
PRESERVING TRUST ACROSS MULTIPLE SESSIONS

IN OPEN SYSTEMS

by

Fuk Wing Thomas Chan

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

June 2004

Copyright c© 2004 Fuk Wing Thomas Chan

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Fuk Wing Thomas Chan

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Kent E. Seamons, Chair

Date Quinn Snell

Date Bryan S. Morse

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Fuk Wing
Thomas Chan in its final form and have found that (1) its format, citations, and bib-
liographical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date Kent E. Seamons
Chair, Graduate Committee

Accepted for the Department

Tony R. Martinez
Department Chair

Accepted for the College

G. Rex Bryce
Associate Dean, College of Physical and Math-
ematical Sciences

ABSTRACT

PRESERVING TRUST ACROSS MULTIPLE SESSIONS

IN OPEN SYSTEMS

Fuk Wing Thomas Chan

Department of Computer Science

Master of Science

Trust negotiation, a new authentication paradigm, enables strangers on the Internet

to establish trust through the gradual disclosure of digital credentials and access

control policies. Previous research in trust negotiation does not address issues in

preserving trust across multiple sessions. This thesis discusses issues in preserving

trust between parties who were previously considered strangers. It also describes

the design and implementation of trust preservation in TrustBuilder, a prototype

trust negotiation system. Preserving trust information can reduce the frequency

and cost of renegotiation. A scenario is presented that demonstrates that a server

supporting trust preservation can recoup the cost of the trust preservation facility

when approximately 25% of its requests are from repeat customers. The throughput

and response time improve up to approximately 33% as the percentage of repeat

customers grows to 100%.

ACKNOWLEDGMENTS

First, I appreciate your interest in reading this work. You make this work valuable. I

also appreciate my committee members Dr. Snell and Dr. Morse; my fellow research

assistants in the Internet Security Research Lab, Travis, Evan, Robert, Lina, Jared,

Adam, Ryan, Jason, Tore, Bryan, Tim, Jim, Nate and many others. Thank you for

allowing me to bounce off ideas and for providing me feedback on various chapters.

You made this work interesting and fun. My thanks also go to Dr. Knutson who

provided valuable input on my spring research presentations which became part of

this thesis.

I would also like to express my thanks to individuals who reached down to lift me

up and helped me feel hopeful: Dr. Cory Barker who invited me to his CS252, my first

formal computer science class. Through his devotion and interest, I was converted to

computer science. Dr. Christopher Jones, who was brave enough to let me present

his paper in front of more than thirty PhDs at an international conference. It is

he who sparked my interest in research and to continue my schooling. My adviser,

Dr. Kent Seamons, who saw my potential, inspired my interest in trust negotiation

and supported me throughout this work. Through his genuine encouragement and

refinement, I completed this work.

Most of all, I thank my Father in Heaven who sent me here to learn and grow.

I especially thank His wisdom for providing me the opportunity to meet my wife

Adeline. My dear Adeline, you are my guiding light. You gave me courage throughout

my education. You renewed my energy, strengths and gave me the reasons to carry

on. Thank you for taking care of our children, Himhim, Waiwai, and Yanyan while

I camped at the lab. Thank you for all the rides and endless waiting in the parking

lot.

Standing with you side by side, my dreams never die.

Mountains are high; with you I can touch the sky.

This work was long, time goes by and by.

Abandon the work and say goodbye?

Oh no! With your courage,

Your advice,

I survive.

Financial support for this research was provided by DARPA through AFRL con-

tract number F33615-01-C-0336 and through Space and Naval Warfare Systems Cen-

ter San Diego grant number N66001-01-1-8908. Support was also provided by the

National Science Foundation under grant number CCR-0325951 and prime coopera-

tive agreement number IIS-0331707, and The Regents of the University of California.

Contents

1 Introduction 1

1.1 Overview of trust negotiation . 1

1.1.1 Trust negotiation example . 1

1.1.2 Sensitive credentials . 2

1.1.3 Sensitive policies . 3

1.2 Motivation . 3

1.3 Research goals . 5

1.4 Thesis statement . 5

1.5 Outline . 7

2 Trust Preservation using a TRT 9

2.1 Design goals . 9

2.2 Trust resumption token . 14

2.2.1 TRT example . 15

2.2.2 TRT usage in a federation . 18

3 Trust Preservation using Kerberos and KeyNote 21

3.1 Kerberos integration . 21

3.2 KeyNote integration . 24

4 Performance Analysis 31

4.1 Experimental framework . 31

4.2 Results: throughput and response time 36

xiii

CONTENTS

5 Related Work 41

5.1 Cookies . 41

5.2 Kerberos tickets . 42

5.3 Trust negotiation in session level protocols 42

5.4 Single sign-on . 44

6 Conclusion and Future Work 45

xiv

List of Tables

4.1 Client and server specifications . 32

xv

LIST OF TABLES

xvi

List of Figures

1.1 A simplified trust negotiation. 2

2.1 An extended example to illustrate the usage of an authenticator . . . 10

2.2 The trust negotiation flow between Alice and Bob. 16

2.3 The trust negotiation flow between Alice and Bob with multiple rounds

of negotiation. 16

2.4 Alice’s TRT . 17

2.5 Alice resumes the trust level using TRT. 18

3.1 The Kerberos distributed authentication system architecture. 22

3.2 A simple design for integrating TrustBuilder with Kerberos. 23

3.3 Applications use KeyNote to determine whether a client is authorized

for a requested service. 24

3.4 A spending application using KeyNote to determine a user’s spending

power. 26

3.5 A typical flow of interaction that illustrates an application making a

query to KeyNote based on a user’s request. 27

3.6 The KeyNote API. 29

4.1 Various sized groups of users simultaneously negotiating trust for a

protected resource. 33

4.2 A pharmacy scenario involving a three-round trust negotiation process. 35

4.3 Server throughput during trust negotiations involving a TRT. 37

4.4 Mean response time for trust negotiations involving a TRT. 37

xvii

LIST OF FIGURES

4.5 An estimate of the cumulative cost of a trust negotiation while varying

the number of users, number of requests per user, and the percentage

of repeat customers. 40

xviii

Chapter 1 — Introduction

1.1 Overview of trust negotiation

Trust negotiation, a new authentication paradigm, enables strangers on the In-

ternet to establish trust or proof of qualification through the gradual disclosure of

credentials and access control policies [4, 15, 16]. In open systems like the Inter-

net, the majority of transactions are between strangers—entities that are not in the

same security domain and do not have a pre-existing relationship. The identity of

the participants is often irrelevant, unknown, or must remain private. Under such

circumstances, identity-based authentication is not suitable. Trust negotiation is de-

signed to allow strangers to authenticate one another based on attributes contained

in digital credentials.

Digital credentials are unforgeable and verifiable. The attributes embedded in a

credential are asserted and signed by a trusted third party known as a certificate

authority (CA). A common format for a digital credential is an X.509v3 certificate.

1.1.1 Trust negotiation example

The following is a simple example of trust negotiation. Alice has an accident

while she is hiking out-of-state. A rescue team air lifts her to an emergency room

(ER). Before Doctor Bob, the on-call anesthesiologist, prescribes any pain medica-

tion to Alice, he needs to find out whether Alice is allergic to any medication. The

Health Insurance Portability and Accountability Act of 1996 (HIPAA) prohibits Al-

ice’s health care provider, Jones Clinic (JC), from releasing her medical records except

to a qualified physician who is providing treatment to her.1 Doctor Bob possesses

an anesthesiologist credential that is signed by the American Medical Association

1This oversimplified example conveys the general idea of HIPAA.

1

CHAPTER 1. INTRODUCTION

���������	
��������������	�
����
���	���

��������	
��������	�������	
���
��

�����������
���	�
����
���

���������	
��	����
����
�	�
����
���

�����������
��������������	�
����
���

�����������
��������	�������	
���
��

����	�������

���

�
��
�
	�
�
���
�
�

��

Figure 1.1: A simplified trust negotiation.

(AMA). Doctor Bob only discloses his credential to other physicians and health care

organizations to avoid unwanted solicitation from salespersons. Jones Clinic possesses

a credential stating that it is a registered and licensed health care facility under the

state department of health.

Figure 1.1 depicts the trust negotiation process between Doctor Bob and JC.

Doctor Bob’s client software requests Alice’s medical records from JC’s server. JC’s

server requests a credential proving that Doctor Bob is a qualified physician. Bob’s

client requests a credential proving that JC is a physician or a health-care organiza-

tion. Since the JC’s health care credential is freely available upon request, JC’s server

sends the credential to Bob’s client. After verifying the credential, Bob’s client re-

leases his anesthesiologist credential. JC’s server examines and verifies the credential,

and then releases Alice’s health care records to Bob.

