Signature File Methods
for Semantic Query Caching

Boris Chidlovskii! and Uwe M. Borghoff?

! Xerox Research Centre Europe, Grenoble Laboratory
6, Chemin de Maupertuis, F-38240 Meylan, France
childovskii@xrce.xerox.com
2 Institut fiir Softwaretechnologie, Fakultit fiir Informatik
Universitat der Bundeswehr Minchen, D-85577 Neubiberg, Germany
borghoff@informatik.unibw-muenchen.de

Abstract. In digital libraries accessing distributed Web-based biblio-
graphic repositories, performance is a major issue. Efficient query pro-
cessing requires an appropriate caching mechanism. Unfortunately, stan-
dard page-based as well as tuple-based caching mechanisms designed for
conventional databases are not efficient on the Web, where keyword-
based querying is often the only way to retrieve data. Therefore, we
study the problem of semantic caching of Web queries and develop a
caching mechanism for conjunctive Web queries based on signature files.
We propose two implementation choices. A first algorithm copes with the
relation of semantic containment between a query and the corresponding
cache items. A second algorithm extends this processing to more com-
plex cases of semantic intersection. We report results of experiments and
show how the caching mechanism is successfully realized in the Knowl-
edge Broker system.

1 Introduction

Digital libraries operating in a networked environment process user queries by
contacting heterogeneous Web repositories that provide bibliographic data in
particular domains. Such systems invoke so-called wrappersto convert user queries
into the target query language, and to control the return flow of data from these
servers [19-21]. As data are transferred over the network in HTML /XML format,
the wrappers also extract answer documents from the retrieved HTML /XML
files before they report the final answers (often locally pre-filtered) to the user.
As in any client-server system, high performance in such a networked digi-
tal library is often reached by efficient utilization of computational storage re-
sources at the client sites. In the networked environment, where data from remote
servers are brought to clients on-demand, local client memory is largely used to
cache data and minimize future interaction with the servers. This data caching
is particularly important in Web-based digital libraries; as network traffic and
overloaded servers can lead to long delays in answer delivery. As standard page
caching is not possible on the Web, and tuple-caching has certain limitations,

much effort has been spent to cache user queries and corresponding answers
(instead of pages or tuples) for possible future reuse [4,9,13].

Query caching is particular advantageous when the user of a digital library
refines a query several times, for example, by adding or removing a query term.
In this case, many of the answer documents may already be cached and can be
delivered to the user right away.

A typical query to a Web data repository i1s a conjunction of terms. Each
term in the query is a keyword, possibly negated with the operator NOT, and
applied to one or more attributes (title, author, etc.). In most Web repositories
allowing the search over the site contents, the operator NOT is equivalent to AND
NOT to force a query to contain at least one non-negated term.

Semantic caching. Semantic caching manages the client cache as a collection
of semantic regions; access information is managed and cache replacement is
performed at the unit of semantic regions [9]. Semantic regions group together
semantically related documents covered, for example, by a user query.

Each semantic region has a constraint formula which describes its contents,
a region signature, a counter of tuples in the contents, a pointer to the set of
actual tuples in the cache, and the additional information that is used by the
replacement policy to rank the regions. Like a query, any region formula is a
conjunction of terms.

When a query is posed at a client, it is split into two disjoint pieces: (1) the
portion of the answer available in the local cache, and (2) a remainder query,
which retrieves any missing information from the server. If the remainder query
is not null (i.e., the query asks for some documents that are not cached so far),
the remainder query is sent to the server for further processing [5].

A semantic model for query caching mechanisms in a client-server architec-
ture was discussed in [9]. Query caching in heterogeneous systems was discussed
in [13], where it is reduced to a Datalog query evaluation, which, however, may
by computationally hard. Intelligent query caching is also used in the SIMS
project [4], where some important principles for any intelligent caching mecha-
nism were developed. These principles are: 1) a query cache should process both
containment and intersection cases; 2) a cache item should not be large; 3) a
cache item should have a simple formula to avoid too complex reasoning on the
query remainders.

