rely upon
ooperative Workers:Colle
tion-Worker uses a Colle
tion to
ontrol a �nite number of Workers. TheColle
tion only performs operations that apply a
ross its entire set of Workers.The Worker does all it
an with what it knows, or what others may tell it in
ombination with what it knows [31℄.Bla
kboard is a solution to the pattern re
ognition problem of transforming rawdata (su
h as that
olle
ted by sensors) into a higher-level data stru
turewhen no deterministi
 algorithm for the transformation exists [25℄. Instead,

2.3. CLIENT-SERVER PATTERNS 61algorithms applying partial transformations are used, but the order in whi
hthe transformations are applied is unknown. The pattern involves three
om-ponents: the Bla
kboard, a Moderator, and at least one Contributor (alsoreferred to as a Knowledge Sour
e). The Bla
kboard is a shared data stru
-ture maintaining the di�erent versions of the data, ranging from the originalraw form to the �nal produ
t.The Moderator is responsible for
hoosing among the Contributors' proposals.It sele
ts the proposal
al
ulated to advan
e the problem the furthest, allowsthe Contributor who submitted the proposal to update the Bla
kboard, andrepeats the
y
le. If ne
essary, the Moderator may reverse its de
isions if itdetermines that the present trend will not lead to the desired solution.The Contributors are independent tasks that
ommuni
ate only with theModerator. They view the Bla
kboard, and make a proposal to modify somelevel of the data stru
ture. The proposal is a

ompanied by a metri
 indi-
ating the degree of
ertainty of su

ess, based upon the
urrent state of theBla
kboard.In [25℄, the Repository is
onsidered a generalization of the Bla
kboard. Theauthors also
onsider the Bla
kboard to be an extreme variant of the Pro-du
tion System by Forgy and M
Dermott. Within the Produ
tion System,subroutines are represented as
ondition-a
tion rules, and data is globallyavailable in working memory. The a
tion spe
i�ed by a
ondition-a
tion ruleis only performed when the asso
iated
ondition is true, and the rule has beensele
ted by the
on
i
t resolution module.

62 CHAPTER 2. CONCURRENCY PATTERN CATALOGThe authors of [36℄ list a variant of the Bla
kboard, whi
h they
onsider tobe a variant of the Master-Slave pattern. Here the Coordinator serves as theBla
kboard, whi
h is now a work queue from whi
h the Contributors takework to be
omputed. The results
an then be fed ba
k into the Bla
kboard.Leader/Collaborator/Collaboration design pattern by [2℄ is based on the Client-Server-Servi
e pattern, ex
ept new roles are assigned to the parti
ipants. Itis intended for use in the
ontext of
ooperative, autonomous software agents.Here, the agent (Leader), upon determining that
ollaboration is required toful�ll its task, asks one or more Collaborators for assistan
e. When askingfor help, the Leader indi
ates what type of
ollaboration is required. If a Col-laborator agrees to help, a Collaboration obje
t is
reated and its referen
e isreturned to the Leader. (The Collaboration obje
t en
apsulates a thread ofexe
ution and manages the agent's
ollaboration pro
ess.) The Leader
reatesits own Collaboration obje
t, whi
h is
on�gured to work dire
tly with theother Collaboration obje
t. These obje
ts have dire
t visibility of ea
h otherwhile the
ollaboration is underway. From this point on, all
ommuni
ationis among peers sin
e there is no longer any role distin
tion.Model-View-Controller de
ouples the user interfa
e of a system from its
orefun
tionality. The intera
tive appli
ation is divided into three
omponents:the Model, the View, and the Controller. The Model
ontains the
ore fun
-tionality and data of the appli
ation. Its information is presented by one ormore Views to the user (ea
h View may present the information in a di�erentformat). Every View has a
orresponding Controller . The Controller trans-

2.3. CLIENT-SERVER PATTERNS 63lates user input into a servi
e request to the Model. Changes in the Model'sstate
ause the Views to update the information presented to the user. Thispattern implies a relian
e upon the Publisher/Subs
riber design pattern [25℄.As the pattern is des
ribed, all
ommuni
ation is performed via update method
alls, unlike the following Presentation-Abstra
tion-Control (PAC) pattern.No mention is made of issues su
h as mutual ex
lusion of servi
e requests orupdates, or of how
onsisten
y in the Model is maintained given that a Con-troller may need to obtain more information from the Model after the initialservi
e request is made.Presentation-Abstra
tion-Control is an alternative approa
h to the problemsolved by Model-View-Controller (MVC). A tree-like hierar
hy of
ooperatingagents is responsible for an intera
tive system. The hierar
hy is tree-like in thesense that there is only one agent at the top-most level, but there are severalintermediate-level agents and many low-level agents. Ea
h agent dependsupon all of the agents higher up in the hierar
hy. The top-level agent isresponsible for the
ore fun
tionality of the system, and any parts of the userinterfa
e that
annot be assigned to lower-level agents. An intermediate agentrepresents either multiple low-level agents, or the relationships between them.A low-level agent represents the basi

on
epts of the system, upon whi
h theusers
an a
t [25℄.Ea
h agent is divided into Presentation, Abstra
tion, and Control se
tions,though the Presentation se
tion may be non-existent at the top levels of thehierar
hy. The Presentation se
tion provides the \visible behaviour" of the

64 CHAPTER 2. CONCURRENCY PATTERN CATALOGagent. It is equivalent to the MVC View and Controller.The Abstra
tion se
tion maintains and manipulates the data model that un-derlies the agent, whi
h is the same as the Model in MVC. A parti
ular pointto note is that if a low-level agent requests information, all agents in the pathto the top-level agent must parti
ipate in the
ommuni
ation. As well, if anagent depends upon data stored in another agent, then a pattern su
h asPublisher/Subs
riber must be used to ensure noti�
ation of updates.The Control se
tion allows the agent to
ommuni
ate with other agents, and
onne
ts the Presentation and Abstra
tion se
tions. It a
ts as a Mediator,passing on
hanges from the top-level agent, and requests from the lower-levelagents.While it is mentioned that multiple threading
an be used to implement thispattern, no mention is made of how mutual ex
lusion or syn
hronization (ane
essity of
ommuni
ation) is to be performed.2.3.2.2.3 Workers Talking to ClientsThe key to these patterns is that the delegated task ends up
ommuni
ating withthe
lient instead of the sever.Sender-Lookup-Re
eiver has the Sender look up the Re
eiver in a Lookup ser-vi
e. The Sender then
onta
ts the Re
eiver dire
tly [31℄.Caller-Dispat
her-Caller Ba
k has the Sender
all the Dispat
her who tellsCaller Ba
k to return the Sender's initial
all [31℄.

2.4. CLIENT-SERVER INTERACTION PATTERNS 65Mat
hmaker see the Broker as Mat
hmaker in se
tion 2.3.1.3.A similar notion
an be found in the V Distributed System where a
lient
anuse a group identi�er to multi
ast to all servers in a group in an e�ort to �nd theserver responsible for managing a parti
ular obje
t. On
e the responsible serveranswers, the
lient
an
ommuni
ate with it dire
tly and thus avoid multi
astingto the group as a whole [30℄.2.4 Client-Server Intera
tion PatternsThere are two main forms of intera
tion available beyond the basi

ommuni
ationof a request from a
lient to a server. The request, or subsequent work,
an bedelegated to other tasks in the system. It may also be ne
essary to provide a meansof keeping tasks aware of
hanges in the system state by using update patterns.2.4.1 Delegation PatternsFigure 2.5 illustrates the basi
 form of a
lient-server intera
tion pattern. Notethat the roles of
lient and server are
uid sin
e the server
an in turn be
omethe
lient of another server. Other forms of intera
tion involve the Administratordelegating an operation to multiple Workers. The Workers may be independent, or
ooperative. They
an also
ommuni
ate dire
tly with the Client.The Pipeline is the most basi
 form of intera
tion pattern. It is a
olle
tion oftasks in whi
h the output of one be
omes the input of another [9, 15, 18, 127, 115,79℄. The information
an be either pushed or pulled through the Pipeline. In this

66 CHAPTER 2. CONCURRENCY PATTERN CATALOG
S

er
ve

r

C
lie

nt

S
er

ve
r

C
lie

nt

Client ... ServerFigure 2.5: Delegation Patternfashion, it
an e�e
tively delegate work to other tasks in the Pipeline. It is alsoknown as Pipes and Filters sin
e a Pipeline
an be used to �lter information as itpasses through the pipe. The �lters may be sour
es (produ
e data), sinks (
onsumedata), transformers, or removers. A pipe may simply be a data
onne
tion su
h asa Stream [4, 39℄, or a data
onne
tion plus some other stru
ture su
h as a repository(see Figures 2.6 and 2.7). [124, 85, 25℄.
Filter

1
Filter

2
Filter

3

1
Pipe Pipe

2
Pipe

3
Pipe

4

(data pipe)(data pipe) (data pipe) (data pipe)Figure 2.6: Simple Pipeline with Pipes as Data Conne
tionsPipeline variants in
lude:Translator pattern
an be viewed as a limited Pipeline sin
e it servers to marshaland unmarshal messages [123℄.Produ
er-Consumer is a Pipeline where ea
h task in the pipeline a
ts as a �lter[7, 8, 57, 61℄. Bus
hmann and Meunier re�ne the idea further by listing severalvariants of the Produ
er-Consumer pattern su
h as the Produ
er-Repository-

2.4.CLIENT-SERVERINTERACTIONPATTERNS
67

Filter
1

Filter
3

Filter
4

Filter
2

Filter
3

1
Pipe

Pipe
3

Pipe
2

Pipe
4

(data pipe)

(data pipe)

(data pipe)

(repository + pipe)

(repository + pipe)

(data pipe)

(data pipe) (data pipe)

Pipe

Pipe

Pipe

1
Pipe

(data pipe)

Pipe

5

6

7 8

Figure2.7:NetworkPipelineswithPipesasDataConne
tionsandRepositories

68 CHAPTER 2. CONCURRENCY PATTERN CATALOGConsumer pattern, and the Produ
er-Sensor-Consumer pattern in [24℄ but donot des
ribe them further.The Forwarder-Re
eiver de
oupling design pattern is another form of Produ
er-Consumer. It provides transparent
ommuni
ation among peers. Every taskis provided with both a Forwarder and a Re
eiver (see Figure 2.8). The For-warder marshals and delivers the message to the other Re
eiver. The Re
eiverunmarshals and delivers the message to its asso
iated peer [24, 25℄. Sin
e theReaders and Writer pattern is a restri
ted form of the Produ
er-Consumerdesign pattern, it is also
onsidered a form of Pipeline [124, 76℄.
Peer

1

Forwarder
1

1
Receiver Forwarder

2

Receiver
2

Peer
2Figure 2.8: Forwarder-Re
eiver Intera
tionAnother variant of Produ
er-Consumer is Produ
er-Intermediary-Consumer .This pattern pla
es an intermediary between the Produ
er and the Consumer.This intermediary may be a passive obje
t su
h as a monitor, or an a
tiveobje
t su
h as a task. An example of this pattern is Doble's Shopper whoobtains items for a Consumer from a Produ
er [38℄.Doug Lea de�nes a Produ
er-Consumer variant, the Flow Network . A FlowNetwork is a
olle
tion of obje
ts that pass one way messages from sour
es(Produ
ers) to sinks (Consumers). Examples of Flow Networks are: avioni
s

2.4. CLIENT-SERVER INTERACTION PATTERNS 69
ontrol systems, assembly systems, data
ow systems, work
ow systems, andevent systems [76℄. Andersen refers to this as a Network sin
e there may bemultiple input sour
es, and multiple output sinks [6℄.Tee and Join Pipeline Systems listed as variants by [25℄ allow more than oneinput and/or output.Program Chaining divides ea
h pie
e of the program into an individual
ompo-nent that invokes the next one in sequen
e. The main purpose of this patternis to redu
e memory requirements by using se
ondary storage (a mass storagedevi
e su
h as a
oppy disk, hard disk, tape drive) to store the
omponentsuntil they are required. Ea
h newly invoked phase of the program and its run-time data are loaded from se
ondary storage into main memory,
ompletelyrepla
ing the invoking exe
utable [88℄.Chain of Responsibility allows a task to send a request to another task, whi
h isimpli
itly at the head of a
hain of other tasks. The request is passed throughthe
hain, and any member of the
hain
an ful�ll the request, depending uponrun-time
onditions. The number of parti
ipants in the
hain is unbounded,and parti
ipants in the
hain
an be sele
ted at run-time. This design patternis also known as Event Handler , Bureau
rat , and Responder [47℄.Two patterns that rely heavily upon Chain of Responsibility are: Mat
her-Handler, and Bureau
ra
y. The Mat
her-Handler design pattern has traitsof the Observer, Chain of Responsibility, and Strategy design patterns. Itdelivers data to impli
itly spe
i�ed re
eivers, of whom more than one may

70 CHAPTER 2. CONCURRENCY PATTERN CATALOGhandle the request. The set of re
eivers
an also be dynami
ally spe
i�ed.These qualities let it behave like Chain of Responsibility.Sin
e a data event may need to be pro
essed independently and simultane-ously by more than one task, Mat
her-Handler has traits of the Observerdesign pattern, ex
ept that the handlers are only noti�ed when the informa-tion they are spe
i�
ally waiting for has arrived.In order to redu
e the impa
t of
hanging the mat
hing
riteria over time,the Strategy pattern isolates the mat
hing behaviour; however, the purposeof Strategy is to provide sele
table behaviour, parti
ularly at runtime. Theend result is the same, though the purposes di�er [84℄.The other design pattern, Bureau
ra
y, is based on the Composite9, Ob-server, and Chain of Responsibility design patterns. The Bureau
ra
y designpattern lets developers build self-
ontained, hierar
hi
al stru
tures that
anintera
t with
lients on every level. No external
ontrol is ne
essary, and thestru
tures
an maintain their own inner
onsisten
y. Chain of Responsibilityforwards requests until a task is rea
hed that
an fully exe
ute the request.The previous tasks may have partially exe
uted the request, reinterpreted it,or
an
elled it. Be
ause the work
an be handled by a task low in the hi-erar
hy, whi
h would not have noti�ed higher-level tasks sin
e it knew howto pro
ess the request, the higher-level tasks still need to be warned of thestate
hange. Therefore the Observer is responsible for notifying tasks of the9GoF de�ne the Composite pattern as
omposing obje
ts into tree stru
tures to representhierar
hies (either part of, or the entire hierar
hy). Clients
an treat individual obje
ts and
ompositions of obje
ts uniformly.

