
Making scienti�c computations reproducibleMatthias Schwab, Martin Karrenbach, Jon Claerbout 1ABSTRACTCommonly research involving scienti�c computations are reproducible in prin-ciple, but not in practice. The published documents are merely the advertisementof scholarship whereas the computer programs, input data, parameter values, etc.embody the scholarship itself. Consequently authors are usually unable to repro-duce their own work after a few months or years. At university laboratories suchas ours, junior students are delayed in their own creative research by attemptingto reproduce and leverage a former students research. A reader interface whenaccompanied by a complete set of source �les, overcomes these di�culties: In theelectronic version of such a document, a reader can reproduce and verify the doc-ument's results by invoking a set of make�le targets: the burn target removes theresult �les (usually �gures), build recomputes them, view displays the �gures,and clean removes any intermediate �les, that were created when computingthe result �les. A reader can study the interaction of the various source �leswhile recomputing the result �les. An author of a research document, who usesa GNU make �le to maintain his project software, can easily adopt our reader in-terface: The author needs to adhere to some naming conventions and to includea small set of �les (150 lines of code which we distribute on our World Wide Website). Since �ve years we have successfully used this reader interface in our dailyresearch work at our laboratory, in 12 theses, and in 3 textbooks.INTRODUCTIONReviewIn our laboratory (the Stanford Exploration Project or SEP) we noticed that aftera few months or years, researchers were usually unable to reproduce their own work1email: matt@sep.Stanford.EDU

Schwab 2 GNU makewithout considerable agony. Furthermore in average two PhD students graduateeach year at SEP. After their graduation, new students who wanted to leverage theirwork, often spent a considerable amount of time to merely reproduce their colleague'sresults. We believe that similar ine�ciencies plague most research involving complexscienti�c computations, such as image processing, operational research, or seismicdata processing. It is this lack of reproducibility that impedes those who seek unsel�shcooperation in research.Motivated to overcome this impedance to cooperation our laboratory developedthe concept of a reproducible electronic document (red): We added three crucial com-ponents to our computational repertoire: make�les, naming conventions for �gures,and a small set of commands respectively make targets.Make�les are the standard method of maintaining software on UNIX computers.A make�le contains the commands to build the di�erent components of a softwarepackage. However, a make�le is more powerful than a simple script of commandssince it has a notion of result �les (targets) being up-to-date when they are youngerthan their corresponding source �les (dependencies) that they are derived from. Sincemaintaining a reproducible research project essentially equals maintaining software,we �nd the make utility crucial to solving our problem elegantly. Fortunately, �netutorial books about the make language (Stallman and McGrath, 1991; Oram andTalbott, 1991) exist and students learn make easily even without such tutorial books.The second component in making scienti�c computations reproducible is to declarea name for each result �le (which at SEP is invariably a �gure) such as myresult.ps.For each result �le the stem of the result name, myresult, and a rule to build theresult �le is listed in the application's make�le.The third step in making scienti�c computations reproducible is to de�ne a smallset of standard commands that allow a reader to interact with the document withoutknowing any of the underlying application speci�c commands or �les. This articlediscusses SEP's design for such a reader interface.In the past, SEP used the make dialect cake (Nichols and Cole, 1989), whichSomogyi speci�cally developed for document maintenance (Somogyi, 1984). We de-cided to replace cake with GNU make, which is another make dialect. GNU make iswidely used as a freely available, platform independent software maintenance tool. Itis well documented (Stallman and McGrath, 1991) and supported by a very activenewsgroup, gnu.utils.bug. GNU make has its own internal variable substitutionmechanism. Its rules tend to be more serial than cake's, which is partially due to thelack of dependency features such as cando and exist (?).Having learnt about Jon Claerbout's reproducible research ideas, Buckheit andDonoho(1996) at the Stanford Statistics Department developed a reproducible re-search environment Wavelab. Wavelab is a library of Matlab routines for waveletresearch. In contrast to SEP's reader interface, Wavelab is con�ned to Matlab anddoes not de�ne a set of universal reader commands. However, by operating entirelywithin Matlab their reproducible research is portable to any computational environ-ment that supports Matlab, such as PC, Mac, or UNIX computers.

Schwab 3 GNU makeClaimWe claim in this article that additionally to a complete set of application �les,a small set of standard commands is needed to give a reader access to an author'sresearch. This small set of standard commands enables a reader to remove and re-compute a document's results without knowing the diverse, underlying computationaldetails.SEP developed such a set of standard commands for a UNIX environment usingGNU make. Researchers who already use make to store their processing commandscan adopt SEP's reader interface by adhering to certain �le naming conventions andby including a few additional rules, which SEP distributes freely at his World WideWebsite.PreviewThis article presents SEP's reader interface for reproducible electronic documents.The �rst section, Problem, describes the lack of reproducibility in scienti�c com-putational research. The following section The Reader's gain introduces the fourcommands that constitute the interface, their usage, and bene�t from a reader'spoint of view. The section The Author's E�ort outlines the naming conventions andGNU make rules an author of a reproducible electronic document needs to supply.Additionally, the section elaborates brie
y on potential di�culties caused by di�eringcompute environments of the reader and author. The section Example illustrates thereader interface and its implementation at a small but realistic example. The ex-ample concerns a �nite-di�erence approximation of the wave equation. This sectiondetails SEP's implementation of the four basic reader commands. Finally the sec-tion Guidelines for shared rules introduces three design principles that we usedwhen implementing the standard reproducible electronic document red rules.PROBLEMThe development of a common reader interface at SEP was motivated by a lossof research and programming e�ort every time a graduate student left the groupafter graduation. Such a student publishes his thesis which carefully outlines hisapproach and illustrates its success with a series of �gures. Unfortunately, he usuallyleaves an electronic battle�eld neatly stored within a directory tree: Various inputdata sets, each preprocessed slightly di�erently, half a dozen versions of some crucialsubroutines, maybe a few make�les with some compilation rules, if lucky some README�les with some cryptic notes, a bundle of precious result �les mixed with a horde ofunimportant intermediate and temporary �les. A junior student who wants to re�neor apply his colleague's method faces the Sherlock-Holmes-like task to organize theinherited �les: He needs to identify valuable source or result �les and remove theirinsigni�cant brethren. He has to reconstruct the command sequence that produced aspeci�c result by combining particular input data, parameters, and program versions.Such a reconstruction of the software of the former student is often a signi�cant

