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Abstract

The work of this paper is inspired by the flocking phenomenon observed in [3]. We introduce a

class of local control laws for a group of mobile agents that result in: (i) global alignment of their

velocity vectors, (ii) convergence of their velocities to a common one, (iii) collision avoidance, and

(iv) local minimization of the agents artificial potential energy. These are made possible through local

control action by exploiting the algebraic graph theoretic properties of the underlying time-varying

communication and sensor networks. The communication network links agents that instanteneously

attempt to synchronize their velocity vectors, and the sensing network relays state information between

agents in close proximity through local sensors. These two networks may not necessarily coincide,

since the enabling physical mechanisms that bring them to life are fundamentally different. We show

that even if these graphs switch arbitrarily, convergence and stability is preserved as long as connectivity

is maintained.

Index Terms

Multi-agent systems, cooperative control, nonsmooth systems, algebraic graph theory.

I. INTRODUCTION

Over the last years, the problem of coordinating the motion of multiple autonomous agents

has attracted significant attention. Research is motivated by recent advances in communication

and computation, as well as inspiring links to problems in biology, social behavior, statistical

physics, and computer graphics. Efforts have been directed in trying to understand how a group of
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autonomous moving creatures such as flocks of birds, schools of fish, crowds of people [4], [5], or

man-made mobile autonomous agents, can cluster in formations without centralized coordination.

Such problems have also been studied in ecology and theoretical biology, in the context of

animal aggregation and social cohesion in animal groups (see for example [6], [7]). A computer

model mimicking animal aggregation was proposed by [3]. Following the work of [3] several

other computer models have appeared in the literature and led to creation of a new area in

computer graphics known as artificial life [3], [8]. At the same time, several researchers in the

area of statistical physics and complexity theory have addressed flocking and schooling behavior

in the context of non-equilibrium phenomena in many-degree-of-freedom dynamical systems and

self organization in systems of self-propelled particles [9]–[11]. Similar problems have become

a major thrust in systems and control theory, in the context of cooperative control, distributed

control of multiple vehicles and formation control; see for example [12]–[26]. The main goal of

the above papers is to develop a decentralized control strategy so that a global objective, such

as a tight formation with desired inter-vehicle distances, is achieved.

Reynolds [3] aimed at generating a computer animation model of the motion of bird flocks

and fish schools. The author called the generic simulated flocking creatures “boids”. The basic

flocking model consists of three simple steering behaviors which describe how an individual

agent maneuvers based on the positions and velocities its nearby flockmates:

• Separation: steer to avoid crowding local flockmates.

• Alignment: steer towards the average heading of local flockmates.

• Cohesion: steer to move toward the average position of local flockmates.

In Reynolds’ model, each agent has direct access to the whole scene’s geometric description, but

flocking requires that it reacts only to flockmates within a certain small neighborhood around

itself. The neighborhood is characterized by a distance and an angle, measured from the agent’s

direction of flight. Flockmates outside this local neighborhood are ignored. The neighborhood

could be considered a model of limited perception (as by fish in murky water), or just the the

region in which flockmates influence an agent’s steering. The superposition of these three rules

results in all agents moving as a flock while avoiding collisions.

Vicsek et al. [9] proposed a model which, although developed independently, turns out to

be a special case of [3] where all agents move with the same speed (no dynamics), and

only follow an alignment rule. In [9], each agent heading is updated as the average of the
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headings of the agent and its nearest neighbors, plus some additive noise. Numerical simulations

in [9] indicate a coherent collective motion, in which the headings of all agents converge to

a common value, a surprising result in the physics community that was followed by a series

of papers. The first rigorous proof of convergence for Vicsek’s model (in the noise-free case)

was recently given by [20]. Generalizations of this model include a leader follower strategy, in

which one agent acts as a group leader and the other agents would just follow the aforementioned

cohesion/separation/alignment rules, resulting in leader following.

Motivation for this work comes primarily from the need to theoretically explain the flocking

phenomenon of [3]. Flocking has been given many definitions [10], [12], [27], [28]; it is therefore

understood quite differently by different authors. In this work we interpret Reynolds flocking

model as a mechanism for achieving velocity synchronization and regulation of relative distances

between agents in the same group. Under the assumption of connected (but arbitrarily switching)

network topology, we construct local control laws that allow a group of mobile agents with double

integrator dynamics to align their velocities, move with a common speed and achieve desired

inter-agent distances while avoiding collisions with each other. We believe that these control

laws capture the essense of Reynolds model, both in terms of the nature of local interactions

and with respect to the overall objective.

We theoretically establish the stability properties of the interconnected closed loop system

by combining results from classical and nonsmooth control theory, robot navigation, mechanics

and algebraic graph theory. Stability is shown to rely on the connectivity properties of the

graph that represents agent interconnections, in terms of not only asymptotic convergence but

also convergence speed and robustness with respect to arbitrary changes in the interconnection

topology. Exploiting modern results from algebraic graph theory, these properties are directly

related to the topology of the network through the eigenvalues of the Laplacian of the graph.

