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Abstract. RDF Graphs are sets of assertions in the form of subject-
predicate-object triples of information resources. Although for simple
examples they can be understood intuitively as directed labeled graphs,
this representation does not scale well for more complex cases, particu-
larly regarding the central notion of connectivity of resources.
We argue in this paper that there is need for an intermediate representa-
tion of RDF to enable the application of well-established methods from
Graph Theory. We introduce the concept of Bipartite Statement-Value
Graph and show its advantages as intermediate model between the ab-
stract triple syntax and data structures used by applications. In the light
of this model we explore issues like transformation costs, data/schema-
structure, the notion of connectivity, and database mappings.
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1 Introduction

The World Wide Web was originally built for human consumption, and although
everything on it is machine-readable, the data is not machine-understandable
[LS99]. The Resource Description Framework, RDF [MSB04], is a language to ex-
press metadata about information resources on the Web proposed by the WWW
Consortium (W3C). It is intended that this information is suitable for processing
by applications and thus is the foundation of the Semantic Web [BL98]. RDF
statements are triples consisting of a subject, a predicate and an object. The
subject is the resource being described, the predicate is some kind of property
and the object is a property value. A set of RDF triples is called a RDF Graph,
a term formally introduced by the RDF documentation [KC04] and motivated
by the underlying “graph data model”.

The graph-like nature of RDF is indeed intuitively appealing, but a naive
formalization of this notion presents problems. Currently, the RDF specification
documents do not distinguish clearly among the term “RDF Graph”, the math-
ematical concept of graph, and the graph-like visualization of RDF data. The
definition provided in the RDF Concepts and Abstract Syntax document [KC04]
can be understood as a representation scheme of RDF Graphs by means of di-
rected labeled graphs (see an example in figure 1). This notion is used extensively



�� ���� ��Property

�� ���� ��last name

type

00

range

��

domain //�� ���� ��Artist

type

&&LLLLLLLLLL
�� ���� ��creates

type

OO

domain
oo

range
//�� ���� ��Artifact

type

xxqqqqqqqqqq
�� ���� ��has style

range

��

domainoo

type

nn

�� ���� ��Class�� ���� ��Literal

type

//

�� ���� ��Painter

type

88

subClassOf

OO

�� ���� ��paints

type

[[

subProperty

>>

domainoo range //�� ���� ��Painting

type

ff

subClassOf

OO

�� ���� ��Style

type

oo

�� ���� ��“Rivera”

type

OO

�� ���� ��rivera
last nameoo paints //

type

OO

�� ���� ��zapata

type

OO

�� ���� ��“Picasso”

type

BB

�� ���� ��picasso
last nameoo

type

BB

paints //�� ���� ��guernica

type

\\

has style //�� ���� ��Cubism

type

\\

Fig. 1: The museum example. A non-standard graph where edge labels and
nodes can represent the same object. For example, paints occurs as a node
as well as arbitrarily often in the role of edge labels

throughout the RDF documentation, especially for the visualization of simple
examples. This representation, based on the idea of representing a triple (a, b, c)

by a
b−→ c, produces labeled graphs where resources possibly can occur as edge

labels as well as node labels. This is inconvenient from several points of view.
Allowing such multiple occurrences of resources jeopardizes one of the most im-
portant aspects of graph visualization, which is the implicit assumption that the
complete information regarding a node in a graph is obtained by its place in the
drawing and its incident edges. Nevertheless, the essential drawback of the rep-
resentation mentioned above is the fact that it is not a standard mathematical
model to which we can apply well-established techniques. In fact, when reason-
ing formally over RDF data, e.g. as described in the RDF Semantics document
[Hay04], one has to operate with sets of triples. Although well-defined formally,
a set of triples is a model that due to multiple occurrences of the same resource
in the data structure leads to undesirable redundancies and does not capture the
graph-like nature of RDF data, particularly regarding connectivity of resources.

