Making scientific computations reproducible

Matthias Schwab, Martin Karrenbach, Jon Claerbout !

ABSTRACT

Commonly research involving scientific computations are reproducible in prin-
ciple, but not in practice. The published documents are merely the advertisement
of scholarship whereas the computer programs, input data, parameter values, etc.
embody the scholarship itself. Consequently authors are usually unable to repro-
duce their own work after a few months or years. At university laboratories such
as ours, junior students are delayed in their own creative research by attempting
to reproduce and leverage a former students research. A reader interface when
accompanied by a complete set of source files, overcomes these difficulties: In the
electronic version of such a document, a reader can reproduce and verify the doc-
ument’s results by invoking a set of makefile targets: the burn target removes the
result files (usually figures), build recomputes them, view displays the figures,
and clean removes any intermediate files, that were created when computing
the result files. A reader can study the interaction of the various source files
while recomputing the result files. An author of a research document, who uses
a GNU make file to maintain his project software, can easily adopt our reader in-
terface: The author needs to adhere to some naming conventions and to include
a small set of files (150 lines of code which we distribute on our World Wide Web
site). Since five years we have successfully used this reader interface in our daily
research work at our laboratory, in 12 theses, and in 3 textbooks.

INTRODUCTION

Review

In our laboratory (the Stanford Ezxploration Project or SEP) we noticed that after
a few months or years, researchers were usually unable to reproduce their own work

lemail: matt@sep.Stanford. EDU

Schwab 2 GNU make

without considerable agony. Furthermore in average two PhD students graduate
each year at SEP. After their graduation, new students who wanted to leverage their
work, often spent a considerable amount of time to merely reproduce their colleague’s
results. We believe that similar inefficiencies plague most research involving complex
scientific computations, such as image processing, operational research, or seismic
data processing. It is this lack of reproducibility that impedes those who seek unselfish
cooperation in research.

Motivated to overcome this impedance to cooperation our laboratory developed
the concept of a reproducible electronic document (red): We added three crucial com-
ponents to our computational repertoire: makefiles, naming conventions for figures,
and a small set of commands respectively make targets.

Makefiles are the standard method of maintaining software on UNIX computers.
A makefile contains the commands to build the different components of a software
package. However, a makefile is more powerful than a simple script of commands
since it has a notion of result files (targets) being up-to-date when they are younger
than their corresponding source files (dependencies) that they are derived from. Since
maintaining a reproducible research project essentially equals maintaining software,
we find the make utility crucial to solving our problem elegantly. Fortunately, fine
tutorial books about the make language (Stallman and McGrath, 1991; Oram and
Talbott, 1991) exist and students learn make easily even without such tutorial books.

The second component in making scientific computations reproducible is to declare
a name for each result file (which at SEP is invariably a figure) such as myresult.ps.
For each result file the stem of the result name, myresult, and a rule to build the
result file is listed in the application’s makefile.

The third step in making scientific computations reproducible is to define a small
set of standard commands that allow a reader to interact with the document without
knowing any of the underlying application specific commands or files. This article
discusses SEP’s design for such a reader interface.

In the past, SEP used the make dialect cake (Nichols and Cole, 1989), which
Somogyi specifically developed for document maintenance (Somogyi, 1984). We de-
cided to replace cake with GNU make, which is another make dialect. GNU make is
widely used as a freely available, platform independent software maintenance tool. It
is well documented (Stallman and McGrath, 1991) and supported by a very active
newsgroup, gnu.utils.bug. GNU make has its own internal variable substitution
mechanism. Its rules tend to be more serial than cake’s, which is partially due to the
lack of dependency features such as cando and exist (?).

Having learnt about Jon Claerbout’s reproducible research ideas, Buckheit and
Donoho(1996) at the Stanford Statistics Department developed a reproducible re-
search environment Wavelab. Wavelab is a library of Matlab routines for wavelet
research. In contrast to SEP’s reader interface, Wavelab is confined to Matlab and
does not define a set of universal reader commands. However, by operating entirely
within Matlab their reproducible research is portable to any computational environ-
ment that supports Matlab, such as PC, Mac, or UNIX computers.

Schwab 3 GNU make

Claim

We claim in this article that additionally to a complete set of application files,
a small set of standard commands is needed to give a reader access to an author’s
research. This small set of standard commands enables a reader to remove and re-
compute a document’s results without knowing the diverse, underlying computational
details.

SEP developed such a set of standard commands for a UNIX environment using
GNU make. Researchers who already use make to store their processing commands
can adopt SEP’s reader interface by adhering to certain file naming conventions and
by including a few additional rules, which SEP distributes freely at his World Wide
Website.

Preview

This article presents SEP’s reader interface for reproducible electronic documents.
The first section, Problem, describes the lack of reproducibility in scientific com-
putational research. The following section The Reader’s gain introduces the four
commands that constitute the interface, their usage, and benefit from a reader’s
point of view. The section The Author’s Effort outlines the naming conventions and
GNU make rules an author of a reproducible electronic document needs to supply.
Additionally, the section elaborates briefly on potential difficulties caused by differing
compute environments of the reader and author. The section Example illustrates the
reader interface and its implementation at a small but realistic example. The ex-
ample concerns a finite-difference approximation of the wave equation. This section
details SEP’s implementation of the four basic reader commands. Finally the sec-
tion Guidelines for shared rules introduces three design principles that we used
when implementing the standard reproducible electronic document red rules.