Semantic caching versus page and tuple caching. In a standard client-
server architecture the transfer units between servers and clients are pages or
tuple sets, unlike in a networked digital library. Page caching mechanisms assume
that each query posed at the client can be processed locally and be broken
down to the level of requests for individual pages. Then, if a requested page
is not present in the client cache, a request for the entire page is sent to the
server. Such a query processing is improper in a Web-based digital library, where
keyword-based querying is often the only way to retrieve data and where the data
organization at the servers is completely hidden from the clients.

With tuple caching, the cache is maintained in terms of individual tuples or
documents, allowing a higher degree of flexibility than pure page caching. On
the Web, tuple caching is possible though not very attractive, as there is no
way to inform the servers about qualified tuples in the client cache. Moreover,
clients can not detect whether their local caches provide a complete answer to
the queries. As a result, clients are forced to ignore their cache entries while
performing the query. Once the query is sent to the server and all qualifying
tuples are returned, the clients detect and discard the duplications.

Our contribution. In this paper, we develop a new mechanism for caching
Web queries which is based on so-called signature files. Each semantic region in
the cache is associated with a signature. For a user query, the signature is created
in a similar way and verified against the region signatures stored in the cache.
The proposed caching mechanism includes a procedure that identifies all cache
items qualified for the query, i.e., it detects which cache items can be re-used
immediately, and which missing information must be requested from the servers.

This mechanism has three main advantages. First, it processes both critical
cases in the same elegant way, 1) when a query is contained in the cache, or
2) when it intersects some regions. As a result, the proposed mechanism avoids
most cases of tuple duplications, and has a moderate storage requirement. Sec-
ond, it supports efficient reporting of partial answers and generating of query
remainders. Finally, it provides a simple solution for the region coalescing and
the replacement policy.

Although the main motivation and the targeted use of our proposed algo-
rithms are Web-based digital libraries, we point out that the presented approach
can be easily generalized to full-fledged distributed database environments.

The remainder of the paper is organized as follows. Section 2 introduces the
signature file methods and discusses the cache architecture based on semantic
region signatures. Section 3 studies the semantic containment between a query
and semantic regions. The first caching algorithm is presented. In Section 4, we
develop a second algorithm which covers the semantic intersection too. Results
of experiments with the caching algorithms are reported in Section 6. Section 7
discusses some open issues and concludes the paper.

2 Signature Files and Cache Architecture

Signature files were originally designed for the retrieval of full-text fragments
containing query words [10, 11]. Consequently, signature files where used in a va-
riety of applications, including navigation in OODBS, indexing of Prolog items,
and multimedia office management [11,12,15]. The best known technique uses
the superimposed coding to associate each semantic region with a formula in the
conjunctive form. Each term in a region formula is assigned a term signature
represented as a binary sequence of ones and zeros. The region signature is gen-
erated by superimposing (bit-wise OR-ing) all term signatures generated from
the region formula. Figure 1.a shows the signature generation for the semantic

Region formula: “query A caching”

Term signatures:
query 0010 0010 1000
caching 0100 0100 0001
Region signature: 0110 0110 1001

a)
Queries Query Signatures Results
1) Web 1000 0001 1000 no match
2) caching 0100 0100 0001 region containment
3) query A caching 0110 0110 1001 equivalence
4) Web A query A caching 1110 0111 1101 query containment
6) false A drop 0110 0110 1001 false drop
b)

Fig. 1. a) Region signature construction; b) Sample queries and their signatures

region “query A caching”. For a user query — which is also a conjunction — all
terms are assigned signatures and superimposed onto a query signature in a way
similar to regions. Then, the query signature 1s matched against each region sig-
nature in the signature file to provide a partial answer and construct the query
remainder.

The two caching algorithms proposed in this paper work with different seman-
tic relations between semantic regions and the query. The first caching algorithm
copes with semantic containment between the query and a region, where one
contains the other. The second caching algorithm described in Sect. 4 extends
this processing to the more frequent and complex cases of semantic intersection,
when neither region contains the query nor vice versa. We begin with the seman-
tic containment which consists of three cases. Query @ is equivalent to a region
R if their formulas are equivalent. A region R contains query) if the query for-
mula can be obtained from the region formula by dropping one or more terms.
In this case, the answer to the query is a proper subset of the region contents.
Inversely, the semantic region R is contained in a query @ if the region formula
can be obtained from the query by dropping one or more query terms. The re-
gion containment implies that the answer is a superset of the region contents.
In any of the three cases described above, the region R is qualified for query Q.