We propose to model RDF Graphs as bipartite graphs. RDF Graphs are nat-
urally hypergraphs, and hypergraphs are bipartite graphs. (Bipartite) graphs are
well known mathematical objects which, as formal representation, have several
advantages over the triple representation or the directed labeled graph represen-
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tation discussed above. Among these advantages are: algorithms for the visualiza-
tion of data for humans [dBETT94,Mäk90], a formal framework to prove prop-
erties and specify algorithms, libraries with generic implementations of graph
algorithms, and of course, techniques and results of graph theory. Representing
RDF data by standard graphs could have several other advantages by reducing
application demands to well-studied problems from graph theory. A few exam-
ples at hand: Difference between RDF Graphs: When are two RDF Graphs the
same? [BL01,Car01] Entailment: Determining entailment between RDF Graphs
can be reduced to graph mappings: Is graph A isomorphic to a subgraph of graph
B? [Hay04]. Minimization: Finding a minimal representation of a RDF Graph
is important for compact storage and update in databases [GHM04]. Seman-
tic relation between information resources: metrics and algorithms for semantic
distance in graphs [AMHAS03,RE03]. Clustering [CFLZ03,ZHD+01] and graph
pattern mining algorithms [VGS02] to reveal regularities in RDF data.

Contributions. In this paper we provide a formal graph-based intermediate
model of RDF, which intends to be more concrete than the abstract RDF model
to allow the exploit of results from graph theory, but still general enough to allow
specific implementations. The contributions are the following: 1. We present a
class of bipartite graphs representing an intermediate model for RDF. 2. We
study properties of this class of graph and the transformation of the mapping of
RDF data into them and vice versa. 3. We explore formalizations of the intuitive
notion of “semantic relation” between resources in RDF specifications and study
the structure of a RDF specification in terms of its schema and its raw data. 4.
We discuss how these notions can be applied by looking at current storage and
retrieval systems for RDF.

Related Work. There is little work on formalization of the RDF Graph model
besides the guidelines given in the official documents of the W3C, particularly
RDF Concepts and Abstract Syntax [KC04] and RDF Semantics [Hay04]. There
are works about algorithms on different problems on RDF Graphs, among them
T. Berners-Lee’s discussion of the Diff problem [BL01] and J. Carroll’s study
of the RDF Graph Matching Problem [Car01]. Although not directly related to
graph issues, there is work on the formalization of the RDF model itself that
touches our topic: a logical approach that gives identities to statements and so
incorporates them to the universe [YK02], a study oriented to querying that
gives a formal typing to the model [KAC+02] and results on normalization of
RDF Graphs [GHM04]. Recently, in the field of RDF storage and querying the
graph nature of RDF has gained interest. We survey this area in section 5.

2 Preliminaries

RDF. The atomic structure of the RDF language is the statement. It is a triple,
consisting of a subject, a predicate and an object. These elements of a triple
can be URIs (Uniform resource Identifiers), representing information resources;
literals, used to represent values of some datatype; and blank nodes, which rep-
resent anonymous resources. There are restrictions on the subject and predicate
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of a triple: the subject cannot be a literal, and the predicate cannot be a blank
node. Resources, blanks and literals are sometimes referred to as values.

A RDF Graph is a set of RDF triples. Let T be a RDF Graph. Then univ(T ),
the set of all values occurring in all triples of T , is called the universe of T ; and
vocab(T ), the vocabulary of T , is the set of all values of the universe that are
not blank nodes. The size of T is the number of statements it contains and is
denoted by |T |. With subj(T ) (resp. pred(T ), obj(T )) we designate all values
which occur as subject (resp. predicate, object) of T .

Let V be a set of URIs and literal values. We define RDFG(V ) := {T | T is
RDF Graph and vocab(T ) ⊆ V }, i.e. the set of all RDF Graphs with a vocab-
ulary included in V . There is a distinguished vocabulary, RDF Schema [BG04]
that may be used to describe properties like attributes of resources (traditional
attribute-value pairs), and to represent relationships between resources. It is ex-
pressive enough to defines classes and properties that may be used for describing
groups of related resources and relationships between resources.

Example RDF Graph 1 The prefix:suffix notation abbreviates URIs. The
wos prefix identifies a “Web of Scientists” vocabulary (rdfs is RDF Schema)

1: <wos:Ullman> <wos:coauthor> <wos:Aho>
2: <wos:Greibach> <wos:coauthor> <wos:Hopcroft>
3: <wos:coauthor> <rdfs:subPropertyOf> <wos:collaborates>
4: <wos:Greibach> <wos:researches> <wos:topics/formalLanguages>
5: <wos:Valiant> <wos:researches> <wos:topics/formalLanguages>
6: <wos:Erdös> <wos:researches> <wos:topics/graphTheory>
7: <wos:Aho> <wos:collaborates> <wos:Kernighan>
8: <wos:Hopcroft> <wos:coauthor> <wos:Ullman>