Collision avoidance and pairwise distance convergence is ensured through the application of a

set of local artificial potential fields [29], [30]. Potential fields have been used frequently for

collision avoidance in decentralized multi-agent systems [12], [18], [23]. Similar results regarding

collective flocking behavior have been independently produced by [31], although the analysis

techniques, both in terms of collision avoidance and velocity synchronization, are fundamentally

different.

The approach in this paper is different from our earlier work [1], [2]: here we make a distinction
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between the sensing and the communication network. These two networks need not necessarily

coincide, a fact that further motivates a nonsmooth approach to cooperative control design and

analysis. Besides sensing and communication ranges not being equal, there are additional reasons

why the two networks should be distinguished:

The sensing network is understood as set of interactions between agents, based on information

that is conveyed by sensory data. Sensor range is typically limited, and therefore interactions are

local. Despite the fact that sensor-triggered agent interactions are time-varying, one may argue

that agents can predict when other agents will move beyond sensor range, and therefore, phase

out smoothly the effect of departing groupmates. Similarly, an approaching agent just within

sensor range could be regarded as a not so critical event (collision is not imminent) and the

effect of the closing distance could be taken into account gradually in decision making.

The communication network, however, described as the set of channels for exchange of

information between agents, may undergo unpredictable changes. Velocity information is not

easily sensed and will typically be communicated between mobile agents over radio channels. In

addition, bandwidth limitations may dictate a certain network topology for information exchange.

Just like in the case of internet connections, physical proximity may not imply network proximity.

Especially when distant agents are to exchange information, there could be no indication when

existing communication links will be lost, or new links established. Uncertainty calls for analysis

methods that can account for arbitrary changes, both in terms of link identity, and in terms of

switching frequency.

We start our analysis with the case where the two networks are the same and do not change

with time. Each agent computes its control input based on a fixed set of network “neighbors.”

In this case, the control inputs for the agent are smooth and the stability analysis is based on

the classic version of LaSalle’s invariance principle, facilitated by the algebraic properties of

the interconnection graph that allow the connectivity properties of the network to be reflected

on the convergence estimate. In the second part of the paper, we distinguish between the two

networks, and we allow the network topologies to switch with time. Sensing network changes

are accomodated by continuous control signals, but communication network switches introduce

control discontinuities and give rise to a discontinuous closed loop dynamical system. Nonsmooth

analysis is used to establish stability, and important results are reviewed briefly in the Appendix.
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II. PROBLEM FORMULATION

Consider a group of N mobile agents. Each mobile agent is a dynamical system moving on

the plane. Generalizations to three dimensions and more complex dynamics are possible, but for

simplicity we let each agent be described by a double integrator:

ṙi = vi (1a)

v̇i = ui i = 1, . . . , N , (1b)

where ri = (xi, yi)
T is the position of agent i, vi = (ẋi, ẏi)

T its velocity and ui = (ux, uy)
T its

acceleration inputs. Let the relative position vector between agents i and j be denoted rij = ri−rj .

Agent i is steered via its acceleration input ui which consists of two components (Figure 1):

ui = αi + ai . (2)

Rŷ

ẑ

θi

ri

x̂

ai

vi

αi

Fig. 1. The (planar) position of agent i is described by a vector ri in some inertial coordinate frame. Angle θi characterizes the

direction of its velocity vector, vi. A spherical sensing region of radius R, centered at agent i, represents the area in which other

agents are detected. The two components of the control input (2) can be thought of as “forces” (more accurately, accelerations)

acting along different directions on the plane of motion.

The first component of (2), αi aims at aligning the velocity vectors of all the agents and to

make them move with a common speed and direction. Component ai is thought to be a vector

in the direction of the negated gradient of an artificial potential function, Vi. Thus, ai contributes

to collision avoidance and cohesion in the group. In Figure 1, R denotes the (spherical) sensing

radius of agent i. Agents beyond this range are assumed not to affect ai.

In our interpretation of Reynold’s notion of flocking, a group of mobile agents is said to

flock, when all agents attain the same velocity vector, and distances between the agents are time
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invariant. In this context, relative distance regulation is understood as convergence to a steady

state, not necessarily common. In addition, we require that during the convergence phase agents

should not collide with each other. A collision is assumed to have occured when the coordinates

of two agents coincide. The problem here is to design the control input (2) so that in the group

of mobile agents, velocities are synchronized and pair-wise distances stabilized, giving rise to

an emergent cooperative behavior that resembles flocking. The control law sought for agent i is

required to be “local” in the sense that it should not depend on the state of all other groupmates.