Let Sg and Sg denote a query signature and a region signature, respectively.
With the bit-wise comparison of the signatures, the semantic containment is
detected as follows:

Region containment, Sg C Sg: for each bit in the query signature set to one,
the corresponding bit in the region signature is also set to one (see Query 2

in Fig. 1.b).

Equivalence, Sg = Sg: the region and query signatures have the same bits set
to one (see Query 3 in Fig. 1.b).

Query containment, Sg D Sg: for each bit in the region signature set to one,
the corresponding bit in the query signature is also set to one (see Query 4

in Fig. 1.b).

A signature file eliminates most, but not all of the regions which are not
qualified for the query. Query 6 in Fig. 1.b represents a false drop. False drops
are semantic regions where the signatures are qualified for the query, but they
should not have qualified. False drops are eliminated by further comparing the
query with the regions. If false drops are numerous, the performance degrades
dramatically.

Much work has been done on minimizing the false drop probability [14,12]. Tt
has been shown that in order to minimize the false drop probability, the expected
number of zeros and ones in a signature must be the same [12]. When the length
of the signatures increases — for the same number of distinct keywords in a region
or query formula — the density of ones in the signatures decreases. The chance of
getting false drops will decrease correspondingly. However, the storage overhead
increases. If the signature length is F' bits and the maximal number of terms in
the query is ¢, the optimal number k,,; of bits set to one in a term signature is
given as

Fopt = F 1n2. (1)
[

In information retrieval, the signature file method is a compromise between
conventional inverted file and full-text scanning methods. The advantage of the
method over an inverted file method lies in its moderate storage overhead. The
storage overhead is some 10-20% for signature files compared to 100% and more
for inverted files. On the other hand, the retrieval speed of the signature file
method is higher than in the case of full scanning of text blocks, but lower than
in the case of inverted files [15].

In semantic caching of Web queries, the number of terms in a query or region
formula can vary. Still, the number remains small when compared to the number
of words in a text block. Consequently, the signature storage overhead is again
reduced when compared to the signature methods used in information retrieval.
When different regions intersect and tuple duplicates are stored, unfortunately,
there is another source of storage overhead in the case of semantic caching. In
Sect. 4, we discuss this problem in some detail.

Cache organization. To process a query faster, our cache architecture main-
tains region signatures separately from region contents (see Fig. 2). Apart from a
signature, each entry (region) in the signature part contains the region formula,
the counter of tuples, the link to the corresponding region contents, and the
value of a replacement function. Qualified regions are detected in the signature
part. Once a semantic region is qualified for a full or partial answer, tuples in
the region contents that match the query are reported to the user.

tuplell
' tuplel2
Signature Formula Counter Replacem tuplel3
value tuple2l
1100 0100 1101 | database” performance 3 4 / ez
0110 0110 1001 | query * caching 4 | 1 tuple23
0000 1010 0010 | optimization 2 | 2 tuple24
1000 0001 1000 | signature” not file 2 5l tu;egl
0010 0110 1101 | signature” cryptography | 1 | 3 \ tuple32
tupled4l
tupled2
tuple51

Signature part Contents part

Fig. 2. Cache architecture

Negation. Any region formula contains keywords as well as their negations. To
provide a smooth processing for queries with negations, signatures for a keyword
and its negation can be related. A negated term is coded as a signature with a
bit-wise negation of the basic term signature. However, as the number k of bits
set to one in a term signature is much smaller than the signature length F', this
would result in F' — k bits set to one in the negated term signature. Therefore,
this solution would have a considerably higher false drop probability, for any
region’s formula containing the negated term. To avoid this problem, we treat a
keyword and its negation (and their signatures) as two independent terms, with
k bits set to one in both signatures.

