
The Appliation of Patterns to ConurrentControl FlowbyCaroline KiersteadA thesispresented to the University of Waterlooin ful�lment of thethesis requirement for the degree ofMaster of MathematisinComputer SieneWaterloo, Ontario, Canada, 2001Caroline Kierstead 2001





I hereby delare that I am the sole author of this thesis.I authorize the University of Waterloo to lend this thesis to other institutionsor individuals for the purpose of sholarly researh.
I further authorize the University of Waterloo to reprodue this thesis by pho-toopying or by other means, in total or in part, at the request of other institutionsor individuals for the purpose of sholarly researh.

iii





The University of Waterloo requires the signatures of all persons using or pho-toopying this thesis. Please sign below, and give address and date.

v





AbstratConurreny is an important programming paradigm to take advantage of the mul-tiple proessors available in urrent omputers. This essay examines design patternsas a means of organizing the urrent body of literature on onurreny. A simplepattern atalog is presented, whih divides onurrent design patterns into threemain groupings: synhronization, mutual exlusion, and lient-server. Within theategory of lient-server patterns, design patterns an be further subdivided intolient-side patterns, server-side patterns, and lient-server interations. This lastategory neatly overs the areas missing from the previous two, subsuming bothdelegation and publiation patterns. These divisions aount for both the ommonand exoti patterns found in onurrent programming, without desending to thelevel of idioms suh as semaphores or monitors.
vii





AknowledgementsI would like to thank my supervisor, Dr. Peter Buhr, for his help and patienethroughout this proess. Mihael Van Biesbrouk and Jak Rehder have providedsupport, ideas, and the oasional text book loan. And, of ourse, my family andfriends for their enouragement. Without them, nothing ould have been done.

ix





Contents1 Introdution 11.1 De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Pattern Taxonomies . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3 Design Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Conurreny Pattern Catalog 152.1 Synhronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.1.1 Communiation . . . . . . . . . . . . . . . . . . . . . . . . . 212.1.1.1 Number of partiipants . . . . . . . . . . . . . . . 212.1.1.2 Diretion of Information Flow . . . . . . . . . . . . 232.1.1.3 Asynhronous versus Synhronous Communiation 272.1.1.4 Communiation Simpli�ation . . . . . . . . . . . . 282.2 Mutual Exlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302.3 Client-Server Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 352.3.1 Client-Side Patterns . . . . . . . . . . . . . . . . . . . . . . 35xi



2.3.1.1 Proxy . . . . . . . . . . . . . . . . . . . . . . . . . 362.3.1.2 Mediator . . . . . . . . . . . . . . . . . . . . . . . 382.3.1.3 Broker . . . . . . . . . . . . . . . . . . . . . . . . . 402.3.1.4 Other . . . . . . . . . . . . . . . . . . . . . . . . . 442.3.2 Server-Side Patterns . . . . . . . . . . . . . . . . . . . . . . 482.3.2.1 Proprietor . . . . . . . . . . . . . . . . . . . . . . . 492.3.2.2 Administrator . . . . . . . . . . . . . . . . . . . . . 532.3.2.2.1 Independent Workers . . . . . . . . . . . . 552.3.2.2.2 Cooperative Workers . . . . . . . . . . . . 602.3.2.2.3 Workers Talking to Clients . . . . . . . . . 642.4 Client-Server Interation Patterns . . . . . . . . . . . . . . . . . . . 652.4.1 Delegation Patterns . . . . . . . . . . . . . . . . . . . . . . . 652.4.2 Update Patterns . . . . . . . . . . . . . . . . . . . . . . . . 713 Conlusion 75A Sample Design Pattern 77A.1 OBSERVER Objet Behavioral . . . . . . . . . . . . . . . . . . . . 77A.1.1 Intent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77A.1.2 Also Known As . . . . . . . . . . . . . . . . . . . . . . . . . 77A.1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78A.1.4 Appliability . . . . . . . . . . . . . . . . . . . . . . . . . . 80A.1.5 Struture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80xii



A.1.6 Partiipants . . . . . . . . . . . . . . . . . . . . . . . . . . . 81A.1.6.0.4 Subjet . . . . . . . . . . . . . . . . . . . 81A.1.6.0.5 Observer . . . . . . . . . . . . . . . . . . . 81A.1.6.0.6 ConreteSubjet . . . . . . . . . . . . . . 81A.1.6.0.7 ConreteObserver . . . . . . . . . . . . . . 82A.1.7 Collaborations . . . . . . . . . . . . . . . . . . . . . . . . . . 82A.1.8 Consequenes . . . . . . . . . . . . . . . . . . . . . . . . . . 83A.1.9 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 85A.1.10 Sample Code . . . . . . . . . . . . . . . . . . . . . . . . . . 91A.1.11 Known Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . 95A.1.12 Related Patterns . . . . . . . . . . . . . . . . . . . . . . . . 96Bibliography 97
xiii





List of Tables2.1 Patterns of Partiipant Numbers in Communiation . . . . . . . . . 222.2 Patterns of Data Flow in Communiation . . . . . . . . . . . . . . . 24

xv





List of Figures2.1 Fundamental Interation Patterns . . . . . . . . . . . . . . . . . . . 162.2 Pipeline Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272.3 Client-Side Design Patterns . . . . . . . . . . . . . . . . . . . . . . 362.4 Server-Side Design Patterns . . . . . . . . . . . . . . . . . . . . . . 482.5 Delegation Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 662.6 Simple Pipeline with Pipes as Data Connetions . . . . . . . . . . . 662.7 Network Pipelines with Pipes as Data Connetions and Repositories 672.8 Forwarder-Reeiver Interation . . . . . . . . . . . . . . . . . . . . 68A.1 Observer Design Pattern Example . . . . . . . . . . . . . . . . . . . 79A.2 Observer Design Pattern Struture . . . . . . . . . . . . . . . . . . 81A.3 Observer Design Pattern Interation Diagram . . . . . . . . . . . . 83A.4 Observer Design Pattern Change Manager . . . . . . . . . . . . . . 90xvii





Chapter 1IntrodutionThere is no new thing under the sun. { Old Testament 8:304The essene of pattern reation is the odi�ation of knowledge for future reuse.Patterns are found in subjet areas ranging from arhiteture, where noted arhi-tet Christopher Alexander's work provided motivation for pattern work in softwareengineering, to business hierarhy management, to handbooks suh as \The CivilEngineering Handbook" or the \Handbook of Chemistry and Physis", to the bio-logial lassi�ation of life. However, in order to disuss a pattern, it must �rst bede�ned.1.1 De�nitionBrad Appleton summarizes multiple pattern de�nitions well, stating that\a pattern involves a general desription of a reurring solution to a1



2 CHAPTER 1. INTRODUCTIONreurring problem replete with various goals and onstraints. But apattern does more than identify a solution, it also explains why thesolution is needed!"[13℄The most suint de�nition belongs to James O. Coplien: \A pattern is a solutionto a problem in a ontext" [100℄. However, John Vlissides is quik to point outthat this de�nition is inomplete, sine, at a minimum, it leaves out the oneptsof reurrene, teahing, and a name [129℄, whih are de�ned as:reurrene of the situation makes the solution relevant outside the immediateproblem.teahing allows a user to understand the pattern suÆiently so that a solution istailored to problem variants. This onept is aomplishedmostly through thedesription and resolution of ating fores, and the appliation onsequenes.name allows easy referene to the pattern. This onept is required for ommuni-ation of a shared voabulary among partiipants.Knutson, Budd, and Cook take the idea of patterns, whih are often inventedsolely for a spei� paradigm suh as objet-oriented programming, further. Theydisuss the notion of a \true pattern", whih is reasonable in any paradigm [72℄.The ulmination of urrent pattern development is an inreasingly ommon, ifnot anonial, template used by the majority of pattern writers to desribe pat-terns. (In some sense, a meta-pattern, desribing the general form of an atualpattern. This idea of a meta-pattern is not to be onfused with Pree's metapattern,



1.2. PATTERN TAXONOMIES 3disussed later in this essay.) At a minimum, the pattern must onsist of a name, astatement of the problem the pattern is intended to solve, the problem's ontext orappliability, a desription of the fores and onstraints and their interations, thesolution, illustrative examples (whih often inludes known instanes of the pat-tern), and any related patterns. Most authors also inlude a rationale explaininghow and why the pattern works. An example of this format for a spei� patternalled the \Observer" pattern is found in Appendix A.However, having a pattern is not enough. Given the inreasing number ofpatterns, a means of lassi�ation is required in order to redue the searh timefor an appropriate pattern. Unfortunately, just as there are many de�nitions ofpatterns, there are many lassi�ation shemes.1.2 Pattern TaxonomiesThe most well-known pattern taxonomy is the one proposed by the GoF 1. Thereare three main lassi�ations of patterns in the GoF literature. From low-levelto high-level [69, 25℄, these onsist of: idioms, design patterns, and arhiteturalpatterns.An idiom is a programming language spei� pattern. It explains a omponent'simplementation or the relationship among omponents, using a language's givenfeatures. Nat Prye re�nes this as \Idioms are language-spei� in that the problem1Erih Gamma, Rihard Helm, Ralph Johnson, and John M. Vlissides wrote the seminal work,\Design Patterns". The patterns ommunity frequently refers to them by the nikname, Gang ofFour , abbreviated to GoF .



4 CHAPTER 1. INTRODUCTIONthey solve, or the ontext in whih those problems are enountered, are aused bythe language" [94℄. Some examples of programming idioms are: nested lasses inC++, interfaes in Java, or ounted pointers 2. An example of a C oding idiomis while(*dest++ = *sr++);, whih opies the ontents of one array to another[77℄.A design pattern is not implementation-spei� like an idiom. It allows there�nement of a software system's omponents or their relationship. By desribinga frequently ourring struture of ommuniating omponents, it solves a generaldesign problem within a partiular ontext. As used by the GoF , the term designpattern (as opposed to pattern), has ome to apply spei�ally to objet and lassrelationships [77℄. An example of a design pattern is the previously mentioned Ob-server pattern, whih de�nes a one-to-many dependeny among objets. It noti�esand updates all registered dependents automatially when the dependent objethanges state [47℄.An arhitetural pattern spei�es an appliation's fundamental strutural prop-erties. It also provides a set of prede�ned subsystems with known responsibilitiesand interrelationships. It is a high-level strategi pattern relevant to large-saleomponents and the system's overall mehanisms and properties. The Broker pat-tern is an example of an arhitetural pattern used in a distributed system withdeoupled omponents that interat via remote servie invoations. The brokeromponent is responsible for ommuniation oordination. Another example of a2This idiom is used to simplify memory relamation in the absene of garbage olletion. Areferene ounter is introdued into an objet body that ounts the number of referenes to theobjet. The objet is deleted when the ounter reahes zero.



1.2. PATTERN TAXONOMIES 5ommon arhitetural pattern is that of the Model-View-Controller (MVC) pat-tern. In the MVC pattern, an interative system is divided into a model (oredata and funtionality), views (information displays for the user), and ontrollers(proess user input). The user interfae is formed by ontrollers and views. TheMVC propagates hanges to ensure onsisteny between the model and the userinterfae.A framework oneptually �ts in at the arhitetural pattern level; however, itis broader based than what is implied by an arhitetural pattern. J�ez�equel et al.desribe it best as:A framework is a reusable software arhiteture that provides the generistruture and behavior for a family of software appliations, along with aontext that spei�es their ollaboration and use within a given domain[69℄.In other words, it is a reusable software arhiteture that ats as a template for aworking appliation. The framework is ustomized by implementing or overridingthe missing piees, resulting in the �nal appliation. Unlike a lass library, ontrolow is bidiretional between the framework and the appliation. It di�ers from adesign pattern in that it fouses on reuse at the level of algorithms, implementation,and detailed design. In ontrast, design patterns onentrate on reuse of reurringarhitetural design themes [33℄. While frameworks onsist of software, designpatterns represent knowledge about software.Wolfgang Pree adds the term metapattern to the lassi�ation terminology. Ametapattern is \a set of design patterns that desribes how to onstrut frameworks



6 CHAPTER 1. INTRODUCTIONindependent of a spei� domain" [93℄.1.3 Design PatternsOf the three major lassi�ation levels, this essay fouses on design patterns. Here-after, the term \pattern" means \design pattern". In addition, this fous is nar-rowed further to onurrent design patterns starting in Chapter 2. The remainderof this hapter examines design pattern ategorizations to lay the groundwork forategorization of onurrent design patterns.There are many design-pattern ategorization philosophies. The most promi-nent is the GoF ategorization. The GoF patterns are solely objet-oriented pat-terns. These patterns are subdivided along two axes [47℄. The �rst axis dividespatterns into reational, strutural, and behavioural patterns. The seond axis on-sists of the the sope or granularity of the pattern in that it is applied at either thelass or the objet level. If a pattern is applied at the lass level, it desribes therelationship between the lass and its sublasses. While this lassi�ation shemeis broad enough to �t the majority of design patterns without unneessarily re-striting them, it is limited to objet-oriented patterns. It also su�ers from the fatthat it is diÆult, when searhing for patterns, to distinguish between behaviouraland strutural patterns. That is, when the pattern itself is unknown, it is unlearwhether the pattern applies to lasses or to objets [125℄.Bushmann et al., in [25℄, extend the GoF pattern taxonomy by introduinga problem-oriented view of the pattern system. As before, the patterns are �rst



1.3. DESIGN PATTERNS 7organized into arhitetural patterns, design patterns, and idioms. Then, withineah of these ategories, patterns are loosely organized aording to purpose. Thepurposes onsist of: 3From Mud to Struture Inludes patterns that assist in deomposing an overallsystem task into ooperating subtasks.Distributed Systems Inludes patterns that provide a foundation for systemswhose omponents are loated in di�erent proesses or in several omponentsand subsystems.Interative Systems Inludes patterns that provide a foundation for human-omputer interation systems.Adaptable Systems Inludes patterns that allow appliations to adapt or extendthemselves dynamially.Strutural Deomposition Inludes patterns that assist in deomposing sys-tems or omplex omponents into ooperating parts.Organization of Work Inludes patterns that express how omponents interatto provide a omplex servie.Aess Control Inludes patterns that protet and restrit aess to servies oromponents.3The �nal four ategories were added by Bushmann et al. to aommodate the remainingGoF patterns not handled by the previous ategories.



8 CHAPTER 1. INTRODUCTIONManagement Inludes patterns that manage homogeneous olletions (objets,servies, or omponents) as a group.Communiation Inludes patterns that assist in organizing ommuniation amongomponents.Resoure Handling Inludes patterns that assist in managing shared ompo-nents and objets.Creation Inludes patterns that assist in objet instantiation and reursive objetstrutures.Servie Variation Inludes patterns that allow an objet or omponents behav-iour to hange.Servie Extension Inludes patterns that assist in dynamially adding new ser-vies to an objet or objet struture.Adaptation Inludes patterns that assist in interfae and data onversion.Unfortunately, this ategorization sheme is diÆult to work with [125℄. Somepatterns, suh as the Broker or Observer, an be used as either an arhiteturalor a design pattern. Additional problems result from the fat that some patterns�t under several di�erent ategories. For example, the Pipes and Filters pattern isplaed under the Distributed Systems ategory when it ould just as easily be usedin a entralized system. This over-spei�ation may lead a novie to not onsiderusing a pattern outside of the listed ategory even when it is appropriate.



1.3. DESIGN PATTERNS 9Douglas C. Shmidt lassi�es patterns into tatial and strategi4 patterns [108℄.Tatial patterns have a relatively loalized impat on a software design and aredomain-independent. For example, Singleton, Strategy, State, and Adapter arelassed as tatial patterns. Strategi patterns signi�antly inuene software ar-hiteture. Some strategi patterns are Aeptor, Ative Objet, Reator, andProator.Walter Zimmer [135℄ ategorizes the GoF patterns by their relationships. Therelationships are de�ned as \X uses Y in its solution", \Variant of X uses Y inits solution", and \X is similar to Y ". He notes that even with this sheme, itis sometimes diÆult to plae a partiular relationship in exatly one ategory.Another problem arises from the fat that the ategorization depends partly uponsubjetive riteria. It also obsures the purpose of the design patterns, making ituseful only for someone who is already familiar with the GoF design patterns.James Noble provides a lassi�ation sheme similar to Zimmer's [87℄. Hehooses to divide patterns into primary and seondary relationships. The pri-mary relationships onsist of patterns whih use other patterns, patterns whihre�ne other patterns, and patterns whih address the same problem as anotherpattern. The seondary relationships may be inverses of the primary relationships(patterns used or re�ned by other patterns), or new, omplex relationships. Theseother seondary relationships inlude pattern variants, a pattern variant used byanother pattern, similarity of patterns, ombination of patterns to solve a problem,4\Strategy: the art of projeting and direting the larger military movements and operationsof a ampaign. Usually distinguished from tatis, whih is the art of handling fores in battle orin the immediate presene of the enemy." Oxford English Ditionary [116℄



10 CHAPTER 1. INTRODUCTIONone pattern requiring a solution to another pattern, a pattern using itself, and anelaboration of a sequene of patterns from the simple to the omplex. These rela-tionships are an extremely useful taxonomy, but do not help a designer from thestandpoint of determining whih patterns are initially required to solve a problem.Walter F. Tihy provides an alternative lassi�ation [125℄. He divides patternsinto the following problem-solving ategories:Deoupling These patterns partition a software system into independent om-ponents that are built, hanged, replaed, and reused independently of eahother. Abstrat Data Types, Client-Server, and Enapsulation patterns areexamples in this ategory.Variant Management These patterns treat di�erent objets uniformly by fa-toring out the ommon elements. The Superlass, Template, and Visitorpatterns are examples in this ategory.State Handling These patterns manipulate objet state generially. The Single-ton, Flyweight and Memento patterns are examples in this ategory.Control These patterns ontrol exeution and method seletion. The Blakboard,Strategy, and Master-Slave patterns are examples in this ategory.Virtual Mahines These patterns simulate proessors. The Interpreter, and Rule-based Interpreter patterns are examples in this ategory.Conveniene Patterns These patterns simplify oding. The Conveniene Class,Default Class, and Null Objet patterns are examples in this ategory.



1.3. DESIGN PATTERNS 11Compound Patterns These patterns are omposed of other, visible patterns.The Model-View-Controller, Bureauray, and Ative-Bridge patterns are ex-amples in this ategory.Conurreny These patterns ontrol parallel and onurrent exeution. TheSemaphore, Critial Region, and Reator patterns are examples in this ate-gory.Distribution These patterns solve problems relevant to distributed systems. TheRemote Proedure Call, Aeptor and Connetor, and Broker patterns areexamples in this ategory.While these ategorizations are not as limiting as those proposed by Bushmannet. al., it is unlear how patterns developed in subjet areas suh as arti�ialintelligene, or databases would neessarily �t these ategories. As well, theseategories are supposed to be mutually exlusive, but where would a software agentpattern be plaed? It ould be onsidered part of a onurrent or distributed system,or a form of deoupling. What about the pattern of an agent's interation withboth lients and servers? None of these ategorizations truly address the qualitativeaspets of patterns either. Though the relative advantages and disadvantages arelisted, nobody distinguishes between a pattern and a good pattern. That is left upto the user.Fundamentally, if the taxonomy is too broad, it beomes diÆult to �nd therelevant pattern in the mass of other related patterns. Patterns are potentiallymisplaed or dupliated if the taxonomy is too narrow. On top of this, room for



12 CHAPTER 1. INTRODUCTIONgrowth must be possible, as patterns in new areas are disovered.Reasonable broad pattern ategories are that of Creational, Abstration, De-oupling, and Interation. These patterns are lassi�ed objetively sine they arethe ones best de�ned in terms of purpose.Creational patterns [47℄ abstrat the instantiation proess by enapsulating andhiding reation details. A system using these patterns only needs awarenessof the spei�ed abstrat interfae. The Abstrat Fatory, Builder, FatoryMethod, Prototype, and Singleton design patterns are all reational patterns.Abstrational and Deoupling patterns often have some overlap sine one meansof deoupling omponents is to abstrat them. Abstrational patterns enap-sulate information, often reduing system omplexity. The Faade, Strategy,Command, and Memento design patterns are examples of abstration pat-terns.Deoupling patterns partition a software system into independent omponents,whih are built, hanged, replaed, and reused independently. The Mediator,Iterator, and Bridge design patterns are examples of deoupling patterns.Interation patterns speify how system omponents interat and ommuniate.Note that there is some overlap with deoupling patterns sine a deouplingpattern invariably spei�es how the deoupled omponents interat. TheObserver, Chain of Responsibility, and Proxy design patterns are examplesof interation patterns.



1.3. DESIGN PATTERNS 13After this point, it is too limiting to try and group patterns by the problemssolved. A more helpful approah is to group related patterns where possible andprovide an overall road map.