III. COORDINATION STRATEGY

In this section we introduce local control laws of the form of (2), which cause the group

of mobile agents to flock asymptotically. The control laws are uniform for all agents and can

accommodate a large class of artificial potential functions. The controller component αi of agent

i requires velocity information from a subset of the agent’s flockmates denoted Ni. Velocity

information is thought to be transmitted over communication channels. This communication

network is represented by a graph:

Definition 1 (Communication graph) The communication graph, Gc = {V, Ec}, is an undi-

rected graph consisting of:

• a set of vertices (nodes), V = {1, . . . , N} ⊂ N, indexed by the agents in the group, and

• a set of edges, Ec = {(i, j) ∈ V × V | i ∼ j}, containing unordered pairs of nodes that

represent communication links.

The communication network neighbors of agent i are assumed to belong to a set Nc(i):

Nc(i) � {j | (i, j) ∈ Ec} ⊆ V \ {i}.

The second component of the control input for agent i, responsible for collision avoidance and

group cohesion, ai is computed using inter-agent distance information, provided by the agent

sensor(s). Agents in distances smaller than R are affecting each other control inputs, and each

such interaction is thought to have been caused by a link in the sensing graph of the group:

Definition 2 (Sensing graph) The sensing graph, Gs = {V, Es}, is an undirected graph con-

sisting of:
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• a set of vertices (nodes), V = {1, . . . , N} ⊂ N, indexed by the agents in the group, and

• a set of edges, Es = {(i, j) ∈ V ×V | ‖ri − rj‖ ≤ R}, containing unordered pairs of nodes

that represent sensing links.

Similarly, sensing network neighbors of agent i define a set Ns(i):

Ns(i) � {j | (i, j) ∈ Es} ⊆ V \ {i}.

The control input for agent i is now defined as:

ui = −
∑

j∈Nc(i)

(vi − vj)

︸ ︷︷ ︸
αi

−
∑

j∈Ns(i)

∇ri
Vij

︸ ︷︷ ︸
ai

. (3)

Function Vij depends on the distance between sensing neighbors and defined as follows,

Definition 3 (Potential function) Potential Vij is a differentiable, nonnegative, function of the

distance ‖rij‖ between agents i and j, such that

1) Vij(‖rij‖) → ∞ as ‖rij‖ → 0,

2) Vij attains its unique minimum when agents i and j are located at a desired distance.

Extension to the case where agent volume is captured by a sphere of radius Ra is immediate:

one needs to define Vij as a function of the distance between the agent spheres, and re-write it

as Vij(‖rij‖ − 2Ra).

Definition 3 ensures that minimization of the inter-agent potential functions implies cohesion

and separation in the group. An example of such a function is the following:

Vij =

⎧⎪⎨
⎪⎩
−a1‖rij‖ + log(‖rij‖) + a2

‖rij‖ , if ‖rij‖ < R

−a1R + log(R) + a2

R
, if ‖rij‖ ≥ R

, (4)

with a1 = 1
rmin+R

, a2 = R rmin

rmin+R
, the graph of which is shown in Figure 2. Having defined Vij

we can now express agent i total potential as:

Vi =
∑
j∈Ni

Vij(‖rij‖), (5)
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Fig. 2. Example of the inter-agent artificial potential function defined by (4); R = 2, rmin = 1.

IV. FIXED INTERCONNECTION TOPOLOGY

If the interconnection topology of the group is represented by a time invariant but connected

graph, then control laws (3) create an asymptotically stable equilibrium manifold on which the

group satisfies the conditions for flocking as described above. Each agent maintains the same set

of neighbors, implying that the neighboring graph is constant. The main consequence of time

invariance is that the mechanical energy of the group is differentiable, the agent control laws

are smooth and classic Lyapunov theory can be applied.

For analysis purposes, we will define a dynamical system derived from (1)-(2) by stacking

the position and velocity vectors. This system will have the vector (r̄, v) as its state, where

r̄ = (BKN
⊗ I)r is the stack vector of all relative positions between agents, r is the stack vector

of agent positions, v is the stack vector of all agent velocities, ⊗ denotes the Kronecker matrix

product, BKN
is the incidence matrix of the complete graph with N vertices KN , and I is the

identity matrix of appropriate dimension (in the sequel, we will use I2). The system dynamics
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are then expressed as:

˙̄r = (BKN
⊗ I2)v (6a)

v̇ = u, (6b)

where u is the stack vector of all agent inputs, defined in (2).

Consider the following nonnegative function:

W (r̄, v) =
1

2

N∑
i=1

(Vi + vT
i vi). (7)

Using LaSalle’s invariance principle we can show that the closed loop system of agents (6)

flocks, provided that the neighboring graph is connected:

Theorem 1 (Flocking in a fixed network) Consider a system of N mobile agents with dy-

namics (6), each steered by control law (3) and assume that the communication and sensing

graphs are connected. Then all agent velocity vectors become asymptotically the same, collisions

between agents are avoided, and the system approaches a configuration that locally minimizes

all agent potentials.