Graphs. A graph is a pair G = (N,E), where N is a set whose elements are
called nodes, and E is a set of unordered pairs {u, v}, the edges of the graph. Two
edges are said to be incident if they share a node. Observe that the definition
implies that the sets N and E are disjoint. A graph G is a multigraph if E is a
multiset, thus permitting multiple edges between two nodes. A graphG = (N,E)
is said to be bipartite if N = U ∪ V, U ∩ V = ∅ and for all {u, v} ∈ E it holds
that u ∈ U and v ∈ V . A directed graph is a graph where the elements of E are
ordered, i.e. E ⊆ N ×N .

In order to express more information, a graph can be labeled. A graph (N,E),
together with a set of labels Le and an edge labeling function le : E → Le is an
edge-labeled graph. A graph is said to be node-labeled when there is a node label
set and a node labeling function, as above. We will write (N,E, ln, le).

The notions of path and connectivity will be important in what follows. A
path is a sequence of edges e1, . . . , en with each edge ei is incident to ei−1, for
i ∈ [2, n]. The label of the path is le(e1) · · · le(en). Two nodes x, y are connected
if there exists a path e1, . . . , en with x ∈ e1 and y ∈ en. The length of a path is
the number of edges it consists of.

RDF as Directed Labeled Graphs. Now we can formalize the definition of
directed labeled graph corresponding to an RDF Graph T , as described in [KC04],
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Fig. 2: RDF Graph 1 in page 4 represented by a directed labeled graph.
Labels have been abbreviated to their first letters.

as the multigraph (N,E, ln, le), where N = {vx : x ∈ subj(T ) ∪ obj(T )}, and
ln(vx) = x, and E = {(s, o) : (s, p, o) ∈ T}, and le(s, o) = p. Figure 2 presents
an example of such a graph. Observe that the set of edge labels and node labels
might not be distinct. In the introduction we mentioned the problems that could
arise out of this.

E = { { coauthor, subPropertyOf, col-
laborates }, { Ullman, coauthor, Aho },{
Greibach, coauthor, Hopcroft } }

V= { collaborates, coauthor, subProper-
tyOf, Aho, Greibach, Hopcroft, Ullman }
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Fig. 3: Example of a simple 3-uniform hypergraph. This hypergraph repre-
sents the first three statements of the example on page 4

Hypergraphs. Informally, hypergraphs are systems of sets which extend the
notion of graphs allowing edges to connect any number of nodes. For back-
ground see [Duc95]. Formally, let V = {v1, . . . , vn} be a finite set, the nodes. A
hypergraph on V is a pair H = (V, E), where E is a family {Ei}i∈I of subsets of
V . The members of E are called edges. A hypergraph is simple if all edges are
distinct. A hypergraph is said to be r-uniform if all edges have the cardinality r.
A r-uniform hypergraph is said to be ordered if the occurrence of nodes in every
edge are numbered from 1 to r.

Hypergraphs can be described by binary edge-node incidence matrices (as
any graph). In this matrix rows correspond to edges, columns to nodes: entry
mi,j equals 1 or 0, depending on whether Ei contains node nj or not. To the
incidence matrix of a hypergraph H = (V, E) corresponds a bipartite incidence
graph B = (NV ∪NE , E), which is defined as follows. Let NV be the set of node
names of H which labeled the columns of the matrix, and NE the set of edge
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names labeling its rows. Then E contains an edge {vi, ej} for each vi ∈ NV , ej ∈
NE where the matrix entry mi,j is 1. The obtained graph B can be read to have
an edge {v, e} exactly when the hypergraph node represented by v is member of
the hypergraph edge represented by e. It is evident that B is bipartite. Figure 4
shows the incidence matrix of a hypergraph and the bipartite incidence graph
derived from it.
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Fig. 4: Incidence matrix representing the hypergraph of Example 3 and the
corresponding incidence graph. In the case of an ordered hypergraph, matrix
entries will indicate the position of the occurence of the node in the edge

3 Bipartite Statement-Value Graphs

Deriving Bipartite Graphs from Hypergraphs. One of the major problems
encountered in trying to model RDF Graphs as classical graphs is the fact that an
edge or labeled edge cannot represent the ternary relation given by a RDF triple.
Therefore it is natural to turn the attention to graphs with 3-node-connecting
edges instead of classical 2-node edges, that is, hypergraphs.