2.4. CLIENT-SERVER INTERACTION PATTERNS 71hierar
hy of state
hanges. The Composite pattern allows the building of
omplex stru
tures [99℄.2.4.2 Update PatternsThese patterns are responsible for maintaining the state information in a systemby ensuring that all parti
ipants are noti�ed of
hanges.Observer de�nes and maintains a dependen
y among obje
ts. As an obje
t
hanges, all
lients who have registered an interest with the Observer are noti-�ed of the
hanges. This design pattern is also known as: Broad
aster/Listener[1℄, Caller/Provider [3℄, Provider/Observer [43℄, Subs
riber/Publisher [70℄,Announ
er/Listener [79℄, Dependents, Publisher-Subs
riber [24, 25, 31℄, Up-date, and Listener [47, 123, 100, 124, 129℄. Wolf and Liu refer to it as a\dependen
y" and note that Coad refers to this as a \broad
ast" [133℄. Feilerand Ti
hy
lassify it as a spe
ial
ase of the Propagator pattern [44℄. Kimand Benner provide several implementation design patterns for the Observerdesign pattern [71℄.There are a number of related design patterns, in
luding the Spy, the Noti-�
ation Server, the Noti�er, the Handler, Broad
asting Sequential Pro
esses,the Component Bus, and the ValueModel.In the Spy design pattern, the Spy task monitors the progress of a parallelprogram by examining shared global memory. It
an
onsolidate, pro
ess,and report the gathered information [121℄.

72 CHAPTER 2. CONCURRENCY PATTERN CATALOGHirs
hfeld and Eastman's Noti�
ation Server inverts the Observer's roles.The Noti�
ation Server takes on the role of the observed subje
t though it isreally the shared resour
e that is being observed, while the registered
lientsare the observers. Also unlike the Observer pattern, the Noti�
ation Serveris not noti�ed of the
hanges, only the registered
lients are noti�ed [64℄. TheNoti�er noti�es the administrator when an event has o

urred; thus, it
ouldbe used as part of the Observer implementation [50℄.Ber
zuk de�nes a Handler to pro
ess items when the end-to-end system re-quirements have not been fully spe
i�ed yet. When an item to be pro
essedis
reated, it registers itself with the handler. This pattern is related to theObserver pattern ex
ept that the observer is the
lass of obje
t
reated, andthe event that triggers noti�
ation is the
reation of an obje
t of a given
lass[17℄.Broad
asting Sequential Pro
esses (BSP) uses the Publisher-Subs
riber pat-tern. A message broad
ast (published) by one task
an be re
eived by allother tasks (subs
ribers). Thus, programs are
olle
tions of loosely
oupledtasks
ooperating to a

omplish a
ommon goal [48℄.The Component Bus allows tasks to
ommuni
ate indire
tly. It manages therouting of information dynami
ally, as tasks
an dynami
ally register interestin the required information [41℄. The Component Bus is also referred toas a Message Bus. It (or a Broker) is used to implement the Event-BasedIntegration design pattern [124℄.Woolf's ValueModel framework is another variant of the Observer design pat-

2.4. CLIENT-SERVER INTERACTION PATTERNS 73tern. It
ontains a value, and it informs its registered dependents when thevalue
hanges [134℄.Propagator is a family of patterns for
onsistently updating obje
ts in a depen-den
y network [44℄. All of these patterns support smart propagation foravoiding redundant work as well as
on
urrent updates. It is also known asCas
aded Update. There are four main Propagator patterns:Stri
t Propagator always performs a
omplete update. No indi
ation ofsu

ess or failure is given. It only keeps tra
k of its dependents forthe purpose of propagation. The
hanged prede
essor is passed withthe update method and is thus a

essible to the dependents, allowingthem to identify whi
h prede
essor has
hanged. This design pattern
ombines the methods of the subje
t and obje
t
lasses of Observer andmakes the noti�
ation method re
ursive. It is also known as the Forward ,Immediate, or Eager Propagator.Stri
t Propagator with Failure is the same as the Stri
t Propagator, ex-
ept that an obje
t is marked as invalid if the update failed. It is alsoknown as an Optimisti
 Propagator.Lazy Propagator only updates obje
ts if it
an determine that they are
hanged. Obje
ts in the dependen
y network only keep tra
k of theirdire
t prede
essors. It is also known as Update on Demand , or theBa
kward Propagator.Adaptive Propagator is a
ompromise between the Stri
t Propagator and

74 CHAPTER 2. CONCURRENCY PATTERN CATALOGthe Lazy Propagator. It immediately forward propagates only the invalidmarker and separately propagates updates optimisti
ally, periodi
ally, oron demand. The forward propagation phase performs no updates, andstops qui
kly in the
ase of su

essive waves, sin
e it en
ounters alreadymarked obje
ts. The a
tual updates take pla
e in the ba
kward phase,whi
h
an even be run simultaneously with the forward phase. In thisfashion, it
an avoid su

essive waves of updates (Stri
t Propagator), orhaving to traverse the entire network ba
kwards to the roots and
he
ktime stamps (Lazy Propagator).

Chapter 3Con
lusionIn the realm of design patterns, there is no satisfa
tory taxonomy that meets theneeds of everyone. This is amply evident from the proliferation of possibilities.A large part of this is due to the inability to �rmly
lassify ea
h pattern intosolely one nomen
lature (ar
hite
tural pattern versus design pattern),
ategoryof fun
tionality, or purpose. This pro
ess is rendered even more
ompli
ated bythe quantity of published patterns, whose names and purposes overlap, as is seenthroughout Chapter 2. The s
ope of the problem is magni�ed and driven home on
ethe reader realizes that
on
urren
y patterns are only a small portion of patternsappli
able to a restri
ted area of
omputer s
ien
e.Though no system of
lassi�
ation is perfe
t, I believe that a good start has beenmade by identifying the basi
, underlying metapatterns of
on
urrent programming.The three main divisions are: syn
hronization, mutual ex
lusion, and
lient-server.Syn
hronization
overs the me
hanisms for syn
hronizing tasks as well as patterns75

76 CHAPTER 3. CONCLUSIONin
ommuni
ation while mutual ex
lusion dis
usses various lo
k patterns.Within the
ategory of
lient-server, design patterns
an be further subdividedinto
lient-side patterns, server-side patterns, and
lient-server intera
tions. Client-side patterns involve the introdu
tion of an intermediary (passive or a
tive, impli
itor expli
it) between the
lient and server. The three main metapatterns are proxies,mediators, and brokers. Server-side metapatterns are those of the proprietor andthe administrator. Sin
e the administrator uses worker tasks, the patterns involvingworkers are also examined, yielding the basi
 patterns of independent workers,
ooperative workers, and workers
ommuni
ating dire
tly with a
lient.The �nal
ategory of
lient-server intera
tions neatly
overs the areas missingfrom the previous two, subsuming both delegation and publi
ation patterns. Thesedivisions a

ount for both the
ommon and exoti
 patterns found in
on
urrentprogramming, without des
ending to the level of idioms su
h as semaphores ormonitors.

Appendix ASample Design PatternThis pattern is taken from pages 293 to 303 of the GoF design patterns text [47℄.A.1 OBSERVER Obje
t BehavioralA.1.1 IntentDe�nes a one-to-many dependen
y between obje
ts so that when one obje
t
hangesstate, all its dependents are noti�ed and updated automati
ally.A.1.2 Also Known AsDependents, Publish-Subs
ribe 77

78 APPENDIX A. SAMPLE DESIGN PATTERNA.1.3 MotivationA
ommon side-e�e
t of partitioning a system into a
olle
tion of
ooperating
lassesis the need to maintain
onsisten
y among related obje
ts. You do not want toa
hieve
onsisten
y by making the
lasses tightly
oupled, be
ause that redu
estheir reusability.For example, many graphi
al user interfa
e toolkits separate the presentationalaspe
ts of the user interfa
e from the underlying appli
ation data [KP88, LVC89,P+88, WGM88℄. Classes de�ning appli
ation data and presentations are indepen-dently reused. They
an work together, too. Both a spreadsheet obje
t and bar
hart obje
t
an depi
t information in the same appli
ation data-obje
t using di�er-ent presentations (see Figure A.1). The spreadsheet and the bar
hart do not knowabout ea
h other, thereby letting you reuse only the one you need. But they behaveas though they do. When the user
hanges the information in the spreadsheet, thebar
hart re
e
ts the
hanges immediately, and vi
e versa.This behavior implies that the spreadsheet and bar
hart are data views de-pendent of the data obje
t, and therefore, are noti�ed of any
hange in its state.There is no reason to limit the number of dependent obje
ts to two; any numberof di�erent user interfa
es for the same data
ould exist.The Observer pattern des
ribes how to establish these relationships. The keyobje
ts in this pattern are subje
t and observer. A subje
t may have any numberof dependent observers. All observers are noti�ed whenever the subje
t undergoesa
hange in state. In response, ea
h observer queries the subje
t to syn
hronize itsstate with the subje
t's state.

A.1. OBSERVER OBJECT BEHAVIORAL 79

a = 50%
b = 30%
c = 20%

subject

change notification
requests, modifications

a

b

c

a b c

x 60 30 10

a b c

y 50 30 20

z 80 10 10

observers

Figure A.1: Observer Design Pattern Example

80 APPENDIX A. SAMPLE DESIGN PATTERNThis kind of intera
tion is also known as publish-subs
ribe. The subje
t is thepublisher of noti�
ations. It sends out these noti�
ations without having to knowthe types or identities of the observers. Any number of observers
an subs
ribe tore
eive noti�
ations.A.1.4 Appli
abilityUse the Observer pattern in any of the following situations:� When an abstra
tion has two aspe
ts, one dependent on the other. En-
apsulating these aspe
ts in separate obje
ts lets you vary and reuse themindependently.� When a
hange to one obje
t requires
hanging others, and you do not knowstati
ally how many obje
ts need to be
hanged.� When an obje
t should be able to notify other obje
ts without making as-sumptions about the kind of obje
ts these are. In other words, you do notwant the obje
ts tightly
oupled.A.1.5 Stru
tureSee Figure A.2.

A.1. OBSERVER OBJECT BEHAVIORAL 81
Attach(Observer)
Detach(Observer)
Notify()

Subject

GetState()
SetState()

subjectState

ConcreteSubject

return subjectState

Update()

observerState

ConcreteObserver

for all o in observers {
 o->Update()
}

Observer

Update()

observerState =
 subject->GetState()

observers

subjectFigure A.2: The Observer Design Pattern Stru
ture in UML.A.1.6 Parti
ipantsA.1.6.0.4 Subje
t� knows its observers. Any number of Observer obje
ts may observe a subje
t.� provides an interfa
e for atta
hing and deta
hing Observer obje
ts.A.1.6.0.5 Observer� de�nes an updating interfa
e for obje
ts that are noti�ed of
hanges in asubje
t.A.1.6.0.6 Con
reteSubje
t� stores state of interest to Con
reteObserver obje
ts.