PROBLEM

The development of a common reader interface at SEP was motivated by a loss
of research and programming effort every time a graduate student left the group
after graduation. Such a student publishes his thesis which carefully outlines his
approach and illustrates its success with a series of figures. Unfortunately, he usually
leaves an electronic battlefield neatly stored within a directory tree: Various input
data sets, each preprocessed slightly differently, half a dozen versions of some crucial
subroutines, maybe a few makefiles with some compilation rules, if lucky some README
files with some cryptic notes, a bundle of precious result files mixed with a horde of
unimportant intermediate and temporary files. A junior student who wants to refine
or apply his colleague’s method faces the Sherlock-Holmes-like task to organize the
inherited files: He needs to identify valuable source or result files and remove their
insignificant brethren. He has to reconstruct the command sequence that produced a
specific result by combining particular input data, parameters, and program versions.
Such a reconstruction of the software of the former student is often a significant

Schwab 4 GNU make

effort during which the junior student is not creatively researching new ideas. We
believe the difficulties to regenerate a colleagues results trouble any field of scientific
computations, such as geophysics, image processing, or operation research.

A researcher who resumes a project after some considerable time faces a similar
problem. If he has not maintained a careful record, he probably has forgotten many
application specific details. Consequently he will have to laboriously exhume his
command sequences, parameter settings etc.

Another version of the same dilemma appears during the collaboration of two
researchers. When the first researcher hands a project to his colleague he often has
to explain tedious details on how to execute various programs to attain the desired
result and which files contain the significant parts of his contribution to the project.

The situation is even worse when results in a field of scientific computations are
published. Traditionally the audience is treated to a fundamental outline of the
processing sequence, but is spared the complex details of data preparation, parameter
values, source code, etc. While such a report informs the audience about the overall
strategy used to attack the problem, it does not help the reader to leverage the
work of the author: To check or refine the published work, a reader has to painfully
repeat the author’s implementation and testing sequence. If the originally used data
is not available, or if the description of the overall strategy misses essential details,
a reader may find it impossible to reproduce the given results at all. The value of
reproducibility probably does not lie in detecting the rare cases of fraud, but more
importantly in an enhanced efficiency of cooperation and technology transfer within
the scientific community.

THE READER’S GAIN

Traditional documents in fields involving scientific computations contain only the
advertisement of research, but not the research itself. The paper documents usually
comprise the description of the research and do not contain the complex details needed
to reproduce the published results. The files and directories containing these often
voluminous information are usually unorganized and cannot be exploited without
in-depth knowledge of the application files involved. The lack of reproducibility of
computational results hinders the cooperation and communication of progress within
research groups as well as the general scientific communities.

The missing link is a reader interface: a small set of defined commands which
allows a reader to interact with the document without knowing its details. At SEP
we implemented following set of commands, called reproducible electronic document
rules or red rules, using GNU make:

e make burn removes all result files mentioned in the local makefile’s result list.
The author needs to supply this result list. However, the rule implementing the
target burn is supplied by SEP’s red rules.

Schwab 5 GNU make

e make build recomputes all result files by exercising the local rules about how
each result file is built. The author needs to implement the rules for recomputing
the result files. Again the target build is part of SEP’s red rules.

e make view displays the result files to the reader. The rule implementing the
target build is supplied by SEP’s red rules.

e make clean removes all secondary files. In most cases the author does not have
to specify this rule but uses a default red rule.

These commands are based on the definitions of result, source, and secondary files?:

e Result files are all files that the author uses to document his findings. At SEP,
result files are usually figures in various graphic formats, such as postscript.

e Source files are the minimum set of files required to reproduce all the result
files. This can comprise C or FORTRAN source code, shell scripts, parameter
files, makefiles, or data input files.

e Secondary files are all intermediate® files which a reader creates when repro-
ducing the result files from the source files.

Ultimately, a reader using these commands can dissect the document to inspect
the result and source files. Furthermore, he can remove the result files and observe
their recomputation from its source files. Having analyzed the executed make rules of
result file’s recomputation, a reader can usually identify the parameter that he wants
to modify, the input data that he wants to exchange, or the source code that he wants
to inspect.

The reader interface targets burn, build, and view are paired with targets that
act on individual result files: For example make myresult.burn removes a result file
myresult, but leaves all other result files intact.

Degree of reproducibility

GNU makefiles of SEP documents typically define three result list variables
rather than a single one as implied in the paragraphs above. These three variables, any
of which the author may omit if empty, are RESULTSER, RESULTSCR, and RESULTSNR.
The endings ER, CR, and NR indicate to the reader the degree of reproducibility:

¢ ER: easily-reproducible describes result files which the reader can expect to
regenerate within less than ten minutes on a standard workstation.

2The files related to the author’s article (e.g. a TEX, device independent, or postscript format)
do not entirely fit into the file classification above. Since the article in its final display format (e.g.
postscript, or dvi) is often created from some source file (e.g. IATEXor nroff) they could be considered
result and source file pair. However, the transformation of the text document into various formats
is trivial: neither the author nor his reader have any scientific interest in it. Consequently we do
not consider the article related files as part of the reproducibility scheme.

3GNU make defines intermediate slightly differently. See the section Secondary files.

Schwab 6 GNU make

¢ NR: non-reproducible are all the result files which a reader cannot reproduce,
4

such as hand-drawn illustrations or scanned-in figures.