Proposition 1. Any RDF Graph can be represented by a simple ordered 3-
uniform hypergraph. Every RDF triple corresponds to a hypergraph edge, the
nodes being the subject, predicate and object in this order. The node set of the
hypergraph is the union of all the edges.

The converse of the proposition also holds when imposing constraints on the
occurrences of blank nodes and literals: blank nodes may not be predicates and
literals may not serve as subjects or predicates.

As stated in the preliminaries section, hypergraphs can be represented by
incidence matrices where membership of a node in a edge is marked with a ‘1’.
In the case of the hypergraph representing a RDF Graph, the nodes of an edge
are ordered and we label them by S, P or O to represent the role (Subject,
Predicate, or Object) of the information resource. Hence, when deriving the
bipartite incidence graph of this incidence matrix, an edge will be added for every
S, P, O entry of the matrix, and this edge will be labeled with the corresponding
character. The only difference between the graph derived from the incidence
matrix of any hypergraph and a RDF Graph hypergraph is the fact that each
edge has one of three labels.

Mapping RDF to Bipartite Statement-Value Graphs. This section presents
a direct transformation mapping RDF Graphs to bipartite graphs. Let B be the
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set of bipartite labeled graphs G = (V ∪St, E, ln, le), V ∩St = ∅, where each edge
in E connects a node in V with a node in St, and le : E → Le and ln : V → Ln
are labeling functions. The elements of V are called the value nodes and those
of St the statement nodes.

Definition 1 (BSVG). Let T be a RDF Graph. Then we define a map β :
RDFG→ B as follows: β(T ) = (V ∪St, E, ln, le) ∈ B, is the Bipartite Statement-
Value Graph (BSVG) representing T , with V = {vx : x ∈ univ(T )}; St = {stt :
t ∈ T}; and the set of edges E is built as follows: for each triple t = (x, y, z) ∈ T
add the edges {stt, vx} with label S, {stt, vy} with label P , and {stt, vz} with label
O. The labeling of the nodes is given by:

ln(vx) :=

{
(x, dx) if x is literal (dx is the datatype identifier of x)

x else

Note that β(T ) is a 3-regular bipartite graph, because the degree of each node
in St is 3. This representation incorporates explicitly the statements as nodes
in the graph. BSVGs are well-defined and one can go back and forth between T
and β(T ):

Proposition 2. For each RDF Graph T there is a unique Bipartite Statement-
Value Graph β(T ) representing it, and vice versa. Moreover, there exists a func-
tion β−1 : β(RDFG)→ RDFG satisfying β−1(β(T )) = T .

The graph created from T has reasonable size, and can be obtained efficiently:

Proposition 3. Let T be a RDF Graph and β(T ) = (V ∪ St, E, ln, le). Then:

1. β(T ) can be computed in time O(|T | lg |T |).
2. The graph β(T ) is bounded as follows: |St| = |T |, |V | = | univ(T )| and
|E| = 3|T |. �� ���� ��sP��������
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Fig. 5: The Bipartite Statement-Value Graph of the RDF Graph on page 4.
Statement nodes are represented by circles and edge labels S, P, O indicate
their subject, predicate and object
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Fig. 6: BSVG of the museum example. Edge labels have been omitted for
clarity. Drawing levels indicate the order of the values nodes. At the bottom
level are values which never occur as predicates: class instances like (bold
letters indicate the abbreviations) the literal “Rivera”, rivera (resource),
Zapata, classes such as Painting, Artifact, Artist, Painter, Property, and
the meta-class Class. Simple properties include has Name and paints, and
properties of properties are subProperty, domain, range and type. Declara-
tions with property “type” are shown in figure 7
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Fig. 7: Type declarations of the BSVG in figure 6

Structure of RDF Graphs. RDF Graphs consist of values and statements. A
first coarse-grained division of the statements is the following: those that define a
schema, and those that are data structured under this schema (see figure 1 – the
dotted line represents this division). Although RDF does not distinguish between
schema-defining and data statements, this distinction is natural when considering
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storage [MAYU03] and querying [KAC+02] in databases. Unfortunately, a plain
discrimination between the data and schema parts of a RDF specification is
not always possible. Moreover, features like extensibility of specifications and
reification make this divide difficult to grasp formally. In the following we present
two approaches to this issue.