Schwab 4 GNU makee�ort during which the junior student is not creatively researching new ideas. Webelieve the di�culties to regenerate a colleagues results trouble any �eld of scienti�ccomputations, such as geophysics, image processing, or operation research.A researcher who resumes a project after some considerable time faces a similarproblem. If he has not maintained a careful record, he probably has forgotten manyapplication speci�c details. Consequently he will have to laboriously exhume hiscommand sequences, parameter settings etc.Another version of the same dilemma appears during the collaboration of tworesearchers. When the �rst researcher hands a project to his colleague he often hasto explain tedious details on how to execute various programs to attain the desiredresult and which �les contain the signi�cant parts of his contribution to the project.The situation is even worse when results in a �eld of scienti�c computations arepublished. Traditionally the audience is treated to a fundamental outline of theprocessing sequence, but is spared the complex details of data preparation, parametervalues, source code, etc. While such a report informs the audience about the overallstrategy used to attack the problem, it does not help the reader to leverage thework of the author: To check or re�ne the published work, a reader has to painfullyrepeat the author's implementation and testing sequence. If the originally used datais not available, or if the description of the overall strategy misses essential details,a reader may �nd it impossible to reproduce the given results at all. The value ofreproducibility probably does not lie in detecting the rare cases of fraud, but moreimportantly in an enhanced e�ciency of cooperation and technology transfer withinthe scienti�c community. THE READER'S GAINTraditional documents in �elds involving scienti�c computations contain only theadvertisement of research, but not the research itself. The paper documents usuallycomprise the description of the research and do not contain the complex details neededto reproduce the published results. The �les and directories containing these oftenvoluminous information are usually unorganized and cannot be exploited withoutin-depth knowledge of the application �les involved. The lack of reproducibility ofcomputational results hinders the cooperation and communication of progress withinresearch groups as well as the general scienti�c communities.The missing link is a reader interface: a small set of de�ned commands whichallows a reader to interact with the document without knowing its details. At SEPwe implemented following set of commands, called reproducible electronic documentrules or red rules, using GNU make:� make burn removes all result �les mentioned in the local make�le's result list.The author needs to supply this result list. However, the rule implementing thetarget burn is supplied by SEP's red rules.

Schwab 5 GNU make� make build recomputes all result �les by exercising the local rules about howeach result �le is built. The author needs to implement the rules for recomputingthe result �les. Again the target build is part of SEP's red rules.� make view displays the result �les to the reader. The rule implementing thetarget build is supplied by SEP's red rules.� make clean removes all secondary �les. In most cases the author does not haveto specify this rule but uses a default red rule.These commands are based on the de�nitions of result, source, and secondary �les2:� Result �les are all �les that the author uses to document his �ndings. At SEP,result �les are usually �gures in various graphic formats, such as postscript.� Source �les are the minimum set of �les required to reproduce all the result�les. This can comprise C or FORTRAN source code, shell scripts, parameter�les, make�les, or data input �les.� Secondary �les are all intermediate3 �les which a reader creates when repro-ducing the result �les from the source �les.Ultimately, a reader using these commands can dissect the document to inspectthe result and source �les. Furthermore, he can remove the result �les and observetheir recomputation from its source �les. Having analyzed the executed make rules ofresult �le's recomputation, a reader can usually identify the parameter that he wantsto modify, the input data that he wants to exchange, or the source code that he wantsto inspect.The reader interface targets burn, build, and view are paired with targets thatact on individual result �les: For example make myresult.burn removes a result �lemyresult, but leaves all other result �les intact.Degree of reproducibilityGNU makefiles of SEP documents typically de�ne three result list variablesrather than a single one as implied in the paragraphs above. These three variables, anyof which the author may omit if empty, are RESULTSER, RESULTSCR, and RESULTSNR.The endings ER, CR, and NR indicate to the reader the degree of reproducibility:� ER: easily-reproducible describes result �les which the reader can expect toregenerate within less than ten minutes on a standard workstation.2The �les related to the author's article (e.g. a TEX, device independent, or postscript format)do not entirely �t into the �le classi�cation above. Since the article in its �nal display format (e.g.postscript, or dvi) is often created from some source �le (e.g. LaTEXor nro�) they could be consideredresult and source �le pair. However, the transformation of the text document into various formatsis trivial: neither the author nor his reader have any scienti�c interest in it. Consequently we donot consider the article related �les as part of the reproducibility scheme.3GNU make de�nes intermediate slightly di�erently. See the section Secondary �les.