82 APPENDIX A. SAMPLE DESIGN PATTERN� sends a noti�
ation to its observers when its state
hanges.A.1.6.0.7 Con
reteObserver� maintains a referen
e to a Con
reteSubje
t obje
t.� stores state that should stay
onsistent with the subje
t's.� implements the Observer updating interfa
e to keep its state
onsistent withthe subje
t's.A.1.7 Collaborations� Con
reteSubje
t noti�es its observers whenever a
hange o

urs that
ouldmake its observers' state in
onsistent with its own.� A Con
reteObserver obje
t, on
e informed of
hanges in the
on
rete sub-je
t, may query the subje
t for information. Con
reteObserver uses thisinformation to re
on
ile its state with that of the subje
t. The intera
tiondiagram in Figure A.3 illustrates the
ollaborations among a subje
t and twoobservers:The
ollaboration starts with an observer telling the subje
t to
hange its stateby invoking the SetState method that may impli
itly invoke the Notify method.On
e the subje
t determines that a
hange has o

urred, it noti�es all observers byinvoking their respe
tive Update methods.

A.1. OBSERVER OBJECT BEHAVIORAL 83
aConcreteSubject AConcreteObserver anotherConcreteObserver

Update()

Update()

Notify()

SetState()

GetState()

GetState()Figure A.3: Observer Design Pattern Intera
tion DiagramNote how the Observer obje
t that initiates the
hange request postpones itsupdate until it gets a noti�
ation from the subje
t. Notify is not always
alledby the subje
t. An observer, or another kind of obje
t entirely,
an
all it. TheImplementation subse
tion dis
usses some
ommon variations.A.1.8 Consequen
esThe Observer pattern lets you vary subje
ts and observers independently. You
an reuse subje
ts without reusing their observers, and vi
e versa. It lets you addobservers without modifying the subje
t or other observers.Further bene�ts and liabilities of the Observer pattern in
lude the following:1. Abstra
t
oupling between Subje
t and Observer. All a subje
t knows is that ithas a list of observers, ea
h
onforming to the simple interfa
e of the abstra
t

84 APPENDIX A. SAMPLE DESIGN PATTERNObserver
lass. The subje
t doesn't know the
on
rete
lass of any observer.Thus the
oupling among subje
ts and observers is abstra
t and minimal.Be
ause Subje
t and Observer are not tightly
oupled, they
an belong todi�erent layers of abstra
tion in a system. A lower-level subje
t
an
om-muni
ate and inform a higher-level observer, thereby keeping the system'slayering inta
t. If Subje
t and Observer are lumped together, then the re-sulting obje
t must either span two layers (and violate the layering), or itmust be for
ed to live in one layer or the other (whi
h might
ompromise thelayering abstra
tion).2. Support for broad
ast
ommuni
ation. Unlike an ordinary request, the noti�-
ation that a subje
t sends need not spe
ify its re
eiver (presumably sin
e itmight be dire
ted to a ChangeManagerwho is responsible for broad
asting themessage to registered observers). The noti�
ation is broad
ast automati
allyto all interested obje
ts that subs
ribed to it. The subje
t does not
are howmany interested obje
ts exist; its only responsibility is to notify its observers.This gives you the freedom to add and remove observers at any time. It is upto the observer to handle or ignore a noti�
ation.3. Unexpe
ted updates. Be
ause observers have no knowledge of ea
h other'spresen
e, they
an be blind to the ultimate
ost of
hanging the subje
t. Aseemingly inno
uous operation on the subje
t may
ause a
as
ade of updatesto observers and their dependent obje
ts. Moreover, dependen
y
riteria thatare not well-de�ned or maintained usually lead to spurious updates, whi
h
an be hard to tra
k down.

A.1. OBSERVER OBJECT BEHAVIORAL 85This serious problem is aggravated by the fa
t that the simple update proto-
ol provides no details on what
hanged in the subje
t. Without additionalproto
ol to help observers dis
over what
hanged, they may be for
ed to workhard to dedu
e the
hanges.A.1.9 ImplementationSeveral issues related to the implementation of the dependen
y me
hanism aredis
ussed in this subse
tion.1. Mapping subje
ts to their observers. The simplest way for a subje
t to keeptra
k of the observers it should notify is to store referen
es to them expli
itlyin the subje
t. However, su
h storage may be too expensive when there aremany subje
ts and few observers. One solution is in
ur a time penalty andredu
e the required amount of spa
e by using an asso
iative look-up (e.g.,a hash table) to maintain the subje
t-to-observer mapping. Thus a subje
twith no observers does not in
ur storage overhead. On the other hand, thisapproa
h in
reases the
ost of a

essing the observers by adding in the
ostof the look-up.2. Observing more than one subje
t. It might make sense in some situations foran observer to depend on more than one subje
t. For example, a spreadsheetmay depend on more than one data sour
e. It is ne
essary to extend theUpdate interfa
e in su
h
ases to let the observer know whi
h subje
t issending the noti�
ation. The subje
t
an simply pass itself as a parameter

86 APPENDIX A. SAMPLE DESIGN PATTERNin the Update operation, thereby letting the observer know whi
h subje
t toexamine.3. Who triggers the update? The subje
t and its observers rely on the noti�
ationme
hanism to stay
onsistent. But what obje
t a
tually
alls Notify to triggerthe update? Here are two options:(a) Have state-setting operations on Subje
t
all Notify after they
hangethe subje
t's state. The advantage of this approa
h is that observersdo not have to remember to
all Notify on the subje
t. The disadvan-tage is that several
onse
utive operations will
ause several
onse
utiveupdates, whi
h may be ineÆ
ient.(b) Make subje
ts responsible for
alling Notify at the right time. Theadvantage here is that the subje
t
an wait to trigger the update untilafter a series of state
hanges has o

urred, thereby avoiding needlessintermediate updates. The disadvantage is that subje
ts have an addedresponsibility to trigger the update. That makes errors more likely, sin
e
lients might forget to
all Notify.4. Dangling referen
es to deleted subje
ts. Deleting a subje
t should not produ
edangling referen
es in its observers. One way to avoid dangling referen
es isto make the subje
t notify its observers as it is deleted so that they
an resettheir referen
e to it. In general, simply deleting the observers is not an option,be
ause other obje
ts may referen
e them, or they may be observing othersubje
ts as well.

A.1. OBSERVER OBJECT BEHAVIORAL 875. Making sure Subje
t state is self-
onsistent before noti�
ation. It is importantto make sure Subje
t state is self-
onsistent before
alling Notify, be
auseobservers query the subje
t for its
urrent state in the
ourse of updatingtheir own state.This self-
onsisten
y rule is easy to violate unintentionally when Subje
t sub-
lass operations
all inherited operations. For example, the noti�
ation inthe following
ode sequen
e is triggered when the subje
t is in an in
onsistentstate:void MySubje
t::Operation (int newValue) {BaseClassSubje
t::Operation(newValue);// trigger notifi
ation_myInstVar += newValue;// update sub
lass state (too late!)}You
an avoid this pitfall by sending noti�
ations from template methods(Template Method (325)) in abstra
t Subje
t
lasses. De�ne a primitive op-eration for sub
lasses to override, and make Notify the last operation in thetemplate method, whi
h will ensure that the obje
t is self-
onsistent whensub
lasses override Subje
t operations. An example of this is the templatemethod Cut
ontaining the primitive operation Repla
eRange whi
h is over-ridden by the sub
lasses.void Text::Cut (TextRange r) {Repla
eRange(r); // redefined in sub
lassesNotify();}

88 APPENDIX A. SAMPLE DESIGN PATTERNBy the way, it is always a good idea to do
ument whi
h Subje
t operationstrigger noti�
ations.6. Avoiding observer-spe
i�
 update proto
ols: the push and pull models. Imple-mentations of the Observer pattern often have the subje
t broad
ast addi-tional information about the
hange. The subje
t passes this information asan argument to Update. The amount of information may vary widely.At one extreme, whi
h we
all the push model, the subje
t sends observersdetailed information about the
hange, whether they want it or not. At theother extreme is the pull model; the subje
t sends nothing but the mostminimal noti�
ation, and observers ask for details expli
itly thereafter.The push model might make observers less reusable, be
ause Subje
t
lassesmake assumptions about Observer
lasses that are not always true. The pullmodel emphasizes the subje
t's ignoran
e of its observers, whereas the pushmodel assumes subje
ts know something about their observers' needs. On theother hand, the pull model is potentially ineÆ
ient, be
ause Observer
lassesmust as
ertain what
hanged without help from the Subje
t.7. Spe
ifying modi�
ations of interest expli
itly. You
an improve update eÆ-
ien
y by extending the subje
t's registration interfa
e to allow registeringobservers only for spe
i�
 events of interest. When su
h an event o

urs,the subje
t informs only those observers that have registered interest in thatevent. One way to support this uses the notion of aspe
ts for Subje
t ob-je
ts. To register interest in parti
ular events, observers are atta
hed to their

A.1. OBSERVER OBJECT BEHAVIORAL 89subje
ts usingvoid Subje
t::Atta
h(Observer*, Aspe
t& interest);where interest spe
i�es the event of interest. At noti�
ation time, the subje
tsupplies the
hanged aspe
t to its observers as a parameter to the Updateoperation. For example:void Observer::Update(Subje
t*, Aspe
t& interest);8. En
apsulating
omplex update semanti
s. When the dependen
y relation-ship among subje
ts and observers is parti
ularly
omplex, an obje
t thatmaintains these relationships is possibly required. We
all su
h an obje
ta ChangeManager. Its purpose is to minimize the work required to makeobservers re
e
t a
hange in their subje
t. For example, if an operation in-volves
hanges to several interdependent subje
ts, you may have to ensurethat their observers are noti�ed only after all the subje
ts were modi�ed toavoid notifying observers more than on
e.ChangeManager has three responsibilities:(a) It maps a subje
t to its observers and provides an interfa
e to main-tain this mapping. This eliminates the need for subje
ts to maintainreferen
es to their observers and vi
e versa.(b) It de�nes a parti
ular update strategy.(
) It updates all dependent observers at the request of a subje
t.

90 APPENDIX A. SAMPLE DESIGN PATTERNFigure A.4 depi
ts a simple ChangeManager-based implementation of the Ob-server pattern. There are two spe
ialized ChangeManagers. SimpleChangeManageris naive in that it always updates all observers of ea
h subje
t. In
on-trast, DAGChangeManager handles dire
ted-a
y
li
 graphs of dependen
iesamong subje
ts and their observers. A DAGChangeManager is preferable toa SimpleChangeManager when an observer observes more than one subje
t.In that
ase, a
hange in two or more subje
ts might
ause redundant up-dates. The DAGChangeManager ensures the observer re
eives just one update.SimpleChangeManager is �ne when multiple updates are not an issue.
ChangeManager

Register(Subject, Observer)
Unregister(Subject, Observer)
Notify()

Subject-Observer mapping

Observer

Update()Attach(Observer)
Detach(Observer)
Notify()

Subject

chman->Register(this,o)

chman->Notify()

forall s in subjects
 forall o in observers
 o->Update(s)

mark all observers to update
update all marked observers

subjects

chman

observers

Register(Subject, Observer)
Unregister(Subject, Observer)
Notify()

Register(Subject, Observer)

Notify()
Unregister(Subject, Observer)

DAGChangeManagerSimpleChangeManager

Figure A.4: Observer Design Pattern Change ManagerChangeManager is an instan
e of the Mediator (273) pattern. In general

A.1. OBSERVER OBJECT BEHAVIORAL 91there is only one ChangeManager, and it is known globally. The Singleton(127) pattern is potentially useful here.9. Combining the Subje
t and Observer
lasses. Class libraries written in lan-guages that la
k multiple inheritan
e (like Smalltalk) generally do not de�neseparate Subje
t and Observer
lasses. One proposed solution is the
ombina-tion of their interfa
es into one
lass. That lets you de�ne an obje
t that a
tsas both a subje
t and an observer without multiple inheritan
e. In Smalltalk,for example, the Subje
t and Observer interfa
es are de�ned in the root
lassObje
t, making them available to all
lasses.A.1.10 Sample CodeAn abstra
t
lass de�nes the Observer interfa
e:
lass Subje
t;
lass Observer {publi
:virtual ~Observer();virtual void Update(Subje
t* theChangedSubje
t) = 0;prote
ted:Observer();};This implementation supports multiple subje
ts for ea
h observer. The subje
tpassed to the Update operation lets the observer determine whi
h subje
t
hangedwhen it observes more than one.Similarly, an abstra
t
lass de�nes the Subje
t interfa
e:

92 APPENDIX A. SAMPLE DESIGN PATTERN
lass Subje
t {publi
:virtual ~Subje
t();virtual void Atta
h(Observer*);virtual void Deta
h(Observer*);virtual void Notify();prote
ted:Subje
t();private:List<Observer*> *_observers;};void Subje
t::Atta
h (Observer* o) {_observers->Append(o);}void Subje
t::Deta
h (Observer* o) {_observers->Remove(o);}void Subje
t::Notify () {ListIterator<Observer*> i(_observers);for (i.First(); !i.IsDone(); i.Next()) {i.CurrentItem()->Update(this);}}Clo
kTimer is a
on
rete subje
t for storing and maintaining the time of day. Itnoti�es its observers every se
ond. Clo
kTimer provides an interfa
e for retrievingindividual time units su
h as the hour, minute, and se
ond.
lass Clo
kTimer : publi
 Subje
t {publi
:Clo
kTimer();

A.1. OBSERVER OBJECT BEHAVIORAL 93virtual int GetHour();virtual int GetMinute();virtual int GetSe
ond();void Ti
k();};The Ti
k operation gets
alled by an internal timer at regular intervals toprovide an a

urate time base. Ti
k updates the Clo
kTimer's internal state and
alls Notify to inform observers of the
hange:void Clo
kTimer::Ti
k () {// update internal time keeping state// ...Notify();} Now we
an de�ne a
lass DigitalClo
k that displays the time. It inheritsits graphi
al fun
tionality from a Widget
lass provided by a user interfa
e toolkit.The Observer interfa
e is mixed into the DigitalClo
k interfa
e by inheriting fromObserver.
lass DigitalClo
k: publi
 Widget, publi
 Observer {publi
:DigitalClo
k(Clo
kTimer*);virtual ~DigitalClo
k();virtual void Update(Subje
t*);// overrides Observer operationvirtual void Draw();// overrides Widget operation;// defines how to draw the digital
lo
kprivate:Clo
kTimer* _subje
t;

94 APPENDIX A. SAMPLE DESIGN PATTERN};DigitalClo
k::DigitalClo
k (Clo
kTimer* s) {_subje
t = s;_subje
t->Atta
h(this);}DigitalClo
k::~DigitalClo
k () {_subje
t->Deta
h(this);}Before the Update operation draws the
lo
k fa
e, it
he
ks to make sure thenotifying subje
t is the
lo
k's subje
t:void DigitalClo
k::Update (Subje
t* theChangedSubje
t) {if (theChangedSubje
t == _subje
t) {Draw();}}void DigitalClo
k::Draw () {// get the new values from the subje
tint hour = _subje
t->GetHour();int minute = _subje
t->GetMinute();// et
.// draw the digital
lo
k}An AnalogClo
k
lass is similarly de�ned.
lass AnalogClo
k : publi
 Widget, publi
 Observer {publi
:AnalogClo
k(Clo
kTimer*);virtual void Update(Subje
t*);virtual void Draw();

A.1. OBSERVER OBJECT BEHAVIORAL 95// ...};The following
ode
reates an AnalogClo
k and a DigitalClo
k that alwaysshow the same time:Clo
kTimer* timer = new Clo
kTimer;AnalogClo
k* analogClo
k = new AnalogClo
k(timer);DigitalClo
k* digitalClo
k = new DigitalClo
k(timer);Whenever the timer ti
ks, the two
lo
ks are updated and redisplay themselvesappropriately.A.1.11 Known UsesThe �rst and perhaps best-known example of the Observer pattern appears inSmalltalkModel/View/Controller (MVC), the user interfa
e framework in the Small-talk environment [KP88℄. MVC's Model
lass plays the role of Subje
t, while Viewis the base
lass for observers. Smalltalk, ET++ [WGM88℄, and the THINK
lasslibrary [Sym93b℄ provide a general dependen
y me
hanism by putting Subje
t andObserver interfa
es in the parent
lass for all other
lasses in the system.Other user interfa
e toolkits that employ this pattern are InterViews [LVC89℄,the Andrew Toolkit [P+88℄, and Unidraw [VL90℄. InterViews de�nes Observerand Observable (for subje
ts)
lasses expli
itly. Andrew
alls them "view" and"data obje
t," respe
tively. Unidraw splits graphi
al editor obje
ts into View (forobservers) and Subje
t parts.

96 APPENDIX A. SAMPLE DESIGN PATTERNA.1.12 Related PatternsMediator (273): By en
apsulating
omplex update semanti
s, the ChangeManagera
ts as mediator between subje
ts and observers.Singleton (127): The ChangeManagermay use the Singleton pattern to make itunique and globally a

essible.

Bibliography[1℄ Amund Aarsten, Davide Brugali, and Giuseppe Menga. Designing
on
urrentand distributed
ontrol systems. Communi
ations of the ACM, 39(10):50{58,1996.[2℄ Amund Aarsten, Davide Brugali, and Giuseppe Menga. Patternsfor
ooperation. In Pro
eedings of the Third Joint Pattern Lan-guages of Programs, Distribution Workshop, 1996. Retrieved January20, 2000 from the PLoPTM 1996 database on the World Wide Web:http://www.
s.wustl.edu/�s
hmidt/PLoP-96/amund1.ps.gz.[3℄ Amund Aarsten, Gabriele Elia, and Giuseppe Menga. G++: A pat-tern language for the obje
t-oriented design of
on
urrent and distributedinformation systems, with Appli
ations to
omputer integrated manufa
-turing. In James O. Coplien and Douglas C. S
hmidt, editors, Pat-tern Languages of Programs Design, volume 1 of Software Patterns Se-ries. Addison-Wesley, 1995. Retrieved January 1, 2000 from Pat-tern Languages of Programs Design database on the World Wide Web:ftp://galileo.polito.it/arti
les/gpp/plop94.ps.[4℄ Harold Abelson and Gerald Jay Sussman. Stru
ture and Interpre-tation of Computer Programs. MIT Press, 1984. Retrieved Jan-uary 9, 2001 from the MIT Press database on the World Wide Web:http://mitpress.mit.edu/si
p/full-text/si
p/book/book.html.[5℄ Gul Agha, Svend Fr�lund, WooYoung Kim, Rajendra Panwar, Anna Pat-terson, and Daniel Sturman. Abstra
tion and modularity me
hanisms for
on
urrent
omputing. In Gul Agha, Peter Wegner, and Akinori Yonezawa,editors, Resear
h dire
tions in
on
urrent obje
t-oriented programming. MIT,1993. 97

98 BIBLIOGRAPHY[6℄ Henning Andersen. Network: A pattern for
omposing
omputation. In Pro-
eedings of the Se
ond European Conferen
e on Pattern Languages of Pro-grams, General Design Patterns, Muni
h, Germany: Siemens, 1997. (Eu-roPLoP'97) Siemens Te
hni
al Report 120/SW1/FB. Retrieved September19, 2000 from the EuroPLoPTM 1997 database on the World Wide Web:http://www.riehle.org/events/europlop-1997/p15final.pdf.[7℄ Gregory Andrews. Con
urrent Programming: Prin
iples and Pra
ti
e.Addison-Wesley, 1991.[8℄ Gregory Andrews. Foundations of Multithreaded, Parallel, and DistributedProgramming. Addison-Wesley, 2000.[9℄ Gregory R. Andrews and Fred B. S
hneider. Con
epts and notations for
on
urrent programming. Computing Surveys, 15(1), Mar
h 1983.[10℄ Anonymous. Demon, July 1993. Retrieved De
ember 20, 2000from the Ha
ker Di
tionary database on the World Wide Web:http://www.lysator.liu.se/ha
kdi
t/split2/demon.html.[11℄ Anonymous. Glossary of te
h support terms asso
iated with version 5.0.xof the raptor �rewall, 1998. Retrieved January 12, 2001 from AXENT Te
h-nologies Te
hni
al Support Group for Raptor produ
ts database on the WorldWide Web: http://www.raptor.
om/
s/FAQ/eagle5glossary.html.[12℄ Anonymous. Self-Addressed Stamped Envelope. Portland Pat-tern Repository, 4 September 2000. http://
2.
om/
gi/wiki?SelfAddressedStampedEnvelope.[13℄ Brad Appleton. What is a pattern anyway? Patterns andSoftware: Essential Con
epts and Terminology, 14 February 2000.http://www.entera
t.
om/�bradapp/do
s/patterns-intro.html.[14℄ Joe Armstrong, Robert Virding, Claes Wikstr�om, and Mike Williams. Con-
urrent Programming in ERLANG. Prenti
e Hall, Se
ond edition, 1996.[15℄ Jean Ba
on. Con
urrent Systems: An Integrated Approa
h to Operating Sys-tems, Database, and Distributed Systems. Addison Wesley, Se
ond edition,1998.[16℄ Rajive Bagrodia. Syn
hronization of asyn
hronous pro
esses in CSP.The Asso
iation for Computing Ma
hinery Transa
tions on Program-ming Languages and Systems, 11(4), 1989. Retrieved September 28,

BIBLIOGRAPHY 992000 from the The Asso
iation for Computing Ma
hinery Digital Librarydatabase on the World Wide Web: http://www.a
m.org/pubs/
itations/journals/toplas/1989-11-4/p585-bagrodia.[17℄ Stephen Ber
zuk. Organizational multiplexing: Patterns for pro
essing satel-lite telemetry with distributed teams. In John M. Vlissides, James O. Coplien,and Norman L. Kerth, editors, Pattern Languages of Programs Design, vol-ume 2 of Software Patterns Series. Addison-Wesley, 1996.[18℄ Grady Boo
h. Obje
t Oriented Analysis and Design with Appli
ations. Ben-jamin Cummings, Se
ond edition, 1994.[19℄ K. S. Booth, W. M. Gentleman, and J. S
hae�er. Anthropomorphi
 Pro-gramming. Te
hni
al Report CS-82-47, Department of Computer S
ien
e,University of Waterloo, 1984.[20℄ Per Brin
h Hansen. Con
urrent programming
on
epts. Software|Pra
ti
eand Experien
e, 5(4):223{245, De
ember 1973.[21℄ F. Lee Brown, Jr., James DiVietri, Graziella Diaz de Villegas,and Eduardo B. Fernandez. The authenti
ator pattern. In Pro-
eedings of the Sixth Pattern Languages of Programs, The Group 3Workshop. Pattern Languages of Programs, 1999. Retrieved Jan-uary 5, 2001 from the PLoPTM 1999 database on the WorldWide Web: http://st-www.
s.uiu
.edu/ plop/plop99/pro
eedings/Fernandez4/Authenti
ator3.PDF.[22℄ Alan Burns and Geo� Davies. Con
urrent Programming. Addison-Wesley,1993.[23℄ Frank Bus
hmann. The master-slave pattern. In James O. Coplien and Dou-glas C. S
hmidt, editors, Pattern Languages of Programs Design, volume 1 ofSoftware Patterns Series. Adddison-Wesley, 1995.[24℄ Frank Bus
hmann and Regine Meunier. A system of patterns. In James O.Coplien and Douglas C. S
hmidt, editors, Pattern Languages of ProgramsDesign, volume 1 of Software Patterns Series. Adddison-Wesley, 1995.[25℄ Frank Bus
hmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, andMi
hael Stal. Pattern-Oriented Software Ar
hite
ture | A System of Pat-terns. John Wiley and Sons Ltd, 1996.

100 BIBLIOGRAPHY[26℄ Ni
holas Carriero and David Gelertner. How to write paral-lel programs: a guide to the perplexed. ACM Computing Sur-veys, 21(3), September 1989. Retrieved September 28, 2000 fromthe ACM Digital Library database on the World Wide Web:http://dev.a
m.org/pubs/
itations/journals/surveys/1989-21-3/p323-
arriero/.[27℄ Jos�e Cela and Jos�e Alfonso. Parallelization of the spai pre
onditioner in amaster-slave
on�guration. In Third European PVM Conferen
e Pro
eedings,Le
ture Notes in Computer S
ien
e. Springer-Verlag, 1996.[28℄ Arthur Charlesworth. The multiway rendezvous. Transa
tions on Program-ming Languages and Systems, 9(2), July 1987.[29℄ David R. Cheriton. Multi-pro
ess stru
turing and the thoth operating system.Te
hni
al Report CS-79-19, Department of Computer S
ien
e, University ofWaterloo, 1979.[30℄ David R. Cheriton. The V distributed system. Communi
ations of the ACM,31(3), Mar
h 1988.[31℄ Peter Coad, David North, and Mark May�eld. Obje
t Models : Strategies,Patterns and Appli
ations. Prenti
e Hall, Se
ond edition, 1997.[32℄ James Coplien. Advan
ed C++ Programming Styles and Idioms. Addison-Wesley, 1992.[33℄ James O. Coplien and Douglas C. S
hmidt, editors. Pattern Languages ofProgram Design. Software Patterns Series. Addison-Wesley, 1995.[34℄ Fernando Das Neves and Alejandra Garrido. Warden: A pattern forobje
t distribution. In Pro
eedings of the Third Joint Pattern Lan-guages of Programs, Distribution Workshop, 1996. Retrieved January20, 2000 from the PLoPTM 1996 database on the World Wide Web:http://www.
s.wustl.edu/�s
hmidt/ PLoP-96/warden.ps.gz.[35℄ Andrew Davison. A Survey of Logi
 Programming-Based Obje
t-OrientedLanguages. Massa
husetts Institute of Te
hnology, 1993.[36℄ Dennis de Champeaux, Douglas Lea, and Penelope Faure. Obje
t-OrientedSystem Development. Addison-Wesley, HTML edition, 1993. RetrievedSeptember 20, 2000 from Doug Lea's home page on the World Wide Web:http://g.oswego.edu/dl/oosdw3/index.html.