3 A Simple Caching Algorithm

The first algorithm processes three cases of the semantic containment, namely,
(1) equivalence, (2) query containment, and (3) region containment. If the query
is equivalent to a region in the cache, the query answer coincides with the re-
gion contents. If a region contains the query, the complete answer can also be
produced from the region contents, with the query formula used as a filter.
Moreover, if two or more regions contain the query, any of them can produce
the answer. To reduce the filtering overhead, the algorithm selects and filters the
region where the content has the smallest number of tuples. In the case of region
containment, the algorithm extracts a partial answer from the region contents
and generates the query remainder which is then sent to the server. If several
regions are contained in the query, any or all of them can produce the partial
answer. As the number of such regions can be huge, the algorithm selects the
top m regions with a maximal number of tuples.

If no semantic containment is detected, the cache 1s not used at all, and the
initial query is sent to the server. When an answer to this query is received, a

new cache region is created. If the cache space is already used up, one or several
“old” regions are released. As the basic replacement strategy, we use the well-
known LRU (“least recently used”). The strategy is appropriate for the Web,
where searching is always coupled with navigation and discovery. Typically, a
new query refines a previous query [22].

With the algorithmic framework described above, three important issues re-
quire further analyses, namely, the construction of region remainders, region
coalescing and cache region replacement.

3.1 Constructing query remainders

Assume that m semantic regions, Ry, ..., R,,, are contained in the query. Al-
though the query remainder), can be constructed as @, = @Q—R1—.. . — R, =
QAN-RiN.. . AN R,,, such a constraint formula, after simplification, can contain
disjunctions, and may not be appropriate for a server that accepts conjunctive
queries only. For example, for the query a and the region a AbAc!, the constraint
formula a — a A b A ¢ results in the following disjunction formula:

a—aAbAc=aA=(aAbAc)=aA-bVaA e

To distinguish the regions which drive the query remainder to a conjunctive
form from those which do not, we introduce a difference measure between the
query and the region formulas. The difference is defined as the number of terms
in the region formula not presented in the query. This definition splits the set
of regions Ry, ..., R, into groups, where all regions in a group differ in ! terms
from the query, { = 1,2,.... In the example given above, the region formula
a Ab A c has a two-term difference from the query a. Note, however, that the
case [= 0 1s also valid. When a query and a region are equivalent, or when a
region contains a query, the difference is zero, and, correspondingly, the query
remainder is null.

As stated in the following theorem, the difference measure allows us to guar-
antee that regions with one-term difference preserve the conjunctive form of the
query remainder.

Theorem 1. Assume a cache containing m region formulas have one-term dif-
ferences, say ay,as, ..., am,, from a query formula Q). Then, the query remainder
Qr s QAN—ag A—ag A Ay,

Proof. Let £ denote the set of all possible query terms. As all m regions
contain the query, we can denote the region formulas, without loss of generality,

as @ Nay, QNhas, ..., QANapy.
Then we obtain:

Qr:Q—(Q/\al)—...—(Q/\am):Q/\(é'—al—...—am):
=QAEAN-aL A ATay) = QA-ar AL A —a0

! We use characters from the beginning of the alphabet to denote query terms.

3.2 Region coalescing

As we have explained before, when a query and a region are equivalent, or when
a region contains a query, the query remainder i1s null. The query is not sent
to a server but processed locally. The cache contents are kept unchanged. The
region providing the answer to the query updates the replacement values (see
Sect. 3.3).

In the region containment case, i. e. when a query contains a region, the
query remainder i1s not null, and, moreover, it is a complement to a semantic
region R (see Fig. 3.a). When an answer to the query remainder @, is received,
there are two strategies to add the answer to the cache. With the no-coalescing
strategy, a new cache region is created for the query remainder. This implies
that smaller regions appear in the cache. However, such regions may result in
the degradation of the cache reuse. With the coalescing strategy, no new cache
region is added; instead, region R’s contents are extended with the answer to
the remainder. The region formula R is substituted (relaxed) with Q.