Chapter 2Conurreny Pattern CatalogA pattern atalog is a olletion of related patterns (perhaps onlyloosely or informally related). It typially subdivides the patterns into atleast a small number of broad ategories and may inlude some amountof ross-referening among patterns.A pattern system is a ohesive set of related patterns whih worktogether to support the onstrution and evolution of whole arhite-tures. Not only is it organized into related groups and subgroups atmultiple levels of granularity, it desribes the many interrelationshipsamong the patterns and their groupings, and how they may be ombinedand omposed to solve more omplex problems. The patterns in a pat-tern system should all be desribed in a onsistent and uniform styleand need to over a suÆiently broad base of problems and solutions toenable signi�ant portions of omplete arhitetures to be built. [13℄15



16 CHAPTER 2. CONCURRENCY PATTERN CATALOGThe remainder of this essay is best desribed as a pattern atalog, rather than apattern system. Though some authors onsider these patterns arhitetural in na-ture, I believe the appropriate ontext turns them into design patterns. Within thebroad topi of onurreny, I divide design patterns into the following metapatternategories: synhronization, mutual exlusion, and lient-server (see Figure 2.1).The lient and server ooperate to perform a job using some form of synhroni-zation or ommuniation pattern. When there are multiple lients, aess to theserver requires mutual exlusion. This form of interation is alled diret ommu-niation. Synhronization and mutual exlusion may also be required for passiveobjets, through whih lients and servers interat. This form of interation isalled indiret ommuniation.
Passive
Object ServerClient

ServerClient
Direct Communication

Indirect Communication

Mutual Exclusion
Synchronization

Synchronization

Mutual Exclusion

Figure 2.1: Fundamental Interation Patterns



2.1. SYNCHRONIZATION 172.1 SynhronizationSynhronization ours when a task1 waits until another task reahes a partiularpoint in its exeution. The provision of synhronization allows ommuniation.Communiation may require mutual exlusion of a shared resoure managed by aserver or passive objet.Design patterns used to perform synhronization:Completion Token In [56℄, the authors introdue a token-based synhronizationdesign pattern alled Asynhronous Completion Token orMagi Cookie. Thispattern allows a lient to determine that the server has ompleted an asyn-hronous ation. The token is generally an opaque objet passed to the serverby the lient and returned upon ompletion of the servie. Another variantallows the token to at as a synhronous allbak mehanism.Servies \Waiting For" bloks the tasks performing servies until a onditionsuh as data transferral ours [3℄.Rendezvous is a meeting or synhronization between two or more tasks at a pre-spei�ed piee of ode [8, 113℄. First proposed as a binary rendezvous betweentwo tasks, this idea expanded later to a multiway rendezvous. A multiwayrendezvous allows an arbitrary number of asynhronous tasks to rendezvous[28, 16℄. In [49℄, a distintion is made between a simple rendezvous and anextended rendezvous. A simple rendezvous is a unidiretional exhange of1Note that the terms \task", \proess", and \thread" in the de�nitions are subsumed by theterm \task".



18 CHAPTER 2. CONCURRENCY PATTERN CATALOGinformation while an extended rendezvous (also referred to as a transation)is a bidiretional transfer of information.Remote Proedure Call (often referred to by the aronym RPC) allows a lientto invoke the exeution of an operation on a remote objet as if it was a loalobjet. Ideally, the ation is transparent to the lient, whih is suspendeduntil the ation ompletes [8, 15, 113℄. Tessier and Keller refer to this as aRemote Operation [123℄. Doug Lea's Request Objet , a message ontaining anenoding of a method name and marshalled arguments, is an RPC mehanism[76℄. Burns and Davies talk about a remote invoation model [22℄.There are many possible mehanisms for implementing RPC. In [62℄, a Re-mote Proxy (Proxies are disussed in Setion 2.3.1.1) is used on the lientside to perform RPC transparently.Delta Prolog uses an event goal to ensure both ommuniating tasks are\loked together" before the message is transferred [35℄. Thus, an event goalprovides synhronization. Both the sender and reeiver must use the sameevent goal name, and if using onditional expressions, they must both evaluateto true. Sine a sender an only rendezvous with one reeiver at a time, anevent goal provides mutual exlusion on the ommuniation hannel betweenthe sender and the reeiver by keeping a third task from interfering with theevent goal. (The initial paper on Delta Prolog notes that ommuniation wasimplemented via mailboxes on a VAX/VMS system, while sokets were usedunder a UNIX 4.2 system [91℄.)



2.1. SYNCHRONIZATION 19Termination Synhronization is one of the simplest forms of synhronization.A thread is spawned in order to perform work. The results are guaranteed tobe omplete upon the thread's termination, so the parent thread need onlywait until the hild thread has ended. Doug Lea refers to this as thread join[76℄. Massingill, Mattson, and Sanders desribe this as the ForkJoin pattern[81℄.Objet Synhronization Pattern This design pattern deouples objet synhro-nization from objet onurreny and funtionality, allowing di�erent synhro-nization poliies to be implemented as required. Synhronization mehanismsare enapsulated with the objet, rather than distributed among the lienttasks. Sine they are abstrated, they are easily replaeable. This approahallows new poliies to be tested and their performane observed before a �nalsolution is hosen. The synhronization poliies are also separated from theonurreny poliies, allowing the onurreny poliies to be modi�ed with-out a�eting the synhronization poliies. Based upon the hosen poliies,the Synhronizer shedules alling tasks as appropriate.A similar idea is the Objet Synhronization Pattern, also known as ObjetConurreny Control , or Objet Serialization [101℄.Completion Callbak A lient sends a one-way message to a server. When theserver has ompleted the operation, it sends a one-way allbak message tothe aller [76℄. It may have the same strutural design as an Observer. Thispattern is also known as Self-Addressed Stamped Envelope, SASE , and Call-bak [12℄. In [36℄, a Callbak variant is mentioned known as Named Reply.



20 CHAPTER 2. CONCURRENCY PATTERN CATALOGHere, labeling results returned from a all allows expression of di�erent kindsof results. For example, based upon a alulation's result, the server invokeseither a suess or a failure method.Future Aording to Gregory V. Wilson,A future is simply a ommitment by a proess to use the resultof a alulation at some later date. When a future is evaluated, anew proess is reated; when the parent of that proess tries to readthe future's result, it is automatially suspended until the hild hasreturned a value. It is the runtime system's responsibility to deidewhether to exeute a future in parallel with its reator, or to use alazy evaluation strategy, whih only alulates values when needed[132℄.Other authors view a Future simply as an objet (rather than a task) atingas a virtual representation of the real objet. If the data is aessed beforeit is �lled in, the user bloks until the data is �lled in. These two de�nitionsrepresent two di�erent implementation patterns of a Future, one by Lazy Ini-tialization and one by Virtual Proxy [54℄. Futures are also known as promisesin RPC [14℄, early reply [49℄, an Ative Objet [124℄, IOU s [126℄, and wait-by-neessity onstrutions in Ei�el// (a parallel extension to Ei�el) [76℄. JamesNoble provides two variants of his Result Objet, both of whih an at as afuture. One is the Future Objet , the other is the Lazy Objet [86℄.While not intended to at as a Future, Ho�ert's Triggered Plaeholder (or



2.1. SYNCHRONIZATION 21Stub) is a reational pattern allowing the delay of an objet's reation untila partiular method on the objet is invoked. In the meantime, a temporaryplaeholder is returned to the invoker. The trigger method returns the realobjet and deletes the plaeholder.Synhronization is also a requirement for ommuniation sine two tasks mustoordinate the information transfer.2.1.1 CommuniationWhile ommuniation by itself is not a design pattern, there are ommonalities inform and use that appear frequently enough to be termed a pattern. A strongerargument for the inlusion of this setion is made by noting that many of thestandard design patterns rely not only upon a task hierarhy, but also upon theommuniation ow for the design pattern de�nition.Communiation is �rst ategorized by the number of partiipants (see Ta-ble 2.1[15, 131, 115℄) and diretion of information ow (see Table 2.2 [51, 129℄).It an also be divided into asynhronous versus synhronous ommuniation.2.1.1.1 Number of partiipantsWilson, in [132℄, refers to a broadast as a one-to-all repliated ommuniation,a useful distintion sine he also desribes a satter , also known as a one-to-allpersonalized ommuniation. Here eah message type is the same, but the datasent is di�erent.



22 CHAPTER 2. CONCURRENCY PATTERN CATALOG
Reeive Send DesriptionFrom : To1 : 1 Also known as \one to one" ommuniation. The Pipesand Filter design pattern is an example of this form ofommuniation.1 : N Also known as \one to many" ommuniation. If the set ofreipients is restrited, this form of ommuniation is termeda multiast . It is termed a broadast if \everybody" is sentthe message. When the Observer pattern ommuniation hangesto more than one registered reipient, it is an example of thisform of ommuniation.N : 1 Also known as \any to one" ommuniation. Most Client-Server interations are an example of this form ofommuniation sine there are usually multiple lientsrequesting a servie from a server.N : M Also known as \many to many" ommuniation. The Client-Server pattern also �ts this form of ommuniation wheneah lient broadasts for the �rst available server.Table 2.1: Patterns of Partiipant Numbers in Communiation



2.1. SYNCHRONIZATION 23Bobby Woolf provides a pattern for broadasting or multiasting messages,though it has other purposes. Objet Reursion, also known as Reursive Del-egation distributes the proessing of a request over a struture by polymorphidelegation [134℄. In this fashion, it an broadast a message to all nodes in a linkedstruture.2.1.1.2 Diretion of Information FlowIn [51℄, all four basi ows are presented, but it is arefully pointed out that inward-and outward-direted ommuniation are not ommonly used due to the ineÆien-ies introdued by the polling or bloking harateristis of most operating systems.In general, push and pull models of ommuniation data ow are the ones mostfrequently disussed sine they over the standard means of transferring informa-tion. However, [43℄ presents several other interation patterns, inluding the pushand model models:Round Robin Polling uses the pull interation pattern to poll multiple deviesin sequene. It requires that the data providers are trustworthy and fault-tolerant.Opaque Interation Patterns are patterns in whih the aller is unable to mon-itor the allee's progress. These patterns are subdivided into synhronous andasynhronous versions. In Synhronous Opaque Communiation, the allerwaits until allee returns ontrol. In Asynhronous Opaque Communiation,the aller is allowed to ontinue with other work while the allee may or may



24 CHAPTER 2. CONCURRENCY PATTERN CATALOGDiretion DesriptionForward consumertransducerproducer

receive

send

send

receive
control
flow

control
flow

data flow data flowAlso known as proess driven ommuniation or the push model.Bakward control
flow

control
flow

data flow data flow

consumertransducerproducer

receive

send

receive

sendAlso known as data driven or all by need or the pull model.Inward control
flow

control
flow

data flow data flow

consumertransducerproducer

receive

send

receive

send

Outward control
flow

control
flow

data flow data flow

consumertransducerproducer

receive

send

receive

sendTable 2.2: Patterns of Data Flow in Communiation



2.1. SYNCHRONIZATION 25not handle the message asynhronously.Monitorable Interation The aller is informed of the allee's progress if theexeution time varies widely. The aller an either request the urrent status(Pull-Monitorable Interation pattern) or the allee an send periodi statusreports (Push-Monitorable Interation pattern).Abortable Interation Either party involved in the ommuniation (or both) hasthe apability of deiding to abort the message proessing. Variant interationpatterns suh as Abortable Asynhronous Opaque, Abortable Monitorable,Abortable Pull-Monitorable, and Abortable Push-Monitorable also exist.Handshaking interation patterns break a large amount of data into a series ofmessages. The aller ontrols the exhange (Caller-Controlled Handshaking),or the allee (Callee-Controlled Handshaking) ontrols the exhange, or bothontrol the exhange (Dual-Controlled Handshake). The ontrolling partydeides when the sequene of messages is terminated.Andrews provides three ommuniation patterns for interating peers: entral-ized, symmetri, and ring [8℄. In the entralized approah, a task ats as a entraloordinator for the other tasks. All tasks in the symmetri ommuniation pat-tern perform the same algorithm, and thus ommuniate in the same symmetripattern. Finally, in a ring, eah task reeives a message from its predeessor andsends a message to its suessor. The last task ats as the predeessor to the �rsttask. Thus, the entralized approah is a form of inward-direted ommuniation.The other two forms rely upon the push and pull models of interation. Interat-



26 CHAPTER 2. CONCURRENCY PATTERN CATALOGing peers are used to solve iterative parallel problems suh as exhanging valuesto determine the maximum and minimum values, and matrix multipliation. Theauthors of [31℄ list a Peer-Peer pattern used in ight ontrol systems to determineight path intersetions.Andrews also presents the heartbeat, pipe, and probe/eho interation patterns[7, 8℄. In the heartbeat pattern, proesses oasionally exhange data using asend and then reeive interation. This pattern is partiularly useful when data isdivided among workers who are responsible for updating spei� setions of datawhere new values depend upon values held by either the workers or their immediateneighbours. These problems arise in areas as diverse as parallel sorting, matrixmultipliation grid omputations or region labeling in image proessing, ellularautomata in simulation of biologial growth, or solving partial di�erential equations.The pipe interation pattern inorporates the notion of streams [15, 18, 127,115℄. In the pipe interation pattern, data ows between proesses using a reeiveand then send interation. The pipe is open-ended, losed, or irular in nature(see Figure 2.2). In an open pipeline, the input soure and output destination arenot spei�ed. A losed pipeline is an open pipeline onneted to a oordinatorproviding the input for the �rst task and reeiving the output of the last task. Airular pipeline has the last task ating as the soure of input to the �rst task. Thisform of interation ours in areas suh as UNIX pipes, prime number generation(the Sieve of Eratosthenes), and distributed vetor or matrix multipliation.Finally, in the probe/eho pattern, the probe is equivalent to a send, while theeho is equivalent to a reeive. This disseminates and ollets information in graphs



2.1. SYNCHRONIZATION 27
...W W

n1
...W W

n1

Coordinator

...W W
n1

Open CircularClosed

Figure 2.2: Pipeline Formsand trees, ating as the onurrent analog of a depth-�rst searh. This pattern isused in broadasting to all nodes in a network, and in onstruting the topology of anetwork. Grady Booh provides two additional forms of ooperative ommuniationtehniques, remote proedure alls (disussed as a synhronization tehnique) andlient-server interation (see Setion 2.3) [18℄. In [115℄, Shaw enapsulates thesepatterns in her arhitetural pattern, Communiating Proesses, sine it does notspeify the partiular ommuniation topology, delivery requirements, number ofpartiipants, or synhronization.2.1.1.3 Asynhronous versus Synhronous CommuniationThere are two main forms of ommuniation, asynhronous and synhronous. Inasynhronous ommuniation, the sender does not blok upon sending a message,unlike synhronous ommuniation. The message's reipient bloks until the mes-sage is reeived.An asynhronous message passing pattern is the Bath Communiation Stylesine it allows both the sender and reeiver to be asynhronous. Here the message



28 CHAPTER 2. CONCURRENCY PATTERN CATALOGfrom the sender is stored and forwarded to the reeiver [131℄. Doug Lea listspolling (repeatedly querying some ondition) and balking (refusal to proeed if somepreondition is not met) as two useful ommuniation tehniques [76℄. Strangelyenough, Mark Grand has promoted the balking tehnique from a ommuniationtehnique to a onurreny design pattern [53℄.Events, as well as messages, an at as a form of ommuniation [76℄. Aarsten,Elia, and Menga refer to this as Ations Triggered by Events [3℄. Tihy doumentsthe Event-Based Integration design pattern allowing partiipants to register interestin ommon data or event hannels [124℄. Shaw disusses a similar arhiteturalpattern, Impliit Invoation. The Impliit Invoation pattern allows a olletionof ating tasks to potentially trigger the exeution of other tasks based upon thenoti�ation of system events [115℄.2.1.1.4 Communiation Simpli�ationFinally, here are some patterns used to simplify ommuniation.Distributed Symmetri IPC enapsulates the usual means of onneting twopeers, via one peer making an aept all while the other peer makes a onnetall, into a single onnet all. The alling task an ask for either a onnetionto a spei�ed task, or to all tasks in a list. The pattern uses the Client-ServerRule to deide whih task of the ommuniating pair takes the role of Client,and whih takes the role of Server. No assumption is made about the order oftask start-up. The Client-Server Rule assigns the roles in suh a fashion as toavoid role onits. Iterative bak-o�s are used when making the onnetions,



2.1. SYNCHRONIZATION 29until either all onnetions are made or a timeout ours.This pattern allows a network of peer tasks to onnet with eah other, with-out using a ommuniation server. The authors, however, are quik to pointout that more realistially, one task ats as a master, direting and initiatingthe onnetions. The master is then responsible for providing fault toleranefor the onnetions.Composite Message is a deoupling pattern. It de�nes an abstrat form of amessage and a protool for ommuniation between tasks and the base system.In this fashion, it deouples tasks that should be loosely oupled and loalizestask interations for tightly oupled tasks [105℄.Command wraps a request into an objet passed to the server [47℄. The Commandan be stored in a history list or manipulated in other ways. A Commandis an objet-oriented replaement for a Callbak. Sine its lifetime may beindependent of the original request, it an be transferred to a di�erent taskfor proessing.Eskelin provides a variant known as Interruptible Command or Override Cur-rent Proessing [42℄. Based on Command, it provides \a mehanism for eÆ-iently interrupting a urrently exeuting ommand in favor of the exeutionof a new ommand." In partiular, only the most reently requested om-mand exeutes when multiple ommands are invoked. The ommand itselfours frequently, and takes a great deal of time to proess.Composite Call is similar to Command. The pattern ollets multiple opera-



30 CHAPTER 2. CONCURRENCY PATTERN CATALOGtions to be performed into a single ation performed by another task (whihmay be loated in another proess, or another network node). This patternontains the server interation in the sense that it knows the ations theserver must perform. Though it may ontain several operations, the lientneed only send it one [90℄, whih improves the system eÆieny by reduingthe amount of ommuniation required. It an also allow the server to bedynamially extended in terms of the servie provided. For example, onsidera �le server performing both reads and writes. It is more eÆient for thelient to send the entire loop that exeutes the reads and writes over to theserver for proessing than make the requests individually.2.2 Mutual ExlusionMutual Exlusion is the prevention of multiple tasks from aessing a ritial setionat the same time. A ritial setion onsists of a pairing of ode and shared data.Patterns with the intent of providing mutual exlusion are:Synhronizer provides mutual exlusion on shared resoures for multiple tasks[60℄.2 Mutual exlusion is provided via a onstrut alled a ritial setion3,guarded methods, or mutual exlusion tehniques suh as transations.2Within the paper, the authors use the term synhronization when the ontext learly indi-ates that the intended meaning is the provision of mutual exlusion. Hene, the design patternmisnomer.3Historially, this onstrut is alled a \ritial region" to di�erentiate it from the logial notionof a ritial setion [20℄.



2.2. MUTUAL EXCLUSION 31Mark Grand lists a variant, the Single Threaded Exeution pattern, that isde�ned as providing mutual exlusion on method alls when onurrent invo-ations are made [53℄.Mihel Raynal mentions the idea of a entral oordinator [97℄. The en-tral oordinator is the boundary between the two basi forms of distributedmutual-exlusion algorithms in his taxonomy: permission and token-basedalgorithms. Proesses ask the oordinator for permission before entering theritial setion, and permission an be integrated into a token managed bythe oordinator. The Lok Server , also known as a Lok Manager , works inthe same fashion [63℄.While the previous patterns onstitute forms of ritial region, the next vari-ants of the Synhronizer are loser in form to a onditional ritial region4. In[55℄, the Synhronizer selets all requests satisfying its synhronization on-straints and assigns eah of them to a thread, using either a thread-per-requestor a thread-per-objet poliy.5The Ator model also uses a Synhronizer, a speial kind of ator that observesand limits invoations aepted by a group of ators [5℄. It synhronizes agroup of ators by delaying the invoations of shared ators until the spei�edrestritions (temporal ordering, as well as atomiity) are met.Double-Cheked Loking pattern provides mutual exlusion in a thread-safe4A onditional ritial region provides mutual exlusion like a ritial region, but adds theapability of speifying a ondition that must be true before entry to the ritial region is allowed.5Thread-per-request alloates a thread to every request. Thread-per-objet alloates one threadto every objet reeiving requests, thus all the requests to one objet are serialized.



32 CHAPTER 2. CONCURRENCY PATTERN CATALOGmanner while attempting to redue ontention and overhead [111℄. For ex-ample, it an avoid dupliating the initialization of an objet by multiplethreads. This ours when one thread reognizes that the objet requiresinitialization but another thread has already started initialization. Both theLazy Initialization and Virtual Proxy patterns an use it [54℄.Loal Serialization Pattern serializes aess to shared resoures having oarse-grained operations. Objet onurreny ontrol poliies are deoupled fromobjet-spei� algorithm semantis and onurreny generation poliies. Itis also known as: Critial Setion, Loal Atomiity, and Objet ConurrenyControl [102℄.Patterns used to implement mutual exlusion:Transation is an operation, usually a omposite of several ations, that mustbe performed atomially, i.e., uninterrupted by the ations of other tasks.Grasson presents a variant of his Synhronizer pattern that uses Transationsby adding a Coordinator objet to enfore two-phase loking and transa-tion identi�ers assoiated with objet requests [55℄. In [60℄, three forms oftransations are listed:Optimisti Transation aborts the operation if serializability is ompro-mised. No bloking is performed. This approah should only be usedwhen other tehniques (sharing poliies, mutual exlusion, et.) avoidonit, or ontention is low.