Definition 2. A data subgraph of a RDF Graph T is a maximal subgraph T ′

satisfying (subj(T ′) ∪ obj(T ′)) ∩ pred(T ′) = ∅. The schema subgraph associated
to T ′ is T \ T ′.

Notice that a RDF Graph T does not have a unique data-subgraph, e.g. con-
sider {(a, b, c), (b, d, e)} where each statement alone is a data subgraph. Moreover,
a RDF Graph could have exponentially many different ones.

An alternative approach is to decompose the RDF Graph T in logical levels.

Definition 3. Let T be a RDF Graph. Define Vi(T ) and Stj(T ) by mutual re-
cursion as follows: V0(T ) is the set of values of T that are not predicates, Vn(T ) is
the set of values of T that are predicates of statements in Stn(T ), and Stn+1(T ) is
the set of statements of T whose predicate and object are elements of

⋃
j<n Vj(T ).

The order of T is the maximum n such that Vn−1 is not empty.
T is stratified if univ(T ) =

⋃
j≥0 Vj(T ).

Example (Stratification).

– T = {(a, a, b)} cannot cannot be stratified. (For example the axiomatic triple
(rdf:type, rdf:type, rdf:Property)). V0(T ) = {b} and Vj(T ) = ∅ for
j > 0.

– Reification of a triple (a, b, c) is stratified (see figure 8).
– The museum example (figure 1) can be logically partitioned in three levels

(see figure 6).

Proposition 4. T is not stratified iff in β(T ) there is a cycle from a value node
with label [(S ∪O)P (SO ∪ OS)∗]∗.
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Although the complete axiomatic specification of RDF is not stratified (see
figure 9), most RDF data currently found in practice is stratified – if RDF ax-
iomatic triples are not considered – and has small order (no bigger than 3). Also,
if T is stratified, the graph obtained by reifying each of its triples is stratified.
However, the union of two stratified RDF Graphs is not necessarily stratified.

4 Connectivity of RDF Data

A RDF Graph expresses more information than the sum of the meanings of the
individual statements it contains. This section introduces the notion of connec-
tivity, which is essential to capture semantic relations between resources. The
importance of this notion for processing RDF data has been argued in several
contexts [GLMB98,KCP,HBEV04,MAYU03].�� ���� ��res��������
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Fig. 10: Representing statements 4-6 of the RDF Graph on page 4

The intuitive notion of “connected resources” in an RDF Graph can be de-
fined as follows: Two resources x and y of a RDF Graph T are connected if there
exists a sequence of RDF triples (t1, t2, . . . , tn), tk = (sk, pk, ok) ∈ T , for which
it holds that x ∈ {s1, p1, o1}, y ∈ {sn, pn, on} and for all i < n, {si, pi, oi} ∩
{si+1, pi+1, oi+1} 6= ∅. This notion corresponds precisely to the well established
notion of connectivity in graphs:

Proposition 5. Let T be a RDF Graph. The resources x, y are connected in T
iff there exists a path in β(T ) between the corresponding nodes vx and vy.

Example. Consider figure 10: Greibach and Valiant are connected through a
path showing their common study of formal language theory (FLT). Neverthe-
less, there are also irrelevant relations resulting out of the existence of paths:
Erdös and Greibach are connected by a path via the node res.

As we see, the above notion is of limited use: Not all paths between two
resources are “meaningful” The next definition attempts to capture such paths.
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Definition 4. Let T be a RDF Graph. Given two resources u, v, there is an
horizontal path between them if there is a path in β(T ) from u to v whose label
does not contain P . The path is oriented if its label is in (SO)∗. The path is
cycle-free if it does not contain cycles.

If we compare to relational databases, the notion of horizontal path corre-
sponds roughly to values of tuples linked via joins. Paths which contain pred-
icate labels, i.e. “vertical” paths, are paths passing through the schema of the
database, giving usually less relevant relationships unless they have special prop-
erties, like transitivity. For example, the two RDF Schema transitive predicates,
subPropertyOf and subClassOf, give rise to “vertical” paths.�� ���� ��sP��������
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Fig. 11: Example for the transitive closure computation for coauthorship

Example. Sometimes it is desirable to query for paths of arbitrary length – ex-
amples include the “citation tree” to measure the influence of a publication or
people related by coauthorship to each other (e.g. Erdös number computation).
When statements (s, p, o) formulate that (s, o) are instances of the relation p,
this amounts to computing the transitive closure of p. Figure 11 depicts a simple
example showing a computation of the transitive closure of coauthorship. Con-
sider the node coauthor, find its P-neighbors (dashed lines), and look for (SO)∗

paths among the children (curly lines).