Obviously, both strategies require the same cache space to store tuples. Still,
the coalescing strategy appears to be preferable. First, it uses only one region
instead of two. Furthermore, if m semantic regions, Ry, ..., Ry, yield the region
containment (see Fig. 3.b), the coalescing strategy is even more advantageous.
The query remainder @, = Q@ — Ry — ... — R, is a complement to the union of
the regions. Here, the coalescing strategy will keep a single region (with formula
@), instead of m individual regions Ry,..., Ry, and the query remainder. As
regions R1, ..., Ry may contain tuple duplications, the coalescing strategy pro-
vides better storage utilization, both for the signature parts and for the content
parts of the cache.

3.3 Replacement strategy

As the cache space is a scarce and limited resource, the cache may discard the
least recently used regions to free space for new regions. The standard LRU
strategy was designed for the replacement of pages or tuples in the cache. It acts
upon objects of the same size, that is, the replacement unit is one page or one
tuple.

In the query caching case, the situation is different. When a region R qualifies
for a query, the involvement of the region in the answer can vary. If the query
contains the region — as depicted in Fig. 3.a — the region contents is completely
involved in responding, as all tuples from the region contents appear in the
answer. By contrast, if the region contains the query (see Fig. 3.c), the region
involvement is partial, as only some of the tuples in the region match the query.

Therefore, the replacement function should take into account the region in-
volvement in the answer of the query. If the region involvement is complete,
the new replacement value for the region is “the most recent one” as in the
case when the answer to the query is shipped from the server. If the region in-
volvement is partial, and there are tuples in the region contents not matching

® &

9 @

Fig. 3. Semantic containment cases: a) Single region containment; b) multiple region
containment; c) single query containment; d) multiple query containment

the query, the change of the replacement value toward “the most recent one”
depends on how large the portion of the matched tuples is.

The region involvement can be measured as p = T /T, where Ty is the
number of tuples appearing in the answer to the query, and where T 1s the total
number of tuples in R’s contents.

Without loss of generality, we assume that “the most recent value”, Vip, is
incremented by one, each time a new query is issued. If the current replacement
value of region R is Vg, Vg < Vip, and the region involvement is p, we calculate
a new replacement function as VI; =Ve+(Viep—Vr)-p. If p =1, then VI; = Viop.
If p = 1/2, then VI; = (Viop + VRr)/2. Note, that this replacement function can
be implemented for any region in the cache, whether the region qualifies for
the query or not. If a region does not qualify for the query, and, therefore, its
involvement p is zero, the region replacement value is kept unchanged.

Ezxample 2. The cache contains three regions with formulasa Ab A ¢, b A d and
d A —a. Figure 4.al shows the regions with their replacement values (assuming
Viop = 6). Assume a new query is d. The second and third regions yield the
query containment. As both region formulas differ from the query formula in
one word only (b for the second region and —a for the third one), the generated
query remainder is given as d A @ A —=b. Once the complete answer is produced,
the second and third region, as well as the query remainder are substituted with
one region with formula d (Fig. 4.a2). Its replacement value is Vi, = 7.

Now we assume instead that the query is bAdA f (see Fig. 4.b1). Two regions,
bAd,and d A —a, contain the query. The former is selected as the answer to
the query, as it has less tuples in the contents. Its replacement value is updated
(from 3 to 4) accordingly to the portion of tuples matching the query in the
region contents.

D

a*b~rcrd

al) a2)

= e,

b1) b2)

Fig.4. Region coalescing examples: al) Query @ = d is issued; a2) Regions coalesced
after the query; bl) Query @ = bAdA f is issued; b2) Regions updated after the query

Caching algorithm 1. Input: cache with semantic regions and query Q.
QOutput: answer to () and the cache updated.

1. Verify the query signature against all region signatures in the cache.

2. Sg = Sg: If there is a region which formula is equivalent to the query, return
the region contents as the query answer. Update the replacement function
value of the region and stop.

3. Sg D Sg: If one or more regions contain the query, choose the region with
the minimal cardinality. Scan tuples in the region contents and return ones
matching the query. Update the replacement function value of the region
and stop.

4. Sqg C Sg,: If several regions are contained in the query, choose top m re-
gions, Ry, ..., Ry, with the maximal cardinality. Return all tuples from the

regions contents of Ry, ..., Ry, discarding duplications. Construct the query
remainder as follows:

— Set the query remainder to query .