Schwab 6 GNU make� NR: non-reproducible are all the result �les which a reader cannot reproduce,such as hand-drawn illustrations or scanned-in �gures.4� CR: conditionally-reproducible indicates results which require proprietarydata, licensed software, or a lavish amount of time for recomputation. Inall cases, the author nevertheless supplies a complete set of source �les andrules to ensure that the results are reproducible. However, he accompaniesthe conditionally-reproducible result �le (e.g., myresult.ps) with a warning�le (myresult.warning) in which he states why he classi�ed the result asconditionally-reproducible. In industrial-scale geophysical research, many in-teresting results fall into this category.The standard make targets burn and build are complemented by targets burnER,burnCR, burnNR, burnall and buildER, buildCR, buildNR, buildall. For ex-ample burnNR burns all non-reproducible result �les (which is probably a very badidea since they are non-reproducible). The target burn is defaulted to burnER torestrict the standard removal of result �les to easily reproducible ones. The targetbuild is defaulted to buildER to recompute all result �les that make burn may haveremoved.The distinction between the three types of result �les enables a reader to choosehis burning and rebuilding according to his computer environment's special softwareand his own time commitment.UsageWhen inspecting an electronic document, we usually burn all result �les, clean thedocument of potential secondary �les, and rebuild the result �les. Having isolated thesource �les (after make burn; make clean), we then watch as the make�le accom-plishes the reproduction of the document's results (make build). Often we prefer toexecute make myresult.build to learn about the speci�c result �le myresult.A concrete test of a document's reproducibility is a cycle of burning and rebuildingits results. Research stocked in such a document can be interrupted for an indeter-mined time to be later resumed by the author or a colleague. At SEP we often burnand rebuild entire articles, sponsor reports, and books to ensure their validity andportability. Since all authors collectively adhere to a single set of commands, a gen-eral test suite can verify the reproducibility of all completed documents. We use sucha test suite of removal and recomputation to ensure the completeness of an author'sdocument before publication. Additionally we benchmark new computer equipmentby comparing the time to complete such a test suite. These benchmarks are especiallyvaluable since they are based on a typical representation of our own work.Furthermore, the ready-to-use make�les of an electronic document invite a readerto change source �les and to observe the e�ects on the result �les after burning and4Non-reproducible �gures are listed mostly for administrative purposes. It can be very useful to�nd all result �les of a speci�c document.

Schwab 7 GNU makebuilding them.5 Beginning students often start their �rst project at SEP by exploringa senior colleague's results in this manner.The reader interface for reproducible research is only one component of SEP's cur-rent computational research environment: A research document at SEP is written inLaTEX (Lamport, 1986). Using SEP's own LaTEXmacros, a push-button in each �gurecaption invokes a graphic user interface (written in a script language called xtpanel(Cole and Nichols, 1993)). The graphic user interface enables a reader to interactivelyexecute the burn, build, clean, and view commands for each individual �gure.SEP's GNU make rules allow the author to easily extend the interactivity of a result�gure to additional, application-speci�c actions. Unfortunately these features are be-yond the scope of this article. However we bundle our entire software and the thesesof our research group in CDROMs which we distribute.THE AUTHOR'S EFFORTHaving speci�ed what rules we want to supply to every reader of a reproducibledocument (burn, build, clean and view), we discuss in this chapter what rules weexpect from an author of an application make�le.A primitive implementation could require each author to explicitly write a burn,build, clean, and view rule for each �gure. But this would incur a massive over-head of duplicated code which an author needs to supply with each make�le. Insteadour laboratory supplies the author a set of common include �les, the red rules, thatimplement a standard burn, build, clean, and view rule. The entire GNU makecode for SEP's implementation comprises only 150 lines. The author complements thered rules with the bare minimum of application{speci�c rule and variable de�nitions.The author:� lists all result �les in one of the result lists RESULTSER, RESULTSCR, RESULTSNR,� writes a rule to build each �le mentioned in the result lists,� states a clean rule which removes all secondary �les (which he can default),� includes all the shared �les containing the default red rule and variable de�ni-tions.This list constitutes the author interface of SEP's reproducible electronic document.We base our reader interface on make since it excels in the e�cient recomputationof result �les by a notion of a �les dependencies and up-to-dateness. An author whoalready uses GNU make to store his processing commands can adopt SEP's readerinterface by merely adhering to certain �le naming conventions.5A change in the source code or the default parameter values is where we draw the line betweenreproducibility and interactivity.