1.1.2 Sensitive credentials

The trust negotiation process is analogous to how strangers can build credibility

or establish mutual trust through exchanging paper credentials. In trust negotiation,

digital credentials are gradually disclosed and exchanged. It is common for people to

hesitate to disclose credentials that contain their sensitive information to strangers.

Similar to paper credentials, digital credentials may contain sensitive information

(attributes) like birth date, credit card number, personal health information, social

2

1.2. MOTIVATION

security number, or weight. When attributes in a digital credential are sensitive, an

access control policy can control its disclosure. In the example above, Doctor Bob

protected his anesthesiologist credential with an access control policy allowing only

physicians or health-care organizations to access his credential.

1.1.3 Sensitive policies

Doctor Bob’s access control policy governs the disclosure of his physician creden-

tial. The policy defines the attributes a requester must possess in order to access

his credential. Anyone who requests Doctor Bob’s AMA physician credential will

be asked to disclose a physician credential, health-care organization credential, ra-

diologist credential, or stem cell research credential. Bob’s counter request might

be enough evidence for a salesperson to target him for nuclear medicine products.

Similarly, the requirement for a stem cell research credential might cause members

in the Physicians for Life organization to assume Dr. Bob is a pro-choice physician.

Thus, Dr. Bob may consider his policy as sensitive information and desire to limit

its disclosure.

A trust negotiation can be simple and direct, as in the example involving Dr.

Bob and JC. However, when both parties possess sensitive credentials or either party

possesses a sensitive policy, a trust negotiation can expand to multiple rounds.

1.2 Motivation

Discussions of trust negotiation in the current research literature are often based

on per-request access-control. Also, the current implementations of trust negotiation

are designed to perform per-request access-control. A trust negotiation occurs ev-

ery time a sensitive service or resource is requested. Even if the same resource or a

resource with the same access control policy is requested multiple times, trust nego-

tiation occurs for each request. This is obviously wasteful. If the resource requester

has already authenticated sufficiently to receive a resource, why should he have to

3

CHAPTER 1. INTRODUCTION

re-authenticate for the same resource or different resources with the same access con-

trol policy? In fact, why should he have to re-authenticate when all of his relevant

credentials are still valid?

The lack of trust preservation means that if a client requests the same resource five

times, the client and server negotiate trust five times. The client and server negotiate

trust when a different resource is accessed, even if the resources have the same access

control policy. Since trust is not preserved, this behavior applies to requests within

a single session and across multiple sessions. In multi-session interactions, once a

session is terminated, so is the relationship of trust between the participants. Similar

to multi-session, trust is terminated after each request within a single session. Recent

research proposes an approach to caching trust within a single session [8]. In contrast,

this thesis focuses on preserving trust across multiple sessions.

The performance overhead for renegotiating trust increases when a negotiation

involves multiple exchanges of policies and credentials. The cost of validating cre-

dentials increases linearly with the number of credentials received from the other

negotiator. Network bandwidth and latency also increases linearly with the number

of negotiation rounds. The overhead of renegotiating trust unnecessarily consumes

network bandwidth and increases computational load. Preserving the trust already

established between a client and server reduces these overheads.

The problem of trust preservation is similar to the single sign-on problem in

identity-based authentication, where solutions are intended to avoid requiring users

to enter a password repeatedly. The situation is different in trust negotiation because

the goal is to fully automate the trust negotiation process. Automated trust negoti-

ation takes place without direct user involvement. In this case, trust preservation is

mostly a performance issue. However, there may be situations where fully automated

trust negotiation is not feasible, and a user must be consulted to make authorization

4

1.3. RESEARCH GOALS

decisions, such as determining whether or not a credential is disclosed or determin-

ing which credentials to disclose. In this case, avoiding the need for user interaction

during repeated negotiations is akin to the single sign-on problem for identity-based

authentication systems.

1.3 Research goals

The goal of this research is to design and develop an approach for preserving trust

in open systems that reduces the performance overhead to establish trust and eases

the burden on users during semi-automated trust negotiation.

As proposed by [8], once a client and server negotiate trust, the server should

retain the client’s authentication information until the end of the session. Similarly,

the client should cache the server’s authentication information. By simply retain-

ing relevant authentication information, the frequency of renegotiation can be vastly

reduced.

Trust established during a client’s first session with a server should be retained

through subsequent sessions. It would also be convenient and more efficient for trust

to persist across multiple sessions among servers in the same security domain or across

trusted security domains.

Trust persistence promises to make authenticating strangers in open systems more

efficient. Trust persistence also allows strangers to make friends—the relationship of

trust persists, because the parties involved are no longer foreign to each other. Having

authenticated each other once, they do not need to perform the same expensive level

of authentication again.

1.4 Thesis statement

Trust is not persistent in the current trust negotiation model. Thus, a trusted

principal is always required to reestablish trust on every subsequent request. This

hinders the response time and throughput of a system in delivering resources to users.

5

CHAPTER 1. INTRODUCTION

In addition, this model decreases the battery lifetime of resource-constrained clients

(e.g., PDAs and cell phones).

This thesis presents the design of two approaches for preserving trust across mul-

tiple sessions. Experimental prototypes of these two approaches were created using

TrustBuilder, a prototype trust negotiation system under development in the Inter-

net Security Research Lab at Brigham Young University (see http://isrl.cs.byu.edu).

These prototypes illustrate two ways to deploy the current trust negotiation model.

The first approach, a stand-alone design that manages both authentication and

authorization, introduces a Trust Resumption Token (TRT) that captures the details

of a trust negotiation occurring in one session and makes it possible to reestablish

trust during subsequent sessions more efficiently. The second approach is an inte-

grated design to deploy TrustBuilder with an existing access control system. Many

authentication and authorization systems are identity-based. In contrast to Trust-

Builder, these identity-based systems are not designed to authenticate or authorize

strangers. This integrated approach enables these existing systems to authenticate

and authorize strangers.

The focus of this thesis is to develop approaches to preserving trust. The integra-

tion of TrustBuilder with existing systems eases the deployment of trust negotiation

technology. Trust preservation reduces the cost of credential validation during subse-

quent visits from a cost that increases linearly according to the number of credentials

received to a cost that is constant regardless of the number of credentials involved in

the negotiation. It also consolidates multiple rounds of negotiation into an exchange

of one policy and one token. Trust preservation increases the throughput of systems

delivering resources to users, resulting in a decrease in response time to users.

6

1.5. OUTLINE

1.5 Outline

The remainder of this thesis is organized as follows: Chapter 2 presents the design

and implementation of the trust resumption token. Chapter 3 describes the design

of the integration of TrustBuilder with Kerberos, a popular authentication system.

It also presents the design and implementation of the integration of TrustBuilder

with KeyNote, an existing authorization system. Chapter 4 contains a performance

analysis of the TRT implementation. Related work is presented in Chapter 5. The

final chapter contains conclusions and proposes future research directions.

7

CHAPTER 1. INTRODUCTION

8

Chapter 2 — Trust Preservation using a TRT

An approach to preserving trust across multiple sessions is to use a certified token

known as an authenticator. A server can issue an authenticator to a client following

a successful negotiation. The client can use the token to efficiently reestablish trust

with the server during subsequent sessions. This thesis refers to such an authenticator

as a Trust Resumption Token (TRT).

This chapter presents some design goals for a TRT and discusses several design

alternatives for using a trust resumption token to preserve the trust that is established

between two negotiators across multiple sessions.

Figure 2.1 illustrates an extension of the previous medical example of a trust

negotiation between Dr. Bob and JC. Suppose Alice’s condition intensifies the fol-

lowing day, and Dr. Bob needs to review a different medical record of Alice before

he prescribes different medicine and treatment to her. With the new design, Bob

acquires an authenticator from JC’s server along with Alice’s records the first time

he has successfully negotiated with JC. Now, he can re-access Alice’s records using

the authenticator and eliminate the need to re-negotiate with JC’s server.