Proof: Since the sensing graph is connected, by definition there is a (sensing) path from

every vertex to every other vertex. The graph’s diameter, therefore, cannot be larger than N −1.

This implies that the largest distance between any two agents in the graph, (by the triangle

inequality) should be smaller than (N − 1)R. As a result,
∑

(i,j)∈V×V‖rij‖ ≤ N(N−1)2R
2

. Thus, r̄

always evolves in a closed and bounded set. Similarly, the level sets of W define compact sets

in the space of agent velocities: W ≤ c ⇒ ∑
i v

2
i ≤ c ⇒ ‖vi‖2 ≤ c. Consequently, the set

Ω = {(r̄, v) |
√
‖r̄‖2 + ‖v‖2 ≤ c +

N(N − 1)2R

2
} (8)

is compact. The derivative of W defined in (7) is:

Ẇ =
1

2

N∑
i=1

V̇i −
N∑

i=1

vT
i

(∑
j∼i

(vi − vj) + ∇ri
Vi

)
. (9)

Note however that due to the symmetric nature of Vij ,

1

2

N∑
i=1

V̇i =
∑
j∼i

ṙT
ij∇rij

Vij =
∑
j∼i

(ṙT
i ∇rij

Vij − ṙT
j ∇rij

Vij)

=
∑
j∼i

(ṙT
i ∇ri

Vij + ṙT
j ∇rj

Vij) =

N∑
i=1

ṙT
i ∇ri

Vi. (10)

February 2, 2006 DRAFT



SUBMITTED TO: IEEE TRANSACTIONS ON AUTOMATIC CONTROL 10

Thus, (9) simplifies to

Ẇ =

N∑
i=1

vT
i ∇ri

Vi −
N∑

i=1

vT
i

(∑
j∼i

(vi − vj) + ∇ri
Vi

)
= −

N∑
i=1

vT
i

∑
j∼i

(vi − vj) = −vT (Lc ⊗ I2)v,

where v is the stack vector of all agent (two dimensional) velocity vectors, Lc is the Laplacian

of the communication graph. Expanding the quadratic form involving the Kronecker product, Ẇ

can be written:

Ẇ = −vT (Lc ⊗ [ 1 0
0 0 ] + Lc ⊗ [ 0 0

0 1 ]) v = −vT
x Lcvx − vT

y Lcvy, (11)

where vx and vy are the stack vectors of the components of the agent velocities along x̂ and ŷ

directions (Figure 1), respectively.

For a connected communication graph, Lc is positive semidefinite and the eigenvector asso-

ciated with the single zero eigenvalue is the N-dimensional vector of ones. This means that

Ẇ is negative semi-definite, will only be zero whenever both vx and vy belong to span{1},

implying that all agent velocities have the same components and are therefore equal. It follows

immediately that ˙̄r = 0.

The negative semi-definiteness of Ẇ also ensures the invariant properties of Ω, by selecting c

to be equal to the value of W at initial time. In addition, it establishes collision avoidance since

boundedness of W implies boundedness for every Vij , and thus places a lower bound on all

relative distances ‖rij‖. Applying LaSalle’s invariance principle to the system described by the

vector field ( ˙̄r, v̇), it follows that if the initial conditions of the system lie in Ω, its trajectories

will converge to the largest invariant set inside the region S = {v | Ẇ = 0}. Note that Ω can be

made arbitrarily large, ensuring semi-global asymptotic stability of the invariant set. In S, the

agent velocity dynamics are

v̇ = −
[ ∇r1V1

...
∇rN VN

]
= −(Bs ⊗ I2)

⎡
⎣ ...

∇rij Vij

...

⎤
⎦ ,

where Bs is the incidence matrix of the sensing graph. The above, by a slight abuse of notation,

can be expanded to

v̇x = −Bs[∇rij
Vij]x, v̇y = −Bs[∇rij

Vij]y.

Thus, both v̇x and v̇y belong in the range of Bs. For a connected sensing graph, range(Bs) =

span{1}⊥ and therefore

v̇x, v̇y ∈ span{1}⊥.
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On the other hand, in the invariant set within S

vx, vy ∈ span{1} ⇒ v̇x, v̇y ∈ span{1},

which leads to contradiction unless

v̇x, v̇y ∈ span{1} ∩ span{1}⊥ ≡ {0}.

This means that the agents velocities do not change in steady state and that the potential V i of

each agent i is (locally) minimized.

Corollary 1 (Distance setpoint stabilization) If the sensing graph is a tree, then inter-agent

distances can be stabilized to desired setpoints.

Proof: For a tree, the number of edges is N − 1 and thus Bs is full rank. In this case,

(Bs ⊗ I2)

⎡
⎣ ...