— For each region R; providing the region containment, calculate the dif-
ference between the region formula and the query. If the difference is one
term a; only, constrain the query remainder with —a;.

Send the query remainder to the server. When the answer is received, replace
regions Ry, ..., Ry, with one region @). Put V;,, as the replacement value for
@ and stop.

5. Otherwise, send query ¢ to the server. Once the answer is received, create
a new region for @ in the cache. To free space for the region, remove the
regions with the least replacement values, until query @) fits the cache.

4 The Advanced Caching Algorithm

The caching algorithm described in the previous section efficiently manages the
semantic containment and equivalence cases. However, it does not manage the
more frequent and complex case of semantic intersections. In a semantic inter-
section, a region can produce a portion of the answer, but it neither contains
nor is contained in the query.

Ezrample 3. Assume, the cache contains region Ry with formula “query A caching”
and query @ is “optimal A query” (see Fig. 5.a). Since there is no containment,
Algorithm 1 does not exploit Ry for the partial answer, although the tuples in
the region contents matching the formula “optimal A query A caching” match
also the query. Moreover, when Algorithm 1 receives the answer to query @ from
the server, it creates a new semantic region Ry with the same formula “optimal A
query” (see Fig. 5.b). Two semantic regions Ry and Rs contain tuple duplicates,
which match their intersection formula “optimal A query A caching”. In other
words, in the semantic intersection cases, Algorithm 1 retains a low cache use
and a high tuple duplication level.

optimal ~ query ” caching
Q | “
query ~ caching E)pti mal ~ query query ~ caching optimal ~ query

3 b)

Fig. 5. Semantic intersection example

In this section we develop an advanced caching algorithm which, besides
the containment cases, also processes the semantic intersection. This helps to
improve cache utilization and to reduce tuple duplications.

The intersection of a semantic region R and a query) is given by the inter-
section of their formula : RN Q. Given the region signature Sg and the query
signature Sg, we use their signature intersection Sg N Sg, which is obtained by
bit-wise AND-ing of Sg and Sg. Then, for a signature S, the signature cardi-
nality |S| denotes the number of bits set to one in the signature.

In the semantic intersection of a semantic region R and a query @, we dis-
tinguish two cases:

Complement: Q N R = §; the formula intersection is null. For instance, query
aAbis a complement to the region a A =b. Consequently, the region contains
no tuples to answer to the query. However, in the complement case, the
region coalescing is possible. For the query and region above, the coalescing
would result in one region with formula a.

Intersection: The Q@ N R # §; the formula intersection is not null. There are
two following sub-cases:

— Query and region formulas have some common terms appearing in the
intersection (in Example 2, region “query A caching” and query “optimal
A query” have term “query” in common).

— Query and region formulas have no common words. For instance, region
a and query b have no common terms, but their intersection a Ab is not
empty, and, therefore, the region can contribute to the partial answer.

Semantic intersection in signature files. If the query @ and a region R have
some common terms, their signatures have bits set to one which correspond to
signatures of the common terms. The more terms formulas) and R have in
common, the larger the number of bits jointly set to one. The semantic intersec-
tion of @ and R could be measured as the number |Sg N Sg| of corresponding
bits set to one in both signatures. Unfortunately, this is not always true. For
example, even though the signature intersection of a region with formula a and
a query b may have no bits set to one, the region with formula ¢ might indeed
have tuples matching the formula b A a.

In the remainder of this section, we show how the signature file method al-
lows for an efficient detection of region intersections with the query. Moreover, it
supports partial answer deliveries and helps constrain the query remainder. Note
that the following discussion about the semantic intersection assumes that nei-
ther equivalence nor query containment is detected in the cache, and, therefore,
the query remainder is not null.