2.1 Design goals

The following are the design goals for using a TRT:

• Integrity: detect when data in the TRT has been altered

• Authenticity: obtain evidence that the client submitting the TRT is its rightful

owner

• Validation: validate that the corresponding credentials that were used to issue

the token are still valid and have not been revoked

9

CHAPTER 2. TRUST PRESERVATION USING A TRT

���������	
��������������	�
����
���	���

��������	
��������	�������	
���
��

�����������
���	�
����
���

���������	
��	����
����
�	�
����
���

�����������
��������������	�
����
���

�����������
��������	�������	
���
��
				������ �	

��
	��
���
���
�

�
��

�
	�

�
���

�
�

��

���������	
��������������	�
����
���
																				�
	�	

��
	��
���
���
�

��������	
��������	�������	
���
��

�����������
�����	���	���	���	���	��

�����������
��������	�������	
���
��

�
��

�
	�

�
���

�
�

��

�������	����������	�� ������!��"��������������� ��"�������#

������#���$��������������!��"�������������������%�	���	���	���	���	���	��

����	�������

��#

����	�������

��#

Figure 2.1: An extended example to illustrate the usage of an authenticator

• Privacy or confidentiality: limit the disclosure of sensitive attributes in the

token to the server

• Performance: reduce the computational requirements for trust negotiation

A server can digitally sign the TRT when it is issued so that the integrity of a

TRT can be determined when a client presents it to a server in the future. A TRT

can be implemented using X.509v3 certificates.

A server could include the following attributes in the TRT: relevant attributes

of the user, a list of unique public keys, a list of serial numbers and issuer names,

and an expiration date. The following discussion addresses the benefits of storing at-

tributes of the user, and how the other items contribute to the integrity, authenticity,

confidentiality, and validity of the TRT.

10

2.1. DESIGN GOALS

First, the attributes that were initially required to access the requested resource

could be included in the TRT. Servers that receive the TRT in the future can use

these attributes to determine what resources the requester is entitled to access. This

approach enables the access privileges associated with the token to dynamically evolve

as an access control policy changes. Compared to storing permissions in a TRT, this

reduces the threat of requesters retaining the privileges associated with the original

policy when a policy update occurs. It also lessens the need to revoke tokens when

policies are modified.

Sometimes, a TRT can contain sensitive attributes or roles. In such cases, the

privacy and confidentiality of this sensitive information can be protected in different

ways. For example, the server could encrypt this information using the server’s public

key or a symmetric key known only by the server. This would prevent unauthorized

access by an eavesdropper or an attacker that gains access to the TRT stored on disk.

Also, a server that does not need to maintain a permanent copy of a client credential

could avoid storing it on disk to reduce the server’s liability and to reduce the risk of

the server becoming a prime target of an identity thief.

A server accepting a TRT must determine whether the client submitting the TRT

is the legitimate owner. One approach to determining ownership of the TRT is to link

the TRT to the original certificates that were instrumental to the issuing of the TRT.

The public keys contained in the original certificates are stored in the TRT. When

the TRT is presented, the server can challenge the client for the corresponding private

keys. Another approach is to generate a new public/private key pair specific to the

TRT and store the public key in the TRT. The server can challenge for ownership of

the private key when the TRT is presented.

The certificates used to authenticate the client in order for the TRT to be issued

could be revoked because one of the attribute values has changed or become invalid.

11

CHAPTER 2. TRUST PRESERVATION USING A TRT

A server may not want to accept the TRT when this occurs. One approach to detect

this situation is to include a list of serial numbers and issuer names in the TRT from

the relevant credentials that caused the TRT to be issued. The server can verify if

any of the asserted attributes are still valid by acquiring the certificate revocation

lists (CRLs) that correspond to the source credentials.

The certificates used to authenticate the client expire at various times. The expi-

ration date of the TRT can be set to be the expiration date of the source credential

that expires first. This ensures that the TRT is only valid so long as all of the source

credentials have not expired.

A difficult issue in certificate systems is the lending problem. This refers to the

unauthorized sharing of security tokens. The general problem is beyond the scope

of this thesis. However, in some cases challenging the ownership of the tokens can

discourage owners from lending tokens to other parties especially when sensitive at-

tributes are stored in these tokens. The ownership challenge process requires the

bearer to encrypt an unpredictable message with private keys that are associated

with the public keys included in the token. As users would also need to share private

keys to accomplish the challenge, they may be less inclined to share their tokens.

The information contained in a trust negotiation authenticator could be based on

attributes, roles, or permissions. Attributes are characteristics of an individual. They

are commonly contained in a digital credential certified by an authority (a trusted

third party). Roles typically represent various functions in an organization and are

granted certain permissions [14]. Permissions are the ability to access a resource

or a service. In trust negotiation, attributes are mapped to roles, and each role is

associated with a set of permissions. The design decision of what information to

store in an authenticator must consider tradeoffs between computation cost, storage

requirements, and the frequency of renegotiation.

12

2.1. DESIGN GOALS

For example, suppose that service S1 can be accessed by role R1, and service S2

can be accessed by role R2. Attribute A1 plus attribute A2 or attribute A3 alone

can authenticate to R1, whereas A1 alone can authenticate to R2. Assume client C

succeeds in requesting access for S1, and receives an authenticator for future access.

If the authenticator contains only the roles to which a client has authenticated,

when the client attempts to access a service requiring a different role, the server may

be unable to determine whether the client has already presented enough information

to authenticate to the role, even if it requires some of the same attributes. Suppose

client C tries to access S2. He cannot re-use the authenticator since the server does

not know whether the authenticator was issued based on attribute A1 or not. A role-

based authenticator works well when future client requests require authentication to

the same role. In a more dynamic environment where a client assumes various roles

based on different attributes, role-based authenticators may not be the most efficient

option.

If the authenticator contains only the attributes the client used to authenticate

to a role, when the client attempts to access a different service the server can simply

determine which roles are required to access the service and determine whether the

stored attributes permit or qualify the client to authenticate to those roles. Suppose

client C tries to access S2. The only required attribute to authenticate to role R2 is A1.

Thus, client C can access R2 only when the authenticator contains A1. Unlike role-

based authenticators, attribute-based authenticators always require the additional

mapping between attributes and roles. An attribute-based authenticator preserves

the authenticated attributes from a client—thus preserving the possibility of mapping

those attributes to other roles during future requests.

13

CHAPTER 2. TRUST PRESERVATION USING A TRT

2.2 Trust resumption token

In this thesis, the design for preserving trust calls for attributes to be stored in an

authenticator rather than storing roles or permissions. This thesis further proposes

the use of signed digital credentials as the logical structure for trust authenticators.

During a single trust negotiation, the server extracts attributes and other infor-

mation from the credentials disclosed by the client. If the negotiation succeeds, the

server generates and signs a credential—the trust resumption token—and delivers it

to the client along with the requested resource. A trust resumption token contains

the following: those attributes that were required to access a secure resource, a list

of unique public keys that are associated with the attributes, a list of serial num-

bers and issuer names from the relevant credentials, and the expiration date from the

credential that expires first. With this token, a client can re-access the server and

quickly reestablish the same degree of trust that was previously established, avoiding

needless repetition of a lengthy negotiation process.

Trust resumption tokens contain attributes rather than roles or permissions for the

following reasons. In trust negotiation, attributes are the lowest common denominator

of trust. The mapping from attributes to roles obviously requires attributes, and the

mapping from roles to permissions is therefore also based on attributes. Because

attributes are the basis of trust, attributes are less likely to change than roles or

permissions. The definition of a role contains a logic expression based on attributes;

that logic expression may change according to the security needs of the system. The

issue of changes to a role definition also applies to permissions. If a TRT contains

permission to access a particular file on the server and then the access-control policy

for the file changes, the holder of the TRT can still access the file until either the TRT

is revoked or it expires, regardless of the updated access-control policy. Changes to

the definition of a role or permission introduce additional insecurities into the system.

14

2.2. TRUST RESUMPTION TOKEN

If roles or permissions are stored in a TRT, revocation of the TRT becomes a

serious issue. When there is a change in a role definition or the permissions to access

a resource, any holder of a TRT issued previously would still be able to access the

resource even though they may no longer be authorized to hold that role or exercise

the permission. One way to mitigate this risk is to limit the lifetime of a TRT.

2.2.1 TRT example

The following example illustrates how a TRT is used to resume trust. Suppose

Alice requests service S from Bob, and the access control policy for S requires that

Alice possess attributes A1, A2, and A3.

Alice’s C1 credential contains A1, and A2. A3 is contained in Alice’s C2 credential.

According to Alice’s access control policy, C1 is freely available only upon request and

C2 is only to be disclosed to a requestor who can demonstrate ownership of attribute

A4. Alice discloses her C1 credential to Bob and requests proof that Bob has attribute

A4. Bob indeed possesses A4 in his C3 credential, and it is freely available only upon

request. Bob collects Alice’s C1 and discloses his C3 to Alice. Alice discloses her C2

credential after she receives Bob’s C3 credential. Upon receiving Alice’s C2 credential,

Bob generates a TRT that contains attributes A1, A2, and A3, both issuer names and

public keys of the credentials, and the expiration date of the credential which will

expire the soonest. Then Bob grants Alice access to S and sends her the TRT.