Schwab 8 GNU makeElectronic PublicationThe tremendous increase in connectivity and information exchange (especially bythe Internet and through CDROMs) enable us to complement most computationalresearch publications by a corresponding complete set of application �les. These�les comprise input data, source code for processing programs, and parameters, andcommand scripts such as make�les.Even when such a reproducible electronic document and the accompanying redrules ensure e�ortless reproduction of the result �les within the author's computeenvironment, a reader at a remote site may encounter di�culties since his computeenvironment may di�er. However, there exist many de-facto standards within anyscienti�c community. Many computer science publications do not shy away fromaccompanying there book with a CDROM containing software. And as more peopleattempt to share software the quicker the industry will de�ne standards.We cannot give a general recipe on how an author should deliver software to hisaudience: it will depend on the computer environment their community uses. Donohoand Buckheit (1996) deliver Matlab scripts and expect their audience to have accessto Matlab. At SEP we publish our reproducible electronic documents on CDROMs:on such a CDROM we supply besides the author's application speci�c programs,our own seismic data processing software, and publically available Freeware. Weexpect our audience to have access to a UNIX system, including a C and FORTRANcompiler, GNU make, and X11 Window System. In the future, we hope that theWorld Wide Web and software such as Java tremendously ease the distribution andsharing of software.But even if the author and reader do not share the same environment, the readerbene�ts from having access to the author's application speci�c �les. He will be ableto study the author's implementation and if su�ciently interested, adopt the author'swork for his own compute environment.EXAMPLEThe document you are reading is in its electronic version accompanied by a subdi-rectory called frog. The subdirectory frog contains a complete albeit small exampleof a reproducible electronic document: a �nite{di�erence approximation of the 2-D surface waves caused by a frog hopping around a rectangular pond. The �lespaper.latex and paper.ps hold two formats of the accompanying article. The setof RATFOR6 �les implement a 2-D wave propagation code. The Fig directory containsthe result �le: a postscript �gure of the pond after some wild hops by the frog.The central make�le in the frog directory contains:SEPINC = ../Rulesinclude ${SEPINC}/Doc.defs.top6RATFORis a preprocessor for FORTRAN that provides control
ow constructs essentially identicalto those in C. SEP distributes RATFOR on its World Wide Web server.

Schwab 9 GNU makeRESULTSER = frog dotcol = 0.,0.,0.-1.,1.,1.${RESDIR}/frog.ps ${RESDIR}/frog.gif: frog.xfrog.x > junk.pgmpgmtoppm ${col} junk.pgm > junk.ppmppmtogif junk.ppm > ${RESDIR}/frog.gifpnmtops junk.pgm > ${RESDIR}/frog.psobjs = copy.o adjnull.o rand01.o wavecat.o \pressure.o velocity.o viscosity.o wavesteps.ofrog.x: ${objs}dot.build ${RESDIR}/dot.txt : dot.xdot.x dummy > ${RESDIR}/dot.txtdot.view: ${RESDIR}/dot.txtcat ${RESDIR}/dot.txtdot.burn:rm ${RESDIR}/dot.txtdot.x : ${objs}clean: jcleaninclude ${SEPINC}/Doc.rules.redinclude ${SEPINC}/Doc.rules.idocinclude ${SEPINC}/Prg.rules.stdWhat does the author of this particular reproducible document supply in hismake�le? The include directives at the top and bottom of the application make�lepull-in the red rules, default variable and rule de�nitions that all application make�lesshare. These shared de�nitions allow the author to exclusively write the application-speci�c rules and de�nitions seen above. At SEP additional include �les containcompilation rules which in this example are listed explicitly below the comment atthe center of the make�le.The �rst half of the make�le are the rules needed to complement the includedreproducibility rules. The RESDIR variable points to a directory where the authorstores his result �les. The RESDIR variable de�nition at the top of the make�le over-writes the included default value ./../Fig. The next variable RESULTSER containsthe list of all easily reproducible result �les of a document. By default the variableRESULTSER is empty. In this case the only result �gure is frogpond. The documentdoes not contain any conditional or non-reproducible result �les.The next rule contains the commands to build the postscript version of the result�le frogpond. Such a rule is application speci�c and cannot be supplied by includeddefault rules. The target name comprises the directory RESDIR in which the resultsreside and a �le su�x .ps which indicates the �les postscript format. The ruledepends on an executable frogs.x which it executes during the computations of theresult.Generally, default rules for compilation and linking of executables such as frogs.xare supplied by shared include �les. To ensure portability I included extremely simplecompilation and linking rules at the bottom of this make�le. However, the dependencyof the executable on its subroutine object �les, as in the case of frogs.x, needs

Schwab 10 GNU maketo be de�ned by the author of the make�le, since it depends on the application'sexecutables.Finally, the target clean invokes the included red targets jclean and texclean.The targets identify secondary �les based on certain naming conventions of our lab-oratory and remove them.What does the reader interface o�er a reader? In a standard UNIX environment, areader of the electronic version of the document can interact with it using the defaultrules of the reader interface:� make burn removes the result �le frogpond.ps from the result directory Fig.� make build recomputes the result �le frogpond.ps by compiling the FOR-TRAN executable frogs.x, executing it, and converting a bitmap output offrogs.x to postscript using some publically available X11 routines.� make view up-dates the result �le frogpond.ps and displays it using the postscriptviewer ghostview (if available on your system).� make clean removes secondary �les that were created during the execution ofthe build command It actually invokes a the included default targets jcleanand texclean. The targets identify secondary �les based on certain namingconventions of our laboratory and remove them. (For example object �les withsu�x .o or temporary �les with the name stem junk).A reader is able to execute these commands without understanding any applicationspeci�c details. Furthermore, he can start changing any of the available �les andobserve the e�ect on the documents results.BurnHere is a template for the burn target which is included in every applicationmake�le as part of the red rules:burn: burnERburnER: ${addsuffix .burn, ${RESULTSER}}burnCR: ${addsuffix .burn, ${RESULTSCR}}%.burn: this shell command removes the file designated by the stem ``%''burn is what GNU make refers to as a phony target: the target does not relateto an actual �le called burn. burnER, burnCR and %.burn are other examples forphony targets. The dependencies to burnER are generated by one of GNU make'sbuilt-in functions addsuffix. The dependency list contains all �les the author listedin his RESULTSER list. We use this trick to spawn o� an up-date of a set of GNU make