BIBLIOGRAPHY 101[37℄ Edsger W. Dijkstra. Hierar
hi
al ordering of sequential pro
esses. In C.A.R.Hoare and R.H. Perrott, editors, Operating Systems Te
hniques, pages 72{93.1972.[38℄ Jim Doble. Shopper. In John M. Vlissides, James O. Coplien, and Norman L.Kerth, editors, Pattern Languages of Programs Design, volume 2 of SoftwarePatterns Series. Addison-Wesley, 1996.[39℄ Stephen H. Edwards. Streams: A pattern for pull-driven pro
essing. InJames O. Coplien and Douglas C. S
hmidt, editors, Pattern Languages ofPrograms Design, volume 1 of Software Patterns Series. Adddison-Wesley,1995.[40℄ Bj�orn Eiderb�a
k and Jiarong Li. Undertaker. In Pro
eedings of theSe
ond European Conferen
e on Pattern Languages of Programs, Gen-eral Design Patterns, Muni
h, Germany: Siemens, 1997. (EuroPLoP'97)Siemens Te
hni
al Report 120/SW1/FB. Retrieved September 19,2000 from the EuroPLoPTM 1997 database on the World Wide Web:http://www.riehle.org/events/europlop-1997/p17final.pdf.[41℄ Philip Eskelin. Component intera
tion patterns. In Pro
eedings ofthe Sixth Pattern Languages of Programs, The Group 1 Workshop.Pattern Languages of Programs, 1999. Retrieved September 14,2000 from the PLoPTM 1999 database on the World Wide Web:http://st-www.
s.uiu
.edu/�plop/plop99/pro
eedings/Eskelin1/ComponentIntera
tionPatterns.PDF.[42℄ Philip Eskelin. Interruptible
ommand. In Pro
eedings of the FifthPattern Languages of Programs, The Group 2 Network of LearningWorkshop. Pattern Languages of Programs, 1999. Retrieved Septem-ber 20, 2000 from the PLoPTM 1998 database on the World Wide Web:http://jerry.
s.uiu
.edu/�plop/plop98/final submissions/P46.pdf.[43℄ Ted Faison. Intera
tion patterns for
ommuni
ating pro
esses. In Pro-
eedings of the Fifth Pattern Languages of Programs, Four-Story LimitWorkshop, 1998. Retrieved September 19, 2000 from the PLoPTM 1998database on the World Wide Web: http://jerry.
s.uiu
.edu/�plop/plop98/final submissions/P02.pdf.[44℄ Peter Feiler and Walter Ti
hy. Propagator: A family of patterns. InPro
eedings of the Third Joint Pattern Languages of Programs, System

102 BIBLIOGRAPHYCon�guration and Resour
e Management Workshop, 1996. Retrieved Jan-uary 20, 2000 from the PLoPTM 1996 database on the World Wide Web:http://www.
s.wustl.edu/�s
hmidt/ PLoP-96/ti
hy.ps.gz.[45℄ Sebastian Fis
hmeister and Wolfgang Lugmayr. The supervisor-workerpattern. In Pro
eedings of the Sixth Pattern Languages of Programs,The Group 5 Workshop. Pattern Languages of Programs, 1999. RetrievedSeptember 14, 2000 from the PLoPTM 1999 database on the World WideWeb:http://st-www.
s.uiu
.edu/�plop/plop99/pro
eedings/fis
hmeister/pattern-times.pdf.[46℄ Robert Flanders and Eduardo B. Fernandez. Data �lter ar
hite
turepattern. In Pro
eedings of the Sixth Pattern Languages of Programs, TheGroup 7 Workshop. Pattern Languages of Programs, 1999. RetrievedJanuary 5, 2001 from the PLoPTM 1999 database on the World Wide Web:http://st-www.
s.uiu
.edu/ plop/plop99/pro
eedings/Fernandez5/Flanders3.PDF.[47℄ Eri
h Gamma, Ri
hard Helm, Ralph Johnson, and John M. Vlissides. De-sign Patterns: Elements of Reusable Obje
t-Oriented Software. ProfessionalComputing Series. Addison-Wesley, 1995.[48℄ Narain Gehani. Broad
asting sequential pro
esses (bsp). In Narain Gehaniand Andrew D. M
Gettri
k, editors, Con
urrent Programming, pages 234{255. Addison-Wesley, 1988.[49℄ Narain Gehani and Andrew M
Gettri
k, editors. Con
urrent Programming.International Computer S
ien
e Series. Addison-Wesley, 1988.[50℄ Morven Gentleman. Message passing between sequential pro
esses: the replyprimitive and the administrator
on
ept. Software|Pra
ti
e and Experien
e,11(5), 1981.[51℄ Morven Gentleman, Terry Shepard, and Douglas Thoreson. Administratorsand multipro
essor rendezvous me
hanisms. Software|Pra
ti
e and Experi-en
e, 22(1), 1992.[52℄ Ramiro Gonz�alez Ma
iel. The emissary design pattern. In Pro
eed-ings of the Fifth Pattern Languages of Programs, Agri
ultural ValleysWorkshop, 1998. Retrieved September 19, 2000 from the PLoPTM 1998database on the World Wide Web: http://jerry.
s.uiu
.edu/�plop/plop98/final submissions/P57.pdf.

BIBLIOGRAPHY 103[53℄ Mark Grand. Patterns in Java: a
atalog of reusable design patterns, vol-ume 1. John Wiley and Sons, In
., 1998.[54℄ Mark Grand. Patterns in Java: a
atalog of reusable design patterns, vol-ume 2. John Wiley and Sons, In
., 1999.[55℄ Ennio Grasso. Syn
hronizer|an obje
t behavioral pattern for
on
urrentprogramming. In Pro
eedings of the Se
ond European Conferen
e on PatternLanguages of Programs, Distribution Patterns, Muni
h, Germany: Siemens,1997. (EuroPLoP'97) Siemens Te
hni
al Report 120/SW1/FB. RetrievedSeptember 19, 2000 from the EuroPLoPTM 1997 database on the World WideWeb: http://www.riehle.org/events/europlop-1997/p3final.pdf.[56℄ Timothy Harrison, Douglas C. S
hmidt, and Irfan Pyarali. Asyn
hronous
ompletion token: An obje
t behavioural pattern for eÆ
ient asyn
hronousevent handling. In Pattern Languages of Programs Design, volume 3of Software Patterns Series. Addison-Wesley, 1997. Retrieved January20, 2000 from the PLoPTM 1996 database on the World Wide Web:http://www.
s.wustl.edu/�s
hmidt/PLoP-96/ACT.ps.gz.[57℄ Stephen Hartley. Con
urrent Programming: the Java programming language.Oxford University Press, 1998.[58℄ Viviane Hays, Mar
 Loutrel, and Eduardo B. Fernandez. The ob-je
t �lter and a

ess
ontrol framework. In Pro
eedings of the Sev-enth Pattern Languages of Programs, The OÆ
e Conne
tions Work-shop. Pattern Languages of Programs, 2000. Retrieved De
ember13, 2000 from the PLoPTM 2000 database on the World Wide Web:http://jerry.
s.uiu
.edu/ plop/plop2k/Fernandez3/Fernandez3.pdf.[59℄ Ri
hard Helm and Eri
h Gamma. Patterns and software design: The
ourierpattern. Dr. Dobb's Sour
ebook, pages 55{59, January/February 1996.[60℄ K. Hendrikx, E. Duval, and H. Olivi�e. Managing shared resour
es. InPro
eedings of the Fifth European Conferen
e on Pattern Languages ofPrograms, Design and Programming Workshop, 2000. Retrieved O
tober21, 2000 from the EuroPLoPTM 2000 database on the World Wide Web:http://www.
oldewey.
om/europlop2000/papers/hendrikx.zip.[61℄ Mi
hi Henning and Steve Vinoski. Advan
ed CORBA r
 Programming withC++. Addison-Wesley, 1999.

104 BIBLIOGRAPHY[62℄ Mark Heuser and Eduardo Fernandez. RPC
lient: A pattern for the
lient-side implementation of a pipelined request/response proto
ol. InPro
eedings of the Sixth Pattern Languages of Programs, Group FiveWorkshop. Pattern Languages of Programs, 1999. Retrieved September14, 2000 from the PLoPTM 1999 database on the World Wide Web:http://jerry.
s.uiu
.edu/�plop/plop99/pro
eedings/fernandezA/heuserOO3.PDF.[63℄ Robert Hirs
hfeld and Je� Eastman. Lo
k server. In Pro
eedings of the FifthPattern Languages of Programs, Four-Story Limit Workshop, 1998. RetrievedSeptember 19, 2000 from the PLoPTM 1998 database on the World WideWeb: http://jerry.
s.uiu
.edu/�plop/plop98/final submissions/P18.pdf.[64℄ Robert Hirs
hfeld and Je� Eastman. Noti�
ation server. InPro
eedings of the Fifth Pattern Languages of Programs, Four-Story Limit Workshop, 1998. Retrieved September 19, 2000from the PLoPTM 1998 database on the World Wide Web:http://jerry.
s.uiu
.edu/�plop/plop98/final submissions/P20.pdf.[65℄ James C. Hu and Christopher D. Gill. Patterns in
exible server appli
ationframeworks. In Pro
eedings of the Seventh Pattern Languages of Programs,The Unself
ons
ious Pro
ess Workshop. Pattern Languages of Programs,2000. Retrieved De
ember 13, 2000 from the PLoPTM 2000 database on theWorld Wide Web: http://jerry.
s.uiu
.edu/ plop/plop2k/Hu/Hu.pdf.[66℄ Prashant Jain and Mi
hael Kir
her. Leasing. In Pro
eedingsof the Seventh Pattern Languages of Programs, Quiet Ba
ks Work-shop. Pattern Languages of Programs, 2000. Retrieved O
tober21, 2000 from the PLoPTM 2000 database on the World WideWeb: http://jerry.
s.uiu
.edu/ plop/plop2k/Jain-Kir
her/Jain-Kir
her.pdf.[67℄ Prashant Jain and Mi
hael Kir
her. Lookup. In Pro
eedings ofthe Fifth European Conferen
e on Pattern Languages of Programs, Ar-
hite
ture and Design Workshop, 2000. Retrieved O
tober 21, 2000from the EuroPLoPTM 2000 database on the World Wide Web:http://www.
oldewey.
om/europlop2000/papers/jain+kir
her.zip.[68℄ Prashant Jain and Douglas C. S
hmidt. Servi
e
on�gurator {a pattern for dynami

on�guration and re
on�guration of
ommu-

BIBLIOGRAPHY 105ni
ation servi
es. In Pro
eedings of the Third Pattern Languagesof Programs, System Con�guration and Resour
e Management Work-shop, 1996. Retrieved January 20, 2000 from the PLoPTM 1996database on the World Wide Web: http://www.
s.wustl.edu/�s
hmidt/PLoP-96/Servi
e-Configurator.ps.gz.[69℄ Jean-Mar
 J�ez�equel, Mi
hel Train, and Christine Mingins. Design Patternsand Contra
ts. Addison-Wesley, 2000.[70℄ Raman Kannan. Managing
ontinuous data feed with sub-s
riber/publisher pattern. SIGPLAN Noti
es, 30(10), O
tober1995. Retrieved September 20, 2000 from the OOPSLA 1995database on the World Wide Web: http://www.
s.wustl.edu/�s
hmidt/OOPSLA-95/html/papers/part.ps.gz.[71℄ Jung Kim and Kevin Benner. Implementation patterns for the observer pat-tern. In John M. Vlissides, James O. Coplien, and Norman L. Kerth, editors,Pattern Languages of Programs Design, volume 2 of Software Patterns Series.Addison-Wesley, 1996.[72℄ Charles D. Knutson, Timothy A. Budd, and Curtis R. Cook. Multi-paradigm patterns of thought and design. In Joint Pattern Languagesof Programs Conferen
e, Potpourri Workshop, 1996. Retrieved January20, 2000 from the PLoPTM 1996 database on the World Wide Web:http://www.
s.wustl.edu/�s
hmidt/PLoP-96/knutson.ps.gz.[73℄ Martin Kobeti�
 and Peter Neurath. Survey of obje
t-oriented
on-
urrent programming - fo
us on a
tors, 1995. Retrieved January 14,2000 from the Comenius University database on the World Wide Web:http://obje
t.d
s.fmph.uniba.sk/obje
t/uploads/Diploma theses/1995 Kobeti
 Neurath/www/soo
p/Soo
p.htm.[74℄ R. Lavender and Douglas C. S
hmidt. A
tive obje
t: An obje
t behaviouralpattern for
on
urrent programming. In John M. Vlissides, James O. Coplien,and Norman L. Kerth, editors, Pattern Languages of Programs Design, vol-ume 2 of Software Patterns Series. Addison-Wesley, 1996.[75℄ Doug Lea. Con
urrent Programming in JavaTM: Design Prin
iples and Pat-terns. The JavaTM Series. Addison-Wesley Longman, In
., 1997.[76℄ Doug Lea. Con
urrent Programming in JavaTM: Design Prin
iples and Pat-terns. The JavaTM Series. Addison-Wesley, se
ond edition, 1999.