¢ CR: conditionally-reproducible indicates results which require proprietary
data, licensed software, or a lavish amount of time for recomputation. In
all cases, the author nevertheless supplies a complete set of source files and
rules to ensure that the results are reproducible. However, he accompanies
the conditionally-reproducible result file (e.g., myresult.ps) with a warning
file (myresult.warning) in which he states why he classified the result as
conditionally-reproducible. In industrial-scale geophysical research, many in-
teresting results fall into this category.

The standard make targets burn and build are complemented by targets burnER,
burnCR, burnNR, burnall and buildER, buildCR, buildNR, buildall. For ex-
ample burnNR burns all non-reproducible result files (which is probably a very bad
idea since they are non-reproducible). The target burn is defaulted to burnER to
restrict the standard removal of result files to easily reproducible ones. The target
build is defaulted to buildER to recompute all result files that make burn may have
removed.

The distinction between the three types of result files enables a reader to choose
his burning and rebuilding according to his computer environment’s special software
and his own time commitment.

Usage

When inspecting an electronic document, we usually burn all result files, clean the
document of potential secondary files, and rebuild the result files. Having isolated the
source files (after make burn; make clean), we then watch as the makefile accom-
plishes the reproduction of the document’s results (make build). Often we prefer to
execute make myresult.build to learn about the specific result file myresult.

A concrete test of a document’s reproducibility is a cycle of burning and rebuilding
its results. Research stocked in such a document can be interrupted for an indeter-
mined time to be later resumed by the author or a colleague. At SEP we often burn
and rebuild entire articles, sponsor reports, and books to ensure their validity and
portability. Since all authors collectively adhere to a single set of commands, a gen-
eral test suite can verify the reproducibility of all completed documents. We use such
a test suite of removal and recomputation to ensure the completeness of an author’s
document before publication. Additionally we benchmark new computer equipment
by comparing the time to complete such a test suite. These benchmarks are especially
valuable since they are based on a typical representation of our own work.

Furthermore, the ready-to-use makefiles of an electronic document invite a reader
to change source files and to observe the effects on the result files after burning and

*Non-reproducible figures are listed mostly for administrative purposes. It can be very useful to
find all result files of a specific document.

Schwab 7 GNU make

building them.® Beginning students often start their first project at SEP by exploring
a senior colleague’s results in this manner.

The reader interface for reproducible research is only one component of SEP’s cur-
rent computational research environment: A research document at SEP is written in
IATRX (Lamport, 1986). Using SEP’s own IATpXmacros, a push-button in each figure
caption invokes a graphic user interface (written in a script language called xtpanel
(Cole and Nichols, 1993)). The graphic user interface enables a reader to interactively
execute the burn, build, clean, and view commands for each individual figure.
SEP’s GNU make rules allow the author to easily extend the interactivity of a result
figure to additional, application-specific actions. Unfortunately these features are be-
yond the scope of this article. However we bundle our entire software and the theses
of our research group in CDROMs which we distribute.

THE AUTHOR’S EFFORT

Having specified what rules we want to supply to every reader of a reproducible
document (burn, build, clean and view), we discuss in this chapter what rules we
expect from an author of an application makefile.

A primitive implementation could require each author to explicitly write a burn,
build, clean, and view rule for each figure. But this would incur a massive over-
head of duplicated code which an author needs to supply with each makefile. Instead
our laboratory supplies the author a set of common include files, the red rules, that
implement a standard burn, build, clean, and view rule. The entire GNU make
code for SEP’s implementation comprises only 150 lines. The author complements the
red rules with the bare minimum of application—specific rule and variable definitions.
The author:

e lists all result files in one of the result lists RESULTSER, RESULTSCR, RESULTSNR,
e writes a rule to build each file mentioned in the result lists,
e states a clean rule which removes all secondary files (which he can default),

e includes all the shared files containing the default red rule and variable defini-
tions.

This list constitutes the author interface of SEP’s reproducible electronic document.

We base our reader interface on make since it excels in the efficient recomputation
of result files by a notion of a files dependencies and up-to-dateness. An author who
already uses GNU make to store his processing commands can adopt SEP’s reader
interface by merely adhering to certain file naming conventions.

®A change in the source code or the default parameter values is where we draw the line between
reproducibility and interactivity.

Schwab 8 GNU make

Electronic Publication

The tremendous increase in connectivity and information exchange (especially by
the Internet and through CDROMs) enable us to complement most computational
research publications by a corresponding complete set of application files. These
files comprise input data, source code for processing programs, and parameters, and
command scripts such as makefiles.

Even when such a reproducible electronic document and the accompanying red
rules ensure effortless reproduction of the result files within the author’s compute
environment, a reader at a remote site may encounter difficulties since his compute
environment may differ. However, there exist many de-facto standards within any
scientific community. Many computer science publications do not shy away from
accompanying there book with a CDROM containing software. And as more people
attempt to share software the quicker the industry will define standards.

We cannot give a general recipe on how an author should deliver software to his
audience: it will depend on the computer environment their community uses. Donoho
and Buckheit (1996) deliver Matlab scripts and expect their audience to have access
to Matlab. At SEP we publish our reproducible electronic documents on CDROMs:
on such a CDROM we supply besides the author’s application specific programs,
our own seismic data processing software, and publically available Freeware. We
expect our audience to have access to a UNIX system, including a C and FORTRAN
compiler, GNU make, and X11 Window System. In the future, we hope that the
World Wide Web and software such as Java tremendously ease the distribution and
sharing of software.