∇rij
Vij

...

⎤
⎦ = 0 ⇒

⎡
⎣ ...

∇rij
Vij

...

⎤
⎦ = 0,

Let rd be the configuration where Vij attains its unique minimum. Then ∂Vij

∂‖rij‖ = 0 implies that

‖rij‖ = rd.

Corollary 2 (Convergence speed) Velocity synchronization is accelerated as as the algebraic

connectivity of the neighboring graph increases.

Proof: Let us decompose the velocities vx and vy into two components

vx = vxp ⊕ vxn , where vxp ∈ span{1}, vxn ∈ span{1}⊥,

vy = vyp ⊕ vyn , where vyp ∈ span{1}, vyn ∈ span{1}⊥.

Then from (11), since Lc = BcB
T
c we have that

Ẇ = −vT
xn

Lcvxn − vT
yn

Lcvyn .

For a connected communication graph Gc, BT
c is full rank in span{1}⊥ and therefore,

Ẇ ≤ −λ2(‖vxp‖2 + ‖vyp‖2) = −λ2‖vp‖2

where λ2 is the second smallest eigenvalue of the Laplacian, and ‖vp‖, expresses the magnitude of

velocity misalignments. It is known that the addition of a new edge in a graph generally increases

the eigenvalues of the Laplacian [32]. Hence, increasing the connectivity of the neighboring graph

results to faster convergence.
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V. SWITCHING INTERCONNECTION TOPOLOGY

One of the most interesting characteristics of the control scheme is that its stability is not

affected by changes in the communication network. In this section we relax the assumption that

communication network is fixed. Communication links between agents can be established or lost

arbitrarily, at any time. Since the αi compenent of the control law for agent i depends on its

communication network neighbors ((3)), topology switches will introduce discontinuous changes

in the closed loop dynamics of agent i.

The stability of the discontinuous dynamics will be analyzed using differential inclusions [33]

and nonsmooth analysis [34]. A brief review of nonsmooth analysis and stability is given in

the Appendix. In a switching interconnection topology, the agent dynamics can be expressed by

means of a differential inclusion:

ṙi = vi (12a)

v̇i ∈a.e K[ui] i = 1, . . . , N , (12b)

where K[·] is a differential inclusion (see Appendix) and a.e stands for “almost everywhere”.

The dynamical system which we will analyze for stability is derived from (12), in exactly the

same way as (6):

˙̄r = (BKN
⊗ I2)v (13a)

v̇ ∈a.e K[u], (13b)

where BKN
is the incidence matrix of the complete graph with N vertices, KN . Note that we

do not make any assumption on the uniqueness of the solutions of (13).

Stability analysis is performed in this case using the same Lyapunov-like function (7):

W (r̄, v) =
1

2

N∑
i=1

(Vi + vT
i vi).

and the same expression for the control input (3):

ui = −
∑

j∈Nc(i)

(vi − vj) −
∑

j∈Ns(i)

∇ri
Vij ,

only now, since the set Nc(i) can change arbitrarily, ui will be a discontinuous function of

time. The closed loop system, therefore, consists of a set of discontinuous differential equations,
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and stability analysis will be based on a nonsmooth version of LaSalle’s invariance principle

(Theorem 4 [35]).

We can now generalize Theorem 1 to the case where the commmunication topology switches

arbitrarily between connected communication graph; the assumption on the connectivity of the

communication graphs is essential in establishing the convergence of all velocities to a common

vector:

Theorem 2 (Flocking in networks with switching) Consider a system of N mobile agents

with dynamics (13), each steered by control law (3) and assume that at every time instant, the

communication and sensing graphs are connected. Then all pairwise velocity differences converge

asymptotically to zero, collisions between the agents are avoided, and the system approaches a

configuration that locally minimizes all agent potentials.

Proof: The fact that the system evolves in a compact set (defined in (8)) is derived from

the connectivity assumption on the sensing and communication graphs, exactly as in the proof

of Theorem 1. The invariant properties of Ω will be established in the sequel once W is shown

to be non-increasing.

The Lyapunov-like function W is still differentiable, but now its derivative along the system’s

trajectories is not a quantity that can be exactly evaluated at the switching instants. This is

because then we do not know exactly the value of v̇; we can only ensure that v̇ ∈a.e. K[u]. The

right hand side of the differential inclusion in (13) can be expanded as follows:

˙̄r = (BKN
⊗ I2)v

v̇ ∈a.e K[−(Lc ⊗ I2)v] −
( ∇r1V1

...
∇rN

VN

)
.