106 BIBLIOGRAPHY[77℄ Doug Lea. Patterns|dis
ussion faq. Doug Lea's Home Page, De
ember1999. http://g.oswego.edu/dl/pd-FAQ/pd-FAQ.html.[78℄ S.A. Ma
Kay, W. M. Gentleman, D.A. Stewart, and M. Wein. Har-mony as an obje
t-oriented operating system. Te
hni
al Report NRC29636, National Resear
h Coun
il of Canada, September 1988. RetrievedFebruary 19, 2001 from the NRC database on the World Wide Web:http://wwwsel.iit.nr
.
a/abstra
ts/NRC29636.abs.[79℄ Je� Magee and Je� Kramer. Con
urren
y: State Models and Java Programs.John Wiley & Sons, 1999.[80℄ Klaus Marquardt. Patterns for obje
t transport. In Pro
eed-ings of the Fifth European Conferen
e on Pattern Languages of Pro-grams, Design and Programming Workshop, 2000. Retrieved O
tober21, 2000 from the EuroPLoPTM 2000 database on the World WideWeb:http://www.
oldewey.
om/europlop2000/papers.html.[81℄ Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders.Forkjoin. Retrieved January 5, 2001 from the Pattern Language forParallel Appli
ation Programming database on the World Wide Web:http://www.
ise.ufl.edu/resear
h/ParallelPatterns/PatternLanguage/SupportingStru
tures/ForkJoin.htm.[82℄ Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders.Patterns for parallel appli
ation programs. In Pro
eedings of theSixth Pattern Languages of Programs, The Group 1 Workshop.Pattern Languages of Programs, 1999. Retrieved September 14,2000 from the PLoPTM 1999 database on the World Wide Web:http://st-www.
s.uiu
.edu/ plop/plop99/pro
eedings/massingill/massingill.pdf.[83℄ Paul M
Kenney. Sele
ting lo
king primitives for parallel programming. Com-muni
ations of the The Asso
iation for Computing Ma
hinery, 39(10):75{82,1996.[84℄ Frank Metayer. Mat
her-handler. In Pro
eedings of the SixthPattern Languages of Programs, The Group 2 Workshop. Pat-tern Languages of Programs, 1999. Retrieved January 5,2001 from the PLoPTM 1999 database on the World WideWeb: http://st-www.
s.uiu
.edu/ plop/plop99/pro
eedings/Metayer/Mat
herHandler.pdf.

BIBLIOGRAPHY 107[85℄ Regine Meunier. Pipes and �lters ar
hite
ture. In James O. Coplien and Dou-glas C. S
hmidt, editors, Pattern Languages of Programs Design, volume 1 ofSoftware Patterns Series. Adddison-Wesley, 1995.[86℄ James Noble. Found obje
ts. a pattern language for �nding obje
ts fromwithin designs. In Pro
eedings of the First European Conferen
e on PatternLanguages of Programs, Pattern Language Workshop, 1996. Retrieved Jan-uary 21, 2000 from the EuroPLoPTM 1996 database on the World Wide Web:http://www.
s.wustl.edu/�s
hmidt/europlop-96/ww1-papers.html.[87℄ James Noble. Classifying relationships between obje
t-oriented design pat-terns. In Australian Software Enginnering Conferen
e (ASWEC'98), May1998. Retrieved January 16, 2001 from James Noble's draft paper databaseon the World Wide Web: http://www.mri.mq.edu.au/ kjx/drafts.html.[88℄ James Noble and Charles Weir. Pro
eedings of the memory preservationso
iety. In Pro
eedings of the Third European Conferen
e on Pattern Lan-guages of Programs, Patterns of Design Workshop, 1998. Retrieved Septem-ber 14, 2000 from the EuroPLoPTM 1998 database on the World Wide Web:http://www.
oldewey.
om/europlop98/Program/Papers/Weir.ps.gz.[89℄ Jean-Lin Pa
herie and Jean-Mar
 J�ez�equel. The operator de-sign pattern appli
ation to parallel
omputation. In Pro
eedingsof the Third Joint Pattern Languages of Programs, Con
urren
yand Operating Systems Workshop, 1996. Retrieved January 20,2000 from the PLoPTM 1996 database on the World Wide Web:http://www.
s.wustl.edu/�s
hmidt/PLoP-96/jezequel.ps.gz.[90℄ Marta Pati~no, Fran
is
o Ballesteros, Ri
ard Jim�enez, Sergio Ar�evalo, FabioKon, and Roy Campbell. CompositeCalls: A design pattern for eÆ-
ient and
exible
lient-server intera
tion. In Pro
eedings of the Sixth Pat-tern Languages of Programs, Group Seven Workshop. Pattern Languagesof Programs, 1999. Retrieved September 14, 2000 from the PLoPTM1999 database on the World Wide Web: http://jerry.
s.uiu
.edu/�plop/plop99/pro
eedings/ballesteros/interpfim.pdf.[91℄ Lu�is Moniz Pereira, Lu�is Monteiro, Jos�e Cunha, and Joaquin N. Apar�i
io.Delta Prolog: A distributed ba
ktra
king extension with events. In EhudShapiro, editor, Third International Conferen
e on Logi
 Programming, Le
-ture Notes in Computer S
ien
e. Springer-Verlag, 1986.

108 BIBLIOGRAPHY[92℄ Dorina Petriu and Gurudas Somadder. A pattern language for improvingthe
apa
ity of layered
lient/server systems with multi-threaded servers.In Pro
eedings of the Se
ond European Conferen
e on Pattern Languagesof Programs, Distribution Patterns, Muni
h, Germany: Siemens, 1997. (Eu-roPLoP'97) Siemens Te
hni
al Report 120/SW1/FB. Retrieved September19, 2000 from the EuroPLoPTM 1997 database on the World Wide Web:http://www.riehle.org/events/europlop-1997/p23final.pdf.[93℄ Wolfgang Pree. Design Patterns for Obje
t-Oriented Software. Addison-Wesley, 1995.[94℄ Nat Pry
e. Idiom or pattern. Portland Pattern Repository, 8 June 1999.http://
2.
om/
gi/wiki?IdiomOrPattern.[95℄ Irfan Pyarali, Tim Harrison, Douglas C. S
hmidt, and Thomas Jordan.Proa
tor: An ar
hite
tural pattern for demultiplexing and dispat
h-ing handlers for asyn
hronous events. In Brian Foote, Neil Harrison,and Hans Rohnert, editors, Pattern Languages of Programs Design,volume 4 of Software Patterns Series, 1999. Retrieved January 20,2000 from the PLoPTM 1997 database on the World Wide Web:http://st-www.
s.uiu
.edu/users/hanmer/PLoP-97/Pro
eedings/pyarali.proa
tor.pdf.[96℄ Irfan Pyarali, Carlos O'Ryan, and Douglas C. S
hmidt. Patterns for eÆ-
ient, predi
table, s
alable, and
exible dispat
hing
omponents. In Pro-
eedings of the Seventh Pattern Languages of Programs, The Network ofLearning Workshop. Pattern Languages of Programs, 2000. Retrieved De-
ember 13, 2000 from the PLoPTM 2000 database on the World Wide Web:http://jerry.
s.uiu
.edu/ plop/plop2k/Pyarali/Pyarali.pdf.[97℄ Mi
hel Raynal. A simple taxonomy for distributed mutual ex
lusion algo-rithms. Operating Systems Review, 25:47{50, April 1991.[98℄ John Hamilton Reppy. Higher-order Con
urren
y. PhD thesis, Department ofComputer S
ien
e, Cornell University, Itha
a, NY, 1992. Retrieved January18, 2000 from the NECI S
ienti�
 Literature Digital Library database on theWorld Wide Web: http://
iteseer.nj.ne
.
om/104521.html.[99℄ Dirk Riehle. Bureau
ra
y-a
omposite pattern. In Pro
eedings of theFirst European Conferen
e on Pattern Languages of Programs, Other Pat-terns Workshop, 1996. Retrieved January 21, 2000 from the EuroPLoPTM

BIBLIOGRAPHY 1091996 database on the World Wide Web: http://www.
s.wustl.edu/�s
hmidt/europlop-96/ww3-papers.html.[100℄ Linda Rising. The Patterns Handbook: Te
hniques, Strategies, and Appli
a-tions. Cambridge University Press, 1998. Colle
ted and Introdu
ed by LindaRising.[101℄ Ant�onio Rito Silva, Jo~ao Pereira, and Jos�e Alves. Obje
t syn
hroniza-tion patterns. In Pro
eedings of the First European Conferen
e on PatternLanguages of Programs, Distribution Workshop, 1996. Retrieved January21, 2000 from the EuroPLoPTM 1996 database on the World Wide Web:http://www.
s.wustl.edu/�s
hmidt/europlop-96/papers/paper09.ps.[102℄ Ant�onio Rito Silva, Jo~ao Pereira, and Pedro Sousa. Lo
al serialization pat-tern. In Tenth Annual Conferen
e on Obje
t-Oriented Programming Sys-tems, Languages, and Appli
ations (OOPSLA'95), volume 30(10). SIGPLANNoti
es, O
tober 1995. Retrieved September 20, 2000 from the OOP-SLA 1995 database on the World Wide Web: http://www.
s.wustl.edu/�s
hmidt/OOPSLA-95/html/papers/atomobj.ps.gz.[103℄ Hans Rohnert. The proxy design pattern revisited. In John M. Vlissides,James O. Coplien, and Norman L. Kerth, editors, Pattern Languages of Pro-grams Design, volume 2 of Software Patterns Series. Addison-Wesley, 1996.[104℄ James Rumbaugh, Mi
hael Blaha, William Premerlani, Frederi
k Eddy, andWilliamLorensen. Obje
t-Oriented Modeling and Design. Prenti
e Hall, 1991.[105℄ Aamod Sane and Roy Campbell. Composite messages: A stru
tural patternfor
ommuni
ation between
omponents. In Tenth Annual Conferen
eon Obje
t-Oriented Programming Systems, Languages, and Appli
ations(OOPSLA'95), volume 30(10). SIGPLAN Noti
es, O
tober 1995. RetrievedSeptember 20, 2000 from the OOPSLA 1995 database on the World WideWeb: http://www.
s.wustl.edu/�s
hmidt/OOPSLA-95/html/papers/aamod.ps.gz.[106℄ Aamod Sane and Roy Campbell. Resour
e ex
hanger: A behavioural pat-tern for low-overhead
on
urrent resour
e management. In John M. Vlis-sides, James O. Coplien, and Norman L. Kerth, editors, Pattern Languagesof Programs Design, volume 2 of Software Patterns Series, pages 461{473.Addison-Wesley, 1996.