But even if the author and reader do not share the same environment, the reader
benefits from having access to the author’s application specific files. He will be able
to study the author’s implementation and if sufficiently interested, adopt the author’s
work for his own compute environment.

EXAMPLE

The document you are reading is in its electronic version accompanied by a subdi-
rectory called frog. The subdirectory frog contains a complete albeit small example
of a reproducible electronic document: a finite—difference approximation of the 2-
D surface waves caused by a frog hopping around a rectangular pond. The files
paper.latex and paper.ps hold two formats of the accompanying article. The set
of RATFORS files implement a 2-D wave propagation code. The Fig directory contains
the result file: a postscript figure of the pond after some wild hops by the frog.

The central makefile in the frog directory contains:

SEPINC = ../Rules
include ${SEPINC}/Doc.defs.top

SRATFORis a preprocessor for FORTRAN that provides control flow constructs essentially identical
to those in C. SEP distributes RATFOR on its World Wide Web server.

Schwab 9 GNU make

RESULTSER = frog dot

col = 0.,0.,0.-1.,1.,1.
${RESDIR}/frog.ps ${RESDIR}/frog.gif: frog.x

frog.x > junk.pgm

pgmtoppm ${col} junk.pgm > junk.ppm

ppmtogif junk.ppm > ${RESDIR}/frog.gif

pnmtops junk.pgm > ${RESDIR}/frog.ps
objs = copy.o adjnull.o rand0l.o wavecat.o \

pressure.o velocity.o viscosity.o wavesteps.o
frog.x: ${objs}

dot.build ${RESDIR}/dot.txt : dot.x
dot.x dummy > ${RESDIR}/dot.txt
dot.view: ${RESDIR}/dot.txt
cat ${RESDIR}/dot.txt
dot.burn:
rm ${RESDIR}/dot.txt

dot.x : ${objs}
clean: jclean

include ${SEPINC}/Doc.rules.red
include ${SEPINC}/Doc.rules.idoc
include ${SEPINC}/Prg.rules.std

What does the author of this particular reproducible document supply in his
makefile? The include directives at the top and bottom of the application makefile
pull-in the red rules, default variable and rule definitions that all application makefiles
share. These shared definitions allow the author to exclusively write the application-
specific rules and definitions seen above. At SEP additional include files contain
compilation rules which in this example are listed explicitly below the comment at
the center of the makefile.

The first half of the makefile are the rules needed to complement the included
reproducibility rules. The RESDIR variable points to a directory where the author
stores his result files. The RESDIR variable definition at the top of the makefile over-
writes the included default value ./../Fig. The next variable RESULTSER contains
the list of all easily reproducible result files of a document. By default the variable
RESULTSER is empty. In this case the only result figure is frogpond. The document
does not contain any conditional or non-reproducible result files.

The next rule contains the commands to build the postscript version of the result
file frogpond. Such a rule is application specific and cannot be supplied by included
default rules. The target name comprises the directory RESDIR in which the results
reside and a file suffix .ps which indicates the files postscript format. The rule
depends on an executable frogs.x which it executes during the computations of the
result.

Generally, default rules for compilation and linking of executables such as frogs.x
are supplied by shared include files. To ensure portability I included extremely simple
compilation and linking rules at the bottom of this makefile. However, the dependency
of the executable on its subroutine object files, as in the case of frogs.x, needs

Schwab 10 GNU make

to be defined by the author of the makefile, since it depends on the application’s
executables.

Finally, the target clean invokes the included red targets jclean and texclean.
The targets identify secondary files based on certain naming conventions of our lab-
oratory and remove them.

What does the reader interface offer a reader? In a standard UNIX environment, a
reader of the electronic version of the document can interact with it using the default
rules of the reader interface:

e make burn removes the result file frogpond.ps from the result directory Fig.

¢ make build recomputes the result file frogpond.ps by compiling the FOR-
TRAN executable frogs.x, executing it, and converting a bitmap output of
frogs.x to postscript using some publically available X11 routines.

e make view up-datesthe result file frogpond.ps and displays it using the postscript
viewer ghostview (if available on your system).

e make clean removes secondary files that were created during the execution of
the build command It actually invokes a the included default targets jclean
and texclean. The targets identify secondary files based on certain naming
conventions of our laboratory and remove them. (For example object files with
suffix .o or temporary files with the name stem junk).

A reader is able to execute these commands without understanding any application
specific details. Furthermore, he can start changing any of the available files and
observe the effect on the documents results.

Burn

Here is a template for the burn target which is included in every application
makefile as part of the red rules:

burn: burnER

burnER: ${addsuffix .burn, ${RESULTSER}}
burnCR: ${addsuffix .burn, ${RESULTSCR}}

% .burn:
this shell command removes the file designated by the stem ¢¢%’’

burn is what GNU make refers to as a phony target: the target does not relate
to an actual file called burn. burnER, burnCR and %.burn are other examples for
phony targets. The dependencies to burnER are generated by one of GNU make’s
built-in functions addsuffix. The dependency list contains all files the author listed
in his RESULTSER list. We use this trick to spawn off an up-date of a set of GNU make

Schwab 11 GNU make

targets. In turn each individual target myresult.burn is up-dated by executing a
command which removes the resultfile myresult.