Schwab 11 GNU maketargets. In turn each individual target myresult.burn is up-dated by executing acommand which removes the result�le myresult.At SEP result �les are usually �gures of various formats: often postscript andSEP's vplot format. An author at SEP does not actually list a particular �le in the listof result �les, but the stem of a result �le. Usually an entire family of �les with varioussu�xes relate to a single stem. As in the example above: RESULTSER = frogpondmayrefer to a �le frogpond.ps, frogpond.v, or frogpond.v3. The burn command atSEP searches for each stem an entire list of possible su�xes (RES SUFFIXES = .v3.v .ps) and removes the existing �les:%.burn : FORCE${foreach sfx, ${RES_SUFFIXES} , \if ${EXIST} ${RESDIR}/$*${sfx} ; then \${RM} ${RESDIR}/$*${sfx} ; fi; \}This pattern rule is also invoked when a reader removes an individual result �lemyresult.ps by executing make myresult.burn. The standard burn rule exclusivelyremoves the easily reproducible result �les. A reader can remove the conditionallyreproducible result �les by explicitely invoking make burnCR for example.BuildThe template for the build rule is almost identical to the burn rule:build: buildERbuildER: ${addsuffix .build, ${RESULTSER}}buildCR: ${addsuffix .build, ${RESULTSCR}}%.build:this shell command invokes the author's rule for making the filedesignated by the stem ``%''A very general way to utilize the build rule, is to require an author of an applica-tion �le to submit a rule myresult.build for all �les myresult listed in his make�le'sresult lists.At SEP, every result �le is a �gure and is to exist in postscript format. The defaultbuild rule is, therefore, defaulted to:%.build: ${RESDIR}/%.psSince many (but not all) �gures at SEP are actually generated as vplot �gures7it is convenient to supply an additional default rule which converts vplot �les intopostscript format:7Vplot is SEP's prefered graphics format.

Schwab 12 GNU make${RESDIR}/%.ps: ${RESDIR}/%.vpstexpen ${RESDIR}/$*.v ${RESDIR}/$*.psThe author in the frog example does not use this default rule since his applicationrule directly creates the postscript �le8.ViewThe view rule updates all result rules and displays them:view : ${addsuffix .view, ${RESULTSALL}}%.view: FORCEthis shell command displays the contents of the file designatedby the stem ``%''RESULTSALL is a simple concatenation of RESULTSNR RESULTSCR RESULTSER.At SEP the %.view rule checks for various result formats and chooses the �rstone the make�le knows how to generate (the return value of a recursive gmake -ncall indicates which �gure format can be built). Having found the �gure's format,the make�le invokes a rule (view3, view1, viewps) whose dependency updates the�gure and whose command body displays it using the appropiate viewer (SEP's viewfor vplot and GNU's ghostview for postscript �les):%.view: FORCE@\if ${CANDO_V3} ; then \${MAKE} $*.view3 ; \elif ${CANDO_V} ; then \${MAKE} $*.view1 ; \elif ${CANDO_PS} ; then \${MAKE} $*.viewps ; \else \echo "make $@: cannot make targets $*.% (% = view3,view1,viewps)" ; \fi%.view3 : ${RESDIR}/%.v3 FORCEview ${RESDIR}/$*.v3%.view1 : ${RESDIR}/%.v FORCEview ${RESDIR}/$*.v%.viewps : ${RESDIR}/%.ps FORCEghostview ${RESDIR}/$*.psIn the frog example the make frogpond.view rule does not �nd a rule for com-puting a .v3 or .v vplot version of frogpond. Consequently, it invokes the postscript8We will say more about precedence of competing rule and variable de�nitions later: however weensured that the author's de�nitions always prevail over possible default ones.

Schwab 13 GNU makealternative frogpond.viewps of the command body. In return frogpond.viewpsexecutes ghostview to display the result �le frogpond.ps. If your computer systemdoes not support the postscript viewer ghostview, then you will need to supplementthe %.viewps rule with your own display command.CleanThe clean rule removes all secondary �les. In general, the author of an applicationmake�le needs to supply his individual clean rule since it is not possible to foreseewhat secondary �les the author may choose to create when computing his result�les. At SEP we, however, supply an author with a default clean rule called jclean:jclean identi�es secondary �les based on certain naming conventions. For exampleany �le with the stem junk or with the su�x .o is a secondary �le and is removedby the jclean rule:jclean : klean.usual klean.fort ;KLEANUSUAL := core a.out mon.out paper.log *.o *.x *.H *.A *.M *.ps *.v *.v3 *.V *.traceklean.usual :@-${TOUCH} ${KLEANUSUAL} junk.quiet@-${RM} ${KLEANUSUAL} junk.*FORT_FILES = $(patsubst %.f,%,$(wildcard *.f)) junk.quietklean.fort:@\for name in ${FORT_FILES} ; do \if ${EXIST} $${name}.r \${TOUCH} $${name}.f ; \${RM} $${name}.f ; \fi ; \doneIf not applied carefully, the clean rule can remove valuable source or result �les.SEP's jclean de�nition removes all �les with su�x .v, .v3, .ps which indicate a�le containing a �gure. Since all result �les at SEP are �gure �les and have one ofthese su�xes, the jclean command should never be invoked in a directory containingSEP result �les (the RESDIR directory). By not supplying a default clean rule, theauthor of a make�le has to consciously choose his cleaning mechanism. He shouldonly use the supplied jclean rule after he studied which �les it will remove.In the accompanying frog example, make build creates several secondary �leswhen recomputing the result �le frogpond.ps. The rule that generates the postscript�gure stores bitmap versions of it in junk.pgm and junk.ppm. Furthermore thecompilation rule for frog.x creates a set of object �les and the executable itself.All those �les are removed by make clean, since they all adhere to certain namingconventions: the jclean target removes all �les with su�x .o (object �les), the stemjunk (in this case temporary �les), and �les with su�x .x which at SEP indicatesan executable. The rule klean.fort removes the FORTRAN �le with su�x .f if a