110 BIBLIOGRAPHY[107℄ Douglas C. S
hmidt. Family of design patterns for appli
ation-levelgateways. Theory and Pra
ti
e of Obje
t Systems, 2(1), De
ember1996. Spe
ial issue on Patterns and Pattern Languages. RetrievedJanuary 20, 2000 from the ACE database on the World Wide Web:http://www.
s.wustl.edu/�s
hmidt/PDF/TAPOS-00.pdf.[108℄ Douglas C. S
hmidt. Applying patterns and frameworks to develop obje
t-oriented
ommuni
ation software. In Peter Salus, editor, Handbook of Pro-gramming Languages, volume 1. Ma
Millan Computer Publishing, 1997.[109℄ Douglas C. S
hmidt. Strategized lo
king, thread-safe interfa
e, and s
opedlo
king: Patterns and idioms for simplifying multi-threaded C++
om-ponents. C++ Report, 11(9), September 1999. Retrieved January 20,2000 from the World Wide Web: http://www.
s.wustl.edu/�s
hmidt/PDF/lo
king-patterns.pdf.[110℄ Douglas C. S
hmidt. Monitor obje
t|an obje
t behavioral pat-tern for
on
urrent programming. C++ Report, 2000. Re-trieved September 20, 2000 from the World Wide Web:http://www.
s.wustl.edu/�s
hmidt/PDF/monitor.pdf.[111℄ Douglas C. S
hmidt and Timothy Harrison. Double-
he
ked lo
king. anobje
t behavioral pattern for initializing and a

essing thread-safe ob-je
ts eÆ
iently. In Robert C. Martin, Dirk Riehle, Frank Bus
hmann,and John Vlissides, editors, Pattern Languages of Programs Design, vol-ume 3 of Software Patterns Series. Addison-Wesley, 1997. Retrieved Jan-uary 20, 2000 from the PLoPTM 1996 database on the World Wide Web:http://www.
s.wustl.edu/�s
hmidt/PLoP-96/DC-Lo
king.ps.gz.[112℄ Douglas C. S
hmidt, Carlos O'Ryan, Mi
hael Kir
her, Irfan Pyarali,and Frank Bus
hmann. Leader/followers: A design pattern for eÆ-
ient multi-threaded event demultiplexing and dispat
hing. In Pro
eedingsof the Seventh Pattern Languages of Programs, The Network of Learn-ing Workshop. Pattern Languages of Programs, 2000. Retrieved De
em-ber 13, 2000 from the PLoPTM 2000 database on the World Wide Web:http://jerry.
s.uiu
.edu/ plop/plop2k/ORyan/ORyan.pdf.[113℄ Fred S
hneider. On Con
urrent Programming. Springer-Verlag, 1997.[114℄ Jean-Fran
ois Selber and Gilles Le Go�. Task manager design pattern.In Pro
eedings of the Fourth European Conferen
e on Pattern Languages

BIBLIOGRAPHY 111of Programs, Patterns of Design Workshop, 1999. Retrieved September14, 2000 from the EuroPLoPTM 1999 database on the World Wide Web:http://www.argo.be/europlop/Papers/Final/Goff.do
.[115℄ Mary Shaw. Some patterns for software ar
hite
ture. In John M. Vlissides,James O. Coplien, and Normal L. Kerth, editors, Pattern Languages of Pro-grams Design, volume 2 of Software Patterns Series. Addison-Wesley, 1996.[116℄ J. A. Simpson and E. S. C. Weiner, editors. The Oxford English Di
tio-nary. Oxford University Press, 2 edition, 1989. Retrieved November 6,2000 from The Oxford English Di
tionary database on the World Wide Web:http://daisy.uwaterloo.
a/�fwtompa/oed/oed-lo
al/lookup.
gi.[117℄ Peter Sommerlad. Command pro
essor. In John M. Vlissides, James O.Coplien, and Norman L. Kerth, editors, Pattern Languages of Programs De-sign, volume 2 of Software Patterns Series. Addison-Wesley, 1996.[118℄ Peter Sommerlad and Frank Bus
hmann. The manager design pat-tern. In Joint Pattern Languages of Programs Conferen
e, System Con-�guration and Resour
e Management Workshop, 1996. Retrieved Jan-uary 20, 2000 from the PLoPTM 1996 database on the World Wide Web:http://www.
s.wustl.edu/�s
hmidt/PLoP-96/ sommerlad.ps.gz.[119℄ Peter Sommerlad and Mi
hael Stal. The
lient-dispat
her-server design pat-tern. In John M. Vlissides, James O. Coplien, and Norman L. Kerth, editors,Pattern Languages of Programs Design, volume 2 of Software Patterns Series.Addison-Wesley, 1996.[120℄ Mi
hael Stal. The broker ar
hite
tural framework. In Tenth An-nual Conferen
e on Obje
t-Oriented Programming Systems, Languages,and Appli
ations (OOPSLA'95), volume 30(10). SIGPLAN Noti
es, O
-tober 1995. Retrieved September 20, 2000 from the OOPSLA 1995database on the World Wide Web: http://www.
s.wustl.edu/�s
hmidt/OOPSLA-95/html/papers/broker.ps.gz.[121℄ Darlene Stewart and W. Gentleman. Non-stop monitoring and de-bugging on shared-memory multipro
essors. In Pro
eedings of the 2ndInternational Workshop on Software Engineering for Parallel and Dis-tributed Systems (PDSE '97). Institute of Ele
tri
al and Ele
troni
sEngineers, In
., 1997. Retrieved January 19, 2000 from the Na-tional Resear
h Coun
il of Canada database on the World Wide Web:http://wwwsel.iit.nr
.
a/abstra
ts/NRC40147.abs.

112 BIBLIOGRAPHY[122℄ P.P. Tanner, S.A. Ma
Kay, D.A. Stewart, and M. Wein. A multi-taasking swit
hboard approa
h to user interfa
e management. InPro
eedings of the 13th annual
onferen
e on Computer graphi
s (SIG-GRAPH '86), Computer Graphi
s, volume 20, 1986. Retrieved Mar
h 1,2001 from the ACM Digital Library database on the World Wide Web:http://info.a
m.org/pubs/
itations/pro
eedings/graph/15922/p241-tanner.[123℄ Jean Tessier and Rudolf Keller. Manager-agent and remote operation:Two key patterns for network management interfa
es. In Pro
eedings ofthe Third Joint Pattern Languages of Programs, Frameworks and Ar
hite
-tures Workshop, 1996. Retrieved January 20, 2000 from the PLoPTM 1996database on the World Wide Web: http://www.
s.wustl.edu/�s
hmidt/PLoP-96/keller.ps.gz.[124℄ Walter F. Ti
hy. Essential software design patterns. Retrieved November10, 2000 from the World Wide Web: http://wwwipd.ira.uka.de/�ti
hy/patterns/
on
urren
y.html.[125℄ Walter F. Ti
hy. A
atalogue of general-purpose software design patterns.In Pro
eedings of Te
hnology of Obje
t-Oriented Languages and Systems(TOOLS 23). IEEE Computer So
iety, 1998. (invited paper).[126℄ Allan Vermeulen. An asyn
hronous design pattern. Dr. Dobb's Journal, 21(6),1996.[127℄ Allen Vermeulen, Gabe Beged-Dov, and Patri
k Thompson. The pipelinedesign pattern. In Tenth Annual Conferen
e on Obje
t-Oriented Pro-gramming Systems, Languages, and Appli
ations (OOPSLA'95), vol-ume 30(10). SIGPLAN Noti
es, O
tober 1995. Retrieved Septem-ber 20, 2000 from the OOPSLA 1995 database on the World WideWeb: http://www.
s.wustl.edu/�s
hmidt/OOPSLA-95/html/papers/quilt.ps.gz.[128℄ Mauri
io J. Vianna e Silva, Sergio Carvalho, and John Kapson.Patterns for layered obje
t-oriented appli
ations. In Pro
eedingsof the Se
ond European Conferen
e on Pattern Languages of Pro-grams, Distribution Patterns Workshop. (EuroPLoP'97) Siemens Te
h-ni
al Report 120/SW1/FB, 1997. Retrieved O
tober 21, 2000from the EuroPLoPTM 1997 database on the World Wide Web:http://www.riehle.org/events/europlop-1997/p5final.pdf.

BIBLIOGRAPHY 113[129℄ John Vlissides. Pattern Hat
hing: Design Patterns Applied. The SoftwarePattern Series. Addison-Wesley, 1998.[130℄ Eugene Wallingford. The sponsor-sele
tor pattern. In Pro
eedingsof the Third Joint Pattern Languages of Programs, System Con�gura-tion and Resour
e Management Workshop, 1996. Retrieved January20, 2000 from the PLoPTM 1996 database on the World Wide Web:http://www.
s.wustl.edu/�s
hmidt/PLoP-96/wallingford.ps.gz.[131℄ Charles Weir. Ar
hite
tural styles for distribution. In Pro
eed-ings of the Se
ond European Conferen
e on Pattern Languages of Pro-grams, Distribution Workshop, 1997. Retrieved January 21, 2000from the EuroPLoPTM 1997 database on the World Wide Web:http://www.riehle.org/events/europlop-1997/p21final.pdf.[132℄ Gregory V. Wilson. Pra
ti
al Parallel Programming. MIT Press, 1995.[133℄ Kirk Wolf and Chamond Liu. New
lients with old servers. In James O.Coplien and Douglas C. S
hmidt, editors, Pattern Languages of ProgramsDesign, volume 1 of Software Patterns Series. Adddison-Wesley, 1995.[134℄ Bobby Woolf. The obje
t re
ursion pattern. In Pro
eedings of the FifthPattern Languages of Programs, Site Repair Workshop, 1998. RetrievedO
tober 21, 2000 from the PLoPTM 1998 database on the World WideWeb: http://jerry.
s.uiu
.edu/�plop/plop98/final submissions/P21.pdf.[135℄ Walter Zimmer. Relationships between design patterns. In James O. Coplienand Douglas C. S
hmidt, editors, Pattern Languages of Programs Design,number 1 in Software Patterns Series, pages 345{364. Addison-Wesley Pub-lishing Company, In
., 1995.

Indexabortable intera
tion, 25a

eptor, 51a
tions triggered by events, 28a
tive obje
t, 47a
tor, 47
on
urrent obje
t, 47serializer, 47a
tor, 31, 47a
tor-agent-supplier, 57a
tor-supplier, 57a
tor-agent-supplier, 57adapter, 36adapter broker, 41administrator, 38, 48, 53observer, 71announ
er/listener, 71broad
ast, 71broad
aster/listener, 71broad
asting sequential pro
esses,71
aller/provider, 71
omponent bus, 71dependen
y, 71dependent, 71handler, 71listener, 71noti�
ation server, 71noti�er, 71propagator, 71provider/observer, 71publisher-subs
riber, 71

spy, 71subs
riber/publisher, 71update, 71valuemodel, 71propagator, 73adaptive, 73ba
kward, 73eager, 73forward, 73immediate, 73lazy, 73optimisti
, 73stri
t, 73stri
t, with failure, 73update on demand, 73ambassador, 37remote proxy, 37announ
er/listener, 71any to one, 22ar
hite
tural pattern, 4broker, 4
ommuni
ating pro
esses, 27Model-View-Controller, 5assassin, 54asyn
hronous
ommuni
ation, 21, 27authenti
ator, 37, 40prote
tion proxy, 37balking, 28bat
h
ommuni
ation style, 27bla
kboard, 50, 60produ
tion system, 61

INDEX 115repository, 61bodyguard, 40, 45warden, 45broad
ast, 22, 71broad
aster/listener, 71broad
asting sequential pro
esses, 71Broker, 4broker, 8, 40, 72adapter, 41
allba
k, 41dire
t
ommuni
ation , 41divor
e attorney, 42entity, 44going postal, 42going to
ourt, 42going to the
hapel , 43intermediary, 42mat
hmaker, 43
entralized
learing house, 43pat
h panel, 43message passing, 41trader, 41trans
eiver-par
el, 42broker as divor
e attorney, 42broker as intermediary, 42builder, 47bureau
ra
y, 69bureau
rat, 69
a
he proxy, 36
allba
k broker, 41
aller/provider, 71
aretaker, 49
entral
oordinator, 31
entralized
learing housemat
hmaker, 43
hain of responsibility, 69bureau
ra
y, 69bureau
rat, 69

event handler, 69mat
her-handler, 69responder, 69
lient-server intera
tion patterns, 65
lient-server-servi
e, 53, 62thread pool, 53
lient-side design patterns, 35
lient-side patterns, 35
olle
tion-worker, 60
ommand, 29, 52interruptible, 29override
urrent pro
essing, 29
ommand pro
essor, 51
ontroller-
ommand, 52
ommuni
ating pro
esses ar
hite
turalpattern, 27
ommuni
ation patterns, 21a
tions triggered by events, 28asyn
hronous, 21, 27bat
h
ommuni
ation style, 27balking, 28dire
tion of information
ow, 21,23abortable intera
tion, 25ba
kward, 24forward, 24handshaking, 25inward, 24monitorable intera
tion, 25opaque intera
tion patterns, 23outward, 24pull, 24push, 24round robin polling, 23events, 28heartbeat, 26intera
ting peers, 25number of parti
ipants, 21any to one, 22