At SEP result files are usually figures of various formats: often postscript and
SEP’s vplot format. An author at SEP does not actually list a particular file in the list
of result files, but the stem of a result file. Usually an entire family of files with various
suffixes relate to a single stem. Asin the example above: RESULTSER = frogpond may
refer to a file frogpond.ps, frogpond.v, or frogpond.v3. The burn command at
SEP searches for each stem an entire list of possible suffixes (RES_SUFFIXES = .v3
.v .ps) and removes the existing files:

%.burn : FORCE
${foreach sfx, ${RES_SUFFIXES} , \
if ${EXIST} ${RESDIR}/$*${sfx} ; then \
${RM} ${RESDIR}/$*${sfx} ; £i; \

This pattern rule is also invoked when a reader removes an individual result file
myresult.ps by executing make myresult.burn. The standard burn rule exclusively
removes the easily reproducible result files. A reader can remove the conditionally
reproducible result files by explicitely invoking make burnCR for example.

Build

The template for the build rule is almost identical to the burn rule:

build: buildER
buildER: ${addsuffix .build, ${RESULTSER}}
buildCR: ${addsuffix .build, ${RESULTSCR}}

%.build:
this shell command invokes the author’s rule for making the file
designated by the stem €¢%’’

A very general way to utilize the build rule, is to require an author of an applica-
tion file to submit a rule myresult.build for all files myresult listed in his makefile’s
result lists.

At SEP, every result file is a figure and is to exist in postscript format. The default
build rule is, therefore, defaulted to:

%.build: ${RESDIR}/%.ps

Since many (but not all) figures at SEP are actually generated as vplot figures’

it is convenient to supply an additional default rule which converts vplot files into
postscript format:

"Vplot is SEP’s prefered graphics format.

Schwab 12 GNU make

${RESDIR}/%.ps: ${RESDIR}/%.v
pstexpen ${RESDIR}/$*.v ${RESDIR}/$x*.ps

The author in the frog example does not use this default rule since his application
rule directly creates the postscript file®.

View

The view rule updates all result rules and displays them:

view : ${addsuffix .view, ${RESULTSALL}}

h.view: FORCE
this shell command displays the contents of the file designated
by the stem ‘%7’

RESULTSALL is a simple concatenation of RESULTSNR RESULTSCR RESULTSER.

At SEP the % .view rule checks for various result formats and chooses the first
one the makefile knows how to generate (the return value of a recursive gmake -n
call indicates which figure format can be built). Having found the figure’s format,
the makefile invokes a rule (view3, viewl, viewps) whose dependency updates the
figure and whose command body displays it using the appropiate viewer (SEP’s view
for vplot and GNU’s ghostview for postscript files):

%.view: FORCE
@\
if ${CANDO_V3} ; then
${MAKE} $*.view3 ;
elif ${CANDO_V} ; then
${MAKE} $*.viewl ;
elif ${CANDO_PS} ; then
${MAKE} $*.vieuwps ;
else \
echo "make $@: cannot make targets $x.} () = view3,viewl,viewps)" ; \
fi

PP

%.view3 : ${RESDIR}/%.v3 FORCE
view ${RESDIR}/$*.v3

%.viewl : ${RESDIR}/%.v FORCE
view ${RESDIR}/$*.v

%.viewps : ${RESDIR}/%.ps FORCE
ghostview ${RESDIR}/$x*.ps

In the frog example the make frogpond.view rule does not find a rule for com-
puting a .v3 or .v vplot version of frogpond. Consequently, it invokes the postscript

8We will say more about precedence of competing rule and variable definitions later: however we
ensured that the author’s definitions always prevail over possible default ones.

Schwab 13 GNU make

alternative frogpond.viewps of the command body. In return frogpond.viewps
executes ghostview to display the result file frogpond.ps. If your computer system
does not support the postscript viewer ghostview, then you will need to supplement
the %.viewps rule with your own display command.

Clean

The clean rule removes all secondary files. In general, the author of an application
makefile needs to supply his individual clean rule since it is not possible to foresee
what secondary files the author may choose to create when computing his result
files. At SEP we, however, supply an author with a default clean rule called jclean:
jclean identifies secondary files based on certain naming conventions. For example
any file with the stem junk or with the suffix .o is a secondary file and is removed
by the jclean rule:

jclean : klean.usual klean.fort ;

KLEANUSUAL := core a.out mon.out paper.log \
.0 x.x *. H x A x.M *x.ps x.v *x.v3 *.V *x.trace
klean.usual :
©@-${TOUCH} ${KLEANUSUAL} junk.quiet
@-${RM} ${KLEANUSUAL} junk.=*

FORT_FILES = $(patsubst %.f,%,$(wildcard *.f)) junk.quiet
klean.fort:
@\

for name in ${FORT_FILES} ; do \

if ${EXIST} $${namel}.r \

${TOUCH} $${name}.f ; \

${RM} $${name}.f ; \

fi ; \
done

If not applied carefully, the clean rule can remove valuable source or result files.
SEP’s jclean definition removes all files with suffix .v, .v3, .ps which indicate a
file containing a figure. Since all result files at SEP are figure files and have one of
these suffixes, the jclean command should never be invoked in a directory containing
SEP result files (the RESDIR directory). By not supplying a default clean rule, the
author of a makefile has to consciously choose his cleaning mechanism. He should
only use the supplied jclean rule after he studied which files it will remove.