Schwab 14 GNU makeRATFORversion (su�x .r) of the �le exists. In the near future, we hope to replace theformulation of the clean rule based on naming conventions with a formulation basedon GNU make's notion of secondary �les.Secondary targetsThe importance of the clean rule is often underestimated. The reproducibility ofan electronic documents requires the source �les. The result �les illustrate the docu-ment's contents. But the secondary �les are used exclusively in the process of gener-ating the result �les from the source �les. Since secondary �les can be prohibitivelylarge, and generally clutter the collection of document �les, they are typically removedsoon after they perform their function of helping to create result �les.The reader uses the clean rule to identify the documents important �les: the �leswhich contain the author's intellectual achievement, his research. Additionally, theclean rule enables the author to isolate the minimum set of �les which he exchangeswith his reader, saving bandwidth in the exchange of the electronic document.In general make treats secondary �les in a manner unsatisfactory to us. In somecases9, make considers a result �le out-of-date when a secondary �le that it dependson does not exist. In these cases, it insist on the recomputation of the result �le evenwhen all existing source �les are older than the result �le. Consequently a documentneeds to retain secondary �les to avoid redundant recomputations of the result �les.At our request, Richard Stallman added a special built-in target to GNU make,.SECONDARY, which allows the author to choose the aforementioned behavior of GNU makewith respect to its missing secondary targets. Any intermediate target listed as a de-pendency of .SECONDARY is assumed up-to-date when missing. Listing .SECONDARYwithout any dependency ensures that every missing secondary �le is presumed up-to-date. At SEP, the special built-in target .SECONDARY is included in every applicationmake�le causing GNU make to assume any missing secondary �les to be up-to-date.GUIDELINES FOR SHARED RULESThe previous section illustrated the implementation of the fundamental red rules.This section discusses three principles that guided our implementation of the burn,build, view and clean rule.� No code duplication: all common rule and variable de�nitions are located inshared include �les.� The author rules: any de�nition by the author takes precedence over theincluded default de�nitions.� Rules are grouped by object: an author can selectively include defaultde�nitions according to his needs.9For GNU make this refers to non-pattern rules.

Schwab 15 GNU makeNo code duplicationInstead of rewriting a burn, build, clean and view rule for each make�le, a setof common �les is included in each individual application make�le.include ${SEPINC}/SEP.topincludes a �le SEP.top. It �nds the SEP.top �le by expanding the variable SEPINCwhich at SEP is de�ned as an environement variable pointing to the directory whichcontains all shared include �les. SEP.top itself is actually a �le which includes a setof other shared resource �les. The code implementing the burn, build, clean andview rules resides in such a shared resource �le.Having a single set of shared source �les ensures consistency of the reader com-mand interface accross di�erent documents. Furthermore changes to the commonsource �les propagate immediately to all application make�les. Consequently an au-thor of an application make�les supplies the bare minimum of de�nitions and rules:de�nitions and rules that are speci�c to his application.The author rulesWhen designing the SEP make rules it was our goal to o�er the author of an re-producible electronic document a maximum of helpful default rules and variable def-initions without limiting him in his freedom. Consequently we arranged the included�les so that any variable or rule de�nition by the author of an application make�letakes precedence over included competing default de�nitions. Unfortunately, we havenot been able to devise a simple and reliable mechanism to warn an author when heaccidently overwrites a default rule or variable.0.0.1 Precedence of variable de�nitionsGNU make's precedence rules for variable de�nitions are rather arcane. GNU makeexpands some variables at the time a make�le is read and some at the time a certainrule is executed. When �rst reading the make�le, GNU make expands all variables� on the right-hand side of `:='� on the target-dependency line of a rule (top line of a rule)� in the conditional expressions of define statementsOther variables, such as� on the right-hand side of `=' (exclusively used in SEP's include �les)� in the shell commands of a rule (indented)� in the body of define statements

Schwab 16 GNU makeare expanded when GNU make executes a rule.For example following make�lefoo = hello${foo} :@echo ``target is $@'';@echo ``foo is ${foo}'';foo = goodbyeleads to following result:> make hellotarget is hellofoo is goodbye> make goodbyegmake *** No rule to make target `goodbye'. Stop.The bottom de�nition foo = goodbye a�ected the commands of the rule abovebut not the target-dependency line. GNU make expanded the variable foo in thetarget-dependency line when it �rst read the make�le from top to bottom. However itexpanded the foo variable in the command body after it had read the entire make�le,had rede�ned foo according to the second de�nition, and was executing the rule.Consequently, an author of an application make�le has to include all default vari-able de�nitions at the top of his make�le, above his own, potentially competingde�nitions. Thus his own variable de�nitions will be the bottom de�nitions used bythe make�le when executing a rule.Additionally, all default rules have to be included at the bottom of the make-�le, so that the author's variable de�nitions are read by the make�le before ex-panding variables in the target-dependency line of these rules. For example in thefrog make�le above, the make�le rede�nes the included variable RESDIR = ../Figto RESDIR = ./Fig. This rede�nition occurs below the included default variable def-inition in Doc.defs.top, but above the included rules in Doc.rules.fig such as$fRESDIRg/%.ps : $fRESDIRg/%.v.An exception are conditional variable de�nitions such as:ifndef COLORCOLOR = nFAT = 1FATMULT = 1.5INVRAS = nendifSince conditional de�ne statements are evaluated as the make�le is read, conditionalde�nitions have to be included at the bottom of an author's application make�le.Thus the author has a chance to rede�ne the variable COLOR before GNU make en-counters the conditional ifndef test. Conditional variable de�nitions are convenient