2.2. MUTUAL EXCLUSION 33Two-Phase Loking Transation loks a resoure when it is read or writ-ten. If more than one resoure is to be modi�ed, multiple loks may needto be aquired in the lok olletion phase. If the lok is only releasedwhen the transation is ompleted, deadlok may result. This probleman be avoided by releasing the lok and restarting the lok olletionphase when it is disovered that a required lok has already been ob-tained by another task.Multiversion Two-Phase Loking Transation opies the resoure be-fore it is updated. All updates are onsolidated suh that serializabilityis preserved when the transation suessfully terminates.In [49℄, a Transation is also desribed as an extended rendezvous.Lok Patterns provides some simple loking patterns, eah designed to balanethe fores of memory lateny, memory size, memory bandwidth, granularity,and fairness in di�erent fashions [83℄.Test-and-Set Lok uses a test-and-set based loking primitive when on-tention is low, fairness and performane are unimportant, or memorysize is a limiting fator.Queued Lok uses a queued-lok primitive to solve the problem of highontention and meet a strit fairness restrition.Reader/Writer Lok deals with a lassi problem in onurreny. Multipletasks an read a shared resoure, or a single task an write to it. Theread and write operations must be mutually exlusive. This problem



34 CHAPTER 2. CONCURRENCY PATTERN CATALOGis a restrited form of Parallel Fastpath, where an aggressive lokingpattern is used for the majority of the work (the Fastpath), and a moreonservative loking sheme is used for the remainder.Three possible types of loks are presented:Queued Reader/Writer Lok uses a queued-reader/writer-lok prim-itive. It solves the problem of moderate to high read-to-write ratio,a high degree of ontention, and where fairness is important.Counted Reader/Writer Lok uses a ounter-reader/writer-lok prim-itive. The lok maintains the umulative number of requests andompletions for the readers and writers. Eah requester must re-member the urrent number of requests, inrement the appropriaterequest ounter, and then wait for all prior oniting requests toomplete. Readers wait for all prior write requests to omplete,while writers wait for all prior requests to omplete. It solves theproblem of moderate to high read-to-write ratio, a high degree ofontention, and oarse-grained parallelism.Distributed Reader/Writer Lok uses a per-CPU lok for readersand an additional lok to serialize writers. A reader aquires only itsown CPU lok, while a writer must aquire the writer serializationlok as well as eah of the reader-side CPU loks. It solves theproblem of a high read-to-write ratio, and high read-ontention.Douglas C. Shmidt o�ers a Strategized Loking pattern to provide mutualexlusion; but, it allows an appliation or servie to on�gure the implemen-



2.3. CLIENT-SERVER PATTERNS 35tation hoie.[109℄Some authors lassify the mehanisms used to provide mutual exlusion andsynhronization as design patterns. For example, Douglas C. Shmidt lists a designpattern for a Monitor Objet , also known as a Thread-safe Passive Objet [110℄.While it is true that some of these an be implemented in multiple fashions, andthus they ould be onsidered abstrations, they do not qualify as full-edged designpatterns.2.3 Client-Server PatternsClient-Server is the most basi design pattern in this ategory [51, 131, 133, 9℄.Sine Clients and Servers are simply roles, tasks may sometimes at as a Client,and sometimes at as a Server. A Client makes a request of a Server.Under the division of lient-server design patterns an be found lient- andserver-side patterns. Note that patterns on the lient-side do not a�et the server,and vie versa.2.3.1 Client-Side PatternsOn the lient-side, the design patterns interpose an intermediary between the lientand the server (see Figure 2.3). The presene of the intermediary may be trans-parent to the lient (Proxy and related design patterns), or not (Mediator andrelated design patterns). From the view-point of the server, the intermediary isjust another lient.



36 CHAPTER 2. CONCURRENCY PATTERN CATALOG
Client Servermediary

Inter-Figure 2.3: Client-Side Design Patterns2.3.1.1 ProxyThe most basi form of transparent intermediary is that of the Proxy [103℄. As thename suggests, it represents an objet or task to the user. Thus, it must presentthe same interfae as the original. James O. Coplien's Handle-Body idiom underliesthe Proxy pattern sine it adds a level of indiretion to hide the underlying details,separating the interfae of a lass from its body. The \handle" is the proxy, whilethe \body" is the underlying objet [32℄.The Proxy design pattern exists under many di�erent names, and with manyvariations. The GoF alls this a Surrogate [47℄. Wolf and Liu refer to it as a \ghostpattern" [133℄. Doug Lea notes that a Proxy is a variant of the GoF Adapter6pattern, where the Adapter has the same interfae as its delegate [76℄. There areseveral notable Proxy variants. TheGoF list virtual, remote, and protetion proxies[47℄. Hans Rohnert adds the ahe, synhronization, ounting, and �rewall proxies[103℄.Virtual Proxy allows lazy onstrution of an objet. When proessing or loadinga omponent is ostly, it is only performed upon demand. The Virtual Proxy6An Adapter onverts the interfae of a lass into an interfae lients need [47℄.



2.3. CLIENT-SERVER PATTERNS 37hides whether or not the omponent is fully loaded from the lient, and loadsas neessary. It an thus implement Futures.Cahe Proxy allows multiple loal lients to share results from the outside byextending the proxy with a data area to temporarily hold results. The ahemust be maintained and refreshed.Remote Proxy provides a loal representation for an objet in a di�erent addressspae. The request's arguments are pakaged into a message and transmittedtransparently to the \real" body lass in the foreign name spae. Coplienrefers to this type of proxy as an Ambassador [32℄. Heuser and Fernandezdesribe the RPC Client design pattern as an elaboration of the RemoteProxy. Marquardt presents the Transparent Remote Aess design pattern[80℄. Bushmann and Meunier list the Proxy-Original design pattern [24℄.Protetion Proxy protets the original from unauthorized aess by heking theaess rights of every lient. A similar pattern is the Authentiator , whihan provide a negotiation protool as part of the aess protool [21℄.Synhronization Proxy (whih should more properly be alled a Mutual Exlu-sion Proxy) ontrols multiple simultaneous lient aesses using an appropri-ate mutual exlusion sheme, depending upon the allowed operations.Counting Proxy maintains the number of referenes to the original objet anddeletes the original when the ount reahes zero. Thus, it automatiallydeletes obsolete objets.



38 CHAPTER 2. CONCURRENCY PATTERN CATALOGFirewall Proxy enapsulates the protetion and networking ode needed to om-muniate with a potentially hostile environment.A Proxy an also be used as a Gateway [75℄. A Gateway serves as a midpointbetween lient-ontrolled and server-ontrolled ativation poliies, repakaging a setof methods split into di�erent servies.2.3.1.2 MediatorAnother form of intermediary design pattern is the Mediator . A Mediator is a taskthat enapsulates, ontrols, and oordinates the interations of a group of tasks[47℄. Sine all tasks in the group now only need to know about the mediator,instead of about eah other, the number of interonnetions is redued. By plainga mediator between peers, loose oupling is inreased [100℄. Name servers andrelays are examples of Mediators [36℄. By this de�nition, an Administrator is alsoa Mediator (Administrators are disussed in Setion 2.3.2.2). The following listdesribes a number of variants on the Mediator design pattern.Courier assists ommuniation between two administrators so that neither blokswaiting for a message reeipt or reply [50℄. In [36℄, the authors disuss aWaiter allowing the invoker to ontinue without bloking while the waiterbloks for it. A similar notion is that of the Forwarder [22℄, also knownas the Forwarder-Reeiver [25℄. A Forwarder is an intermediary betweentwo tasks. It ats as an agent for the lient, bloking on the lient's behalfif the ontated task is not ready to reeive the all. In [59℄, the authors



2.3. CLIENT-SERVER PATTERNS 39use what they all a Courier design pattern to solve the problem of passingarbitrary requests and information through a �xed interfae. Information isnow pakaged as an objet itself and passed as an argument among tasks,through the Courier intermediary. By expanding the types of messages sent,interfaes need not be hanged as often. As well, other message-sendingstrategies suh as broadasting an be implemented.Gateway a Mediator that deouples ooperating peer tasks throughout a network.In this fashion, they interat without having diret dependenies on eahother.7Emissary represents the lient task to the server task. It is hosen by the lientwho on�gures it to reat to events that our while the server proesses thelient's request. The Emissary an interat with the lient to obtain furtherinformation as neessary upon reeiving messages from the server [52℄.Mediator-Worker uses the Mediator to deouple ooperating Worker tasks, thusremoving diret dependenies. It an also be used to present a front for moreomplex funtionality by allowing individual servies to be ombined [24℄.Event Channel mediates among event produers (referred to as suppliers) andevent onsumers. This approah allows a supplier to deliver events to one ormore onsumers without requiring any of the partiipants to be aware of eahother [96℄.7Shmidt's ACE projet papers.



40 CHAPTER 2. CONCURRENCY PATTERN CATALOGShopper design pattern allows a onsumer to obtain an arbitrary number of itemsfrom a produer without additionally oupling them together. The onsumerpasses a list of objets to the Shopper who obtains the objets from theproviders using some sort of seletion strategy. The information on how toloate or rendezvous with the produers may be provided by the onsumer,the produer, or the Shopper [38℄.Data Filter �lters lient requests in a distributed system, aording to prede�nedpoliies maintained in some sort of poliy or lient database. The �ltering anbe performed loally or remotely [46℄. Used in ombination with the Body-guard, Authentiator, and RPC Client design patterns, an Objet Filter andAess Control pattern an be onstruted. This pattern provides registeredlients, through a variety of network protools, with a �ltered data streamwhose ontent may be sensitive and require aess ontrol [58℄.2.3.1.3 BrokerThe Broker design pattern deouples lients and servers. It is lassi�ed by [25, 120℄as an arhitetural pattern for use in a strutured distributed system where re-mote invoation is the main means of interation. Servers register with the broker.Clients aess the servers by sending requests to the broker who loates the appro-priate server, forwards the request to it, and transmits the results as well as anyexeptions bak to the lient. An example of use is the CORBA (Common ObjetRequest Broker Arhiteture) Objet Request Broker.Stal lists �ve Broker implementation variants:



2.3. CLIENT-SERVER PATTERNS 41Diret Communiation Broker System allows the lient to ommuniate di-retly with the remote broker instead of passing the request to a loal brokerwho is then responsible for forwarding it. Another possibility is that lientsommuniate diretly with the server one the broker noti�es the lient of theavailable server ommuniation hannel.Message Passing Broker System passes on messages from the lient to theserver. The server uses the message type to determine the servie to perform.This approah is used in systems where message passing is used instead ofRemote Proedure Calls.Trader System allows the broker to determine whih server or servers an providethe request, instead of forwarding the lient request to exatly one uniquelyidenti�ed server.Adapter Broker System uses an adapter layer to hide the broker's interfae.This layer is responsible for registering and interating with the servers. Al-lowing multiple adapter layers enables di�erent server implementation strate-gies.Callbak Broker System auses the broker to be the driving fore in the sys-tem. When an event arrives, the broker invokes the allbak method of theappropriate lient or server. Thus, there is no need to distinguish betweenthe lients and servers.Olson desribes four Broker variants [100℄.



42 CHAPTER 2. CONCURRENCY PATTERN CATALOGTranseiver-Parel is designed for a peer-to-peer interation rather than lient-server. The broker is deliberately kept as simple as possible, only aware of\parels" (a parel ontains whatever method alls are needed to ause thereeiver to do the bidding of the sender). As well, all tasks in the system(inluding the broker) should use the same ommuniation method, whihis deliberately kept simple. Upon reeipt of a parel, the broker noti�es thereeiving task by invoking its exeute method, passing the address of theparel as an argument. The reeiver then invokes the visit method on theparel.Going Postal is similar to the Transeiver-Parel in that the broker is kept assimple as possible. Deoupling, exibility, and extensibility are essential,though eÆieny is not onsidered ruial. The broker is now responsible forregistering tasks, reeiving parels, and routing them as appropriate. It usesa registrar objet and a routing objet to aomplish its duties. This patternis also known as Broker as Intermediary.Going to Court is used when the broker appliation is distributed aross pro-esses and/or proessors, but how it might be distributed may vary. In e�et,every task uses at least one broker for ommuniation. Eah broker shouldhave a proxy for eah type of task it has in its own address spae. The proxyis responsible for marshalling parels routed to it and forwarding them toa gateway that reonstruts the original parels and routes them to its loalbroker. This pattern is also known as Broker as Divore Attorney (In a ReallyUgly Divore).



2.3. CLIENT-SERVER PATTERNS 43Going to the Chapel is used when the basi broker arhiteture is too ineÆient.Now the broker serves to \introdue" the two tasks who then ommuniatediretly. The broker is noti�ed when the ommuniation is omplete. Thispattern is also known as Broker as Mathmaker .Shneider disusses a similar idea, the Mathmaker [113℄. The Mathmakerats as a learing house to pair up asynhronous request and reply messages toimplement synhronous ommuniation. Andrews refers to the Mathmakeras a Centralized Clearing House [7℄.In [78℄, the authors refer to another form of Mathmaker, the Path Panel .Some other variants of the broker are:Dispather provides loation transpareny in a distributed environment throughuse of a name servie. The Dispather hides ommuniation onnetion detailsbetween lient and server [119, 25℄.A similar idea is presented in [31℄ as Sender-Pass Through-Reeiver . Thispattern passes the Sender's request through the intermediary, whih forwardsit to a Reeiver.Manager-Agent pattern is similar to the Broker pattern, in that managed re-soures are grouped into agents that are aessed by managers who per-form management operations. Agents are responsible for monitoring theirresoures and notifying managers of exeptional behaviour. Unlike the Bro-ker, the Manager-Agent does not have the onepts of servie loation and



44 CHAPTER 2. CONCURRENCY PATTERN CATALOGtranspareny provided by the Broker. Additionally, either party an initiateommuniation asynhronously [123℄.Entity Broker [128℄. The authors use it to mediate between the user interfae,business objet, and persistene manager layers in an appliation.Swithboard manages onnetions among lients and devie ouriers. The lientrequests a onnetion to a partiular devie from the Swithboard. TheSwithboard assoiates the appropriate devie ourier with the lient. It thentransfers information between the lient and the devie ourier. The devieourier obtains input from the devie server [122℄.2.3.1.4 OtherOther intermediary patterns inlude:Curried Objet to store the onstant or slowly varying arguments from the origi-nal ommuniation protool. This approah provides a simpler protool sinethese arguments are eliminated. The Curried Objet stores the original serverobjet, and forwards messages to this objet. In the forwarding proess, itpasses along the stored arguments and updates the slowly varying arguments[86℄.Faade provides a uni�ed interfae to a set of interfaes in a subsystem. It de�nes ahigher-level interfae that makes the subsystem easier to use sine an objetrepresents many others. It di�ers from a Mediator in that it abstrats asubsystem of objets to provide a more onvenient interfae and its protool



2.3. CLIENT-SERVER PATTERNS 45is unidiretional [47℄. A Faade makes requests of the subsystem lasses butnot vie versa, unlike a Mediator.Mailbox is a task that ats as a temporary bu�er between two tasks. It allows theative proess to pass data asynhronously (via the mailbox). If the bu�er isfull or empty, attempts to add or remove messages ause the invoker to blok[22℄.Warden mediates between proxies and transporters in a distributed environment.It \simpli�es the management of objet sharing over a network, and providesmessage dispathing onformane and assignment of aess rights in non-loalenvironments, to prevent the inorret aess to an objet in ollaborativeappliations" [34℄. Hays, Loutrel and Fernandez also refer to this pattern asa Bodyguard [58℄.Router deouples input mehanisms from output mehanisms. This deouplingenables it to route data orretly without bloking a Gateway and allows itto ustomize its onurreny strategies [107℄.Proator simpli�es asynhronous appliation development. It integrates the de-multiplexing8 of ompletion events and the dispathing of the orrespondingevent handlers. These are deoupled from the servies performed in responseto events. Its pro-ative event dispathing model allows multiple onurrent8In eletrial engineering, a demultiplexer is a iruit that reeives information on a singleinput line, and transmits this information along one seleted output line. The orrespondingmultiplexer selets input from one of many input lines and direts it to a single output line. Asused in this pattern, the demultiplexer reeives (and probably serializes) multiple simultaneousevents or messages and dispathes them as appropriate.



46 CHAPTER 2. CONCURRENCY PATTERN CATALOGevents to be started so that the thread performing the operation is outsideof the appliation; hene, the appliation is not required to have multiplethreads. It invokes event handlers de�ning ompletion hooks. The Proa-tor pattern is used in suh plaes as the ACE projet, and I/O CompletionPorts in Windows NT. It is related to both the Reator and Observer de-sign patterns, though the Reator is an alternative onurreny approah[95, 108, 107℄.Reator serializes event handling from multiple soures within an appliation atthe level of event demultiplexing. This approah allows single-threaded ap-pliations to wait on event handles, demultiplex events, and dispath eventhandlers eÆiently. It invokes event handlers de�ning initiation hooks. Theevent handlers must exhange messages �xed or bounded in size without re-quiring bloking I/O and the messages must be proessed in a relatively shortperiod of time. The Reator design pattern an eliminate the need for moreompliated threading, synhronization, or loking within an appliation. Itis related to the Observer design pattern and similar to Fatory Callbakthough it is behavioural in nature instead of reational [108, 107, 123℄.In some sense, a Demon may be onsidered a form of Reator. A Demon is\A portion of a program that is not invoked expliitly, but that lies dormantwaiting form some ondition(s) to our." Unlike a Daemon, a Demon isusually a proess within a program rather than a program in an operatingsystem. Demons are frequently used in arti�ial intelligene program. For ex-ample, demons might implement inferene rules in a knowledge-manipulation



2.3. CLIENT-SERVER PATTERNS 47program. As information is added, the demon appropriate to the type of infor-mation ativates and reates additional information by applying its inferenerules to the information [10℄.An Ative Objet an implement the Reator. An Ative Objet enables amethod to exeute in a thread of ontrol separate from the one that originallyinvoked it. This fat requires the implementation of a rendezvous poliy.This design pattern is also known as a Conurrent Objet or a Serializer [74℄.Rumbaugh et al. state that \an ator is an ative objet that drives thedata ow graph by produing or onsuming values. Ators are attahed tothe inputs and outputs of a data ow graph. In a sense, the ators lie on theboundary of the data ow graph but terminate the ow of data as soures andsinks of data, and so are sometimes alled terminators" [104℄. In [75℄, DougLea states that \Listener-based objets are also sometimes alled Reators,Objet Adapters, Guardians, Skeletons, Exeutives and Demultiplexers." Henotes that they may also server as Parsers, and Builders. He adds in [76℄ thatan Ative Objet is also known as an Ator . The authors of [73℄, however,point out that the onept of Ators is more general, as originally envisionedby Carl Hewitt and later expanded on by Gul Agha. Here, Ators onsist ofa soiety of ooperating agents who ommuniate by asynhronous messagepassing. Thus, an Ative Objet is only one possible implementation of anAtor [5℄.Proess Control regulates a physial, ontinuous proess. Input omes from pro-ess variables, input variables, manipulated variables, and sensors. Beause



48 CHAPTER 2. CONCURRENCY PATTERN CATALOGthe ontroller is now deoupled from the proess, it an be easily replaed[124℄.2.3.2 Server-Side PatternsHistorially, Gentleman, Shepard and Thoreson list two basi forms of servers, aProprietor and an Administrator [51℄ (see Figure 2.4).
Server Resource

Proprietor

Server Worker

Worker

Worker

Client

AdministratorFigure 2.4: Server-Side Design Patterns



2.3. CLIENT-SERVER PATTERNS 492.3.2.1 ProprietorA Proprietor owns and manages some resoure (Andrews and Shneider refer to asimilar idea as a Caretaker in [9℄). The only way other tasks an perform oper-ations on the resoure is to request that the Proprietor perform the operation ontheir behalf. The Proprietor thus provides mutual exlusion on the resoure, andpossibly some form on synhronization. There are many variants on the theme ofa Proprietor design pattern:Leasing manages resoures in a fault-tolerant distributed system. Clients requestaess to the resoure for a �nite period of time. One the granted leaseexpires, the orresponding resoure is freed. The holder of the lease is able torequest a lease extension if the lease has not yet expired. It an also anel alease one it has �nished with the resoure [67℄.Lok Server provides mutual exlusion in a distributed system. It allows eahlient to work with a onsistent view of the shared resoure sine eah lientmust obtain a lok for the resoure before proeeding, and must return thelok upon ompletion. It is also known as a Lok Manager [63℄.Lookup provides a lookup servie in a distributed system. Servies register withtheir referenes and assoiated properties. The lookup server determines themost appropriate servie or servies based upon lient requests. MultipleLookup servers an be ombined into a Federation of lookup servies [66℄.Manager handles a olletion of objets. It takes are of reation, destrution, andmanipulation of the objets. A lient requests the objet from the Manager



50 CHAPTER 2. CONCURRENCY PATTERN CATALOGand then interats diretly with the objet. One the operation is omplete,the lient returns the objet to the Manager [124, 118℄. Gehani and MGet-trik present a similar onept known as a Guardian [49℄. Operations on theresoures are performed by exeuting the provided handlers.In [114℄, the authors desribe a Task Manager to handle thread reation andtermination. By enapsulating these servies, the domain ode is renderedportable, and onurreny strategies are easily hanged sine only the TaskManager ode needs to be re-written.Tessier and Keller introdue the Manager-Agent pattern. It deentralizes themanagement of resoures, simplifying ontrol in a distributed system. AnAgent is in harge of a group of resoures related by some riteria. The Agentrepresents the resoures to the rest of the management system and may takeon some managerial aspets for the resoure as well. The Manager handlessome management funtion over the entire system. There may exist multipleManagers, and Agents may report to more than one Manager [123℄.Repository provides a entral data struture for a omplex body of informationthat must be established, augmented, and maintained. Multiple lients needto aess and manipulate the data, often onurrently. A large, entralized,transation-oriented database is an example of a repository. The Blakboard ,disussed in Setion 2.3.2.2, is a related pattern [124, 115℄. Hu and Gill,in [65℄, disuss the notion of a Library, whih is similar. Here, the Librarydeouples the reation of a new objet from the retrieval of an existing objetfrom the repository ahe.