5 RDF Graphs and Databases

RDF database technology is very recent from almost every point of view. The
main challenges it faces are the features not present in traditional databases.
Examples of this are a variable schema, the type discipline, restrictions on class
inheritance and type membership, etc. Nevertheless, the main issue is probably
the graph-like flavor of data and queries: connectivity, paths, distance, aggregate
information like degree (of a node). Additional important issues to consider are
the support for data (graph) mining and processing.

Today there are several systems for storing and querying RDF (see [PG04]
and [HBEV04]). Also there are systems that have several database features, e.g.
transactional systems like Kowari 3. The majority of them –for which documen-

3 kowari:metastore, http://www.kowari.org/
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tation is available– use mappings to the relational model plus implementation
decisions to improve the performance. To illustrate the point, we will briefly
describe two of the most popular and best documented, Jena and Sesame.

Jena and Sesame. Jena’s original design (Jena-1) used two alternatives ap-
proaches to store an RDF Graph: (1) Three tables: one for statements, one for
literals and one for resources; The main problem was the heavy use of joins to
answer queries. (2) One statement table, with indexes by subject, by predicate
and by object. Experience with Jena-1 lead to a more simple schema. Essentially,
in Jena-2 [WSKR03] triples are stored into a statement table. Space consump-
tion is optimized using compression of common URI prefixes and pointer to long
strings. Also, there is a special treatment of common statement patterns (CSP).
Such patterns are the result of high-level RDF constructs such as bags, sequences
or reifications, and patterns induced from regularities in the user data.

One weakness of the previous system is that it does not automatically in-
corporates the semantics of RDFS vocabulary. Sesame [BKvH02] concentrates
on RDFS-awareness. It uses the SeRQL query language, which incorporates
transparently the RDFS vocabulary. The concrete data storage is implemented
differently according to the underlying DBMS. For example, for PostgreSQL,
which support class hierarchies, the RDF data is stored by property and by
subject/object-value into a hierarchy of tables. For MySQL, RDFS information
is stored in separate tables. All RDF data is stored into a RDF Statement table.

Storing RDF as Explicit Graphs. Analyzing the mapping of Jena and
Sesame in the light of our model, on can conclude that these implementations
are essentially direct storing of the BSVG of the corresponding RDF data. Ver-
sion (1) of Jena stores in one table V and in other St. In version (2), the indexes
correspond to group all edges labeled S, all edges labeled P , and all edges labeled
O.

We claim that one could refine these models by taking advantage of the
structure of the BSVG graph. Moreover, due to the graph-like nature of most
queries, the optimization process of queries should be done using the well es-
tablished techniques from graph theory for paths and connectivity. On the same
lines, other graph theoretic problems, like graph pattern mining are important
for storage techniques, e.g. CSP in Jena [WSKD03]. Here bipartite Clustering
such as yahoo [CFLZ03] could be of much use. Similarly, efficient database in-
dexing through pattern mining [GW97] and improving database storage through
pattern mining [DFS99].

We argued that a RDF Graph’s semantic relies very much on the connectivity
of the resources described, which are not taken into account in a mere triple
storage. One of the main features of a query language for RDF was expressed
in the classic position paper [GLMB98] by saying that it should be based on
the simple mechanism of subgraph matching, being the “simple graph traversal”
one of its key features. In the database literature has been studied the problem
of storing graphs in databases to be able to answer efficiently typical path-
like and graph-like queries [Güt94], as well as graph traversal query language
extensions [MS90]. With the emergence of unstructured data and XML, their
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tree-like nature of data gave new impetus to this line of research, for example,
query languages with path expressions [MW89].

6 Conclusions

We introduced a representation of RDF Graphs in terms of classical bipartite
graphs which highlights the graph-nature of RDF, and permits the direct appli-
cation of graph libraries. We presented preliminary results about the structure
and lines of development of the model. We argued the advantages of the model
compared to the triple representation and to the directed labeled graph repre-
sentation used currently by default.

We are using the model to approach diverse algorithmic problems of RDF
databases, particularly graph-like notions in querying and storage. Future work
includes refinement of the BSVG model and aspects of visualization.
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