Schwab 17 GNU makewhen o�ering two or more default settings for a group of variables such as in thecase of a color or grey-scale plot in the example above. In the frog example alldefault conditional de�nitions are included in Doc.defs.bottom below the author'sde�nitions.Since an author of an application is unaware of all variables de�ned in the includeddefault �les, the GNU make manual suggests that an author should use only lowercase letters for local variable names in his application make�les. Since the o�ciallyincluded �les use strictly upper case variable names, an author using lower case letterscannot accidently overwrite any o�cial de�nition. The author should reserve uppercase variables to reference or deliberately override included standard variables (e.g.RESDIR in the frog example).0.0.2 Precedence of rule de�nitionsHaving ensured that an author can always overwrite any default variable, we also haveto guarantee that his rules take precedence over included default rules. When a targetcorresponds to several explicit rules, only one rule can list a body of correspondingshell commands: all other rules specify additional dependencies. If more then onerule contains a body of shell commands GNU make fails when trying to up-date thattarget. If a target corresponds to an explicit rules and an implicit rule, the explicitrule takes precedence. If several implicit rules correspond to a target, the rule listed�rst in the make�le takes precedence.Except the basic reader targets burn, build, view, and clean, all includeddefault rules are implicit rules or targets without a command body. All default rulesare included at the bottom of the application make�le. An author's explicit rules takeprecedence over all included implicit rules. An author's implicit rules take precedencesince they are listed in the make�le above the default rules included at the bottom.However, if an author attempts to overwrite one of the very few included explicitrules, burn, build, view and clean, the author's and the default rules will collideand up-dating the target will fail.For example, the rule for a postscript �gure created by a mathematica script (itsexplicit or implicit version) overwrites the default rule for postscript �gures:# author's EXPLICIT rule overwrites his own included IMPLICIT rule (next)# as well as the IMPLICIT default rule (last rule)${RESDIR}/math.ps : math.ma< math.ma mathematica > ${RESDIR}/math.ps# author's IMPLICIT rule overwrites the included IMPLICIT rule stated BELOW${RESDIR}/%.ps : %.ma< $*.ma mathematica > ${RESDIR}/$*.ps#included default rule (is overwritten by both rules above)${RESDIR}/%.ps: ${RESDIR}/%.vpstexpen ${RESDIR}/%.v ${RESDIR}/%.ps

Schwab 18 GNU makeIn summary, all default rules and variables of the red rules except burn, build,view and clean can be overwritten by the author of a SEP make�le as long as heenters all his make�le entries between the inclusion statements at the top and bottom.include ${SEPINC}/SEP.top# Here is where the application specific definitions belong.include ${SEPINC}/SEP.bottomThe �les SEP.top �le contains a set of include directives:default :${SEPINC}/SEP.top : ;.SUFFIXES: # delete all implicit rules.SUFFIXES: .out .a .F .e .y .ye .yr .l .s .S .info .dvi .tex .texinfo \# .cweb .web .sh .elc .el# suppress the Entering/Exiting directory messagesMAKEFLAGS += --no-print-directoryinclude ${SEPINC}/Prg.defs.topinclude ${SEPINC}/Doc.defs.topinclude ${SEPINC}/Doc.rules.idocBy the way the line $fSEPINCg/SEP.top : ; prevents GNU makefrom attempt-ing to up-date the �le SEP.top itself and thereby speeds up GNU make's execution.The SEP.bottom �le includes all the shared �les which need to be placed belowthe author's de�nitions:${SEPINC}/SEP.bottom : ;include ${SEPINC}/Prg.rules.objinclude ${SEPINC}/Prg.rules.exeinclude ${SEPINC}/Doc.rules.testinclude ${SEPINC}/Doc.rules.figinclude ${SEPINC}/Doc.rules.actioninclude ${SEPINC}/Doc.rules.cleaninclude ${SEPINC}/Dir.defs.bottominclude ${SEPINC}/Prg.defs.bottominclude ${SEPINC}/Doc.defs.bottomRules are grouped by objectWhile the names of SEP.top and SEP.bottom indicate where the �les have to beincluded in an application make�le (see last section on precedence of de�nitions),the names of all other include �les indicate their contents: The �rst part of thename indicates if the �le is concerned with compilation of executables (pre�x Prg forprogram) or with documents (pre�x Doc). The middle part of each name indicates ifthe �le contains variable de�nitions (defs) or rules (rules). Finally, the su�x of a�le name states what the rules are concerned about respectively, where the variable