2.3. CLIENT-SERVER PATTERNS 51Resoure Exhanger manages resoures shared among multiple server tasks. Atsome point, when a server requests a resoure, suh as a bu�er, it must handover another instane of the resoure in exhange. This requirement allows theResoure Exhanger to maintain a onstant pool of resoures and minimizedelay times. In addition, servers build up a redit (or lak of it) with theResoure Exhanger. Servers with a high load eventually use up their redit,whih allows low load servers to be proessed. This sheme thus redues theoverall server load, and alloates resoures fairly [106℄.Servie Con�gurator enables the on�guration and reon�guration of ommu-niation servies at any point in time without a�eting other servies. Allservies must have a uniform interfae for on�guration and ontrol. It an ini-tiate, suspend, resume, and terminate servies dynamially. It is also knownas a Super-server [68℄.Aeptor deouples passive onnetion from the servie after the onnetion isestablished. It reates, aepts, and ativates a new handler whenever anevent dispather noti�es it that a onnetion has arrived from a lient [107℄.Connetor deouples ative servie from the task's servie after the servie isinitialized. It allows the servies to evolve independently and transparentlyfrom the mehanisms used to establish the onnetions. It ats as a fatorythat assembles the resoures neessary for a synhronous or asynhronousonnetion [107℄.Command Proessor separates the request for a servie from its exeution. The



52 CHAPTER 2. CONCURRENCY PATTERN CATALOGrequests are managed as separate objets, whih are sheduled for exeution.Additional servies suh as requesting storage of ommands for later rollbakmay also be done [117, 124℄. It is also referred to as Controller-Command in[24℄ though the authors later refer to it as a Command Proessor in [25℄.View Handler assists in managing the views of appliation-spei� data or multi-ple windows provided by a software system. It allows lients to open, manipu-late, and dispose of views. It also oordinates dependenies among views andorganizes their updates (frequently, views are updated in a priority ordering).Sine the updates are performed by the data supplier at the view's request,it is the supplier who is responsible for notifying all dependent omponents(whih ould inlude the View Handler as well as views) about a hange toits internal data. A variant of the View Handler uses Command objets tokeep the handler independent of spei� view interfaes [25℄.Sponsor-Seletor allows a lient to request the appropriate resoure from theSeletor. In turn, the Seletor broadasts requests to Sponsors who rate theirresoures and return the ratings. The Seletor uses the ratings to selet theresoure that is returned to the lient for use [130℄.Gatekeeper-Request-Resoure passes a request for a resoure to a Gatekeeperwho manages the resoures and passes on the request to the appropriateResoure. The Resoure then proesses the request [31℄.



2.3. CLIENT-SERVER PATTERNS 532.3.2.2 AdministratorAn Administrator hides worker tasks in the same way that a Proprietor hidesa resoure(s). The Administrator an delegate work to these worker tasks, andonurreny is improved further by ensuring that it is the workers who blok whenrequesting work instead of the Administrator [50, 48℄. Ideally, an Administratoronly bloks when it has no work or management to perform.The Administrator has two means of ontrolling workers. It an reate Workersas needed and terminate them when the work is done, or it an reate an initial poolof Worker tasks that are used as neessary [51℄. There are several design patternsrelated to the issue of Worker reation. These onsist of [92, 108℄:Thread per Request reates a thread for eah lient request, allowing all lientrequests to run onurrently.Thread Pool handles requests for an unlimited number of lients, using limitedstateless server resoures. If the request annot be urrently �lled, it is blokeduntil a thread is returned to the pool. This pattern is also known as a Re-soure Pool [60℄. The variant known as Client-Server-Servie allows lientsto monitor the request's progress sine the server publiizes its state [3, 1℄.Douglas C. Shmidt's \Thread Pool" is an example of a Resoure Pool.Thread per Session reates a thread for eah lient session, handling all of thatlient's requests. This pattern is also known as Thread per Connetion.Some examples of worker tasks are:



54 CHAPTER 2. CONCURRENCY PATTERN CATALOGNoti�er whih noti�es the Administrator that an event has ourred [50℄.Timer whih noti�es the Administrator of an amount of elapsed time [50℄.Courier whih allows the Administrator to ommuniate without bloking for areply [50℄.Assassin whih deletes other tasks for the Administrator [19℄. The Evitor is anAssassin variant. It removes idle servants based on a Least Reently Usedalgorithm. It an be extended to support distributed garbage olletion, inorder to relaim the spae oupied by unused servants [61℄. Henning de-sribes using an Evitor variant for a Trader. That variant uses a separatereaper thread to get rid of the unused servants.A similar pattern is the Undertaker [40℄, whih handles dangling referenepointers not reognized by the system as garbage, or the Vulture [11℄, whihis responsible for terminating unauthorized software servies and logons.Cheriton presents a Death Proprietor for proessing requests to destroy tasks.It also sends messages to the System Proprietor to relaim the resoures ofdestroyed tasks [29℄.Overseer whih manages other workers tasks [19℄.Seretary and Diretor where the Seretary ontains the set of all ommon statevariables aessed by the Diretors, and the Diretor makes requests of theSeretary, whih then is responsible for oordinating the Diretor based uponthe stored state information. Dijkstra uses \the metaphor of diretors and a



2.3. CLIENT-SERVER PATTERNS 55ommon seretary beause in the diretor{seretary relation in real-life orga-nization it's also unlear who is the master and who is the slave!" [37℄.Shell and Tenant is an abstration pattern for workers [51℄. The Shell task takeson the role of any type of worker (known as a Tenant) based upon the infor-mation it reeives from the Administrator.2.3.2.2.1 Independent WorkersMost patterns that rely upon solving a problem using independent workers olletevents or job requests into some sort of queue. These patterns inlude:Distributed Bag of Tasks uses a \bag" that ontains independent work requestsand is shared by multiple worker tasks. Eah worker repeatedly removes workfrom the bag and ompletes it. The proessing of the request may generatemore work requests to plae in the bag. The manager implements the bag,hands out work, ollets the results, and detets termination [8℄.Magee and Kramer, in [79℄, refer to this as a Supervisor-Worker pattern.They note that is also known under the names Repliated Worker [7℄, ProessFarm [22℄, and Agenda Parallelism [26℄.Work Crew onsists of a �xed set of worker tasks. The workers remove jobsfrom a queue, where jobs onsist of omputational work. If the worker ansubdivide the job, it will do so, plaing all piees but the one it is working onbak in the job queue. When the worker has ompleted its piee, it heks tosee if all of the help requests have been answered. If they have not, it works



56 CHAPTER 2. CONCURRENCY PATTERN CATALOGon the next piee. The yle ontinues until the entire job has been ompleted[98℄.Manager-Agent is used to regroup a number of heterogeneous resoures, whoseinterfaes annot be modi�ed to one homogeneous interfae, under the super-vision and ontrol of an Agent. The Agent represents the resoures to therest of the management system. If so desired, the Agent an be responsiblefor managing ertain aspets of the resoures. Eah Agent reports to oneor more Managers, who handle some management funtion over the entiresystem. The Agent performs operations on the resoures on behalf of therequesting Manager. If the Agent noties hanges in its resoures requiringthe Manager to be noti�ed, it reports the hanges [123℄.Master-Slave introdues redundany, fault tolerane, safety and orretness. TheMaster task delegates work to independent Slave tasks and omputes a �nalresult from the results the Slaves return. The Master, when alulating the�nal result, may use di�erent strategies for seleting among the Slave-returnedresults. These strategies inlude: taking the �rst result returned, taking theresult the majority returned, taking the average of all the returned results,taking a result returned from a Slave that did not fail, or sometimes deliningto selet any result (for example, if they all returned di�erent results). TheSlaves may also use di�erent strategies for providing the servie for whihthey are responsible [24, 123, 48℄. In [36℄, this design pattern is also referredto as host-helper . Variants listed in [25℄ inlude:



2.3. CLIENT-SERVER PATTERNS 57Objet Group by Ma�eis uses the Master-Slave variant that provides groupommuniation and fault tolerane in a distributed environment.Master-Slave Pattern for Parallel Compute Servies by Brooks on-entrates on desribing how the Slaves an be implemented as proesses.Slaves as Threads by Kleiman, Shah, and Smaalders investigates usingthreads to implement the Slave task.Workpool Model by Knopp and Reih uses a Workpool of Workers, or-responding to the idea of Slaves, to handle lient requests. The requestfuntion sent by the lient orresponds to the Master.Gaggles by Blak and Immel builds upon the Master-Slave pattern to userepliated servie objets. The servie objets are represented by theGaggle, whih forwards lient requests to one of the repliated servieobjets.Bushmann, in [23℄, states that the Master-Slave design pattern is based onthe Ator-Agent-Supplier variant of the Ator-Supplier design pattern. Thisonnetion an be seen if the lient requesting the servie takes on the role ofthe Ator, the Master takes on the role of the Agent, and the Slaves at asthe Suppliers.Paherie and J�ez�equel see the Master-Slave design pattern as one possiblere�nement of their Operator design pattern, also known as Ubiquitous Agent[89℄.Wilson disusses another variant, the Crystalline Model , also known as Single



58 CHAPTER 2. CONCURRENCY PATTERN CATALOGProgram, Multiple Data or SPMD [132℄. This pattern onsists of a �nite setof worker tasks, more annot be reated dynamially, and a single ontroller.The worker tasks are organized in a regular topology sine eah ommuniatesonly with a diret neighbour. They eah have their own data spae and workindependently until a ommuniation event arrives, at whih point they mustall partiipate. The ontroller is also independent, and an ommuniatediretly with any of the workers.A variant of the Master-Slave for mobile omputing, Supervisor-Worker , isdisussed in [45℄. The pattern is designed to protet mobile agents fromhaving unauthorized tasks aquire or alter information. This protetion isaomplished by building a entral knowledge-base and management uniton top of the Master-Slave pattern, whih ensures all information is proessorretly, and at the right times. The partiipants in the pattern onsist of theAgent, the Supervisor, and the Worker. The Agent is mobile, and has its ownonstraint manager keeping trak of the onstraints for the work the Agentis supposed to aomplish. The Supervisor divides up the work, ontrols theworkers, and merges reports. It develops work ompletion strategies, reatessubdivisions of the work, and keeps trak of required information suh asmerge onstraints, and Worker assignments. The Worker ompletes the jobassigned by the Supervisor and sends reports to the Supervisor.Cela and Alfonso examine the standard entralized version and two dis-tributed versions of a Master-Slave pattern to solve preonditions of SparseApproximate Inverses [27℄. In the distributed versions, the Slaves ommu-



2.3. CLIENT-SERVER PATTERNS 59niate among eah other to assist in solving the problem sine the data hasalready been distributed. In the �rst version, a Slave answers a request fordata only when it sends a request. In the other version, a Slaves answers arequest for data only when a user de�ned signal arrives.EmbarrassinglyParallel pattern uses a olletion of onurrent, independenttasks to solve a problem [82℄. In partiular, it attempts to organize theomputation so that eah task ompletes at about the same time. Tasks thatare faster take on a larger share of the omputation. These tasks may behomogeneous, or heterogeneous. During exeution, more tasks may be re-ated, depending upon the problem being solved. The authors desribe threevariants of this pattern.1. Sub-solutions are aumulated in a shared data struture. The tasks areno longer ompletely independent sine they share and must synhronizeaess to the data struture.2. A termination ondition other than all tasks ompleting exists. Thisondition is partiularly useful when an overall solution an be obtainedwithout having to solve all subproblems.3. Not all subproblems are initially known. This situation ours whensubproblems are generated while solving other subproblems.This pattern is also known as Master-Worker , or Task Queue.Two additional patterns, the SeparableDependenies and the GeometriDe-omposition patterns are also presented. The �rst is related to Embarassing-



60 CHAPTER 2. CONCURRENCY PATTERN CATALOGlyParallel in that the tasks have dependenies, whih when removed, allowthe problem to be solved using the EmbarassinglyParallel pattern. The otheris used when the onurreny is based on parallel updates of setions of a de-omposed data struture, and the update of eah setion requires data fromthe other setions.Leader/Followers is used to eÆiently proess events arriving frommultiple eventsoures shared by multiple tasks. One task, the Leader, waits for an event.The Followers queue themselves, awaiting their turn as Leader. When theLeader detets an event, it promotes a Follower as the new Leader, and thenproesses the event. This demultiplexes and dispathes the event to the des-ignated event handler. Upon ompletion, the task takes on the role of aFollower [112℄.2.3.2.2.2 Cooperative WorkersThe following design patterns rely upon ooperative Workers:Colletion-Worker uses a Colletion to ontrol a �nite number of Workers. TheColletion only performs operations that apply aross its entire set of Workers.The Worker does all it an with what it knows, or what others may tell it inombination with what it knows [31℄.Blakboard is a solution to the pattern reognition problem of transforming rawdata (suh as that olleted by sensors) into a higher-level data struturewhen no deterministi algorithm for the transformation exists [25℄. Instead,



2.3. CLIENT-SERVER PATTERNS 61algorithms applying partial transformations are used, but the order in whihthe transformations are applied is unknown. The pattern involves three om-ponents: the Blakboard, a Moderator, and at least one Contributor (alsoreferred to as a Knowledge Soure). The Blakboard is a shared data stru-ture maintaining the di�erent versions of the data, ranging from the originalraw form to the �nal produt.The Moderator is responsible for hoosing among the Contributors' proposals.It selets the proposal alulated to advane the problem the furthest, allowsthe Contributor who submitted the proposal to update the Blakboard, andrepeats the yle. If neessary, the Moderator may reverse its deisions if itdetermines that the present trend will not lead to the desired solution.The Contributors are independent tasks that ommuniate only with theModerator. They view the Blakboard, and make a proposal to modify somelevel of the data struture. The proposal is aompanied by a metri indi-ating the degree of ertainty of suess, based upon the urrent state of theBlakboard.In [25℄, the Repository is onsidered a generalization of the Blakboard. Theauthors also onsider the Blakboard to be an extreme variant of the Pro-dution System by Forgy and MDermott. Within the Prodution System,subroutines are represented as ondition-ation rules, and data is globallyavailable in working memory. The ation spei�ed by a ondition-ation ruleis only performed when the assoiated ondition is true, and the rule has beenseleted by the onit resolution module.



62 CHAPTER 2. CONCURRENCY PATTERN CATALOGThe authors of [36℄ list a variant of the Blakboard, whih they onsider tobe a variant of the Master-Slave pattern. Here the Coordinator serves as theBlakboard, whih is now a work queue from whih the Contributors takework to be omputed. The results an then be fed bak into the Blakboard.Leader/Collaborator/Collaboration design pattern by [2℄ is based on the Client-Server-Servie pattern, exept new roles are assigned to the partiipants. Itis intended for use in the ontext of ooperative, autonomous software agents.Here, the agent (Leader), upon determining that ollaboration is required toful�ll its task, asks one or more Collaborators for assistane. When askingfor help, the Leader indiates what type of ollaboration is required. If a Col-laborator agrees to help, a Collaboration objet is reated and its referene isreturned to the Leader. (The Collaboration objet enapsulates a thread ofexeution and manages the agent's ollaboration proess.) The Leader reatesits own Collaboration objet, whih is on�gured to work diretly with theother Collaboration objet. These objets have diret visibility of eah otherwhile the ollaboration is underway. From this point on, all ommuniationis among peers sine there is no longer any role distintion.Model-View-Controller deouples the user interfae of a system from its orefuntionality. The interative appliation is divided into three omponents:the Model, the View, and the Controller. The Model ontains the ore fun-tionality and data of the appliation. Its information is presented by one ormore Views to the user (eah View may present the information in a di�erentformat). Every View has a orresponding Controller . The Controller trans-



2.3. CLIENT-SERVER PATTERNS 63lates user input into a servie request to the Model. Changes in the Model'sstate ause the Views to update the information presented to the user. Thispattern implies a reliane upon the Publisher/Subsriber design pattern [25℄.As the pattern is desribed, all ommuniation is performed via update methodalls, unlike the following Presentation-Abstration-Control (PAC) pattern.No mention is made of issues suh as mutual exlusion of servie requests orupdates, or of how onsisteny in the Model is maintained given that a Con-troller may need to obtain more information from the Model after the initialservie request is made.Presentation-Abstration-Control is an alternative approah to the problemsolved by Model-View-Controller (MVC). A tree-like hierarhy of ooperatingagents is responsible for an interative system. The hierarhy is tree-like in thesense that there is only one agent at the top-most level, but there are severalintermediate-level agents and many low-level agents. Eah agent dependsupon all of the agents higher up in the hierarhy. The top-level agent isresponsible for the ore funtionality of the system, and any parts of the userinterfae that annot be assigned to lower-level agents. An intermediate agentrepresents either multiple low-level agents, or the relationships between them.A low-level agent represents the basi onepts of the system, upon whih theusers an at [25℄.Eah agent is divided into Presentation, Abstration, and Control setions,though the Presentation setion may be non-existent at the top levels of thehierarhy. The Presentation setion provides the \visible behaviour" of the



64 CHAPTER 2. CONCURRENCY PATTERN CATALOGagent. It is equivalent to the MVC View and Controller.The Abstration setion maintains and manipulates the data model that un-derlies the agent, whih is the same as the Model in MVC. A partiular pointto note is that if a low-level agent requests information, all agents in the pathto the top-level agent must partiipate in the ommuniation. As well, if anagent depends upon data stored in another agent, then a pattern suh asPublisher/Subsriber must be used to ensure noti�ation of updates.The Control setion allows the agent to ommuniate with other agents, andonnets the Presentation and Abstration setions. It ats as a Mediator,passing on hanges from the top-level agent, and requests from the lower-levelagents.While it is mentioned that multiple threading an be used to implement thispattern, no mention is made of how mutual exlusion or synhronization (aneessity of ommuniation) is to be performed.2.3.2.2.3 Workers Talking to ClientsThe key to these patterns is that the delegated task ends up ommuniating withthe lient instead of the sever.Sender-Lookup-Reeiver has the Sender look up the Reeiver in a Lookup ser-vie. The Sender then ontats the Reeiver diretly [31℄.Caller-Dispather-Caller Bak has the Sender all the Dispather who tellsCaller Bak to return the Sender's initial all [31℄.