Let φv be an arbitrary element of K[−(Lc ⊗ I2)v]. The generalized derivative of W , along a

vector φ belonging in the set given by the right hand side of (13), will then be expressed as:

W ◦(r̄, v; φ) =
1

2

N∑
i=1

V̇i + vT φv −
N∑

i=1

vT
i ∇ri

Vi,

which, using (10), becomes:

W ◦(r̄, v; φ) =

N∑
i=1

vT
i ∇ri

Vi + vT φv −
N∑

i=1

vT
i ∇ri

Vi = vT φv. (14)
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Ryan’s Theorem (c.f. Appendix, Theorem 4) examines the worst case for the rate of change

of W :

m(r, v) = max {W ◦(r, v; φ) | φ ∈ (
v

K[u] )} = max
φv∈K[−(Lc⊗I2)v]

{vT φv}.

Theorem 1 in Reference [36] enables us to write:

vT K[−(Lc ⊗ I2)v] = K[−vT (Lc ⊗ I2)v],

From Definition 4 it follows that

m(r, v) ∈ max co{−vT (Lc ⊗ I2)v}.

For a connected communication graph Gc, Lc is positive semi-definite and therefore all quadratic

forms of the type −vT (Lc⊗I2)v are nonpositive, regardless of the topology of the graph. Convex

hulls of nonpositive numbers are nonpositive intervals, and thus m(r, v) cannot be negative. The

largest value it can have is zero. Rewriting vT as:

vT =
(
v1x v1y v2x v2y · · · vNx vNy

)
,

we have that

−vT (L ⊗ I2)v = vT
x Lcvx + vT

y Lcvy,

which implies that m(r, v) = 0 if and only

vx = cx1N vy = cy1N , (15)

where cx, cy ∈ R.

Applying Theorem 4 to the system described by the vector field ( ˙̄r, v̇), it follows that for

initial conditions in Ω, the Filippov solutions of the system converge to a subset of {v | vx, vy ∈
span{1}}. Equation (15) implies that for any two agents i and j,

ṙij = vi − vj = 0.

In the set {v | vx, vy ∈ span{1}} the acceleration dynamics reduces to

v̇ = (Bs ⊗ I2)

⎡
⎣ ...

(∇rij Vij)

...

⎤
⎦ ,
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which implies that both v̇x and v̇y belong to the range of the incidence matrix Bs of the sensing

graph Gs. For a connected sensing graph, range(Bc) = span{1}⊥ and therefore

v̇x, v̇y ∈ span{1} ∩ span{1}⊥ ≡ {0}. (16)

From the above we conclude that the potential Vi of each agent is minimized.

Maintaining connectivity in the group while the network topology is switching based on

the distance between the agents is a major issue. In the present analysis, this assumption

is instrumental in showing the stability of the flocking motion of the group. The nonsmooth

invariance theorem of Ryan [35], Theorem 4, does not require Ω to be compact, however the

compactness and invariance of Ω implies the necessary precompactness of the solutions. If

connectivity is lost, one cannot guarantee that rij ∈ Ω and thus stability may not be guaranteed.

VI. NUMERICAL SIMULATIONS

This section presents the results of a numerical implementation of the proposed control scheme

on a group of ten mobile agents. The number of agents in the group was kept that small for clarity

of presentation. We investigate both the case of fixed communication topology and the case of

where communication links switch arbitrarily. In both cases, sensing network links are distance

dependent. Convergence is verified in cases, and case related characteristics are identified.

The case of fixed communication topology is investigated first. A group of ten mobile agents

with dynamics (1) is initialized with random initial (x, y) positions in a rectangular area of

6.25 m2 centered at the origin. Velocities were also randomly selected with magnitudes in the

(0, 1) m/s range, and with arbitrary directions. Randomly generated adjacency matrices defined

connected sensing and communication graphs. Then the group motion evolves according to the

closed loop system (1)-(3), and successive snapshots of this evolution are captured in Figure 3,

for a time period of 100 simulation seconds. The particular time instant where the snapshot was

taken is recorded below each frame. In Figure 3 the position of the agents is depicted by black

dots and interconnections are represented by line segments connecting the agent locations. The

path of each agent is shown by a dotted line and agent velocities are given as small arrows,

which are scaled up at steady state to show how the vectors have been synchronized.

We next investigate a scenario where the communication topology changes arbitrarily. The

agents are randomly initialized within the same range of positions and velocities. The integration
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Fig. 3. Successive simulation time snapshots of flocking with fixed communication network topology. The figure on the upper

left corner shows the initial condition. The steady state is shown in the bottom right figure. The timestamp of every snapshot

is given on top of the corresponding figure.

period is now extended to 100 seconds to examine the effect of topology changes at steady
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state. Each call to the dynamic equation MATLAB function by the numerical integration function

(ode45) can initiate a random switch to a completely different connected communication graph.