Figure 2.2 shows the flow of the negotiation between Alice and Bob.

Trust negotiation can involve additional credentials and more rounds of negotia-

tion than this simple example illustrates. Using the TRT during a later session, a

client can resume the same level of trust with only one credential and one round of

negotiation. Figure 2.3 shows the flow of a negotiation between Alice and Bob with

more rounds of negotiation.

Based on the given Alice and Bob example, the TRT allows Alice to re-access

15

CHAPTER 2. TRUST PRESERVATION USING A TRT

���������	
�

����

�
��
�
��
�
��	

�

�
�

����
��
�����������
�����
�
���

�
����	��

�

����
��
����
����
�������

��������
�
���
	
��������
�

��������
�
���
	
��������
�

�����
��
�����������
������
�

��������
�
���
	
��������
�

����������
����
������������
����
��������������������������

Figure 2.2: The trust negotiation flow between Alice and Bob.

���������	
�

����

�
��
�
��
�
��	

�

�
�

����
��
����
����
�������

����������
����
������������
����
��������������������������

�������
��
��	��
�

�
��
�����������
�������������

��	

�����
�
���
	
���������������

Figure 2.3: The trust negotiation flow between Alice and Bob with multiple rounds

of negotiation.

16

2.2. TRUST RESUMPTION TOKEN

����������	�
���
�������
����
����

���������	�
��
�

���������	�������������������
�����

����	�����������

��
�������	

���
�������� 	��
�

�������������

���
�������� 	��
�

 ���������! 	������

"�������� 	��
�

#�������
�$�� 	��� ��
�%

&��
�������� 	��
�

�������������

'���������! 	�&(��)

*�������� 	��
�

+�������
�$�� 	�,�+*�%-

�����������������	���� !"#$%��

������
���	�#""&"'#$""""""

���....//0011����

(���
����)�
�	�#""$"'"*

���....//00

Figure 2.4: Alice’s TRT

service S and all other services with the same access control policy, or a subset of

the policy. The TRT illustrated in Figure 2.4 is a simplified version for demonstra-

tion purposes only. It does not include all the necessary fields in a typical X.509v3

certificate.

Figure 2.5 shows Alice using the TRT to resume the level of trust she established

previously with Bob. In this figure, Alice requests the same service S from Bob. Bob

replies to Alice with the access control policy for the service. As before, Bob’s access

control policy requires attributes A1. A2, and A3. Instead of sending credentials C1

17

CHAPTER 2. TRUST PRESERVATION USING A TRT

���������	
�

����

�
��
�
��
�
��	

�

�
�

����
��
�����������
�����
�
���

�
����	��

�

����
��
����
����
�������

��������
�
���
	
����������

����������
����
������������

Figure 2.5: Alice resumes the trust level using TRT.

and the access control policies for credential C2 to Bob, Alice replies with the TRT

that Bob previously issued to her. Upon receiving Alice’s TRT, Bob checks that the

TRT is valid, and then checks it against the access control policy before granting

Alice access to S.

Bob checks the validity of the TRT by verifying its signature, verifying that it has

not expired, and verifying that Alice owns it by challenging Alice for possession of

the private keys associated with the public keys contained in the TRT. Bob can also

verify that the source credentials used to obtain the attributes in the TRT have not

been revoked by checking the certificate revocation lists for the credentials using the

Issuer and Serial # fields contained in the token.

2.2.2 TRT usage in a federation

The potential for multiple servers to join in an alliance to share authentication

information introduces another opportunity to utilize a TRT. Alliance servers have

a preexisting trust relationship with the token’s issuer, similar to many single sign-

on paradigms like the Liberty Alliance Project [7] and Microsoft Passport [11]. In

contrast to the Liberty Alliance Project and Microsoft Passport, trust-negotiation-

enabled single sign-on is attribute-based.

For example, if a group of trusted servers adopt a common set of roles, then a

18

2.2. TRUST RESUMPTION TOKEN

server could issue a TRT to designate that the client satisfies a particular role, and

other servers could accept the TRT for rapid authentication to the same role in their

local domain. Another approach is for the servers to accept a common set of attributes

and map clients to local roles based on those attributes. An approach that combines

both attributes and roles in the TRT is also possible.

19

CHAPTER 2. TRUST PRESERVATION USING A TRT

20

Chapter 3 — Trust Preservation using Kerberos

and KeyNote

A fundamental task for a system that provides protected services and resources is

to determine the trustworthiness of clients that access the system. Traditional ap-

proaches to establishing trust assume that the interacting parties are already familiar

with each other. Under this assumption, there are essentially two approaches. The

first approach is the identity-based approach, which identifies whether a client is in-

deed who it claims to be. Kerberos is an example of a system based on this approach.

The second approach is the capability-based approach, which determines if a client

has the capability (authority) to access the services or resources it is requesting.

KeyNote is an example of a system based on this approach.

Traditional approaches to trust establishment are not suitable for establishing

trust between complete strangers. This chapter describes how existing systems can

leverage trust negotiation to establish trust with complete strangers, and how trust

negotiation systems, like TrustBuilder, can leverage existing systems to preserve trust.

3.1 Kerberos integration

Kerberos is a distributed identity-based authentication system developed at MIT.

Figure 3.1 illustrates the system architecture. This section presents a high-level design

of integrating Kerberos with TrustBuilder for preserving trust across multiple sessions

and describes how this integration can open Kerberos services to strangers with qual-

ified attributes. This integration of TrustBuilder with Kerberos allows strangers to

obtain a limited form of trust preservation, which makes it possible for these currently

authenticated strangers to reestablish trust during subsequent sessions and to request

other services within a realm more efficiently.

21

CHAPTER 3. TRUST PRESERVATION USING KERBEROS AND KEYNOTE

����

�����

	�
���
��

����������

�����
���
�
����������

����
��

�����

������
���
���

��

 ��	�
�
��
��

���

!��������
�������
�"����������

#��$�������������������

%��	��������������

�����������	
��������

&��$���
������

'����

Figure 3.1: The Kerberos distributed authentication system architecture.

Kerberos was originally designed for closed systems; the client must have a pre-

existing relationship with the Kerberos Authentication Server. Typically, Kerberos

users need to establish and obtain their Kerberos username and password prior to

accessing any services that are protected behind the Kerberos system. In Kerberos,

a ticket is required for a user to access a service. Kerberos manages tickets with a

key distribution center (KDC), which consists of an authentication server (AS) and

a ticket-granting server (TGS). After a client is authenticated to the AS with its

Kerberos username and password, the AS issues a ticket-granting ticket (TGT) to

the client. Later, the client can use the TGT to request access to different services

through the TGS. Authentication to the AS is preserved within the TGT. As such,

an authenticated client does not have to re-authenticate to the AS in order to access

other services. Instead, clients can request other services by requesting a service

granting ticket from the TGS, as long as their TGT is still valid and has not expired.

22

3.1. KERBEROS INTEGRATION

���������	
���
��	����������
�

��������
������
����
��	

���

���
������
�

�
��

�
	�

�
���

�
�

�����	���	�
�	���

����

��	���	�
�	����������

��
��	 !���	��"

������

#���	��

���������	
���
����

��
��	���	��	��������	�

$���

%������
�
��!�

&��������	
���
!�

����	�������

�	���"��

Figure 3.2: A simple design for integrating TrustBuilder with Kerberos.

This two-level design eliminates the need for authenticated clients to reenter their

Kerberos password for every requested service [9].

The process of establishing and obtaining a Kerberos user name and password is

typically based on identity. As it has been stated previously, this process is not prac-

tical in an open system where users have no pre-existing relationship. Kerberos can

be extended to support authentication of strangers by integrating trust negotiation

into the initial authentication step between a Kerberos client and the AS, as shown

in Figure 3.2.

One approach to integrating Kerberos and TrustBuilder is to embed TrustBuilder

in the AS module. Hereafter, we will refer to the AS module extended with Trust-

Builder as a trust-negotiation-enabled AS (TNAS). This enhanced AS permits a

stranger to negotiate a service through a negotiation process similar to what was

described in Chapter 1. Upon a successful negotiation, TNAS maps a user’s submit-

23

CHAPTER 3. TRUST PRESERVATION USING KERBEROS AND KEYNOTE

ted attributes to a pseudo-id that corresponds to the requested role of the user. The

TNAS returns a TGT for the pseudo-id that entitles the user to access services in

the Kerberos realm for which the pseudo-id is authorized. This approach opens up

Kerberos services to users outside the Kerberos realm.