2.4. CLIENT-SERVER INTERACTION PATTERNS 65Mathmaker see the Broker as Mathmaker in setion 2.3.1.3.A similar notion an be found in the V Distributed System where a lient anuse a group identi�er to multiast to all servers in a group in an e�ort to �nd theserver responsible for managing a partiular objet. One the responsible serveranswers, the lient an ommuniate with it diretly and thus avoid multiastingto the group as a whole [30℄.2.4 Client-Server Interation PatternsThere are two main forms of interation available beyond the basi ommuniationof a request from a lient to a server. The request, or subsequent work, an bedelegated to other tasks in the system. It may also be neessary to provide a meansof keeping tasks aware of hanges in the system state by using update patterns.2.4.1 Delegation PatternsFigure 2.5 illustrates the basi form of a lient-server interation pattern. Notethat the roles of lient and server are uid sine the server an in turn beomethe lient of another server. Other forms of interation involve the Administratordelegating an operation to multiple Workers. The Workers may be independent, orooperative. They an also ommuniate diretly with the Client.The Pipeline is the most basi form of interation pattern. It is a olletion oftasks in whih the output of one beomes the input of another [9, 15, 18, 127, 115,79℄. The information an be either pushed or pulled through the Pipeline. In this



66 CHAPTER 2. CONCURRENCY PATTERN CATALOG
S

er
ve

r

C
lie

nt

S
er

ve
r

C
lie

nt

Client ... ServerFigure 2.5: Delegation Patternfashion, it an e�etively delegate work to other tasks in the Pipeline. It is alsoknown as Pipes and Filters sine a Pipeline an be used to �lter information as itpasses through the pipe. The �lters may be soures (produe data), sinks (onsumedata), transformers, or removers. A pipe may simply be a data onnetion suh asa Stream [4, 39℄, or a data onnetion plus some other struture suh as a repository(see Figures 2.6 and 2.7). [124, 85, 25℄.
Filter

1
Filter

2
Filter

3

1
Pipe Pipe

2
Pipe

3
Pipe

4

(data pipe)(data pipe) (data pipe) (data pipe)Figure 2.6: Simple Pipeline with Pipes as Data ConnetionsPipeline variants inlude:Translator pattern an be viewed as a limited Pipeline sine it servers to marshaland unmarshal messages [123℄.Produer-Consumer is a Pipeline where eah task in the pipeline ats as a �lter[7, 8, 57, 61℄. Bushmann and Meunier re�ne the idea further by listing severalvariants of the Produer-Consumer pattern suh as the Produer-Repository-



2.4.CLIENT-SERVERINTERACTIONPATTERNS
67

Filter
1

Filter
3

Filter
4

Filter
2

Filter
3

1
Pipe

Pipe
3

Pipe
2

Pipe
4

(data pipe)

(data pipe)

(data pipe)

(repository + pipe)

(repository + pipe)

(data pipe)

(data pipe) (data pipe)

Pipe

Pipe

Pipe

1
Pipe

(data pipe)

Pipe

5

6

7 8

Figure2.7:NetworkPipelineswithPipesasDataConnetionsandRepositories



68 CHAPTER 2. CONCURRENCY PATTERN CATALOGConsumer pattern, and the Produer-Sensor-Consumer pattern in [24℄ but donot desribe them further.The Forwarder-Reeiver deoupling design pattern is another form of Produer-Consumer. It provides transparent ommuniation among peers. Every taskis provided with both a Forwarder and a Reeiver (see Figure 2.8). The For-warder marshals and delivers the message to the other Reeiver. The Reeiverunmarshals and delivers the message to its assoiated peer [24, 25℄. Sine theReaders and Writer pattern is a restrited form of the Produer-Consumerdesign pattern, it is also onsidered a form of Pipeline [124, 76℄.
Peer

1

Forwarder
1

1
Receiver Forwarder

2

Receiver
2

Peer
2Figure 2.8: Forwarder-Reeiver InterationAnother variant of Produer-Consumer is Produer-Intermediary-Consumer .This pattern plaes an intermediary between the Produer and the Consumer.This intermediary may be a passive objet suh as a monitor, or an ativeobjet suh as a task. An example of this pattern is Doble's Shopper whoobtains items for a Consumer from a Produer [38℄.Doug Lea de�nes a Produer-Consumer variant, the Flow Network . A FlowNetwork is a olletion of objets that pass one way messages from soures(Produers) to sinks (Consumers). Examples of Flow Networks are: avionis



2.4. CLIENT-SERVER INTERACTION PATTERNS 69ontrol systems, assembly systems, data ow systems, work ow systems, andevent systems [76℄. Andersen refers to this as a Network sine there may bemultiple input soures, and multiple output sinks [6℄.Tee and Join Pipeline Systems listed as variants by [25℄ allow more than oneinput and/or output.Program Chaining divides eah piee of the program into an individual ompo-nent that invokes the next one in sequene. The main purpose of this patternis to redue memory requirements by using seondary storage (a mass storagedevie suh as a oppy disk, hard disk, tape drive) to store the omponentsuntil they are required. Eah newly invoked phase of the program and its run-time data are loaded from seondary storage into main memory, ompletelyreplaing the invoking exeutable [88℄.Chain of Responsibility allows a task to send a request to another task, whih isimpliitly at the head of a hain of other tasks. The request is passed throughthe hain, and any member of the hain an ful�ll the request, depending uponrun-time onditions. The number of partiipants in the hain is unbounded,and partiipants in the hain an be seleted at run-time. This design patternis also known as Event Handler , Bureaurat , and Responder [47℄.Two patterns that rely heavily upon Chain of Responsibility are: Mather-Handler, and Bureauray. The Mather-Handler design pattern has traitsof the Observer, Chain of Responsibility, and Strategy design patterns. Itdelivers data to impliitly spei�ed reeivers, of whom more than one may



70 CHAPTER 2. CONCURRENCY PATTERN CATALOGhandle the request. The set of reeivers an also be dynamially spei�ed.These qualities let it behave like Chain of Responsibility.Sine a data event may need to be proessed independently and simultane-ously by more than one task, Mather-Handler has traits of the Observerdesign pattern, exept that the handlers are only noti�ed when the informa-tion they are spei�ally waiting for has arrived.In order to redue the impat of hanging the mathing riteria over time,the Strategy pattern isolates the mathing behaviour; however, the purposeof Strategy is to provide seletable behaviour, partiularly at runtime. Theend result is the same, though the purposes di�er [84℄.The other design pattern, Bureauray, is based on the Composite9, Ob-server, and Chain of Responsibility design patterns. The Bureauray designpattern lets developers build self-ontained, hierarhial strutures that aninterat with lients on every level. No external ontrol is neessary, and thestrutures an maintain their own inner onsisteny. Chain of Responsibilityforwards requests until a task is reahed that an fully exeute the request.The previous tasks may have partially exeuted the request, reinterpreted it,or anelled it. Beause the work an be handled by a task low in the hi-erarhy, whih would not have noti�ed higher-level tasks sine it knew howto proess the request, the higher-level tasks still need to be warned of thestate hange. Therefore the Observer is responsible for notifying tasks of the9GoF de�ne the Composite pattern as omposing objets into tree strutures to representhierarhies (either part of, or the entire hierarhy). Clients an treat individual objets andompositions of objets uniformly.



2.4. CLIENT-SERVER INTERACTION PATTERNS 71hierarhy of state hanges. The Composite pattern allows the building ofomplex strutures [99℄.2.4.2 Update PatternsThese patterns are responsible for maintaining the state information in a systemby ensuring that all partiipants are noti�ed of hanges.Observer de�nes and maintains a dependeny among objets. As an objethanges, all lients who have registered an interest with the Observer are noti-�ed of the hanges. This design pattern is also known as: Broadaster/Listener[1℄, Caller/Provider [3℄, Provider/Observer [43℄, Subsriber/Publisher [70℄,Announer/Listener [79℄, Dependents, Publisher-Subsriber [24, 25, 31℄, Up-date, and Listener [47, 123, 100, 124, 129℄. Wolf and Liu refer to it as a\dependeny" and note that Coad refers to this as a \broadast" [133℄. Feilerand Tihy lassify it as a speial ase of the Propagator pattern [44℄. Kimand Benner provide several implementation design patterns for the Observerdesign pattern [71℄.There are a number of related design patterns, inluding the Spy, the Noti-�ation Server, the Noti�er, the Handler, Broadasting Sequential Proesses,the Component Bus, and the ValueModel.In the Spy design pattern, the Spy task monitors the progress of a parallelprogram by examining shared global memory. It an onsolidate, proess,and report the gathered information [121℄.



72 CHAPTER 2. CONCURRENCY PATTERN CATALOGHirshfeld and Eastman's Noti�ation Server inverts the Observer's roles.The Noti�ation Server takes on the role of the observed subjet though it isreally the shared resoure that is being observed, while the registered lientsare the observers. Also unlike the Observer pattern, the Noti�ation Serveris not noti�ed of the hanges, only the registered lients are noti�ed [64℄. TheNoti�er noti�es the administrator when an event has ourred; thus, it ouldbe used as part of the Observer implementation [50℄.Berzuk de�nes a Handler to proess items when the end-to-end system re-quirements have not been fully spei�ed yet. When an item to be proessedis reated, it registers itself with the handler. This pattern is related to theObserver pattern exept that the observer is the lass of objet reated, andthe event that triggers noti�ation is the reation of an objet of a given lass[17℄.Broadasting Sequential Proesses (BSP) uses the Publisher-Subsriber pat-tern. A message broadast (published) by one task an be reeived by allother tasks (subsribers). Thus, programs are olletions of loosely oupledtasks ooperating to aomplish a ommon goal [48℄.The Component Bus allows tasks to ommuniate indiretly. It manages therouting of information dynamially, as tasks an dynamially register interestin the required information [41℄. The Component Bus is also referred toas a Message Bus. It (or a Broker) is used to implement the Event-BasedIntegration design pattern [124℄.Woolf's ValueModel framework is another variant of the Observer design pat-



2.4. CLIENT-SERVER INTERACTION PATTERNS 73tern. It ontains a value, and it informs its registered dependents when thevalue hanges [134℄.Propagator is a family of patterns for onsistently updating objets in a depen-deny network [44℄. All of these patterns support smart propagation foravoiding redundant work as well as onurrent updates. It is also known asCasaded Update. There are four main Propagator patterns:Strit Propagator always performs a omplete update. No indiation ofsuess or failure is given. It only keeps trak of its dependents forthe purpose of propagation. The hanged predeessor is passed withthe update method and is thus aessible to the dependents, allowingthem to identify whih predeessor has hanged. This design patternombines the methods of the subjet and objet lasses of Observer andmakes the noti�ation method reursive. It is also known as the Forward ,Immediate, or Eager Propagator.Strit Propagator with Failure is the same as the Strit Propagator, ex-ept that an objet is marked as invalid if the update failed. It is alsoknown as an Optimisti Propagator.Lazy Propagator only updates objets if it an determine that they arehanged. Objets in the dependeny network only keep trak of theirdiret predeessors. It is also known as Update on Demand , or theBakward Propagator.Adaptive Propagator is a ompromise between the Strit Propagator and



74 CHAPTER 2. CONCURRENCY PATTERN CATALOGthe Lazy Propagator. It immediately forward propagates only the invalidmarker and separately propagates updates optimistially, periodially, oron demand. The forward propagation phase performs no updates, andstops quikly in the ase of suessive waves, sine it enounters alreadymarked objets. The atual updates take plae in the bakward phase,whih an even be run simultaneously with the forward phase. In thisfashion, it an avoid suessive waves of updates (Strit Propagator), orhaving to traverse the entire network bakwards to the roots and hektime stamps (Lazy Propagator).



Chapter 3ConlusionIn the realm of design patterns, there is no satisfatory taxonomy that meets theneeds of everyone. This is amply evident from the proliferation of possibilities.A large part of this is due to the inability to �rmly lassify eah pattern intosolely one nomenlature (arhitetural pattern versus design pattern), ategoryof funtionality, or purpose. This proess is rendered even more ompliated bythe quantity of published patterns, whose names and purposes overlap, as is seenthroughout Chapter 2. The sope of the problem is magni�ed and driven home onethe reader realizes that onurreny patterns are only a small portion of patternsappliable to a restrited area of omputer siene.Though no system of lassi�ation is perfet, I believe that a good start has beenmade by identifying the basi, underlying metapatterns of onurrent programming.The three main divisions are: synhronization, mutual exlusion, and lient-server.Synhronization overs the mehanisms for synhronizing tasks as well as patterns75



76 CHAPTER 3. CONCLUSIONin ommuniation while mutual exlusion disusses various lok patterns.Within the ategory of lient-server, design patterns an be further subdividedinto lient-side patterns, server-side patterns, and lient-server interations. Client-side patterns involve the introdution of an intermediary (passive or ative, impliitor expliit) between the lient and server. The three main metapatterns are proxies,mediators, and brokers. Server-side metapatterns are those of the proprietor andthe administrator. Sine the administrator uses worker tasks, the patterns involvingworkers are also examined, yielding the basi patterns of independent workers,ooperative workers, and workers ommuniating diretly with a lient.The �nal ategory of lient-server interations neatly overs the areas missingfrom the previous two, subsuming both delegation and publiation patterns. Thesedivisions aount for both the ommon and exoti patterns found in onurrentprogramming, without desending to the level of idioms suh as semaphores ormonitors.



Appendix ASample Design PatternThis pattern is taken from pages 293 to 303 of the GoF design patterns text [47℄.A.1 OBSERVER Objet BehavioralA.1.1 IntentDe�nes a one-to-many dependeny between objets so that when one objet hangesstate, all its dependents are noti�ed and updated automatially.A.1.2 Also Known AsDependents, Publish-Subsribe 77



78 APPENDIX A. SAMPLE DESIGN PATTERNA.1.3 MotivationA ommon side-e�et of partitioning a system into a olletion of ooperating lassesis the need to maintain onsisteny among related objets. You do not want toahieve onsisteny by making the lasses tightly oupled, beause that reduestheir reusability.For example, many graphial user interfae toolkits separate the presentationalaspets of the user interfae from the underlying appliation data [KP88, LVC89,P+88, WGM88℄. Classes de�ning appliation data and presentations are indepen-dently reused. They an work together, too. Both a spreadsheet objet and barhart objet an depit information in the same appliation data-objet using di�er-ent presentations (see Figure A.1). The spreadsheet and the bar hart do not knowabout eah other, thereby letting you reuse only the one you need. But they behaveas though they do. When the user hanges the information in the spreadsheet, thebar hart reets the hanges immediately, and vie versa.This behavior implies that the spreadsheet and bar hart are data views de-pendent of the data objet, and therefore, are noti�ed of any hange in its state.There is no reason to limit the number of dependent objets to two; any numberof di�erent user interfaes for the same data ould exist.The Observer pattern desribes how to establish these relationships. The keyobjets in this pattern are subjet and observer. A subjet may have any numberof dependent observers. All observers are noti�ed whenever the subjet undergoesa hange in state. In response, eah observer queries the subjet to synhronize itsstate with the subjet's state.



A.1. OBSERVER OBJECT BEHAVIORAL 79

a = 50%
b = 30%
c = 20%

subject

change notification
requests, modifications

a

b

c

a      b       c

x        60    30    10

a      b      c

y        50    30    20

z         80    10    10

observers

Figure A.1: Observer Design Pattern Example



80 APPENDIX A. SAMPLE DESIGN PATTERNThis kind of interation is also known as publish-subsribe. The subjet is thepublisher of noti�ations. It sends out these noti�ations without having to knowthe types or identities of the observers. Any number of observers an subsribe toreeive noti�ations.A.1.4 AppliabilityUse the Observer pattern in any of the following situations:� When an abstration has two aspets, one dependent on the other. En-apsulating these aspets in separate objets lets you vary and reuse themindependently.� When a hange to one objet requires hanging others, and you do not knowstatially how many objets need to be hanged.� When an objet should be able to notify other objets without making as-sumptions about the kind of objets these are. In other words, you do notwant the objets tightly oupled.A.1.5 StrutureSee Figure A.2.



A.1. OBSERVER OBJECT BEHAVIORAL 81
Attach(Observer)
Detach(Observer)
Notify()

Subject

GetState()
SetState()

subjectState

ConcreteSubject

return subjectState

Update()

observerState

ConcreteObserver

for all o in observers {
    o->Update()
}

Observer

Update()

observerState =
    subject->GetState()

observers

subjectFigure A.2: The Observer Design Pattern Struture in UML.A.1.6 PartiipantsA.1.6.0.4 Subjet� knows its observers. Any number of Observer objets may observe a subjet.� provides an interfae for attahing and detahing Observer objets.A.1.6.0.5 Observer� de�nes an updating interfae for objets that are noti�ed of hanges in asubjet.A.1.6.0.6 ConreteSubjet� stores state of interest to ConreteObserver objets.



82 APPENDIX A. SAMPLE DESIGN PATTERN� sends a noti�ation to its observers when its state hanges.A.1.6.0.7 ConreteObserver� maintains a referene to a ConreteSubjet objet.� stores state that should stay onsistent with the subjet's.� implements the Observer updating interfae to keep its state onsistent withthe subjet's.A.1.7 Collaborations� ConreteSubjet noti�es its observers whenever a hange ours that ouldmake its observers' state inonsistent with its own.� A ConreteObserver objet, one informed of hanges in the onrete sub-jet, may query the subjet for information. ConreteObserver uses thisinformation to reonile its state with that of the subjet. The interationdiagram in Figure A.3 illustrates the ollaborations among a subjet and twoobservers:The ollaboration starts with an observer telling the subjet to hange its stateby invoking the SetState method that may impliitly invoke the Notify method.One the subjet determines that a hange has ourred, it noti�es all observers byinvoking their respetive Update methods.



A.1. OBSERVER OBJECT BEHAVIORAL 83
aConcreteSubject                    AConcreteObserver                   anotherConcreteObserver

Update()

Update()

Notify()

SetState()

GetState()

GetState()Figure A.3: Observer Design Pattern Interation DiagramNote how the Observer objet that initiates the hange request postpones itsupdate until it gets a noti�ation from the subjet. Notify is not always alledby the subjet. An observer, or another kind of objet entirely, an all it. TheImplementation subsetion disusses some ommon variations.A.1.8 ConsequenesThe Observer pattern lets you vary subjets and observers independently. Youan reuse subjets without reusing their observers, and vie versa. It lets you addobservers without modifying the subjet or other observers.Further bene�ts and liabilities of the Observer pattern inlude the following:1. Abstrat oupling between Subjet and Observer. All a subjet knows is that ithas a list of observers, eah onforming to the simple interfae of the abstrat



84 APPENDIX A. SAMPLE DESIGN PATTERNObserver lass. The subjet doesn't know the onrete lass of any observer.Thus the oupling among subjets and observers is abstrat and minimal.Beause Subjet and Observer are not tightly oupled, they an belong todi�erent layers of abstration in a system. A lower-level subjet an om-muniate and inform a higher-level observer, thereby keeping the system'slayering intat. If Subjet and Observer are lumped together, then the re-sulting objet must either span two layers (and violate the layering), or itmust be fored to live in one layer or the other (whih might ompromise thelayering abstration).2. Support for broadast ommuniation. Unlike an ordinary request, the noti�-ation that a subjet sends need not speify its reeiver (presumably sine itmight be direted to a ChangeManagerwho is responsible for broadasting themessage to registered observers). The noti�ation is broadast automatiallyto all interested objets that subsribed to it. The subjet does not are howmany interested objets exist; its only responsibility is to notify its observers.This gives you the freedom to add and remove observers at any time. It is upto the observer to handle or ignore a noti�ation.3. Unexpeted updates. Beause observers have no knowledge of eah other'spresene, they an be blind to the ultimate ost of hanging the subjet. Aseemingly innouous operation on the subjet may ause a asade of updatesto observers and their dependent objets. Moreover, dependeny riteria thatare not well-de�ned or maintained usually lead to spurious updates, whihan be hard to trak down.



A.1. OBSERVER OBJECT BEHAVIORAL 85This serious problem is aggravated by the fat that the simple update proto-ol provides no details on what hanged in the subjet. Without additionalprotool to help observers disover what hanged, they may be fored to workhard to dedue the hanges.A.1.9 ImplementationSeveral issues related to the implementation of the dependeny mehanism aredisussed in this subsetion.1. Mapping subjets to their observers. The simplest way for a subjet to keeptrak of the observers it should notify is to store referenes to them expliitlyin the subjet. However, suh storage may be too expensive when there aremany subjets and few observers. One solution is inur a time penalty andredue the required amount of spae by using an assoiative look-up (e.g.,a hash table) to maintain the subjet-to-observer mapping. Thus a subjetwith no observers does not inur storage overhead. On the other hand, thisapproah inreases the ost of aessing the observers by adding in the ostof the look-up.2. Observing more than one subjet. It might make sense in some situations foran observer to depend on more than one subjet. For example, a spreadsheetmay depend on more than one data soure. It is neessary to extend theUpdate interfae in suh ases to let the observer know whih subjet issending the noti�ation. The subjet an simply pass itself as a parameter



86 APPENDIX A. SAMPLE DESIGN PATTERNin the Update operation, thereby letting the observer know whih subjet toexamine.3. Who triggers the update? The subjet and its observers rely on the noti�ationmehanism to stay onsistent. But what objet atually alls Notify to triggerthe update? Here are two options:(a) Have state-setting operations on Subjet all Notify after they hangethe subjet's state. The advantage of this approah is that observersdo not have to remember to all Notify on the subjet. The disadvan-tage is that several onseutive operations will ause several onseutiveupdates, whih may be ineÆient.(b) Make subjets responsible for alling Notify at the right time. Theadvantage here is that the subjet an wait to trigger the update untilafter a series of state hanges has ourred, thereby avoiding needlessintermediate updates. The disadvantage is that subjets have an addedresponsibility to trigger the update. That makes errors more likely, sinelients might forget to all Notify.4. Dangling referenes to deleted subjets. Deleting a subjet should not produedangling referenes in its observers. One way to avoid dangling referenes isto make the subjet notify its observers as it is deleted so that they an resettheir referene to it. In general, simply deleting the observers is not an option,beause other objets may referene them, or they may be observing othersubjets as well.