Such switching happens with a given probability, but it is not otherwise restricted (for instance,

in terms of dwell time). Figure 4 describes the evolution of a group of ten agents, where the

communication topology is switching in the aforementioned manner. Once again, we depict

the communication edges in solid (green) line segments and the sensing edges in dotted (blue)

segments. Each snapshot shows a different communication graph, although the topology could

have undergone several changes between these two time instants. The rate of change of the

communication network can be seen in Figure 5. Figure 7 gives the time history of agent

velocities. Convergence is fast, probably because with the network neighbors changing, an agent

can have access to the velocities of a large set of its groupmates, rather than a restricted set

of constant neighbors. Frequent topology switchings produce transients, but stability and overall

convergence trend is evident.

Velocity synchronization in both cases is demonstrated in Figures 6-7. While Figures 3-4

have shown that all agents eventually move in the same direction, Figures 6-7 establish the

convergence of agent speeds as well.

VII. CONCLUSIONS

In this paper we introduce a local control law for a group of mobile agents that allows them to

stabilize their pairwise distances, avoid collisions and move as a coherent group having a common

velocity vector. Agents communicate their velocity vectors over a time-varying communication

graph and sense their relative distances to neighbors that are within a certain range. Each

agent control law is based on a combination of a component that aligns its velocities with the

groupmates it is communicating with, and an artificial potential-based component that regulates

distances with nearest neighbors. We show that the behavior induced by our control law is

robust to arbitrary changes in the sensing and communication networks, as long as these remain

connected during the motion. We prove that agent potential functions are locally minimized

and velocity vectors converge asymptotically to a common vector, by exploiting the algebraic

connectivity of the underlying sensing and communication graphs.
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Fig. 4. Successive simulation time snapshots of flocking with dynamic interconnection topology. The top left figure shows the

initial condition; bottom right gives the position after 100 simulation seconds. The time stamp of each snapshot is shown on

top of the corresponding figure.
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APPENDIX I

ALGEBRAIC GRAPH THEORY

Stability analysis of the group of agents builds around several results on algebraic graph theory.

This necessitates a brief introduction of related graph theoretic notation and terminology. The

interested reader is referred to [37] for details.
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An (undirected) graph G consists of a vertex set, V , and an edge set E , where an edge is an

unordered pair of distinct vertices in G. If i, j ∈ V , and (i, j) ∈ E , then i and j are said to be

adjacent, or neighbors and we denote this by writing i ∼ j. A graph is called complete if any

two vertices are neighbors. The number of neighbors of each vertex is its valency or degree. A

path of length r from vertex i to vertex j is a sequence of r + 1 distinct vertices starting with

i and ending with j such that consecutive vertices are adjacent. If there is a path between any

two vertices of a graph G, then G is said to be connected.

The valency matrix Δ(G) of a graph G is a diagonal matrix with rows and columns indexed

by V , in which the (i, i)-entry is the valency of vertex i. An orientation of a graph G is the

assignment of a direction to each edge, so that the edge (i, j) is now an arc from vertex i to

vertex j. We denote by Gσ the graph G with orientation σ. The incidence matrix B(Gσ) of an

oriented graph Gσ is the matrix whose rows and columns are indexed by the vertices and edges

of G respectively, such that the i, j entry of B(Gσ) is equal to 1 if edge j is incoming to vertex

i, −1 if edge j is outcoming from vertex i, and 0 otherwise. The symmetric matrix defined as:

L(G) = B(Gσ)B(Gσ)T

is called the Laplacian of G and is independent of the choice of orientation σ. It is known

that the Laplacian captures many interesting properties of the graph. Among those, is the fact

that L is always symmetric and positive semidefinite, and the algebraic multiplicity of its zero

eigenvalue is equal to the number of connected components in the graph. For a connected graph,

the n-dimensional eigenvector associated with the single zero eigenvalue is the vector of ones,

1n. The second smallest eigenvalue, λ2 is positive and is known as the algebraic connectivity of

the graph, because it is directly related to how the nodes are interconnected.

In what follows, we will use graph theoretic terminology to represent the interconnections

between the agents in the group. The connectivity properties of the induced graph will prove

crucial for establishing the stability of the flocking motion of the group.

APPENDIX II

NONSMOOTH ANALYSIS AND SYSTEM STABILITY

The purpose of this section is to briefly introduce the mathematical machinery related to

nonsmooth stability analysis. We begin with a definition of our notion of solutions of differential

equations with discontinuous right hand sides:
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Definition 4 ( [36]) Consider the following differential equation in which the right hand side

can be discontinuous:

ẋ = f(x) (17)

where f : R
n → R

n is measurable and essentially locally bounded and n is finite. A vector

function x(·) is called a solution of (17) on [t0, t1], where if x(·) is absolutely continuous on

[t0, t1] and for almost all t ∈ [t0, t1]

ẋ = K[f ](x)

where

K[f ](x) � co{ lim
xi→x

f(xi) | xi /∈ Mf ∪ M}

where Mf ⊂ R
n, μ(Mf) = 0, M ⊂ R

n, μ(M) = 0.