In the accompanying frog example, make build creates several secondary files
when recomputing the result file frogpond.ps. The rule that generates the postscript
figure stores bitmap versions of it in junk.pgm and junk.ppm. Furthermore the
compilation rule for frog.x creates a set of object files and the executable itself.
All those files are removed by make clean, since they all adhere to certain naming
conventions: the jclean target removes all files with suffix .o (object files), the stem
junk (in this case temporary files), and files with suffix .x which at SEP indicates
an executable. The rule klean.fort removes the FORTRAN file with suffix .f if a

Schwab 14 GNU make

RATFORversion (suffix .r) of the file exists. In the near future, we hope to replace the
formulation of the clean rule based on naming conventions with a formulation based
on GNU make’s notion of secondary files.

Secondary targets

The importance of the clean rule is often underestimated. The reproducibility of
an electronic documents requires the source files. The result files illustrate the docu-
ment’s contents. But the secondary files are used exclusively in the process of gener-
ating the result files from the source files. Since secondary files can be prohibitively
large, and generally clutter the collection of document files, they are typically removed
soon after they perform their function of helping to create result files.

The reader uses the clean rule to identify the documents important files: the files
which contain the author’s intellectual achievement, his research. Additionally, the
clean rule enables the author to isolate the minimum set of files which he exchanges
with his reader, saving bandwidth in the exchange of the electronic document.

In general make treats secondary files in a manner unsatisfactory to us. In some
cases’, make considers a result file out-of-date when a secondary file that it depends
on does not exist. In these cases, it insist on the recomputation of the result file even
when all existing source files are older than the result file. Consequently a document
needs to retain secondary files to avoid redundant recomputations of the result files.

At our request, Richard Stallman added a special built-in target to GNU make,
.SECONDARY, which allows the author to choose the aforementioned behavior of GNU make
with respect to its missing secondary targets. Any intermediate target listed as a de-
pendency of .SECONDARY is assumed up-to-date when missing. Listing .SECONDARY
without any dependency ensures that every missing secondary file is presumed up-to-
date. At SEP, the special built-in target .SECONDARY is included in every application
makefile causing GNU make to assume any missing secondary files to be up-to-date.

GUIDELINES FOR SHARED RULES

The previous section illustrated the implementation of the fundamental red rules.
This section discusses three principles that guided our implementation of the burn,
build, view and clean rule.

e No code duplication: all common rule and variable definitions are located in
shared include files.

e The author rules: any definition by the author takes precedence over the
included default definitions.

e Rules are grouped by object: an author can selectively include default
definitions according to his needs.

9For GNU make this refers to non-pattern rules.

Schwab 15 GNU make

No code duplication

Instead of rewriting a burn, build, clean and view rule for each makefile, a set
of common files is included in each individual application makefile.

include ${SEPINC}/SEP.top

includes a file SEP.top. It finds the SEP.top file by expanding the variable SEPINC
which at SEP is defined as an environement variable pointing to the directory which
contains all shared include files. SEP.top itself is actually a file which includes a set
of other shared resource files. The code implementing the burn, build, clean and
view rules resides in such a shared resource file.

Having a single set of shared source files ensures consistency of the reader com-
mand interface accross different documents. Furthermore changes to the common
source files propagate immediately to all application makefiles. Consequently an au-
thor of an application makefiles supplies the bare minimum of definitions and rules:
definitions and rules that are specific to his application.

The author rules

When designing the SEP make rules it was our goal to offer the author of an re-
producible electronic document a maximum of helpful default rules and variable def-
initions without limiting him in his freedom. Consequently we arranged the included
files so that any variable or rule definition by the author of an application makefile
takes precedence over included competing default definitions. Unfortunately, we have
not been able to devise a simple and reliable mechanism to warn an author when he
accidently overwrites a default rule or variable.

0.0.1 Precedence of variable definitions

GNU make’s precedence rules for variable definitions are rather arcane. GNU make
expands some variables at the time a makefile is read and some at the time a certain
rule is executed. When first reading the makefile, GNU make expands all variables

e on the right-hand side of =’
e on the target-dependency line of a rule (top line of a rule)

e in the conditional expressions of define statements

Other variables, such as

b

e on the right-hand side of ‘=" (exclusively used in SEP’s include files)
e in the shell commands of a rule (indented)

e in the body of define statements

Schwab 16 GNU make

are expanded when GNU make executes a rule.

For example following makefile
foo = hello

${fool} :
@echo ‘‘target is $@°°;
Q@echo ‘‘foo is ${fool}’’;

foo = goodbye
leads to following result:

> make hello

target is hello

foo is goodbye

> make goodbye

gmake *** No rule to make target ‘goodbye’. Stop.

The bottom definition foo = goodbye affected the commands of the rule above
but not the target-dependency line. GNU make expanded the variable foo in the
target-dependency line when it first read the makefile from top to bottom. However it
expanded the foo variable in the command body after it had read the entire makefile,
had redefined foo according to the second definition, and was executing the rule.

Consequently, an author of an application makefile has to include all default vari-
able definitions at the top of his makefile, above his own, potentially competing
definitions. Thus his own variable definitions will be the bottom definitions used by
the makefile when executing a rule.

Additionally, all default rules have to be included at the bottom of the make-
file, so that the author’s variable definitions are read by the makefile before ex-
panding variables in the target-dependency line of these rules. For example in the
frog makefile above, the makefile redefines the included variable RESDIR = ../Fig
to RESDIR = ./Fig. This redefinition occurs below the included default variable def-
inition in Doc.defs.top, but above the included rules in Doc.rules.fig such as
${RESDIR}/%.ps : ${RESDIR}/Y%.v.