Schwab 19 GNU makede�nitions are to be included in a make�le. For a comprehensive list of all GNU makeinclude �les at SEP see Appendix A.The �les containing de�nitions concerning reproducibility are:� Doc.rules.fig contains the burn, build and view rules� Doc.rules.clean contains the clean rule� Doc.defs.top contains the simple variable de�nitions� Doc.defs.bottom contains all conditional variable de�nitionsThe contents of each �le is carefully commented. The contents of the �les con-cerning reproducibility are included in Appendix B.By separating code by functionality, we hope to maintain smaller, encapsulatedsource �les. Authors can plug and play with the di�erent rule sets of their interestwithout being burdened with unnecessary rule or variable de�nitions.CONCLUSIONWe believe the set of reader commands (burn, build, clean, view) presentedin this article, combined with a carefully prepared package of an author's applica-tion �les, facilitates a reader with a reproducible electronic document of a scienti�ccomputational research project.Traditional research documents in computational sciences only contained adver-tisement for the researcher's work, not the actual research. Because of the complexityof computational research, the research described in paper documents usually lack thedetails necessary for its result's exact reproduction. But it is the reproducibility whichin Newton's words enables a researcher to stand on the shoulders of his colleagues.SEP o�ers 150 lines of GNU make code that implement a reader interface. Thesimple commands, make burn, build, view, and clean, enable a reader who hasaccess to a copy of the author's application �les, to remove and reproduce an author'sresults without knowing any application speci�c details (such as parameter settingsor names of executables). The process of recomputing the author's results allowsa reader to understand and if he wishes to modify the interaction of the variouscomponents.We chose to implement the reader interface in GNU make which excels in thee�cient maintenance of even complex software packages. An author who alreadystores his commands in make only needs to adhere to certain naming conventions andinclude the rules which SEP distributes on his world wide web site.Conceptually the reader interface presented in this paper is independent of thedocument format (TEX, html, etc) and independent of the underlying computationalmachinery, such as Matlab, Mathematica, or C and FORTRAN programs. Even this

Schwab 20 GNU makepaper restricts itself to UNIX systems, the concept of a reader's interface to repro-duce a documents contents should apply to electronic documents on other operatingsystems as well.The reader interface has a taste of an electronic �ling system: the research soft-ware maintained by each SEP researcher and accessible to any colleague has increasedtremendously. Furthermore, SEP students commonly take up projects of former stu-dents, starting by easily removing and recomputing the original result �les. Students,who graduated and left SEP, report little trouble to seamlessly continue their ownresearch at their new location.We successfully equipped three of Jon Claerbout's books and SEP's most recentsponsor report with GNU makefiles. These documents contain a total of about483 result �les (276 easily reproducible, 21 conditionally reproducible, and 186 non-reproducible �gures). Before publication all 276 easily reproducible result �les men-tioned above have been tested by frequent burning and rebuilding on di�erent plat-forms. Additionally SEP published 12 PhD theses that use a earlier version of thereader interface in a make dialect called cake. All these electronic documents areavailable on CDROMs (Claerbout, 1996a).What is next? We, of course, want to publish our results on the world wideweb. The web distributes conveniently the package of human reading material andcomputational machinery. We are carefully following the development of Java(1996).However, each �gure in a world wide web document would surely be accompanied bya push-button for the burn, build, clean, and view command.We believe that such rules are useful to most researchers who conduct scienti�ccomputations. We distribute our own rules, this article, and the article's frog exam-ple on the world wide web (Claerbout, 1996b).ACKNOWLEDGMENTSWe are continuing to work with Richard Stallman to adapt GNU make even moreto the needs of electronic document maintenance. We appreciate his advice and hisimplementation of the special built-in target .SECONDARY. Joel Schroeder conceivedthe three result lists and understood precedence of GNU make de�nitions. He re�nedthe �rst rough translation of SEP's cake rules signi�cantly. Martin Karrenbach im-plemented a TEX macro which extracts the reproducibility information (ER,CR,NR)from the make�le and indicates it in each �gure caption of a LaTEXdocument. SteveCole and Dave Nichols implemented a mechanism variable in their xtpanel.builderwhich made it a breeze to use GNU make in SEP's standard interactive graphical�gure interface. We thank Mihai Popovici for his courage in testing an early versionof SEP's GNU make rules in his thesis. Finally, we want to acknowledge the pioneer-ing work of Jon Claerbout, Martin Karrenbach, Dave Nichols, and Steve Cole whichmade this research project almost a pure translation from their original cake rules.

21REFERENCESBuckheit, J., and Donoho, D., 1996, Wavelab and reproducible research:http://playfair.Stanford.EDU:80/ wavelab/.Claerbout, J. F., 1996a, CDROMs of the Stanford Exploration Project:http://sepwww.stanford.edu/o�ce/sepcd.html/.Claerbout, J. F., 1996b, Home page of the Stanford Exploration Project:http://sepwww.stanford.edu/.Cole, S., and Nichols, D., 1993, Xtpanel update: Interactivity from within existingbatch programs: SEP{77, 409{416.Lamport, L., 1986, Latex: A document preparation system: Addison-Wesley Pub-lishing Company.Nichols, D., and Cole, S., 1989, Device independent software installation with CAKE:SEP{61, 341{344.Oram, A., and Talbott, S., 1991, Managing projects with make: O'Reilly & Asso-ciates, Inc.Somogyi, Z., 1984, Cake: a �fth generation version of make:http://munkora.cs.mu.oZ.au/ zs/.Stallman, R. M., and McGrath, R., 1991, GNU Make: Free Software Foundation.SUN, 1996, Java: Programming for the internet: http://java.sun.com/.APPENDIX A: FILE DESCRIPTIONAPPENDIX B: GNU MAKE FILES