In this design, TrustBuilder is used to interface with all the strangers outside the

Kerberos realm. The TGT obtained through TrustBuilder preserves the trust that is

established during the initial trust negotiation between the user and the TNAS. Since

the TGT is reusable until it expires, the authenticated strangers can use the TGT to

request other services within the Kerberos realm that the pseudo-id is authorized to

access.

3.2 KeyNote integration

KeyNote is a capability-based trust management system designed to assist ap-

plications in authorizing user’s requests. Figure 3.3 illustrates how KeyNote can be

used to answer the following question: should the requested action by this subject

be permitted (or authorized) for a given policy and a set of credentials? The task of

authenticating the subject is left to the application.

����������	
��
��

�������
���

�
�	��

�������
�
�
�	�
���
������
���

��

�����
�����
�������

�������	��
���� �

������

���������

�������	
�

Figure 3.3: Applications use KeyNote to determine whether a client is authorized for

a requested service.

24

3.2. KEYNOTE INTEGRATION

KeyNote is a general-purpose, distributed trust management system that is de-

signed for access control policies to be distributed over a network or otherwise decen-

tralized [1–3]. It uses a unified format and a highly expressive language to describe its

access control policies and credentials. Figure 3.4 is an example taken from [1], that

illustrates how KeyNote access control policies and credentials can be used in a spend-

ing application. In this example, A is the root policy and C is an extended policy.

These policies typically remain local to the application. B and C are signed policies;

they are often referred to as credential assertions or simply credentials. These creden-

tials are issued and signed by a trusted principal, or in this case, the Chief Financial

Officer (CFO). According to the root policy, the CFO is a trusted principal that is

authorized to make expenditures under $10,000. As shown in Figure 3.4, KeyNote

credentials and policies share the same structure and syntax. KeyNote credentials

provide a vehicle for a trusted principal to delegate trust and authority to other prin-

cipals. The credentials are signed to ensure integrity so that they can be distributed

over an untrusted network.

KeyNote policies and credentials are collectively known as assertions. A KeyNote

credential is capability-based, i.e., it describes authorized actions, and can provide

specific delegation of trust to other principals. A credential also identifies the del-

egator. KeyNote assertions are necessary for a user to access a secure service. In

order for an application to make use of KeyNote, it needs to provide the user’s iden-

tity (ACTION AUTHORIZERS), the application’s identifier (app domain), action

description, a set of policies for the application, and a set of credential assertions

for KeyNote to determine if the user is in compliance with the access control poli-

cies. The example in Figure 3.5 depicts the process of a manager, with a public

key RSA:abc123, requesting a $99 expenditure from a spending application, and the

authorization query made by the spending application to KeyNote.

25

CHAPTER 3. TRUST PRESERVATION USING KERBEROS AND KEYNOTE

��������	��
���

��	
���	���

�����
���
��

����
	�����������	�����������

�����

����������������	�����
�
����
������
����������� !"!������������
������#���������
�����
		�
������
� �������	���������"$$$$%

���������

�&�
'���()*+,�
�����)��������'�����'�� !"!���-�����+.(/�����
�����+
�����
��'�0���1�
����22�������3�44�05�
		�
��6�"$$$$37

����������� !"!���	�����������

�&���
���
�������
������
�8
����

����	���8�
���
������������� ��������������"!9:�������
��������������	�����
�������5�
		�
��6�;<$$%��*��������
������
���5�
		�
�����!<$$�

��
����
8�����
�=�����������

#��� ��
���	
����%

�����>���
��?@�
��
�'�!
�����+
�����'�A�����
�������	�����������������������
	���
���������

�&�
'�����'�� !"!���������-�����+.(
�����)��������'�����'����"!9:��44����-�A���#�����
�������
��������������������0����'� �"!9��BB�-�����	��������
�-"
�������������������������' ��CD;��BB�-�����	��������
�-!
�������������������������'���999��BB�-�����	��������
�-9
�������������������������'���C;<��BB�-�����	��������
�-:
�������������������������'C;D����3���-�����	��������
�-<
�����+
�����
��'�0���1�
����22�������3��-��
�����������	�����
�������������������?E�F�050�
		�
�3�6�!<$$3
��������������������������?E�1G�H1A�I�A7
������������������������050�
		�
�3�6�;<$$3
��������������������������?E�����

#����)
��7
����������������������J7
������������
�'�����?�K�"'CDL;�"�

����

������
�������
	���8�������
������
���

������	����
�
���������
����		��
����50�
		�
�3�6�"$$$'

�����>���
��?@�
��
�'�!
���������

�&�
'���()*+,�
�����)��������'�!?
�0����'����"!9:�8�-�A���@�
�������������������������'� �"!9�8���-�G���	��������������	
���
�������������������������' ��CD;�8
�������������������������'���999�8
�������������������������'���C;<�8
�������������������������'C;D����3
�����+
�����
��'�0���1�
����22�������3�44
�����������������050�
		�
�3�6�"$$$37

����
�������	��

���� !"!������������	�
��
	���8� ���
�	��
��
��������
����
�=��
������50�
		�
�3�6�<$$%����	
�����
������������
���������
����������	�����"$$%

�����>���
��?@�
��
�'�!
�����+
�����'�A����
����
�������	�����=��#�	�����
���������
���
���������������
�������	�8�
����

������@����������	��������
%
��������������*���#����		�8��������������������
�M<$$8� �����
����������������/��M"$$�

��

�8����	
����%
���������

�&�
'�����'�� !"!�������-�.

������+.(
�����)��������'�����'����"!9:��BB��-�A���@�
��������������������'� �"!9��BB����-�A�������	��������������	
���
��������������������' ��CD;��BB
��������������������'���999��BB
��������������������'���C;<��BB
��������������������'C;D����
�����+
�����
��'�0���1�
����2�������3��-���������	�����
�������������������?E�F�050�
		�
�3�6�"$$3�?E�1G�H1A�I�A7
������������������������050�
		�
�3�6�<$$3�?E�����

#����)
��7
����������������������J7
������������
�'�����?�K�"'"DL"!9�

���������=��
���������������

��
�������
��+
��	������@�	������
F���N����8�����

#����)
��8�����

#��J%��I���
��
	������ ����� 8
�����
�������	�� ����� 8������
	����+
��	������@�	�����
����

#���01G�H1A�I�A3�����'

�����1�+A*(�1�IAK(�*O����2�����'C;D����
��������1�
�����2��������
������
		�
��2��:<�
������������
���1���
� ����2�������#�
�
����
�����1�+A*(�1�IAK(�*O����2�����'� �"!98���'���999�
��������1�
�����2��������
������
		�
��2��<<$�

A����
		
�����
���
������

#����)
��'

�����1�+A*(�1�IAK(�*O����2�����'����"!9:8���'���999�
��������1�
�����2��������
������
		�
��2��<<$$�
����
�����1�+A*(�1�IAK(�*O����2�����'���999�
��������1�
�����2��������
������
		�
��2��"<$�

K
��#�
8������
		
�����
���
�����N�����01G*�1A�I�A3'

�����1�+A*(�1�IAK(�*O����2�����'���C;<�
��������1�
�����2��������
������
		�
��2��<<$�
����
�����1�+A*(�1�IAK(�*O����2�����'���9998���'C;D����
��������1�
�����2��������
������
		�
��2��<<$$�

Figure 3.4: A spending application using KeyNote to determine a user’s spending

power.

26

3.2. KEYNOTE INTEGRATION

����������	
��
��

�������
���

�������
�	
����	����
�
������
�
�
����
��������
���
��
���	����
���� �!�"#$�
�
���	����
����
���	�

�%����
���

!�
���%�
�&��'

�������
(�)����	��
�%��*�

+�(,-.�+��,/.�-01���
2��� �!�"#$
���+��)��	
�
2�31��4
�����
�
�
��
�31����
3�������
�
���	����
����
���	�

���%�
�&��

���%�
�&��

�
�31��

Figure 3.5: A typical flow of interaction that illustrates an application making a query

to KeyNote based on a user’s request.