In the above, μ(·) denotes the measure of the set, and Mf the set where f is not differentiable.

The set M can be arbitrary.

According to this definition, a trajectory x(t) is considered a solution of the discontinuous

differential equation (17) if its tangent vector, where defined, belongs in the convex closure of

the limit of the vector fields defined by (17) in a decreasingly small neighborhood of the solution

point. Being able to exclude a set of measure zero, is critical since one can thus define solutions

even at points where the vector field in (17) is not defined.

A sligthtly more general definition of (maximal) solutions can be found in [35]:

Definition 5 ( [35]) Consider the autonomous initial-value problem

ẋ(t) ∈ X
(
x(t)

)
, x(t) ∈ G, x(t0) = x0, (18)

where G �= ∅ is an open subset of R
N . The set-valued map (x) �→ X(x) ⊂ R

N in (18) is

assumed to be upper semicontinuous on R × G, with nonempty, convex, and compact values.

This definition is sufficient to ensure that the solution is absolutely continuous on compact

subintervals I ∈ R (x(t) ∈ AC(I; G)). Ryan defines solutions to be maximal if they cannot be

extended any further in time:

Definition 6 ( [35]) A solution of (18) is said to be maximal if it does not have a proper right

extension which is also a solution of (18).
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Then, it can be shown that all solutions of (18) can be thought to be maximal:

Proposition 1 ( [35]) Every solution of (18) can be extended to a maximal solution.

A maximal solution is called precompact if it always stays in the closure of G:

Definition 7 ( [35]) A solution x ∈ AC([t0, ω); G) of (18) is precompact if it is maximal and

the closure cl
(
x([t0, ω))

)
of its trajectory is a compact subset of G.

Lyapunov stability has been extended to nonsmooth systems [38], [39]. Establishing stability

results in this framework requires working with generalized derivatives [34], whenever classical

derivatives are not defined.

Definition 8 ( [34]) Let f be Lipschitz near a given point x and let w be any vector in a Banach

space X . The generalized directional derivative of f at x in the direction w, denoted f ◦(x; w)

is defined as follows:

f ◦(x; w) � lim sup
y→x
t↓0

f(y + tw) − f(y)

t

The generalized gradient, on the other hand, is generally a set of vectors, which reduces to the

single classical gradient in the case where the function is differentiable:

Definition 9 ( [34]) The generalized gradient of f at x, denoted ∂f(x), is the subset of X ∗

given by:

∂f(x) � {ζ ∈ X∗ | f ◦(x; w) ≥ 〈ζ, w〉, ∀w ∈ X}

In the special case where X is finite dimensional, we have the following convenient characteri-

zation of the generalized gradient:

Theorem 3 ( [40]) Let x ∈ R
n and let f : R

n → R be Lipschitz near x. Let Ω be any subset of

zero measure in R
n, and let Ωf be the set of points in R

n at which f fails to be differentiable.

Then

∂f(x) � co{ lim
xi→x

∇f(xi) | xi /∈ Ω, xi /∈ Ωf}

A weakly invariant set is defined to be the set where at least one of the (possibly multiple)

maximal solutions of (18) stays forever in the set:

February 2, 2006 DRAFT



SUBMITTED TO: IEEE TRANSACTIONS ON AUTOMATIC CONTROL 25

Definition 10 ( [35]) Relative to (18), S ⊂ R
N is said to be weakly invariant set if, for each

x0 ∈ S ∩ G, there exists at least one maximal solution x ∈ AC([0, ω); G) of (18) with ω = ∞
and with trajectory x([0, ω)) in S.

Shevitz and Paden [38] proposed a nonsmooth version of LaSalle’s invariance principle,

and Bacciotti and Ceragioli [39] have given an alternative nonsmooth characterization of the

invariance principle which also applies to the case where uniqueness of solutions cannot be

guaranteed. Here, we choose to apply the invariance principle introduced by [35] since, not only

does it not require uniqueness of solutions, but also lifts the regularity requirement from the

Lyapunov-like function.

Theorem 4 ( [35]) Let V : G → R be locally Lipschitz. Define

m : G → R, z �→ m(z) � max{V ◦(z; φ) | φ ∈ X(z)}.

Suppose that U ⊂ G is non-empty and that m(z) ≤ 0 for all z ∈ U . If x is a precompact

solution of (18) with trajectory in U , then for some constant c ∈ V (cl(U) ∩ G), x approaches

the largest weakly invariant set in Σ ∩ V −1(c), where

Σ = {z ∈ cl(U) ∩ G | m(z) ≥ 0}.

In the above theorem, the invariant set is defined more generally, but this does not restrict our

analysis. In essence, it allows the generalized time derivative of V to be positive on the boundary

of U . From Definitions 9 and 4, one can see that m(z) is nothing but the maximal element in
˙̃V of [38], if V turns out to be regular.
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