116 INDEXbroad
ast, 22many to many, 22multi
ast, 22one to many, 22one to one, 22pipe, 26polling, 28probe/e
ho, 26simpli�
ation, 28
ommand, 29
omposite
all, 29
omposite message, 29distributed symmetri
 IPC, 28syn
hronous, 21, 27
ompletion
allba
k, 19
allba
k, 19named reply, 19SASE, 19self-addressed stamped envelope, 19
ompletion token, 17asyn
hronous
ompletion token, 17magi

ookie, 17
omponent bus, 71
omposite, 70
omposite
all, 29
omposite message, 29
on
urrent obje
t, 47a
tive obje
t, 47
onne
tor, 51
ontroller-
ommand, 52
oordinator, 32
ounting proxy, 36
ourier, 38, 54
riti
al se
tion, 30, 32
rystalline model, 57single program, multiple data, 58
urried obje
t, 44daemon, 46

data �lter, 40death proprietor, 54delegation, 53demon, 46demultiplexer, 45, 47dependen
y, 71dependent, 71design patternobserver, 4dire
t
ommuni
ation broker, 41dire
tor, 54dispat
her, 43, 64distributed bag of tasks, 55distributed symmetri
 IPC, 28double-
he
ked lo
king, 31lazy initialization, 32virtual proxy, 32embarrassingly-parallel, 59master-worker, 59task queue, 59emissary, 39entity broker, 44event
hannel, 39event goal, 18event handler, 69event-based integration, 72events, 28evi
tor, 54death proprietor, 54undertaker, 54vulture, 54exe
utive, 47fa
ade, 44fa
tory
allba
k, 46federation of lookup servi
es, 49�lter, 22�rewall proxy, 36

INDEX 117forwarder, 38forwarder-re
eiver, 38framework, 5future, 37gaggles, 57Gang of Four, 3gateway, 38, 39proxy, 38ghost pattern, 36GOF, 3going postal broker, 42going to
ourt broker, 42going to the
hapel broker, 43guarded methods, 30guardian, 47, 50handle-body idiom, 36handler, 71handshaking, 25heartbeat, 26host-helper, 56idiom, 3handle-body, 36intera
ting peers, 25
entralized, 25ring, 25symmetri
, 25intera
tion patternsabortable intera
tion, 25handshaking, 25monitorable intera
tion, 25opaque intera
tion, 23round robin polling, 23intermediary
urried obje
t, 44dispat
her, 43, 64fa
ade, 44mailbox, 45

pass through, 43proa
tor, 45proxy, 36rea
tor, 46router, 45intermediary design patterns, 35interruptible
ommand, 29override
urrent pro
essing, 29lazy initialization, 32double-
he
ked lo
king, 32leader/followers, 60leasing, 49library, 50listener, 71listener-based obje
t, 47builder, 47demultiplexer, 47exe
utive, 47guardian, 47obje
t adapter, 47parser, 47rea
tor, 47skeleton, 47lo
al atomi
ity, 32lo
al serialization, 32
riti
al se
tion, 32lo
al atomi
ity, 32obje
t
on
urren
y
ontrol, 32lo
k manager, 31lo
k server, 49lo
k patterns, 33queued, 33reader/writer, 33
ounted, 34distributed, 34reader/writer lo
kqueued, 34strategized lo
king, 34

118 INDEXtest-and-set, 33lo
k server, 31, 49lo
k manager, 49lookup, 49federation, 49mailbox, 45manager, 49lo
k, 31manager-agent, 43, 50, 56many to many, 22master-slave, 56, 57a
tor-agent-supplier, 57bla
kboard variant, 62
rystalline model, 57gaggles, 57host-helper, 56master-slave for parallel
omputeservi
es, 57obje
t group, 56operator, 57slaves as threads, 57supervisor-worker, 58master-slave for parallel
ompute ser-vi
es, 57master-workerembarrassingly-parallel, 59mat
her-handler, 69mat
hmaker, 43
entralized
learing house, 43pat
h panel, 43mediator, 38, 64administrator, 38bodyguard, 45broker, 40adapter, 41
allba
k, 41dire
t
ommuni
ation , 41divor
e attorney, 42

entity, 44going postal, 42going to
ourt, 42going to the
hapel , 43intermediary, 42mat
hmaker, 43message passing, 41trader, 41trans
eiver-par
el, 42
ourier, 38data �lter, 40emissary, 39event
hannel, 39forwarder, 38forwarder-re
eiver, 38gateway, 39manager-agent, 43mediator-worker, 39name server, 38obje
t �lter and a

ess
ontrol, 40relay, 38shopper, 39waiter, 38warden, 45mediator-worker, 39message passing broker, 41meta-pattern, 2metapattern, 2, 5, 16Model-View-Controller, 5model-view-
ontroller, 62monitor obje
t, 35monitorable intera
tion, 25multi
ast, 22multiversion two-phase lo
king trans-a
tion, 33mutual ex
lusion, 17, 30double-
he
ked lo
king, 31guarded methods, 30implementation

INDEX 119lo
k patterns, 33transa
tion, 32lo
al serialization, 32
riti
al se
tion, 32lo
al atomi
ity, 32obje
t
on
urren
y
ontrol, 32lo
k patterns, 33single threaded exe
ution, 31syn
hronizer, 30, 32a
tor, 31
entral
oordinator, 31lo
k manager, 31lo
k server, 31transa
tion, 30, 32multiversion two-phase lo
king,33optimisti
, 32two-phase lo
king, 32name server, 38noti�
ation server, 71noti�er, 54, 71obje
t adapter, 47obje
t
on
urren
y
ontrol, 32obje
t �lter and a

ess
ontrol, 40obje
t group, 56obje
t syn
hronization pattern, 19obje
t
on
urren
y
ontrol, 19obje
t serialization, 19observer, 4, 8, 46, 70, 71, 77announ
er/listener, 71broad
ast, 71broad
aster/listener, 71broad
asting sequential pro
esses,71
aller/provider, 71
omponent bus, 71dependen
y, 71

dependent, 71handler, 71listener, 71noti�
ation server, 71noti�er, 71propagator, 71provider/observer, 71publisher-subs
riber, 71spy, 71subs
riber/publisher, 71update, 71valuemodel, 71one to many, 22one to one, 22opaque intera
tion patterns, 23operator, 57ubiquitous agent, 57optimisti
 transa
tion, 32override
urrent pro
essing, 29overseer, 54parser, 47pat
h panel, 43mat
hmaker, 43patternar
hite
tural, 4
atalog, 15
lient-server intera
tion, 65
lient-side, 35intermediary, 35
ommuni
ation, 21de�nition, 1design, 4idiom, 3intera
tionpipeline, 65intermediary, 35lo
ks, 33meta-pattern, 2

120 INDEXmetapattern, 2, 5mutual ex
lusion, 30server-side, 35strategi
, 9syn
hronization, 20
ompletion
allba
k, 19
ompletion token, 17obje
t syn
hronization pattern,19remote pro
edure
all, 18rendezvous, 17servi
es waiting for, 17termination syn
hronization, 18system, 15ta
ti
al, 9taxonomies, 3pattern
atalog, 15pattern de�nition, 1pattern system, 15pattern taxonomies, 3patternsopaque intera
tion, 23pipe, 22, 26
ir
ular, 26
losed, 26open, 26pipeline, 26, 65, 66
hain of responsibility, 69bureau
ra
y, 69bureau
rat, 69event handler, 69mat
her-handler, 69responder, 69
ow network, 68network, 69pipes and �lters, 66produ
er-
onsumer, 66readers and writers, 68program
haining, 69

remover, 66sour
e, 66stream, 66tee and join, 69transformer, 66translator, 66pipes and �lters, 66polling, 28presentation-abstra
tion-
ontrol, 63proa
tor, 45probe/e
ho, 26pro
ess
ontrol, 47produ
er-
onsumer, 66produ
er-intermediary-
onsumer, 68produ
er-repository-
onsumer, 68produ
er-sensor-
onsumer, 68shopper, 68produ
tion system, 61bla
kboard, 61program
haining, 69propagator, 71, 73adaptive, 73ba
kward, 73eager, 73forward, 73immediate, 73lazy, 73optimisti
, 73stri
t, 73stri
t, with failure, 73update on demand, 73proprietor, 48a

eptor, 51
aretaker, 49
ommand pro
essor, 51
onne
tor, 51death, 54guardian, 50leasing, 49

INDEX 121lo
k server, 49lookup, 49manager, 49manager-agent, 50repository, 50bla
kboard, 50library, 50resour
e ex
hanger, 51servi
e
on�gurator, 51super-server, 51task manager, 50view handler, 52prote
tion proxy, 36authenti
ator, 37provider/observer, 71proxy, 36adapter, 36
a
he, 36
ounting, 36�rewall, 36gateway, 38ghost pattern, 36prote
tion, 36remote, 18, 36surrogate, 36syn
hronization, 36virtual, 32, 36proxy-original, 37remote proxy, 37queued lo
k, 33rea
tor, 46, 47reader/writer lo
k, 33readers and writers, 68relay, 38remote invo
ation, 18remote pro
edure
all, 18, 27event goal, 18

remote invo
ation, 18remote proxy, 18RPC, 18remote proxy, 36ambassador, 37proxy-original, 37remote pro
edure
all, 18RPC
lient, 37transparent remote a

ess, 37rendezvous, 17binary, 17extended, 17, 33multiway, 17simple, 17transa
tion, 18repository, 50, 61, 66, 68bla
kboard, 50, 61library, 50resour
e ex
hanger, 51resour
e pool, 53
lient-server-servi
e, 53thread pool, 53responder, 69round robin polling, 23router, 45RPC, 18RPC
lient, 37, 40remote proxy, 37se
retary, 54sender-pass through-re
eiver, 43serializer, 47a
tive obje
t, 47serveradministrator, 48, 53lo
k, 31noti�
ation, 71proprietor, 48a

eptor, 51

122 INDEX
aretaker, 49
ommand pro
essor, 51
onne
tor, 51guardian, 50leasing, 49lo
k server, 49lookup, 49manager, 49manager-agent, 50repository, 50resour
e ex
hanger, 51servi
e
on�gurator, 51task manager, 50view handler, 52server-side patterns, 35servi
e
on�gurator, 51super-server, 51servi
es waiting for, 17shell task, 55shopper, 39, 68simpli�
ation of
ommuni
ation
ommand, 29interruptible, 29override
urrent pro
essing, 29
omposite
all, 29
omposite message, 29distributed symmetri
 IPC, 28single program, multiple data
rystalline model, 58single threaded exe
ution, 31sink, 66skeleton, 47slaves as threads, 57sour
e, 66spy, 71strategi
 patterns, 9strategized lo
king, 34strategy, 70stream, 26, 66

subs
riber/publisher, 71super-server, 51supervisor-worker, 55, 58surrogate, 36proxy, 36swit
hboard, 44syn
hronization, 17syn
hronization design patterns, 20
ompletion
allba
k, 19
ompletion token, 17obje
t syn
hronization pattern, 19remote pro
edure
all, 18event goal, 18remote invo
ation, 18rendezvous, 17servi
es waiting for, 17termination syn
hronization, 18syn
hronization proxy, 36syn
hronizer, 30, 32a
tor, 31
entral
oordinator, 31lo
k manager, 31lo
k server, 31single threaded exe
ution, 31syn
hronous
ommuni
ation, 21, 27ta
ti
al patterns, 9task manager, 50task queueembarrassingly-parallel, 59taxonomies, 3tenant task, 55termination syn
hronization, 18fork join, 19thread join, 19test-and-set lo
k, 33threadper obje
t, 31per request, 31

INDEX 123thread per obje
t, 31thread per request, 31, 53thread per session, 53thread pool, 53
lient-server-servi
e, 53, 62resour
e pool, 53thread-safe passive obje
t, 35timer, 54trader, 41transa
tion, 18, 30, 32
oordinator, 32extended rendezvous, 33multiversion two-phase lo
king, 33optimisti
, 32two-phase lo
king, 32trans
eiver-par
el broker, 42translator, 66transparent remote a

ess, 37remote proxy, 37two-phase lo
king, 32two-phase lo
king transa
tion, 32ubiquitous agentoperator, 57undertaker, 54update, 71valuemodel, 71view handler, 52virtual proxy, 32, 36double-
he
ked lo
king, 32vulture, 54waiter, 38warden, 45bodyguard, 45work
rew, 55worker, 39, 53assassin, 54
ourier, 54

dire
tory, 54evi
tor, 54death proprietor, 54undertaker, 54vulture, 54noti�er, 54overseer, 54se
retary, 54shell, 55tenant, 55thread per request, 53thread per session, 53thread pool, 53
lient-server-servi
e, 53, 62resour
e pool, 53timer, 54workersbla
kboard, 60
olle
tion-worker, 60distributed bag of tasks, 55agenda parallelism, 55pro
ess farm, 55repli
ated worker, 55supervisor-worker, 55embarrassingly-parallel, 59leader/
ollaborator/
ollaboration,62leader/followers, 60manager-agent, 56master-slave, 56, 57a
tor-agent-supplier, 57bla
kboard variant, 62
rystalline model, 57gaggles, 57host-helper, 56master-slave for parallel
omputeservi
es, 57obje
t group, 56operator, 57

124 INDEXslaves as threads, 57supervisor-worker, 58master-workerembarrassingly-parallel, 59task queue, 59work
rew, 55