An exception are conditional variable definitions such as:

ifndef COLOR
COLOR = n
FAT = 1
FATMULT = 1.5
INVRAS = n
endif

Since conditional define statements are evaluated as the makefile is read, conditional
definitions have to be included at the bottom of an author’s application makefile.
Thus the author has a chance to redefine the variable COLOR before GNU make en-
counters the conditional ifndef test. Conditional variable definitions are convenient

Schwab 17 GNU make

when offering two or more default settings for a group of variables such as in the
case of a color or grey-scale plot in the example above. In the frog example all
default conditional definitions are included in Doc.defs.bottom below the author’s
definitions.

Since an author of an application is unaware of all variables defined in the included
default files, the GNU make manual suggests that an author should use only lower
case letters for local variable names in his application makefiles. Since the officially
included files use strictly upper case variable names, an author using lower case letters
cannot accidently overwrite any official definition. The author should reserve upper
case variables to reference or deliberately override included standard variables (e.g.
RESDIR in the frog example).

0.0.2 Precedence of rule definitions

Having ensured that an author can always overwrite any default variable, we also have
to guarantee that his rules take precedence over included default rules. When a target
corresponds to several explicit rules, only one rule can list a body of corresponding
shell commands: all other rules specify additional dependencies. If more then one
rule contains a body of shell commands GNU make fails when trying to up-date that
target. If a target corresponds to an explicit rules and an implicit rule, the explicit
rule takes precedence. If several implicit rules correspond to a target, the rule listed
first in the makefile takes precedence.

Except the basic reader targets burn, build, view, and clean, all included
default rules are implicit rules or targets without a command body. All default rules
are included at the bottom of the application makefile. An author’s explicit rules take
precedence over all included implicit rules. An author’s implicit rules take precedence
since they are listed in the makefile above the default rules included at the bottom.
However, if an author attempts to overwrite one of the very few included explicit
rules, burn, build, view and clean, the author’s and the default rules will collide
and up-dating the target will fail.

For example, the rule for a postscript figure created by a mathematica script (its
explicit or implicit version) overwrites the default rule for postscript figures:

author’s EXPLICIT rule overwrites his own included IMPLICIT rule (next)
as well as the IMPLICIT default rule (last rule)
${RESDIR}/math.ps : math.ma

< math.ma mathematica > ${RESDIR}/math.ps

author’s IMPLICIT rule overwrites the included IMPLICIT rule stated BELOW
${RESDIR}/%.ps : %.ma
< $*.ma mathematica > ${RESDIR}/$*.ps

#included default rule (is overwritten by both rules above)
${RESDIR}/%.ps: ${RESDIR}/%.v
pstexpen ${RESDIR}/%.v ${RESDIR}/%.ps

Schwab 18 GNU make

In summary, all default rules and variables of the red rules except burn, build,
view and clean can be overwritten by the author of a SEP makefile as long as he
enters all his makefile entries between the inclusion statements at the top and bottom.

include ${SEPINC}/SEP.top
Here is where the application specific definitions belong.

include ${SEPINC}/SEP.bottom

The files SEP. top file contains a set of include directives:

default :
${SEPINC}/SEP.top : ;

.SUFFIXES: # delete all implicit rules
.SUFFIXES: .out .a .F .e .y .ye .yr .1 .s .S .info .dvi .tex .texinfo \
.cweb .web .sh .elc .el

suppress the Entering/Exiting directory messages
MAKEFLAGS += --no-print-directory

include ${SEPINC}/Prg.defs.top
include ${SEPINC}/Doc.defs.top
include ${SEPINC}/Doc.rules.idoc

By the way the line ${SEPINC}/SEP.top : ; prevents GNU makefrom attempt-
ing to up-date the file SEP. top itself and thereby speeds up GNU make’s execution.

The SEP.bottom file includes all the shared files which need to be placed below
the author’s definitions:

${SEPINC}/SEP.bottom : ;

include ${SEPINC}/Prg.rules.obj
include ${SEPINC}/Prg.rules.exe

include ${SEPINC}/Doc.rules.test
include ${SEPINC}/Doc.rules.fig

include ${SEPINC}/Doc.rules.action
include ${SEPINC}/Doc.rules.clean
include ${SEPINC}/Dir.defs.bottom
include ${SEPINC}/Prg.defs.bottom

include ${SEPINC}/Doc.defs.bottom

Rules are grouped by object

While the names of SEP.top and SEP.bottom indicate where the files have to be
included in an application makefile (see last section on precedence of definitions),
the names of all other include files indicate their contents: The first part of the
name indicates if the file is concerned with compilation of executables (prefix Prg for
program) or with documents (prefix Doc). The middle part of each name indicates if
the file contains variable definitions (defs) or rules (rules). Finally, the suffix of a
file name states what the rules are concerned about respectively, where the variable

Schwab 19 GNU make

definitions are to be included in a makefile. For a comprehensive list of all GNU make
include files at SEP see Appendix A.

The files containing definitions concerning reproducibility are:

e Doc.rules.fig contains the burn, build and view rules
e Doc.rules.clean contains the clean rule
e Doc.defs.top contains the simple variable definitions

e Doc.defs.bottom contains all conditional variable definitions

The contents of each file is carefully commented. The contents of the files con-
cerning reproducibility are included in Appendix B.