A.1. OBSERVER OBJECT BEHAVIORAL 875. Making sure Subjet state is self-onsistent before noti�ation. It is importantto make sure Subjet state is self-onsistent before alling Notify, beauseobservers query the subjet for its urrent state in the ourse of updatingtheir own state.This self-onsisteny rule is easy to violate unintentionally when Subjet sub-lass operations all inherited operations. For example, the noti�ation inthe following ode sequene is triggered when the subjet is in an inonsistentstate:void MySubjet::Operation (int newValue) {BaseClassSubjet::Operation(newValue);// trigger notifiation_myInstVar += newValue;// update sublass state (too late!)}You an avoid this pitfall by sending noti�ations from template methods(Template Method (325)) in abstrat Subjet lasses. De�ne a primitive op-eration for sublasses to override, and make Notify the last operation in thetemplate method, whih will ensure that the objet is self-onsistent whensublasses override Subjet operations. An example of this is the templatemethod Cut ontaining the primitive operation ReplaeRange whih is over-ridden by the sublasses.void Text::Cut (TextRange r) {ReplaeRange(r); // redefined in sublassesNotify();}



88 APPENDIX A. SAMPLE DESIGN PATTERNBy the way, it is always a good idea to doument whih Subjet operationstrigger noti�ations.6. Avoiding observer-spei� update protools: the push and pull models. Imple-mentations of the Observer pattern often have the subjet broadast addi-tional information about the hange. The subjet passes this information asan argument to Update. The amount of information may vary widely.At one extreme, whih we all the push model, the subjet sends observersdetailed information about the hange, whether they want it or not. At theother extreme is the pull model; the subjet sends nothing but the mostminimal noti�ation, and observers ask for details expliitly thereafter.The push model might make observers less reusable, beause Subjet lassesmake assumptions about Observer lasses that are not always true. The pullmodel emphasizes the subjet's ignorane of its observers, whereas the pushmodel assumes subjets know something about their observers' needs. On theother hand, the pull model is potentially ineÆient, beause Observer lassesmust asertain what hanged without help from the Subjet.7. Speifying modi�ations of interest expliitly. You an improve update eÆ-ieny by extending the subjet's registration interfae to allow registeringobservers only for spei� events of interest. When suh an event ours,the subjet informs only those observers that have registered interest in thatevent. One way to support this uses the notion of aspets for Subjet ob-jets. To register interest in partiular events, observers are attahed to their



A.1. OBSERVER OBJECT BEHAVIORAL 89subjets usingvoid Subjet::Attah(Observer*, Aspet& interest);where interest spei�es the event of interest. At noti�ation time, the subjetsupplies the hanged aspet to its observers as a parameter to the Updateoperation. For example:void Observer::Update(Subjet*, Aspet& interest);8. Enapsulating omplex update semantis. When the dependeny relation-ship among subjets and observers is partiularly omplex, an objet thatmaintains these relationships is possibly required. We all suh an objeta ChangeManager. Its purpose is to minimize the work required to makeobservers reet a hange in their subjet. For example, if an operation in-volves hanges to several interdependent subjets, you may have to ensurethat their observers are noti�ed only after all the subjets were modi�ed toavoid notifying observers more than one.ChangeManager has three responsibilities:(a) It maps a subjet to its observers and provides an interfae to main-tain this mapping. This eliminates the need for subjets to maintainreferenes to their observers and vie versa.(b) It de�nes a partiular update strategy.() It updates all dependent observers at the request of a subjet.



90 APPENDIX A. SAMPLE DESIGN PATTERNFigure A.4 depits a simple ChangeManager-based implementation of the Ob-server pattern. There are two speialized ChangeManagers. SimpleChangeManageris naive in that it always updates all observers of eah subjet. In on-trast, DAGChangeManager handles direted-ayli graphs of dependeniesamong subjets and their observers. A DAGChangeManager is preferable toa SimpleChangeManager when an observer observes more than one subjet.In that ase, a hange in two or more subjets might ause redundant up-dates. The DAGChangeManager ensures the observer reeives just one update.SimpleChangeManager is �ne when multiple updates are not an issue.
ChangeManager

Register(Subject, Observer)
Unregister(Subject, Observer)
Notify()

Subject-Observer mapping

Observer

Update()Attach(Observer)
Detach(Observer)
Notify()

Subject

chman->Register(this,o)

chman->Notify()

forall s in subjects
    forall o in observers
        o->Update(s)

mark all observers to update
update all marked observers

subjects

chman

observers

Register(Subject, Observer)
Unregister(Subject, Observer)
Notify()

Register(Subject, Observer)

Notify()
Unregister(Subject, Observer)

DAGChangeManagerSimpleChangeManager

Figure A.4: Observer Design Pattern Change ManagerChangeManager is an instane of the Mediator (273) pattern. In general



A.1. OBSERVER OBJECT BEHAVIORAL 91there is only one ChangeManager, and it is known globally. The Singleton(127) pattern is potentially useful here.9. Combining the Subjet and Observer lasses. Class libraries written in lan-guages that lak multiple inheritane (like Smalltalk) generally do not de�neseparate Subjet and Observer lasses. One proposed solution is the ombina-tion of their interfaes into one lass. That lets you de�ne an objet that atsas both a subjet and an observer without multiple inheritane. In Smalltalk,for example, the Subjet and Observer interfaes are de�ned in the root lassObjet, making them available to all lasses.A.1.10 Sample CodeAn abstrat lass de�nes the Observer interfae:lass Subjet;lass Observer {publi:virtual ~Observer();virtual void Update(Subjet* theChangedSubjet) = 0;proteted:Observer();};This implementation supports multiple subjets for eah observer. The subjetpassed to the Update operation lets the observer determine whih subjet hangedwhen it observes more than one.Similarly, an abstrat lass de�nes the Subjet interfae:



92 APPENDIX A. SAMPLE DESIGN PATTERNlass Subjet {publi:virtual ~Subjet();virtual void Attah(Observer*);virtual void Detah(Observer*);virtual void Notify();proteted:Subjet();private:List<Observer*> *_observers;};void Subjet::Attah (Observer* o) {_observers->Append(o);}void Subjet::Detah (Observer* o) {_observers->Remove(o);}void Subjet::Notify () {ListIterator<Observer*> i(_observers);for (i.First(); !i.IsDone(); i.Next()) {i.CurrentItem()->Update(this);}}ClokTimer is a onrete subjet for storing and maintaining the time of day. Itnoti�es its observers every seond. ClokTimer provides an interfae for retrievingindividual time units suh as the hour, minute, and seond.lass ClokTimer : publi Subjet {publi:ClokTimer();



A.1. OBSERVER OBJECT BEHAVIORAL 93virtual int GetHour();virtual int GetMinute();virtual int GetSeond();void Tik();};The Tik operation gets alled by an internal timer at regular intervals toprovide an aurate time base. Tik updates the ClokTimer's internal state andalls Notify to inform observers of the hange:void ClokTimer::Tik () {// update internal time keeping state// ...Notify();} Now we an de�ne a lass DigitalClok that displays the time. It inheritsits graphial funtionality from a Widget lass provided by a user interfae toolkit.The Observer interfae is mixed into the DigitalClok interfae by inheriting fromObserver.lass DigitalClok: publi Widget, publi Observer {publi:DigitalClok(ClokTimer*);virtual ~DigitalClok();virtual void Update(Subjet*);// overrides Observer operationvirtual void Draw();// overrides Widget operation;// defines how to draw the digital lokprivate:ClokTimer* _subjet;



94 APPENDIX A. SAMPLE DESIGN PATTERN};DigitalClok::DigitalClok (ClokTimer* s) {_subjet = s;_subjet->Attah(this);}DigitalClok::~DigitalClok () {_subjet->Detah(this);}Before the Update operation draws the lok fae, it heks to make sure thenotifying subjet is the lok's subjet:void DigitalClok::Update (Subjet* theChangedSubjet) {if (theChangedSubjet == _subjet) {Draw();}}void DigitalClok::Draw () {// get the new values from the subjetint hour = _subjet->GetHour();int minute = _subjet->GetMinute();// et.// draw the digital lok}An AnalogClok lass is similarly de�ned.lass AnalogClok : publi Widget, publi Observer {publi:AnalogClok(ClokTimer*);virtual void Update(Subjet*);virtual void Draw();



A.1. OBSERVER OBJECT BEHAVIORAL 95// ...};The following ode reates an AnalogClok and a DigitalClok that alwaysshow the same time:ClokTimer* timer = new ClokTimer;AnalogClok* analogClok = new AnalogClok(timer);DigitalClok* digitalClok = new DigitalClok(timer);Whenever the timer tiks, the two loks are updated and redisplay themselvesappropriately.A.1.11 Known UsesThe �rst and perhaps best-known example of the Observer pattern appears inSmalltalkModel/View/Controller (MVC), the user interfae framework in the Small-talk environment [KP88℄. MVC's Model lass plays the role of Subjet, while Viewis the base lass for observers. Smalltalk, ET++ [WGM88℄, and the THINK lasslibrary [Sym93b℄ provide a general dependeny mehanism by putting Subjet andObserver interfaes in the parent lass for all other lasses in the system.Other user interfae toolkits that employ this pattern are InterViews [LVC89℄,the Andrew Toolkit [P+88℄, and Unidraw [VL90℄. InterViews de�nes Observerand Observable (for subjets) lasses expliitly. Andrew alls them "view" and"data objet," respetively. Unidraw splits graphial editor objets into View (forobservers) and Subjet parts.



96 APPENDIX A. SAMPLE DESIGN PATTERNA.1.12 Related PatternsMediator (273): By enapsulating omplex update semantis, the ChangeManagerats as mediator between subjets and observers.Singleton (127): The ChangeManagermay use the Singleton pattern to make itunique and globally aessible.



Bibliography[1℄ Amund Aarsten, Davide Brugali, and Giuseppe Menga. Designing onurrentand distributed ontrol systems. Communiations of the ACM, 39(10):50{58,1996.[2℄ Amund Aarsten, Davide Brugali, and Giuseppe Menga. Patternsfor ooperation. In Proeedings of the Third Joint Pattern Lan-guages of Programs, Distribution Workshop, 1996. Retrieved January20, 2000 from the PLoPTM 1996 database on the World Wide Web:http://www.s.wustl.edu/�shmidt/PLoP-96/amund1.ps.gz.[3℄ Amund Aarsten, Gabriele Elia, and Giuseppe Menga. G++: A pat-tern language for the objet-oriented design of onurrent and distributedinformation systems, with Appliations to omputer integrated manufa-turing. In James O. Coplien and Douglas C. Shmidt, editors, Pat-tern Languages of Programs Design, volume 1 of Software Patterns Se-ries. Addison-Wesley, 1995. Retrieved January 1, 2000 from Pat-tern Languages of Programs Design database on the World Wide Web:ftp://galileo.polito.it/artiles/gpp/plop94.ps.[4℄ Harold Abelson and Gerald Jay Sussman. Struture and Interpre-tation of Computer Programs. MIT Press, 1984. Retrieved Jan-uary 9, 2001 from the MIT Press database on the World Wide Web:http://mitpress.mit.edu/sip/full-text/sip/book/book.html.[5℄ Gul Agha, Svend Fr�lund, WooYoung Kim, Rajendra Panwar, Anna Pat-terson, and Daniel Sturman. Abstration and modularity mehanisms foronurrent omputing. In Gul Agha, Peter Wegner, and Akinori Yonezawa,editors, Researh diretions in onurrent objet-oriented programming. MIT,1993. 97



98 BIBLIOGRAPHY[6℄ Henning Andersen. Network: A pattern for omposing omputation. In Pro-eedings of the Seond European Conferene on Pattern Languages of Pro-grams, General Design Patterns, Munih, Germany: Siemens, 1997. (Eu-roPLoP'97) Siemens Tehnial Report 120/SW1/FB. Retrieved September19, 2000 from the EuroPLoPTM 1997 database on the World Wide Web:http://www.riehle.org/events/europlop-1997/p15final.pdf.[7℄ Gregory Andrews. Conurrent Programming: Priniples and Pratie.Addison-Wesley, 1991.[8℄ Gregory Andrews. Foundations of Multithreaded, Parallel, and DistributedProgramming. Addison-Wesley, 2000.[9℄ Gregory R. Andrews and Fred B. Shneider. Conepts and notations foronurrent programming. Computing Surveys, 15(1), Marh 1983.[10℄ Anonymous. Demon, July 1993. Retrieved Deember 20, 2000from the Haker Ditionary database on the World Wide Web:http://www.lysator.liu.se/hakdit/split2/demon.html.[11℄ Anonymous. Glossary of teh support terms assoiated with version 5.0.xof the raptor �rewall, 1998. Retrieved January 12, 2001 from AXENT Teh-nologies Tehnial Support Group for Raptor produts database on the WorldWide Web: http://www.raptor.om/s/FAQ/eagle5glossary.html.[12℄ Anonymous. Self-Addressed Stamped Envelope. Portland Pat-tern Repository, 4 September 2000. http://2.om/gi/wiki?SelfAddressedStampedEnvelope.[13℄ Brad Appleton. What is a pattern anyway? Patterns andSoftware: Essential Conepts and Terminology, 14 February 2000.http://www.enterat.om/�bradapp/dos/patterns-intro.html.[14℄ Joe Armstrong, Robert Virding, Claes Wikstr�om, and Mike Williams. Con-urrent Programming in ERLANG. Prentie Hall, Seond edition, 1996.[15℄ Jean Baon. Conurrent Systems: An Integrated Approah to Operating Sys-tems, Database, and Distributed Systems. Addison Wesley, Seond edition,1998.[16℄ Rajive Bagrodia. Synhronization of asynhronous proesses in CSP.The Assoiation for Computing Mahinery Transations on Program-ming Languages and Systems, 11(4), 1989. Retrieved September 28,



BIBLIOGRAPHY 992000 from the The Assoiation for Computing Mahinery Digital Librarydatabase on the World Wide Web: http://www.am.org/pubs/itations/journals/toplas/1989-11-4/p585-bagrodia.[17℄ Stephen Berzuk. Organizational multiplexing: Patterns for proessing satel-lite telemetry with distributed teams. In John M. Vlissides, James O. Coplien,and Norman L. Kerth, editors, Pattern Languages of Programs Design, vol-ume 2 of Software Patterns Series. Addison-Wesley, 1996.[18℄ Grady Booh. Objet Oriented Analysis and Design with Appliations. Ben-jamin Cummings, Seond edition, 1994.[19℄ K. S. Booth, W. M. Gentleman, and J. Shae�er. Anthropomorphi Pro-gramming. Tehnial Report CS-82-47, Department of Computer Siene,University of Waterloo, 1984.[20℄ Per Brinh Hansen. Conurrent programming onepts. Software|Pratieand Experiene, 5(4):223{245, Deember 1973.[21℄ F. Lee Brown, Jr., James DiVietri, Graziella Diaz de Villegas,and Eduardo B. Fernandez. The authentiator pattern. In Pro-eedings of the Sixth Pattern Languages of Programs, The Group 3Workshop. Pattern Languages of Programs, 1999. Retrieved Jan-uary 5, 2001 from the PLoPTM 1999 database on the WorldWide Web: http://st-www.s.uiu.edu/ plop/plop99/proeedings/Fernandez4/Authentiator3.PDF.[22℄ Alan Burns and Geo� Davies. Conurrent Programming. Addison-Wesley,1993.[23℄ Frank Bushmann. The master-slave pattern. In James O. Coplien and Dou-glas C. Shmidt, editors, Pattern Languages of Programs Design, volume 1 ofSoftware Patterns Series. Adddison-Wesley, 1995.[24℄ Frank Bushmann and Regine Meunier. A system of patterns. In James O.Coplien and Douglas C. Shmidt, editors, Pattern Languages of ProgramsDesign, volume 1 of Software Patterns Series. Adddison-Wesley, 1995.[25℄ Frank Bushmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, andMihael Stal. Pattern-Oriented Software Arhiteture | A System of Pat-terns. John Wiley and Sons Ltd, 1996.



100 BIBLIOGRAPHY[26℄ Niholas Carriero and David Gelertner. How to write paral-lel programs: a guide to the perplexed. ACM Computing Sur-veys, 21(3), September 1989. Retrieved September 28, 2000 fromthe ACM Digital Library database on the World Wide Web:http://dev.am.org/pubs/itations/journals/surveys/1989-21-3/p323-arriero/.[27℄ Jos�e Cela and Jos�e Alfonso. Parallelization of the spai preonditioner in amaster-slave on�guration. In Third European PVM Conferene Proeedings,Leture Notes in Computer Siene. Springer-Verlag, 1996.[28℄ Arthur Charlesworth. The multiway rendezvous. Transations on Program-ming Languages and Systems, 9(2), July 1987.[29℄ David R. Cheriton. Multi-proess struturing and the thoth operating system.Tehnial Report CS-79-19, Department of Computer Siene, University ofWaterloo, 1979.[30℄ David R. Cheriton. The V distributed system. Communiations of the ACM,31(3), Marh 1988.[31℄ Peter Coad, David North, and Mark May�eld. Objet Models : Strategies,Patterns and Appliations. Prentie Hall, Seond edition, 1997.[32℄ James Coplien. Advaned C++ Programming Styles and Idioms. Addison-Wesley, 1992.[33℄ James O. Coplien and Douglas C. Shmidt, editors. Pattern Languages ofProgram Design. Software Patterns Series. Addison-Wesley, 1995.[34℄ Fernando Das Neves and Alejandra Garrido. Warden: A pattern forobjet distribution. In Proeedings of the Third Joint Pattern Lan-guages of Programs, Distribution Workshop, 1996. Retrieved January20, 2000 from the PLoPTM 1996 database on the World Wide Web:http://www.s.wustl.edu/�shmidt/ PLoP-96/warden.ps.gz.[35℄ Andrew Davison. A Survey of Logi Programming-Based Objet-OrientedLanguages. Massahusetts Institute of Tehnology, 1993.[36℄ Dennis de Champeaux, Douglas Lea, and Penelope Faure. Objet-OrientedSystem Development. Addison-Wesley, HTML edition, 1993. RetrievedSeptember 20, 2000 from Doug Lea's home page on the World Wide Web:http://g.oswego.edu/dl/oosdw3/index.html.



BIBLIOGRAPHY 101[37℄ Edsger W. Dijkstra. Hierarhial ordering of sequential proesses. In C.A.R.Hoare and R.H. Perrott, editors, Operating Systems Tehniques, pages 72{93.1972.[38℄ Jim Doble. Shopper. In John M. Vlissides, James O. Coplien, and Norman L.Kerth, editors, Pattern Languages of Programs Design, volume 2 of SoftwarePatterns Series. Addison-Wesley, 1996.[39℄ Stephen H. Edwards. Streams: A pattern for pull-driven proessing. InJames O. Coplien and Douglas C. Shmidt, editors, Pattern Languages ofPrograms Design, volume 1 of Software Patterns Series. Adddison-Wesley,1995.[40℄ Bj�orn Eiderb�ak and Jiarong Li. Undertaker. In Proeedings of theSeond European Conferene on Pattern Languages of Programs, Gen-eral Design Patterns, Munih, Germany: Siemens, 1997. (EuroPLoP'97)Siemens Tehnial Report 120/SW1/FB. Retrieved September 19,2000 from the EuroPLoPTM 1997 database on the World Wide Web:http://www.riehle.org/events/europlop-1997/p17final.pdf.[41℄ Philip Eskelin. Component interation patterns. In Proeedings ofthe Sixth Pattern Languages of Programs, The Group 1 Workshop.Pattern Languages of Programs, 1999. Retrieved September 14,2000 from the PLoPTM 1999 database on the World Wide Web:http://st-www.s.uiu.edu/�plop/plop99/proeedings/Eskelin1/ComponentInterationPatterns.PDF.[42℄ Philip Eskelin. Interruptible ommand. In Proeedings of the FifthPattern Languages of Programs, The Group 2 Network of LearningWorkshop. Pattern Languages of Programs, 1999. Retrieved Septem-ber 20, 2000 from the PLoPTM 1998 database on the World Wide Web:http://jerry.s.uiu.edu/�plop/plop98/final submissions/P46.pdf.[43℄ Ted Faison. Interation patterns for ommuniating proesses. In Pro-eedings of the Fifth Pattern Languages of Programs, Four-Story LimitWorkshop, 1998. Retrieved September 19, 2000 from the PLoPTM 1998database on the World Wide Web: http://jerry.s.uiu.edu/�plop/plop98/final submissions/P02.pdf.[44℄ Peter Feiler and Walter Tihy. Propagator: A family of patterns. InProeedings of the Third Joint Pattern Languages of Programs, System



102 BIBLIOGRAPHYCon�guration and Resoure Management Workshop, 1996. Retrieved Jan-uary 20, 2000 from the PLoPTM 1996 database on the World Wide Web:http://www.s.wustl.edu/�shmidt/ PLoP-96/tihy.ps.gz.[45℄ Sebastian Fishmeister and Wolfgang Lugmayr. The supervisor-workerpattern. In Proeedings of the Sixth Pattern Languages of Programs,The Group 5 Workshop. Pattern Languages of Programs, 1999. RetrievedSeptember 14, 2000 from the PLoPTM 1999 database on the World WideWeb:http://st-www.s.uiu.edu/�plop/plop99/proeedings/fishmeister/pattern-times.pdf.[46℄ Robert Flanders and Eduardo B. Fernandez. Data �lter arhiteturepattern. In Proeedings of the Sixth Pattern Languages of Programs, TheGroup 7 Workshop. Pattern Languages of Programs, 1999. RetrievedJanuary 5, 2001 from the PLoPTM 1999 database on the World Wide Web:http://st-www.s.uiu.edu/ plop/plop99/proeedings/Fernandez5/Flanders3.PDF.[47℄ Erih Gamma, Rihard Helm, Ralph Johnson, and John M. Vlissides. De-sign Patterns: Elements of Reusable Objet-Oriented Software. ProfessionalComputing Series. Addison-Wesley, 1995.[48℄ Narain Gehani. Broadasting sequential proesses (bsp). In Narain Gehaniand Andrew D. MGettrik, editors, Conurrent Programming, pages 234{255. Addison-Wesley, 1988.[49℄ Narain Gehani and Andrew MGettrik, editors. Conurrent Programming.International Computer Siene Series. Addison-Wesley, 1988.[50℄ Morven Gentleman. Message passing between sequential proesses: the replyprimitive and the administrator onept. Software|Pratie and Experiene,11(5), 1981.[51℄ Morven Gentleman, Terry Shepard, and Douglas Thoreson. Administratorsand multiproessor rendezvous mehanisms. Software|Pratie and Experi-ene, 22(1), 1992.[52℄ Ramiro Gonz�alez Maiel. The emissary design pattern. In Proeed-ings of the Fifth Pattern Languages of Programs, Agriultural ValleysWorkshop, 1998. Retrieved September 19, 2000 from the PLoPTM 1998database on the World Wide Web: http://jerry.s.uiu.edu/�plop/plop98/final submissions/P57.pdf.