27

CHAPTER 3. TRUST PRESERVATION USING KERBEROS AND KEYNOTE

The following design is one way to integrate TrustBuilder with KeyNote. In this

design, TrustBuilder will act as proxy for each application to negotiate with strangers

given an attribute-based policy which contains the required attributes for accessing

each application. For example, suppose a jukebox application is serving music on

demand to any full-time student. David is a fulltime student that is a stranger to

the jukebox application. David negotiates with TrustBuilder for access to the music

server. Once David’s negotiation is successful, TrustBuilder delegates the capability

for accessing the service to David by issuing him a KeyNote credential assertion. This

credential assertion would look like the following:

KeyNote-Version: 2

Comment: This credential is issued to a stranger who is authenticated
by TrustBuilder, and approved to access the requested music

Authorizer: "RSA:TB-Key" \# From TrustBuilder

Licensees: "DSA:David-Key" \# The authenticated stranger

Conditions: (app_domain="music") \# requested song from the music server

Signature: "RSA-SHA1:186123" \# signed by TrustBuilder

By integrating TrustBuilder with KeyNote, strangers with qualified attributes can

be authenticated through trust negotiation. Then, TrustBuilder can issue a KeyNote

credential assertion to the authenticated user. With this credential assertion, a user

is authorized to access resources without repeating the negotiation process. The

integration of trust negotiation with KeyNote is the first working example of trust

negotiation integrated with an existing authorization system.

The implementation of trust preservation for this section is based on KeyNote

version 2 and TrustBuilder version 1. Binary and source files for KeyNote are freely

28

3.2. KEYNOTE INTEGRATION

��� ��
��� ��
��� ��

����������������	�
��
����������

�
������	���������
���������������
�������������	���
������	������������
����������

�
���	���������
�������
����������
�������������	���
���	���������
�����
����������

�
���	�������������
�����
�������������	���
���	�������������
�����
����������
	��������������
�����������
���������������
���
����������������
�������������
����
���	�������	�����������
������������	��������
�	�
��������������������������	���
���������
��
��������������������
�����

���������� !"���
����������������������������	�����������
�������������
��������������������
��������������������
�����������

��� �#$��	���������
��
���������

�
���������
�����������������
��������������	��
����	�
�����	�
���������
�	�
����������
���	�����������������������
�����������	���������������������������������������

��� �%""&���	
���� !"���
�������������	
��'
��()��������
���
���	��������������
��������
������������
������
����������
��	
��'
��()���
���	��������������
���
������������
������
�������������	
����#��������
���
�������
�����������
����������
��	
����#���
�������
������

���*��&���	
���� !"���
����������
��	
�����������������	���
�����������
����������
��
����������	
�����������������	���
������������������������

���%����	� !"���
��
������������
������	����
������������
�������
����������
�����������������
������	����
����������
+��
��������*,-./0,�1�����

Figure 3.6: The KeyNote API.

available from the KeyNote Web Page at http://www.cis.upenn.edu/˜keynote/. At

the time of this writing, all the available versions and implementations of KeyNote are

written in the C programming language. In contrast to KeyNote, TrustBuilder is writ-

ten in Java. In order for TrustBuilder to interact with KeyNote, a KeyNote-wrapper

class was written using the Java Native Interface (JNI) based on the KeyNote Appli-

cation Programming Interface (API). The KeyNote API can be located in Keynote.h,

one of the header files. Figure 3.6 shows a subset of the API that has been imple-

mented as the KeyNote-wrapper class. This KeyNote-wrapper class allows Trust-

Builder to interface with KeyNote programmatically. This API provides a way for

TrustBuilder to generate a credential assertion for a user. The API also permits

TrustBuilder to query KeyNote to determine whether a user is compliant with the

given policy provided by the application.

29

CHAPTER 3. TRUST PRESERVATION USING KERBEROS AND KEYNOTE

Current literature does not address how a particular application user can automat-

ically acquire a KeyNote assertion for accessing services provided by the application.

The integration of TrustBuilder with KeyNote allows the issuing of assertions to

strangers on demand. This chapter discussed two different approaches to integrate

existing systems with TrustBuilder. This chapter also covered the design of integrat-

ing TrustBuilder with Kerberos and KeyNote, showed how a complete stranger can

authenticate to a Kerberos system to acquire a Kerberos ticket, and how a stranger

can acquire a KeyNote assertion on demand.

30

Chapter 4 — Performance Analysis

This chapter contains a performance analysis of an extension to TrustBuilder that

supports the trust resumption token described in Chapter 2. This extension enables

TrustBuilder to preserve trust once it is established via trust negotiation. The ex-

tended version of TrustBuilder is referred to as TB-TRT in the remainder of this

chapter. TB-TRT includes the following extensions to TrustBuilder:

• Server issues a resumption token to clients after a successful negotiation

• Client stores the resumption token on local machine

• Client uses corresponding resumption token to request a resource from a server

• Server allows a client to access resources with a valid resumption token

The performance analysis in this chapter compares TB-TRT to the use of Trust-

Builder without a TRT, known as TB-noTRT. The results will demonstrate circum-

stances where a server can increase its throughput using a TRT, resulting in a reduc-

tion in the response time experienced by clients.

The following sections in this chapter are organized as follows. Section 4.1 de-

scribes the characteristics of the test platform and the test suites used to measure the

throughput and response time of the TB-TRT and TB-noTRT systems. Section 4.2

presents the performance analysis results of the system throughput and response time

of the TB-TRT and TB-noTRT systems.

4.1 Experimental framework

The performance analysis was conducted using a typical client/server architecture.

The client and the server were Intel-based Pentium 4 (P4) machines connected directly

31

CHAPTER 4. PERFORMANCE ANALYSIS

Client Server

CPU P4 1.4GHz P4 1.7GHz

Memory 512 MB 512 MB

Network 100-Mbps 100-Mbps

Table 4.1: Client and server specifications

to a 100-Mbps Ethernet segment. The characteristics of these test platforms in terms

of their computation power, physical memory and network speed are summarized in

Table 4.1.

JMeter is a load and performance testing application available through the Apache

Jakarta Project (see http://jakarta.apache.org/jmeter/index.html). JMeter uses a

full multi-threading framework to simulate multi-user requests. JMeter was installed

and run on the client to assist in analyzing the performance of TrustBuilder under

various load conditions.

Using JMeter, five test groups were defined consisting of a group of users simul-

taneously requesting a protected resource from the server. The number of users in a

group range from five to twenty-five, in increments of five. Each user in a test group

repeats the same request to the server one hundred times with a one second delay

between each request. Figure 4.1 depicts how these test groups interact with the

server.

Three variations of TrustBuilder were evaluated on the hardware configuration

described earlier for each of the five test groups. The first variation of TrustBuilder

was TB-noTRT, which does not support any trust preservation. Users are always

treated as strangers, and a trust negotiation process is repeated each time a user

requests a protected resource. This occurs even when the same user is repeatedly

32

4.1. EXPERIMENTAL FRAMEWORK

��������	
��

�����

������

�������

�����

������

�����
�

��������	
��

�����

������

�������

��������	
��

�����

������

�����
�

��������	
��

������

�����

������

������

��������	
�

������

Figure 4.1: Various sized groups of users simultaneously negotiating trust for a pro-

tected resource.

33

CHAPTER 4. PERFORMANCE ANALYSIS

requesting the same resource.

The second variation of TrustBuilder was TB-TRT, with fully functional TRT

processing running at the server to issue trust resumption tokens. The client machine

was equipped with a semi-functional TRT capability that accepts a TRT issued from

the server and stores it at the client. However, the client does not submit a TRT

on subsequent visits to the server. The purpose for this variation is to measure the

overhead of generating the trust resumption tokens. Hereafter, this system is referred

to as TB-TRT-issue.

The third variation of TrustBuilder was also TB-TRT, with fully functional TRT

processing at both the client and server. A resumption token is pre-installed on the

client to permit the client to submit the TRT in every request to the server. The

purpose for this variation is to measure the throughput and response time when

clients return to a server and submit a TRT. Hereafter, this system is referred to as

TB-TRT-reuse.

All the experiments utilized a pharmacy trust negotiation scenario that involved

a three-round trust negotiation. The pharmacy scenario is illustrated in Figure 4.2.

In this scenario, the pharmacy (client) places a drug order from a pharmaceutical

company (server). The drug order is a sensitive resource, which the pharmaceutical

company only releases to parties with a valid pharmacy credential. The client pos-

sesses a valid pharmacy credential but will not disclose it without receiving a valid

pharmaceutical credential from the server. The server is willing to freely release its

pharmaceutical credential as proof to the pharmacy. Once received, the credential

is validated, which allows the client to release its sensitive credential. The server

verifies the received pharmacy credential which then fulfills the policy for the initial

drug order.

34

4.1. EXPERIMENTAL FRAMEWORK

�����

������	
�������
��
��

�������	�����������	
��
������
������������������
��

��������
������������������
��
����	
��
������
����������	�
���

�����������������������
��

�������������	�
���
����������������
��

���������������������
��

��
��� ������

���	�
�����	�������

 ��	����
!��"�
�
����"����
�����
������	��

���
�����

�������
���
�����
������	��

�������
���
�����

��	�
���������������
#�����	��

Figure 4.2: A pharmacy scenario involving a three-round trust negotiation process.