By separating code by functionality, we hope to maintain smaller, encapsulated
source files. Authors can plug and play with the different rule sets of their interest
without being burdened with unnecessary rule or variable definitions.

CONCLUSION

We believe the set of reader commands (burn, build, clean, view) presented
in this article, combined with a carefully prepared package of an author’s applica-
tion files, facilitates a reader with a reproducible electronic document of a scientific
computational research project.

Traditional research documents in computational sciences only contained adver-
tisement for the researcher’s work, not the actual research. Because of the complexity
of computational research, the research described in paper documents usually lack the
details necessary for its result’s exact reproduction. But it is the reproducibility which
in Newton’s words enables a researcher to stand on the shoulders of his colleagues.

SEP offers 150 lines of GNU make code that implement a reader interface. The
simple commands, make burn, build, view, and clean, enable a reader who has
access to a copy of the author’s application files, to remove and reproduce an author’s
results without knowing any application specific details (such as parameter settings
or names of executables). The process of recomputing the author’s results allows
a reader to understand and if he wishes to modify the interaction of the various
components.

We chose to implement the reader interface in GNU make which excels in the
efficient maintenance of even complex software packages. An author who already
stores his commands in make only needs to adhere to certain naming conventions and
include the rules which SEP distributes on his world wide web site.

Conceptually the reader interface presented in this paper is independent of the
document format (TpX, html, etc) and independent of the underlying computational
machinery, such as Matlab, Mathematica, or C and FORTRAN programs. Even this

Schwab 20 GNU make

paper restricts itself to UNIX systems, the concept of a reader’s interface to repro-
duce a documents contents should apply to electronic documents on other operating
systems as well.

The reader interface has a taste of an electronic filing system: the research soft-
ware maintained by each SEP researcher and accessible to any colleague has increased
tremendously. Furthermore, SEP students commonly take up projects of former stu-
dents, starting by easily removing and recomputing the original result files. Students,
who graduated and left SEP, report little trouble to seamlessly continue their own
research at their new location.

We successfully equipped three of Jon Claerbout’s books and SEP’s most recent
sponsor report with GNU makefiles. These documents contain a total of about
483 result files (276 easily reproducible, 21 conditionally reproducible, and 186 non-
reproducible figures). Before publication all 276 easily reproducible result files men-
tioned above have been tested by frequent burning and rebuilding on different plat-
forms. Additionally SEP published 12 PhD theses that use a earlier version of the
reader interface in a make dialect called cake. All these electronic documents are
available on CDROMs (Claerbout, 1996a).

What is next? We, of course, want to publish our results on the world wide
web. The web distributes conveniently the package of human reading material and
computational machinery. We are carefully following the development of Java(1996).
However, each figure in a world wide web document would surely be accompanied by
a push-button for the burn, build, clean, and view command.

We believe that such rules are useful to most researchers who conduct scientific
computations. We distribute our own rules, this article, and the article’s frog exam-
ple on the world wide web (Claerbout, 1996b).

ACKNOWLEDGMENTS

We are continuing to work with Richard Stallman to adapt GNU make even more
to the needs of electronic document maintenance. We appreciate his advice and his
implementation of the special built-in target .SECONDARY. Joel Schroeder conceived
the three result lists and understood precedence of GNU make definitions. He refined
the first rough translation of SEP’s cake rules significantly. Martin Karrenbach im-
plemented a TEX macro which extracts the reproducibility information (ER,CR,NR)
from the makefile and indicates it in each figure caption of a IATpXdocument. Steve
Cole and Dave Nichols implemented a mechanism variable in their xtpanel.builder
which made it a breeze to use GNU make in SEP’s standard interactive graphical
figure interface. We thank Mihai Popovici for his courage in testing an early version
of SEP’s GNU make rules in his thesis. Finally, we want to acknowledge the pioneer-
ing work of Jon Claerbout, Martin Karrenbach, Dave Nichols, and Steve Cole which
made this research project almost a pure translation from their original cake rules.

21

REFERENCES

Buckheit, J., and Donoho, D., 1996, Wavelab and reproducible research:
http://playfair.Stanford. EDU:80/ wavelab/.

Claerbout, J. F., 1996a, CDROMs of the Stanford Exploration Project:
http://sepwww.stanford.edu/office /sepcd.html/.

Claerbout, J. F., 1996b, Home page of the Stanford Exploration Project:
http://sepwww.stanford.edu/.

Cole, S., and Nichols, D., 1993, Xtpanel update: Interactivity from within existing
batch programs: SEP-77, 409-416.

Lamport, L., 1986, Latex: A document preparation system: Addison-Wesley Pub-
lishing Company.

Nichols, D., and Cole, S., 1989, Device independent software installation with CAKE:
SEP-61, 341-344.

Oram, A., and Talbott, S., 1991, Managing projects with make: O’Reilly & Asso-
ciates, Inc.

Somogyi, Z., 1984, Cake: a fifth generation version of make:
http://munkora.cs.mu.oZ.au/ zs/.

Stallman, R. M., and McGrath, R., 1991, GNU Make: Free Software Foundation.

SUN, 1996, Java: Programming for the internet: http://java.sun.com/.

APPENDIX A: FILE DESCRIPTION

APPENDIX B: GNU MAKE FILES