BIBLIOGRAPHY 103[53℄ Mark Grand. Patterns in Java: a atalog of reusable design patterns, vol-ume 1. John Wiley and Sons, In., 1998.[54℄ Mark Grand. Patterns in Java: a atalog of reusable design patterns, vol-ume 2. John Wiley and Sons, In., 1999.[55℄ Ennio Grasso. Synhronizer|an objet behavioral pattern for onurrentprogramming. In Proeedings of the Seond European Conferene on PatternLanguages of Programs, Distribution Patterns, Munih, Germany: Siemens,1997. (EuroPLoP'97) Siemens Tehnial Report 120/SW1/FB. RetrievedSeptember 19, 2000 from the EuroPLoPTM 1997 database on the World WideWeb: http://www.riehle.org/events/europlop-1997/p3final.pdf.[56℄ Timothy Harrison, Douglas C. Shmidt, and Irfan Pyarali. Asynhronousompletion token: An objet behavioural pattern for eÆient asynhronousevent handling. In Pattern Languages of Programs Design, volume 3of Software Patterns Series. Addison-Wesley, 1997. Retrieved January20, 2000 from the PLoPTM 1996 database on the World Wide Web:http://www.s.wustl.edu/�shmidt/PLoP-96/ACT.ps.gz.[57℄ Stephen Hartley. Conurrent Programming: the Java programming language.Oxford University Press, 1998.[58℄ Viviane Hays, Mar Loutrel, and Eduardo B. Fernandez. The ob-jet �lter and aess ontrol framework. In Proeedings of the Sev-enth Pattern Languages of Programs, The OÆe Connetions Work-shop. Pattern Languages of Programs, 2000. Retrieved Deember13, 2000 from the PLoPTM 2000 database on the World Wide Web:http://jerry.s.uiu.edu/ plop/plop2k/Fernandez3/Fernandez3.pdf.[59℄ Rihard Helm and Erih Gamma. Patterns and software design: The ourierpattern. Dr. Dobb's Sourebook, pages 55{59, January/February 1996.[60℄ K. Hendrikx, E. Duval, and H. Olivi�e. Managing shared resoures. InProeedings of the Fifth European Conferene on Pattern Languages ofPrograms, Design and Programming Workshop, 2000. Retrieved Otober21, 2000 from the EuroPLoPTM 2000 database on the World Wide Web:http://www.oldewey.om/europlop2000/papers/hendrikx.zip.[61℄ Mihi Henning and Steve Vinoski. Advaned CORBA r Programming withC++. Addison-Wesley, 1999.



104 BIBLIOGRAPHY[62℄ Mark Heuser and Eduardo Fernandez. RPC lient: A pattern for thelient-side implementation of a pipelined request/response protool. InProeedings of the Sixth Pattern Languages of Programs, Group FiveWorkshop. Pattern Languages of Programs, 1999. Retrieved September14, 2000 from the PLoPTM 1999 database on the World Wide Web:http://jerry.s.uiu.edu/�plop/plop99/proeedings/fernandezA/heuserOO3.PDF.[63℄ Robert Hirshfeld and Je� Eastman. Lok server. In Proeedings of the FifthPattern Languages of Programs, Four-Story Limit Workshop, 1998. RetrievedSeptember 19, 2000 from the PLoPTM 1998 database on the World WideWeb: http://jerry.s.uiu.edu/�plop/plop98/final submissions/P18.pdf.[64℄ Robert Hirshfeld and Je� Eastman. Noti�ation server. InProeedings of the Fifth Pattern Languages of Programs, Four-Story Limit Workshop, 1998. Retrieved September 19, 2000from the PLoPTM 1998 database on the World Wide Web:http://jerry.s.uiu.edu/�plop/plop98/final submissions/P20.pdf.[65℄ James C. Hu and Christopher D. Gill. Patterns in exible server appliationframeworks. In Proeedings of the Seventh Pattern Languages of Programs,The Unselfonsious Proess Workshop. Pattern Languages of Programs,2000. Retrieved Deember 13, 2000 from the PLoPTM 2000 database on theWorld Wide Web: http://jerry.s.uiu.edu/ plop/plop2k/Hu/Hu.pdf.[66℄ Prashant Jain and Mihael Kirher. Leasing. In Proeedingsof the Seventh Pattern Languages of Programs, Quiet Baks Work-shop. Pattern Languages of Programs, 2000. Retrieved Otober21, 2000 from the PLoPTM 2000 database on the World WideWeb: http://jerry.s.uiu.edu/ plop/plop2k/Jain-Kirher/Jain-Kirher.pdf.[67℄ Prashant Jain and Mihael Kirher. Lookup. In Proeedings ofthe Fifth European Conferene on Pattern Languages of Programs, Ar-hiteture and Design Workshop, 2000. Retrieved Otober 21, 2000from the EuroPLoPTM 2000 database on the World Wide Web:http://www.oldewey.om/europlop2000/papers/jain+kirher.zip.[68℄ Prashant Jain and Douglas C. Shmidt. Servie on�gurator {a pattern for dynami on�guration and reon�guration of ommu-



BIBLIOGRAPHY 105niation servies. In Proeedings of the Third Pattern Languagesof Programs, System Con�guration and Resoure Management Work-shop, 1996. Retrieved January 20, 2000 from the PLoPTM 1996database on the World Wide Web: http://www.s.wustl.edu/�shmidt/PLoP-96/Servie-Configurator.ps.gz.[69℄ Jean-Mar J�ez�equel, Mihel Train, and Christine Mingins. Design Patternsand Contrats. Addison-Wesley, 2000.[70℄ Raman Kannan. Managing ontinuous data feed with sub-sriber/publisher pattern. SIGPLAN Noties, 30(10), Otober1995. Retrieved September 20, 2000 from the OOPSLA 1995database on the World Wide Web: http://www.s.wustl.edu/�shmidt/OOPSLA-95/html/papers/part.ps.gz.[71℄ Jung Kim and Kevin Benner. Implementation patterns for the observer pat-tern. In John M. Vlissides, James O. Coplien, and Norman L. Kerth, editors,Pattern Languages of Programs Design, volume 2 of Software Patterns Series.Addison-Wesley, 1996.[72℄ Charles D. Knutson, Timothy A. Budd, and Curtis R. Cook. Multi-paradigm patterns of thought and design. In Joint Pattern Languagesof Programs Conferene, Potpourri Workshop, 1996. Retrieved January20, 2000 from the PLoPTM 1996 database on the World Wide Web:http://www.s.wustl.edu/�shmidt/PLoP-96/knutson.ps.gz.[73℄ Martin Kobeti� and Peter Neurath. Survey of objet-oriented on-urrent programming - fous on ators, 1995. Retrieved January 14,2000 from the Comenius University database on the World Wide Web:http://objet.ds.fmph.uniba.sk/objet/uploads/Diploma theses/1995 Kobeti Neurath/www/soop/Soop.htm.[74℄ R. Lavender and Douglas C. Shmidt. Ative objet: An objet behaviouralpattern for onurrent programming. In John M. Vlissides, James O. Coplien,and Norman L. Kerth, editors, Pattern Languages of Programs Design, vol-ume 2 of Software Patterns Series. Addison-Wesley, 1996.[75℄ Doug Lea. Conurrent Programming in JavaTM: Design Priniples and Pat-terns. The JavaTM Series. Addison-Wesley Longman, In., 1997.[76℄ Doug Lea. Conurrent Programming in JavaTM: Design Priniples and Pat-terns. The JavaTM Series. Addison-Wesley, seond edition, 1999.



106 BIBLIOGRAPHY[77℄ Doug Lea. Patterns|disussion faq. Doug Lea's Home Page, Deember1999. http://g.oswego.edu/dl/pd-FAQ/pd-FAQ.html.[78℄ S.A. MaKay, W. M. Gentleman, D.A. Stewart, and M. Wein. Har-mony as an objet-oriented operating system. Tehnial Report NRC29636, National Researh Counil of Canada, September 1988. RetrievedFebruary 19, 2001 from the NRC database on the World Wide Web:http://wwwsel.iit.nr.a/abstrats/NRC29636.abs.[79℄ Je� Magee and Je� Kramer. Conurreny: State Models and Java Programs.John Wiley & Sons, 1999.[80℄ Klaus Marquardt. Patterns for objet transport. In Proeed-ings of the Fifth European Conferene on Pattern Languages of Pro-grams, Design and Programming Workshop, 2000. Retrieved Otober21, 2000 from the EuroPLoPTM 2000 database on the World WideWeb:http://www.oldewey.om/europlop2000/papers.html.[81℄ Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders.Forkjoin. Retrieved January 5, 2001 from the Pattern Language forParallel Appliation Programming database on the World Wide Web:http://www.ise.ufl.edu/researh/ParallelPatterns/PatternLanguage/SupportingStrutures/ForkJoin.htm.[82℄ Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders.Patterns for parallel appliation programs. In Proeedings of theSixth Pattern Languages of Programs, The Group 1 Workshop.Pattern Languages of Programs, 1999. Retrieved September 14,2000 from the PLoPTM 1999 database on the World Wide Web:http://st-www.s.uiu.edu/ plop/plop99/proeedings/massingill/massingill.pdf.[83℄ Paul MKenney. Seleting loking primitives for parallel programming. Com-muniations of the The Assoiation for Computing Mahinery, 39(10):75{82,1996.[84℄ Frank Metayer. Mather-handler. In Proeedings of the SixthPattern Languages of Programs, The Group 2 Workshop. Pat-tern Languages of Programs, 1999. Retrieved January 5,2001 from the PLoPTM 1999 database on the World WideWeb: http://st-www.s.uiu.edu/ plop/plop99/proeedings/Metayer/MatherHandler.pdf.



BIBLIOGRAPHY 107[85℄ Regine Meunier. Pipes and �lters arhiteture. In James O. Coplien and Dou-glas C. Shmidt, editors, Pattern Languages of Programs Design, volume 1 ofSoftware Patterns Series. Adddison-Wesley, 1995.[86℄ James Noble. Found objets. a pattern language for �nding objets fromwithin designs. In Proeedings of the First European Conferene on PatternLanguages of Programs, Pattern Language Workshop, 1996. Retrieved Jan-uary 21, 2000 from the EuroPLoPTM 1996 database on the World Wide Web:http://www.s.wustl.edu/�shmidt/europlop-96/ww1-papers.html.[87℄ James Noble. Classifying relationships between objet-oriented design pat-terns. In Australian Software Enginnering Conferene (ASWEC'98), May1998. Retrieved January 16, 2001 from James Noble's draft paper databaseon the World Wide Web: http://www.mri.mq.edu.au/ kjx/drafts.html.[88℄ James Noble and Charles Weir. Proeedings of the memory preservationsoiety. In Proeedings of the Third European Conferene on Pattern Lan-guages of Programs, Patterns of Design Workshop, 1998. Retrieved Septem-ber 14, 2000 from the EuroPLoPTM 1998 database on the World Wide Web:http://www.oldewey.om/europlop98/Program/Papers/Weir.ps.gz.[89℄ Jean-Lin Paherie and Jean-Mar J�ez�equel. The operator de-sign pattern appliation to parallel omputation. In Proeedingsof the Third Joint Pattern Languages of Programs, Conurrenyand Operating Systems Workshop, 1996. Retrieved January 20,2000 from the PLoPTM 1996 database on the World Wide Web:http://www.s.wustl.edu/�shmidt/PLoP-96/jezequel.ps.gz.[90℄ Marta Pati~no, Franiso Ballesteros, Riard Jim�enez, Sergio Ar�evalo, FabioKon, and Roy Campbell. CompositeCalls: A design pattern for eÆ-ient and exible lient-server interation. In Proeedings of the Sixth Pat-tern Languages of Programs, Group Seven Workshop. Pattern Languagesof Programs, 1999. Retrieved September 14, 2000 from the PLoPTM1999 database on the World Wide Web: http://jerry.s.uiu.edu/�plop/plop99/proeedings/ballesteros/interpfim.pdf.[91℄ Lu�is Moniz Pereira, Lu�is Monteiro, Jos�e Cunha, and Joaquin N. Apar�iio.Delta Prolog: A distributed baktraking extension with events. In EhudShapiro, editor, Third International Conferene on Logi Programming, Le-ture Notes in Computer Siene. Springer-Verlag, 1986.



108 BIBLIOGRAPHY[92℄ Dorina Petriu and Gurudas Somadder. A pattern language for improvingthe apaity of layered lient/server systems with multi-threaded servers.In Proeedings of the Seond European Conferene on Pattern Languagesof Programs, Distribution Patterns, Munih, Germany: Siemens, 1997. (Eu-roPLoP'97) Siemens Tehnial Report 120/SW1/FB. Retrieved September19, 2000 from the EuroPLoPTM 1997 database on the World Wide Web:http://www.riehle.org/events/europlop-1997/p23final.pdf.[93℄ Wolfgang Pree. Design Patterns for Objet-Oriented Software. Addison-Wesley, 1995.[94℄ Nat Prye. Idiom or pattern. Portland Pattern Repository, 8 June 1999.http://2.om/gi/wiki?IdiomOrPattern.[95℄ Irfan Pyarali, Tim Harrison, Douglas C. Shmidt, and Thomas Jordan.Proator: An arhitetural pattern for demultiplexing and dispath-ing handlers for asynhronous events. In Brian Foote, Neil Harrison,and Hans Rohnert, editors, Pattern Languages of Programs Design,volume 4 of Software Patterns Series, 1999. Retrieved January 20,2000 from the PLoPTM 1997 database on the World Wide Web:http://st-www.s.uiu.edu/users/hanmer/PLoP-97/Proeedings/pyarali.proator.pdf.[96℄ Irfan Pyarali, Carlos O'Ryan, and Douglas C. Shmidt. Patterns for eÆ-ient, preditable, salable, and exible dispathing omponents. In Pro-eedings of the Seventh Pattern Languages of Programs, The Network ofLearning Workshop. Pattern Languages of Programs, 2000. Retrieved De-ember 13, 2000 from the PLoPTM 2000 database on the World Wide Web:http://jerry.s.uiu.edu/ plop/plop2k/Pyarali/Pyarali.pdf.[97℄ Mihel Raynal. A simple taxonomy for distributed mutual exlusion algo-rithms. Operating Systems Review, 25:47{50, April 1991.[98℄ John Hamilton Reppy. Higher-order Conurreny. PhD thesis, Department ofComputer Siene, Cornell University, Ithaa, NY, 1992. Retrieved January18, 2000 from the NECI Sienti� Literature Digital Library database on theWorld Wide Web: http://iteseer.nj.ne.om/104521.html.[99℄ Dirk Riehle. Bureauray-a omposite pattern. In Proeedings of theFirst European Conferene on Pattern Languages of Programs, Other Pat-terns Workshop, 1996. Retrieved January 21, 2000 from the EuroPLoPTM



BIBLIOGRAPHY 1091996 database on the World Wide Web: http://www.s.wustl.edu/�shmidt/europlop-96/ww3-papers.html.[100℄ Linda Rising. The Patterns Handbook: Tehniques, Strategies, and Applia-tions. Cambridge University Press, 1998. Colleted and Introdued by LindaRising.[101℄ Ant�onio Rito Silva, Jo~ao Pereira, and Jos�e Alves. Objet synhroniza-tion patterns. In Proeedings of the First European Conferene on PatternLanguages of Programs, Distribution Workshop, 1996. Retrieved January21, 2000 from the EuroPLoPTM 1996 database on the World Wide Web:http://www.s.wustl.edu/�shmidt/europlop-96/papers/paper09.ps.[102℄ Ant�onio Rito Silva, Jo~ao Pereira, and Pedro Sousa. Loal serialization pat-tern. In Tenth Annual Conferene on Objet-Oriented Programming Sys-tems, Languages, and Appliations (OOPSLA'95), volume 30(10). SIGPLANNoties, Otober 1995. Retrieved September 20, 2000 from the OOP-SLA 1995 database on the World Wide Web: http://www.s.wustl.edu/�shmidt/OOPSLA-95/html/papers/atomobj.ps.gz.[103℄ Hans Rohnert. The proxy design pattern revisited. In John M. Vlissides,James O. Coplien, and Norman L. Kerth, editors, Pattern Languages of Pro-grams Design, volume 2 of Software Patterns Series. Addison-Wesley, 1996.[104℄ James Rumbaugh, Mihael Blaha, William Premerlani, Frederik Eddy, andWilliamLorensen. Objet-Oriented Modeling and Design. Prentie Hall, 1991.[105℄ Aamod Sane and Roy Campbell. Composite messages: A strutural patternfor ommuniation between omponents. In Tenth Annual Confereneon Objet-Oriented Programming Systems, Languages, and Appliations(OOPSLA'95), volume 30(10). SIGPLAN Noties, Otober 1995. RetrievedSeptember 20, 2000 from the OOPSLA 1995 database on the World WideWeb: http://www.s.wustl.edu/�shmidt/OOPSLA-95/html/papers/aamod.ps.gz.[106℄ Aamod Sane and Roy Campbell. Resoure exhanger: A behavioural pat-tern for low-overhead onurrent resoure management. In John M. Vlis-sides, James O. Coplien, and Norman L. Kerth, editors, Pattern Languagesof Programs Design, volume 2 of Software Patterns Series, pages 461{473.Addison-Wesley, 1996.



110 BIBLIOGRAPHY[107℄ Douglas C. Shmidt. Family of design patterns for appliation-levelgateways. Theory and Pratie of Objet Systems, 2(1), Deember1996. Speial issue on Patterns and Pattern Languages. RetrievedJanuary 20, 2000 from the ACE database on the World Wide Web:http://www.s.wustl.edu/�shmidt/PDF/TAPOS-00.pdf.[108℄ Douglas C. Shmidt. Applying patterns and frameworks to develop objet-oriented ommuniation software. In Peter Salus, editor, Handbook of Pro-gramming Languages, volume 1. MaMillan Computer Publishing, 1997.[109℄ Douglas C. Shmidt. Strategized loking, thread-safe interfae, and sopedloking: Patterns and idioms for simplifying multi-threaded C++ om-ponents. C++ Report, 11(9), September 1999. Retrieved January 20,2000 from the World Wide Web: http://www.s.wustl.edu/�shmidt/PDF/loking-patterns.pdf.[110℄ Douglas C. Shmidt. Monitor objet|an objet behavioral pat-tern for onurrent programming. C++ Report, 2000. Re-trieved September 20, 2000 from the World Wide Web:http://www.s.wustl.edu/�shmidt/PDF/monitor.pdf.[111℄ Douglas C. Shmidt and Timothy Harrison. Double-heked loking. anobjet behavioral pattern for initializing and aessing thread-safe ob-jets eÆiently. In Robert C. Martin, Dirk Riehle, Frank Bushmann,and John Vlissides, editors, Pattern Languages of Programs Design, vol-ume 3 of Software Patterns Series. Addison-Wesley, 1997. Retrieved Jan-uary 20, 2000 from the PLoPTM 1996 database on the World Wide Web:http://www.s.wustl.edu/�shmidt/PLoP-96/DC-Loking.ps.gz.[112℄ Douglas C. Shmidt, Carlos O'Ryan, Mihael Kirher, Irfan Pyarali,and Frank Bushmann. Leader/followers: A design pattern for eÆ-ient multi-threaded event demultiplexing and dispathing. In Proeedingsof the Seventh Pattern Languages of Programs, The Network of Learn-ing Workshop. Pattern Languages of Programs, 2000. Retrieved Deem-ber 13, 2000 from the PLoPTM 2000 database on the World Wide Web:http://jerry.s.uiu.edu/ plop/plop2k/ORyan/ORyan.pdf.[113℄ Fred Shneider. On Conurrent Programming. Springer-Verlag, 1997.[114℄ Jean-Franois Selber and Gilles Le Go�. Task manager design pattern.In Proeedings of the Fourth European Conferene on Pattern Languages



BIBLIOGRAPHY 111of Programs, Patterns of Design Workshop, 1999. Retrieved September14, 2000 from the EuroPLoPTM 1999 database on the World Wide Web:http://www.argo.be/europlop/Papers/Final/Goff.do.[115℄ Mary Shaw. Some patterns for software arhiteture. In John M. Vlissides,James O. Coplien, and Normal L. Kerth, editors, Pattern Languages of Pro-grams Design, volume 2 of Software Patterns Series. Addison-Wesley, 1996.[116℄ J. A. Simpson and E. S. C. Weiner, editors. The Oxford English Ditio-nary. Oxford University Press, 2 edition, 1989. Retrieved November 6,2000 from The Oxford English Ditionary database on the World Wide Web:http://daisy.uwaterloo.a/�fwtompa/oed/oed-loal/lookup.gi.[117℄ Peter Sommerlad. Command proessor. In John M. Vlissides, James O.Coplien, and Norman L. Kerth, editors, Pattern Languages of Programs De-sign, volume 2 of Software Patterns Series. Addison-Wesley, 1996.[118℄ Peter Sommerlad and Frank Bushmann. The manager design pat-tern. In Joint Pattern Languages of Programs Conferene, System Con-�guration and Resoure Management Workshop, 1996. Retrieved Jan-uary 20, 2000 from the PLoPTM 1996 database on the World Wide Web:http://www.s.wustl.edu/�shmidt/PLoP-96/ sommerlad.ps.gz.[119℄ Peter Sommerlad and Mihael Stal. The lient-dispather-server design pat-tern. In John M. Vlissides, James O. Coplien, and Norman L. Kerth, editors,Pattern Languages of Programs Design, volume 2 of Software Patterns Series.Addison-Wesley, 1996.[120℄ Mihael Stal. The broker arhitetural framework. In Tenth An-nual Conferene on Objet-Oriented Programming Systems, Languages,and Appliations (OOPSLA'95), volume 30(10). SIGPLAN Noties, O-tober 1995. Retrieved September 20, 2000 from the OOPSLA 1995database on the World Wide Web: http://www.s.wustl.edu/�shmidt/OOPSLA-95/html/papers/broker.ps.gz.[121℄ Darlene Stewart and W. Gentleman. Non-stop monitoring and de-bugging on shared-memory multiproessors. In Proeedings of the 2ndInternational Workshop on Software Engineering for Parallel and Dis-tributed Systems (PDSE '97). Institute of Eletrial and EletronisEngineers, In., 1997. Retrieved January 19, 2000 from the Na-tional Researh Counil of Canada database on the World Wide Web:http://wwwsel.iit.nr.a/abstrats/NRC40147.abs.