35

CHAPTER 4. PERFORMANCE ANALYSIS

4.2 Results: throughput and response time

The pharmacy scenario described above was repeated one hundred times by each

user in each of the five test groups, for the three variations of TrustBuilder (TB-

noTRT, TB-TRT-issue, TB-TRT-reuse).

The throughput of the server for each group was recorded. Throughput is defined

as the number of requests fulfilled by the server per minute. Based on the collected

data, the maximum throughput for a server running TB-noTRT is 107 requests per

minute. The maximum throughput for a server running TB-TRT-issue is 99 requests

per minute. The maximum throughput for a server running TB-TRT-reuse is approx-

imately 180 requests per minute. These results are shown in Figure 4.3.

The results indicate that the overhead of generating a resumption token to clients

upon a successful negotiation is modest compared to the increased throughput when

using the trust resumption token to resume trust during a later session with the same

server. This has the potential for a significant performance improvement at the server

when clients make repeat visits.

The mean execution (response) time for each client is the time from when a request

for a protected resource is issued by a client to the time that the requested resource

is received from the server.

The mean response time for TB-TRT-issue is about one percent more than the

TB-noTRT. The mean response time for TB-TRT-reuse is about fifty percent less

than TB-noTRT. These results are shown in Figure 4.4.

These performance results show the potential for a server to increase its through-

put and decrease its response time using a TRT when clients make repeat visits. With

a TRT, a client can clearly re-establish trust with a server more efficiently compared

to renegotiating trust from scratch.

An interesting question to consider from the results presented thus far is what

36

4.2. RESULTS: THROUGHPUT AND RESPONSE TIME

Throughput

0

20

40

60

80

100

120

140

160

180

200

5 10 15 20 25

Number of simultaneous users

N
u

m
b

er
 o

f
re

q
u

es
ts

 p
er

 m
in

u
te

TB-noTRT

TB-TRT-issue

TB-TRT-reuse

Figure 4.3: Server throughput during trust negotiations involving a TRT.

Mean Response Time

0

2

4

6

8

10

12

14

16

5 10 15 20 25
Number of simultaneous users

T
im

e
(s

ec
o

n
d

)

TB-noTRT

TB-TRT-issue

TB-TRT-reuse

Figure 4.4: Mean response time for trust negotiations involving a TRT.

37

CHAPTER 4. PERFORMANCE ANALYSIS

percentage of requests to a server need to be from repeat customers in order for the

TRT to produce an overall savings. To answer this question, four use cases were

constructed based on the earlier measurements to predict the performance of the

system under various loads of repeat customers. The use cases assume that a server

provides a number of protected resources, and the number of users ranges from 5 to

25. Some percentage of the users request a resource that requires the same level of

trust that was negotiated during an earlier visit. Other users make initial requests

that require trust be negotiated from scratch.

The first use case (TRT 0%) assumes that all users are first-time visitors. In this

case, the server always performs the full traditional negotiation process and generates

a new resumption token. Although a resumption token was generated and issued by

the server during each request received by the server, none of the tokens were ever

used in later requests. Thus, the resources that were used to generate the token were

completely wasted.

The second use case (TRT 25%) assumes that 75% of the received requests are

first-time requests from a user. The other 25% of the requests are repeat visits that

require the same level of trust. The server performs a traditional negotiation process

on 75% of the received requests and generates a new resumption token. For the other

25% of the requests, the server is able to provide the requested resource with the TRT

the user submits.

The third use case (TRT 50%) assumes that half of the received requests are first-

time requests from a user. The other half of the requests are repeat visits that require

the same level of trust. The server performs a traditional negotiation process on half

of the received requests and generates a new resumption token. For the other half of

the requests, the server is able to provide the requested resource with the TRT the

user submits.

38

4.2. RESULTS: THROUGHPUT AND RESPONSE TIME

The fourth use case (TRT 100%) assumes all the users are repeat customers that

require the same level of trust originally negotiated. In this use case, the server only

needs to perform the traditional negotiation process on users’ first request. There-

after, the server can provide the requested resource with the TRT the user submits.

Figure 4.5 compares these four use cases with TB-noTRT, where a negotiation is

always performed regardless of the request pattern from its users. The comparison

shows the cumulative cost in seconds for various test configurations involving 5, 15,

or 25 users repeating a request from 1–5 times to a server. The cost is an estimate

based on the average response time shown in Figure 4.4. The results indicate that

the overhead of handling the TRT can be recouped when approximately 25% of the

requests to a server are from repeat customers. The throughput and response time

improve up to approximately 33% as the percentage of repeat customers grows to

100%.

39

CHAPTER 4. PERFORMANCE ANALYSIS

A: 5 users B: 15 users C: 25 users

5 users -
Cumulative cost of a repeated request

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

1 2 3 4 5

Number of requests per user

T
im

e
(s

ec
)

TB-noTRT

TRT 0%

TRT 25%

TRT 50%

TRT 100%

15 users -
Cumulative cost of a repeated request

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

1 2 3 4 5

Number of requests per user

T
im

e
(s

ec
)

TB-noTRT

TRT 0%

TRT 25%

TRT 50%

TRT 100%

25 users -
Cumulative cost of a repeated request

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

1 2 3 4 5

Number of requests per user

T
im

e
(s

ec
)

TB-noTRT

TRT 0%

TRT 25%

TRT 50%

TRT 100%

Figure 4.5: An estimate of the cumulative cost of a trust negotiation while varying the

number of users, number of requests per user, and the percentage of repeat customers.

40

Chapter 5 — Related Work

This chapter describes work related to trust preservation.

5.1 Cookies

HTTP is a stateless protocol where each request is treated as a brand new request

with no correlation to any prior request made by the same user. Cookies are a mech-

anism to preserve state between HTTP requests and responses. Typically, cookies

are small files approximately 1KB in size [10].

A web server generates a cookie containing client state information and delivers

it to a browser. If the browser is configured to accept cookies, the browser will store

the cookie on the client’s computer. Depending on the expiration date, a cookie

remains on the client’s hard drive after the browser is terminated. This processing is

transparent to the user.

When a client reconnects to a server that previously issued a cookie to the client,

the cookie is returned to the server as part of the HTTP request header, assuming the

cookie has not expired. The server state is restored from the information contained

in the cookie. Generally, the state information included in cookies are single sign-on

information, user preferences, or the contents of a shopping cart [12].

Similar to cookies, the trust resumption tokens presented in this thesis are authen-

ticators generated by a server and stored at the client. Trust resumption tokens can

be implemented using cookies. However, this would limit the use of trust resumption

tokens to the HTTP protocol. There are risks to storing authentication information

on client computers. The trust resumption token presented in this thesis is designed

to prevent well-known attacks against cookies [5], as discussed in Chapter 2.

41

CHAPTER 5. RELATED WORK

5.2 Kerberos tickets

Kerberos tickets preserve authentication information. In Kerberos, the Authen-

tication Server (AS) generates a ticket that preserves the client’s authentication by

creating a session key that is shared between the client and the TGS. The ticket is not

attribute-based but provides evidence that the user has knowledge of the password

or possesses the private key of the certificate that was used during authentication.

With password-based authentication and some certificate-based authentication,

Kerberos requires a pre-existing relationship between a client and the AS before the

client can access any services. In these cases, the Kerberos system administrator

creates and manages a list of user accounts. In contrast, trust negotiation is used to

establish trust between entities that have no prior relationship.

The design of trust resumption tokens presented in Chapter 2 has similarities to

the Kerberos method of preserving the client’s authentication. A TRT maintains the

level of trust by creating a token containing the client’s authentication information.

The client presents this token to the server in order to re-authenticate to the same level

of trust that was previously established. In Kerberos, the session key must be carefully

protected by both the client and the TGT. In a system using the TRT, the private

keys of the credentials whose attributes appear in the TRT must be protected, even

though the TRT can be freely disclosed as long as the user is comfortable disclosing

the attributes it contains. Mere possession of the credential is not sufficient to gain

access to the server—the client must prove ownership of the credential. Unlike a

Kerberos session key, these private keys are not shared with the other participating

party. Section 2.2.1 discussed how this was done in more detail.