112 BIBLIOGRAPHY[122℄ P.P. Tanner, S.A. MaKay, D.A. Stewart, and M. Wein. A multi-taasking swithboard approah to user interfae management. InProeedings of the 13th annual onferene on Computer graphis (SIG-GRAPH '86), Computer Graphis, volume 20, 1986. Retrieved Marh 1,2001 from the ACM Digital Library database on the World Wide Web:http://info.am.org/pubs/itations/proeedings/graph/15922/p241-tanner.[123℄ Jean Tessier and Rudolf Keller. Manager-agent and remote operation:Two key patterns for network management interfaes. In Proeedings ofthe Third Joint Pattern Languages of Programs, Frameworks and Arhite-tures Workshop, 1996. Retrieved January 20, 2000 from the PLoPTM 1996database on the World Wide Web: http://www.s.wustl.edu/�shmidt/PLoP-96/keller.ps.gz.[124℄ Walter F. Tihy. Essential software design patterns. Retrieved November10, 2000 from the World Wide Web: http://wwwipd.ira.uka.de/�tihy/patterns/onurreny.html.[125℄ Walter F. Tihy. A atalogue of general-purpose software design patterns.In Proeedings of Tehnology of Objet-Oriented Languages and Systems(TOOLS 23). IEEE Computer Soiety, 1998. (invited paper).[126℄ Allan Vermeulen. An asynhronous design pattern. Dr. Dobb's Journal, 21(6),1996.[127℄ Allen Vermeulen, Gabe Beged-Dov, and Patrik Thompson. The pipelinedesign pattern. In Tenth Annual Conferene on Objet-Oriented Pro-gramming Systems, Languages, and Appliations (OOPSLA'95), vol-ume 30(10). SIGPLAN Noties, Otober 1995. Retrieved Septem-ber 20, 2000 from the OOPSLA 1995 database on the World WideWeb: http://www.s.wustl.edu/�shmidt/OOPSLA-95/html/papers/quilt.ps.gz.[128℄ Mauriio J. Vianna e Silva, Sergio Carvalho, and John Kapson.Patterns for layered objet-oriented appliations. In Proeedingsof the Seond European Conferene on Pattern Languages of Pro-grams, Distribution Patterns Workshop. (EuroPLoP'97) Siemens Teh-nial Report 120/SW1/FB, 1997. Retrieved Otober 21, 2000from the EuroPLoPTM 1997 database on the World Wide Web:http://www.riehle.org/events/europlop-1997/p5final.pdf.



BIBLIOGRAPHY 113[129℄ John Vlissides. Pattern Hathing: Design Patterns Applied. The SoftwarePattern Series. Addison-Wesley, 1998.[130℄ Eugene Wallingford. The sponsor-seletor pattern. In Proeedingsof the Third Joint Pattern Languages of Programs, System Con�gura-tion and Resoure Management Workshop, 1996. Retrieved January20, 2000 from the PLoPTM 1996 database on the World Wide Web:http://www.s.wustl.edu/�shmidt/PLoP-96/wallingford.ps.gz.[131℄ Charles Weir. Arhitetural styles for distribution. In Proeed-ings of the Seond European Conferene on Pattern Languages of Pro-grams, Distribution Workshop, 1997. Retrieved January 21, 2000from the EuroPLoPTM 1997 database on the World Wide Web:http://www.riehle.org/events/europlop-1997/p21final.pdf.[132℄ Gregory V. Wilson. Pratial Parallel Programming. MIT Press, 1995.[133℄ Kirk Wolf and Chamond Liu. New lients with old servers. In James O.Coplien and Douglas C. Shmidt, editors, Pattern Languages of ProgramsDesign, volume 1 of Software Patterns Series. Adddison-Wesley, 1995.[134℄ Bobby Woolf. The objet reursion pattern. In Proeedings of the FifthPattern Languages of Programs, Site Repair Workshop, 1998. RetrievedOtober 21, 2000 from the PLoPTM 1998 database on the World WideWeb: http://jerry.s.uiu.edu/�plop/plop98/final submissions/P21.pdf.[135℄ Walter Zimmer. Relationships between design patterns. In James O. Coplienand Douglas C. Shmidt, editors, Pattern Languages of Programs Design,number 1 in Software Patterns Series, pages 345{364. Addison-Wesley Pub-lishing Company, In., 1995.



Indexabortable interation, 25aeptor, 51ations triggered by events, 28ative objet, 47ator, 47onurrent objet, 47serializer, 47ator, 31, 47ator-agent-supplier, 57ator-supplier, 57ator-agent-supplier, 57adapter, 36adapter broker, 41administrator, 38, 48, 53observer, 71announer/listener, 71broadast, 71broadaster/listener, 71broadasting sequential proesses,71aller/provider, 71omponent bus, 71dependeny, 71dependent, 71handler, 71listener, 71noti�ation server, 71noti�er, 71propagator, 71provider/observer, 71publisher-subsriber, 71

spy, 71subsriber/publisher, 71update, 71valuemodel, 71propagator, 73adaptive, 73bakward, 73eager, 73forward, 73immediate, 73lazy, 73optimisti, 73strit, 73strit, with failure, 73update on demand, 73ambassador, 37remote proxy, 37announer/listener, 71any to one, 22arhitetural pattern, 4broker, 4ommuniating proesses, 27Model-View-Controller, 5assassin, 54asynhronous ommuniation, 21, 27authentiator, 37, 40protetion proxy, 37balking, 28bath ommuniation style, 27blakboard, 50, 60prodution system, 61



INDEX 115repository, 61bodyguard, 40, 45warden, 45broadast, 22, 71broadaster/listener, 71broadasting sequential proesses, 71Broker, 4broker, 8, 40, 72adapter, 41allbak, 41diret ommuniation , 41divore attorney, 42entity, 44going postal, 42going to ourt, 42going to the hapel , 43intermediary, 42mathmaker, 43entralized learing house, 43path panel, 43message passing, 41trader, 41transeiver-parel, 42broker as divore attorney, 42broker as intermediary, 42builder, 47bureauray, 69bureaurat, 69ahe proxy, 36allbak broker, 41aller/provider, 71aretaker, 49entral oordinator, 31entralized learing housemathmaker, 43hain of responsibility, 69bureauray, 69bureaurat, 69

event handler, 69mather-handler, 69responder, 69lient-server interation patterns, 65lient-server-servie, 53, 62thread pool, 53lient-side design patterns, 35lient-side patterns, 35olletion-worker, 60ommand, 29, 52interruptible, 29override urrent proessing, 29ommand proessor, 51ontroller-ommand, 52ommuniating proesses arhiteturalpattern, 27ommuniation patterns, 21ations triggered by events, 28asynhronous, 21, 27bath ommuniation style, 27balking, 28diretion of information ow, 21,23abortable interation, 25bakward, 24forward, 24handshaking, 25inward, 24monitorable interation, 25opaque interation patterns, 23outward, 24pull, 24push, 24round robin polling, 23events, 28heartbeat, 26interating peers, 25number of partiipants, 21any to one, 22



116 INDEXbroadast, 22many to many, 22multiast, 22one to many, 22one to one, 22pipe, 26polling, 28probe/eho, 26simpli�ation, 28ommand, 29omposite all, 29omposite message, 29distributed symmetri IPC, 28synhronous, 21, 27ompletion allbak, 19allbak, 19named reply, 19SASE, 19self-addressed stamped envelope, 19ompletion token, 17asynhronous ompletion token, 17magi ookie, 17omponent bus, 71omposite, 70omposite all, 29omposite message, 29onurrent objet, 47ative objet, 47onnetor, 51ontroller-ommand, 52oordinator, 32ounting proxy, 36ourier, 38, 54ritial setion, 30, 32rystalline model, 57single program, multiple data, 58urried objet, 44daemon, 46

data �lter, 40death proprietor, 54delegation, 53demon, 46demultiplexer, 45, 47dependeny, 71dependent, 71design patternobserver, 4diret ommuniation broker, 41diretor, 54dispather, 43, 64distributed bag of tasks, 55distributed symmetri IPC, 28double-heked loking, 31lazy initialization, 32virtual proxy, 32embarrassingly-parallel, 59master-worker, 59task queue, 59emissary, 39entity broker, 44event hannel, 39event goal, 18event handler, 69event-based integration, 72events, 28evitor, 54death proprietor, 54undertaker, 54vulture, 54exeutive, 47faade, 44fatory allbak, 46federation of lookup servies, 49�lter, 22�rewall proxy, 36



INDEX 117forwarder, 38forwarder-reeiver, 38framework, 5future, 37gaggles, 57Gang of Four, 3gateway, 38, 39proxy, 38ghost pattern, 36GOF, 3going postal broker, 42going to ourt broker, 42going to the hapel broker, 43guarded methods, 30guardian, 47, 50handle-body idiom, 36handler, 71handshaking, 25heartbeat, 26host-helper, 56idiom, 3handle-body, 36interating peers, 25entralized, 25ring, 25symmetri, 25interation patternsabortable interation, 25handshaking, 25monitorable interation, 25opaque interation, 23round robin polling, 23intermediaryurried objet, 44dispather, 43, 64faade, 44mailbox, 45

pass through, 43proator, 45proxy, 36reator, 46router, 45intermediary design patterns, 35interruptible ommand, 29override urrent proessing, 29lazy initialization, 32double-heked loking, 32leader/followers, 60leasing, 49library, 50listener, 71listener-based objet, 47builder, 47demultiplexer, 47exeutive, 47guardian, 47objet adapter, 47parser, 47reator, 47skeleton, 47loal atomiity, 32loal serialization, 32ritial setion, 32loal atomiity, 32objet onurreny ontrol, 32lok manager, 31lok server, 49lok patterns, 33queued, 33reader/writer, 33ounted, 34distributed, 34reader/writer lokqueued, 34strategized loking, 34



118 INDEXtest-and-set, 33lok server, 31, 49lok manager, 49lookup, 49federation, 49mailbox, 45manager, 49lok, 31manager-agent, 43, 50, 56many to many, 22master-slave, 56, 57ator-agent-supplier, 57blakboard variant, 62rystalline model, 57gaggles, 57host-helper, 56master-slave for parallel omputeservies, 57objet group, 56operator, 57slaves as threads, 57supervisor-worker, 58master-slave for parallel ompute ser-vies, 57master-workerembarrassingly-parallel, 59mather-handler, 69mathmaker, 43entralized learing house, 43path panel, 43mediator, 38, 64administrator, 38bodyguard, 45broker, 40adapter, 41allbak, 41diret ommuniation , 41divore attorney, 42

entity, 44going postal, 42going to ourt, 42going to the hapel , 43intermediary, 42mathmaker, 43message passing, 41trader, 41transeiver-parel, 42ourier, 38data �lter, 40emissary, 39event hannel, 39forwarder, 38forwarder-reeiver, 38gateway, 39manager-agent, 43mediator-worker, 39name server, 38objet �lter and aess ontrol, 40relay, 38shopper, 39waiter, 38warden, 45mediator-worker, 39message passing broker, 41meta-pattern, 2metapattern, 2, 5, 16Model-View-Controller, 5model-view-ontroller, 62monitor objet, 35monitorable interation, 25multiast, 22multiversion two-phase loking trans-ation, 33mutual exlusion, 17, 30double-heked loking, 31guarded methods, 30implementation



INDEX 119lok patterns, 33transation, 32loal serialization, 32ritial setion, 32loal atomiity, 32objet onurreny ontrol, 32lok patterns, 33single threaded exeution, 31synhronizer, 30, 32ator, 31entral oordinator, 31lok manager, 31lok server, 31transation, 30, 32multiversion two-phase loking,33optimisti, 32two-phase loking, 32name server, 38noti�ation server, 71noti�er, 54, 71objet adapter, 47objet onurreny ontrol, 32objet �lter and aess ontrol, 40objet group, 56objet synhronization pattern, 19objet onurreny ontrol, 19objet serialization, 19observer, 4, 8, 46, 70, 71, 77announer/listener, 71broadast, 71broadaster/listener, 71broadasting sequential proesses,71aller/provider, 71omponent bus, 71dependeny, 71

dependent, 71handler, 71listener, 71noti�ation server, 71noti�er, 71propagator, 71provider/observer, 71publisher-subsriber, 71spy, 71subsriber/publisher, 71update, 71valuemodel, 71one to many, 22one to one, 22opaque interation patterns, 23operator, 57ubiquitous agent, 57optimisti transation, 32override urrent proessing, 29overseer, 54parser, 47path panel, 43mathmaker, 43patternarhitetural, 4atalog, 15lient-server interation, 65lient-side, 35intermediary, 35ommuniation, 21de�nition, 1design, 4idiom, 3interationpipeline, 65intermediary, 35loks, 33meta-pattern, 2



120 INDEXmetapattern, 2, 5mutual exlusion, 30server-side, 35strategi, 9synhronization, 20ompletion allbak, 19ompletion token, 17objet synhronization pattern,19remote proedure all, 18rendezvous, 17servies waiting for, 17termination synhronization, 18system, 15tatial, 9taxonomies, 3pattern atalog, 15pattern de�nition, 1pattern system, 15pattern taxonomies, 3patternsopaque interation, 23pipe, 22, 26irular, 26losed, 26open, 26pipeline, 26, 65, 66hain of responsibility, 69bureauray, 69bureaurat, 69event handler, 69mather-handler, 69responder, 69ow network, 68network, 69pipes and �lters, 66produer-onsumer, 66readers and writers, 68program haining, 69

remover, 66soure, 66stream, 66tee and join, 69transformer, 66translator, 66pipes and �lters, 66polling, 28presentation-abstration-ontrol, 63proator, 45probe/eho, 26proess ontrol, 47produer-onsumer, 66produer-intermediary-onsumer, 68produer-repository-onsumer, 68produer-sensor-onsumer, 68shopper, 68prodution system, 61blakboard, 61program haining, 69propagator, 71, 73adaptive, 73bakward, 73eager, 73forward, 73immediate, 73lazy, 73optimisti, 73strit, 73strit, with failure, 73update on demand, 73proprietor, 48aeptor, 51aretaker, 49ommand proessor, 51onnetor, 51death, 54guardian, 50leasing, 49



INDEX 121lok server, 49lookup, 49manager, 49manager-agent, 50repository, 50blakboard, 50library, 50resoure exhanger, 51servie on�gurator, 51super-server, 51task manager, 50view handler, 52protetion proxy, 36authentiator, 37provider/observer, 71proxy, 36adapter, 36ahe, 36ounting, 36�rewall, 36gateway, 38ghost pattern, 36protetion, 36remote, 18, 36surrogate, 36synhronization, 36virtual, 32, 36proxy-original, 37remote proxy, 37queued lok, 33reator, 46, 47reader/writer lok, 33readers and writers, 68relay, 38remote invoation, 18remote proedure all, 18, 27event goal, 18

remote invoation, 18remote proxy, 18RPC, 18remote proxy, 36ambassador, 37proxy-original, 37remote proedure all, 18RPC lient, 37transparent remote aess, 37rendezvous, 17binary, 17extended, 17, 33multiway, 17simple, 17transation, 18repository, 50, 61, 66, 68blakboard, 50, 61library, 50resoure exhanger, 51resoure pool, 53lient-server-servie, 53thread pool, 53responder, 69round robin polling, 23router, 45RPC, 18RPC lient, 37, 40remote proxy, 37seretary, 54sender-pass through-reeiver, 43serializer, 47ative objet, 47serveradministrator, 48, 53lok, 31noti�ation, 71proprietor, 48aeptor, 51



122 INDEXaretaker, 49ommand proessor, 51onnetor, 51guardian, 50leasing, 49lok server, 49lookup, 49manager, 49manager-agent, 50repository, 50resoure exhanger, 51servie on�gurator, 51task manager, 50view handler, 52server-side patterns, 35servie on�gurator, 51super-server, 51servies waiting for, 17shell task, 55shopper, 39, 68simpli�ation of ommuniationommand, 29interruptible, 29override urrent proessing, 29omposite all, 29omposite message, 29distributed symmetri IPC, 28single program, multiple datarystalline model, 58single threaded exeution, 31sink, 66skeleton, 47slaves as threads, 57soure, 66spy, 71strategi patterns, 9strategized loking, 34strategy, 70stream, 26, 66

subsriber/publisher, 71super-server, 51supervisor-worker, 55, 58surrogate, 36proxy, 36swithboard, 44synhronization, 17synhronization design patterns, 20ompletion allbak, 19ompletion token, 17objet synhronization pattern, 19remote proedure all, 18event goal, 18remote invoation, 18rendezvous, 17servies waiting for, 17termination synhronization, 18synhronization proxy, 36synhronizer, 30, 32ator, 31entral oordinator, 31lok manager, 31lok server, 31single threaded exeution, 31synhronous ommuniation, 21, 27tatial patterns, 9task manager, 50task queueembarrassingly-parallel, 59taxonomies, 3tenant task, 55termination synhronization, 18fork join, 19thread join, 19test-and-set lok, 33threadper objet, 31per request, 31



INDEX 123thread per objet, 31thread per request, 31, 53thread per session, 53thread pool, 53lient-server-servie, 53, 62resoure pool, 53thread-safe passive objet, 35timer, 54trader, 41transation, 18, 30, 32oordinator, 32extended rendezvous, 33multiversion two-phase loking, 33optimisti, 32two-phase loking, 32transeiver-parel broker, 42translator, 66transparent remote aess, 37remote proxy, 37two-phase loking, 32two-phase loking transation, 32ubiquitous agentoperator, 57undertaker, 54update, 71valuemodel, 71view handler, 52virtual proxy, 32, 36double-heked loking, 32vulture, 54waiter, 38warden, 45bodyguard, 45work rew, 55worker, 39, 53assassin, 54ourier, 54

diretory, 54evitor, 54death proprietor, 54undertaker, 54vulture, 54noti�er, 54overseer, 54seretary, 54shell, 55tenant, 55thread per request, 53thread per session, 53thread pool, 53lient-server-servie, 53, 62resoure pool, 53timer, 54workersblakboard, 60olletion-worker, 60distributed bag of tasks, 55agenda parallelism, 55proess farm, 55repliated worker, 55supervisor-worker, 55embarrassingly-parallel, 59leader/ollaborator/ollaboration,62leader/followers, 60manager-agent, 56master-slave, 56, 57ator-agent-supplier, 57blakboard variant, 62rystalline model, 57gaggles, 57host-helper, 56master-slave for parallel omputeservies, 57objet group, 56operator, 57



124 INDEXslaves as threads, 57supervisor-worker, 58master-workerembarrassingly-parallel, 59task queue, 59work rew, 55