5.3 Trust negotiation in session level protocols

Transport Layer Security (TLS) is a session-layer protocol that establishes a secure

connection between a client and a server. Authentication in TLS requires computa-

42

5.3. TRUST NEGOTIATION IN SESSION LEVEL PROTOCOLS

tionally expensive public-key operations [13]. In order to reduce the cost of a client

and server re-authenticating each other, TLS supports session resumption. If a TLS

server is configured to allow session resumption, the client is presented with a session

identifier during the initial TLS handshake. When the session completes, the client

and server store the session identifier and some cryptographic parameters relevant

to the session. When the client returns to the server, the client presents the session

identifier. If the server still remembers the session, the client and server use the

cryptographic parameters from the previous session to establish new keying material

to secure the new session. This avoids the costly public-key operations that were

necessary to secure the first session.

Previous research in trust negotiation integrates trust negotiation into Transport

Layer Security (TLS), but does not consider how the trust established during a session

can be maintained [6]. Trust negotiation can be costly in terms of computation and

number of number of rounds of communication. A recently completed thesis discusses

how authentication information can be cached in the session-layer protocol to improve

efficiency over the course of a session [8]. The thesis also discusses some issues related

to caching trust during a session, demonstrates the necessity of maintaining the trust

that is established during a session, and describes how trust can be cached in TLS [8].

Unlike the multi-session trust maintenance methods proposed in this thesis, TLS

session resumption requires the server to maintain session state. Traditional trust ne-

gotiation may require a large number of public-key operations compared to traditional

TLS authentication. When trust negotiation requires a large number of public-key

operations, the use of a TRT during subsequent visits reduces the number of required

public-key operations to a single credential validation and ownership verification.

43

CHAPTER 5. RELATED WORK

5.4 Single sign-on

Single sign-on (SSO) is an approach whereby a user can authenticate once to access

a protected resource and be granted access to other protected resources without the

need to repeatedly enter a password. SSO automates user authentication processes

by managing user passwords. The goal of SSO is to reduce human error and increase

usability and efficiency.

Similar to SSO, trust negotiation is automated to reduce human error and increase

usability. In contrast to SSO, which enables a principal to authenticate once and

repeatedly access authorized resources, the current design of TrustBuilder does not

provide any way to preserve a trust relationship beyond the current session except

through renegotiation. In other words, trust is not persistent in the current model.

Preserving the trust established across multiple sessions is similar to many single

sign-on paradigms like the Liberty Alliance Project [7] and Microsoft Passport [11].

In contrast to the Liberty Alliance Project and Microsoft Passport, trust negotiation

enabled single sign-on is attribute-based. The alliance usage model for TRT presented

in Section 2.2.2 permits the same authentication token to satisfy different access

control policies across several servers that agree on a common set of attributes.

44

Chapter 6 — Conclusion and Future Work

In this thesis, two approaches to preserving trust across multiple sessions in open

systems were presented. Previous work in trust negotiation was based on a simple

model of per-request access control, and did not address the issue of preserving trust

across sessions.

The first approach is to create a trust resumption token, which captures the details

of a trust negotiation sufficient for trust to be efficiently resumed during a later session.

The second is the integration of existing systems, namely KeyNote and Kerberos,

with trust negotiation to leverage their authenticator, the KeyNote assertions and the

Kerberos ticketing service, for trust preservation. This integration experience provides

a roadmap to make existing systems (KeyNote and Kerberos services) available to

strangers outside their security domain (e.g., outside a Kerberos realm).

The contribution of this thesis is the application of ideas similar to the concept of

single-sign-on in identity-based systems, but applied to the problem of authentication

in open systems using trust negotiation.

Support for a trust resumption token was implemented in TrustBuilder, a proto-

type system for trust negotiation. The performance analysis in Chapter 5 demon-

strates the potential of these approaches to improve the performance of trust nego-

tiation compared to a system that does not preserve trust when there is a a mod-

est amount of repeated access. Trust persistence promises to make authenticating

strangers in open systems more efficient. Trust persistence also allows strangers to

make friends—the relationship of trust persists because the parties involved are no

longer unknown to each other. Having authenticated each other once, they do not

need to perform the same expensive operations to resume the prior level of authenti-

45

CHAPTER 6. CONCLUSION AND FUTURE WORK

cation.

The initial implementation of trust preservation in TrustBuilder stores attributes

in the TRT. An interesting alternative to explore in the future is to store roles in

the TRT. Both approaches offer advantages to applications. Storing attributes in the

TRT reduces the risk of a client retaining invalid permission to access a resource when

there is a change in the policy that maps attributes to a role. When policies are less

likely change, storing a role in the TRT eliminates the need to repeatedly derive the

role from the attributes when resources are accessed that require that role.

This thesis focused on enabling a client to resume trust with a server. If a client

were to present a trust resumption token to a server, the server could easily regain

trust established with the client. This approach would require a server to store a

TRT for every client that accesses it. For high-volume servers, this could be a burden.

Identifying techniques to reduce the burden on a server storing a TRT may be worth

further exploration.

In a peer-to-peer scenario, the client-server role is often interchangeable between

negotiation parties. The relationships or transactions between these parties are of-

ten transient; however, when the relationships are not transient, one might want to

preserve the trust established via the negotiation process. Issues pertaining to trust

preservation in a peer-to-peer scenario are also a topic for future research.

This thesis presents a high-level design of integrating TrustBuilder with Kerberos.

An implementation of these ideas in Kerberos will extend its authentication facilities

to strangers outside a Kerberos realm. In addition, the alliance usage model for TRT

presented in Section 2.2.2 raises new opportunities for future work.

46

Bibliography

[1] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The KeyNote Trust

Management System Version 2. In Internet Draft RFC 2704, 1999.

[2] M. Blaze, J. Feigenbaum, and A. D. Keromytis. KeyNote: Trust Management

for Public-Key Infrastructures. In Security Protocols Workshop, Cambridge, UK,

1998.

[3] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management.

In Proceedings of the 1996 IEEE Symposium on Security and Privacy, pages

164–173, Oakland, CA, May 1996. IEEE Computer Society Press.

[4] Piero Bonatti and Pierangela Samarati. Regulating service access and informa-

tion release on the web. In Proceedings of the 7th ACM Conference on Computer

and Communications Security (CCS-7), pages 134–143. ACM Press, November

2000.

[5] Kevin Fu, Emil Sit, Kendra Smith, and Nick Feamster. Dos and dont’s of client

authentication on the web. In 10th USENIX Security Symposium, August 2000.

[6] Adam Hess, Jared Jacobson, Hyrum Mills, Ryan Wamsley, Kent E. Seamons,

and Bryan Smith. Advanced client/server authentication in TLS. In Network

and Distributed System Security Symposium, pages 203–214, San Diego, CA,

February 2002.

[7] http://www.projectliberty.org. Liberty Alliance Project, December 2002.

[8] Jared Jacobson. Trust negotiation in session-layer protocols. Master’s thesis,

Computer Science Department, Brigham Young University, July 2003.

47

BIBLIOGRAPHY

[9] John Kohl and Clifford Neuman. RFC 1510: The Kerberos network authenti-

cation service (V5). IETF RFC, Sep 1993. Available from http://www.ietf.org-

/rfc/rfc1510.txt.

[10] D. Kristol and L. Montulli. HTTP state management mechanism. IETF RFC

2965, October 2000.

[11] Microsoft. Microsoft .Net Passport. Microsoft Technical White Paper, Jan 2004.

Available from http://download.microsoft.com/download/a/f/4/af49b391-086e-

4aa2-a84b-ef6d916b2f08/passport reviewguide.doc.

[12] Netscape. Persistent Client State HTTP Cookies.

http://wp.netscape.com/newsref/std/cookie spec.html, 1999.

[13] Eric Rescorla. SSL and TLS: Designing and Building Secure Systems. Addison-

Wesley, 2001.

[14] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.

Role-based access control models. IEEE Computer, 29(2):38–47, February 1996.

[15] William H. Winsborough, Kent E. Seamons, and Vicki E. Jones. Automated trust

negotiation. In DARPA Information Survivability Conference and Exposition,

volume I, pages 88–102, Hilton Head, SC, January 2000. IEEE Press.

[16] Marianne Winslett, Ting Yu, Kent E. Seamons, Adam Hess, Jared Jacobson,

Ryan Jarvis, Bryan Smith, and Lina Yu. Negotiating trust on the web. IEEE

Internet Computing, 6(6):30–37, November/December 2002.

48

	Title Page
	Copyright Page
	Graduate Committee Approval
	Acceptance Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 - Introduction
	Chapter 2 - Trust Preservation using a TRT
	Chapter 3 - Trust Preservation using Kerberos and KeyNote
	Chapter 4 - Performance Analysis
	Chapter 5 - Related Work
	Chapter 6 - Conclusion and Future Work
	Bibliography