As in semantic containment, not all of the regions intersecting with the query
can contribute to the query remainder; again because of the problem of conjunc-
tive queries. To detect the regions that can contribute to a valid formula, we
use again term differences, as introduced in Sect. 3. In addition, we make use of
Theorem 1, which, while proven for the semantic containment only, also applies
to the case of semantic intersection. We argue as follows: if a cache contains m

regions where the corresponding formulas are not contained in the query @, but
have one-term differences, say ai,as, ..., a;, the query remainder (). can be
constructed as Q@ A —aig A —as A .. A Dy,

To use the theorem, we must revise one step in the proof which differentiates
the semantic intersection from semantic containment. Indeed, with the semantic
intersection, no region is contained in the query, and, therefore, no region formula
can be presented as QAa;. For the case m = 1, wehave @, = Q—R1 = @Q—QAR;.
The constraint formula @ A R; has one-term difference from query @ too, but is
contained in). Hence, it can be represented as @ A ay. Therefore, @, = QA —a;.
The case m > 1 of the proof is derived in a similar way.

Ezrample 4. Asregion “caching A query” has one-term difference from the query
“optimal A query”, the region can report the portion “optimal A query A caching”
to the user and construct the query remainder “optimal A query A — caching”.
Similarly, the region with formula @ has one-term difference from query b. There-
fore, the portion a A b is reported, and the query remainder is set to b A —a.

This feature of semantic regions with one-term difference from the query in
constraining the query remainder leads us to a double-scan evaluation of the
query against the cache contents. The first, fast scan over the region signatures
identifies all regions with one-term difference in order to quickly construct the
query remainder and to produce the first partial answer. The second, slow scan
checks whether other intersection cases can enrich the partial answer. The two
scans over the region signatures differ in the filtering function applied to the
region signatures.

Each region R filtered during the first scan should have at most one-term
difference from the query. Therefore, if the region signature has |Sg| bits set to
one, and its intersection with the query signature has |Sgr N Sg| such bits, the
difference between the two numbers should be at most k bits, where k is the
number of bits set to one in a term signature. The following theorem states this
fact explicitly.

Theorem 5. If region R has one-term difference from query @, then
ISk N Sq| > |Sk|— k. (2)

The first scan verifies the condition (2) on the region signatures. If the con-
dition holds for a region signature, the region formula is checked for a one-term
difference. As in the case of semantic containment, a false drop appears if con-
dition (2) holds but the region formula does not provide a one-term difference.
In Sect. 5, we report the results of some experiments and show that the number
of false drops when verifying the condition (2) can be kept small through some
appropriate choices of signature file parameters, calculated using formula (1).

The second scan detects regions where the corresponding formulas differ in
two and more terms. These regions do not qualify to constrain the query remain-
der. By analogy with one-term difference, a region R where the corresponding
formula differs in [,/ > 2 terms from the query, satisfies the condition

ISk NSl > |Sk|— kL. (3)

However, this condition can not be used to full extent for the second scan.
First, the condition (3) loses its importance for increasing values of k. In fact,
a typical Web query or region formula has an average of three or four terms.
Condition (3) is often reduced to a simple |SgNSg| > 0. This would sweep all the
region signatures, resulting in a large number of false drops, and a high filtering
overhead. Second, regions differing in two or more terms from the query, usually
contribute much less to the answer than regions with a one-term difference.
Third, the tuples they contribute will be duplicated in the answer to query
remainder, as their formulas were not excluded from the remainder. Therefore,
the second scan can be omitted for some of the Web-based data repositories. For
instance, if we know that regions with two-term difference contribute less than
1% to the partial answer (the Library of Congress discussed in Sect. 5 is such a
repository), the query processing can stop after the first scan.

If the regions with two-term difference appear to be useful for partial answers,
we consider two options for the second scan:

— |SrN Sg| > |Sr| — 2k: this option fetches mainly the regions with two-term
difference from the query. Therefore, some regions differing in more terms
will not be fetched.

— |Sr N Sg| > 0: all region formulas satisfy this option, yielding to numerous
false drops. However, alltuples in the cache matching the query are retrieved.

In most cases, the first option is more preferable as it provides a good tradeoff
between the number of false drops and the number of tuples retrieved. The second
option can be used if the cache space is very small, or if the application is keen
to retrieve all tuples from the cache matching the query.

Region coalescing and region replacement. The semantic intersection gives
a new extension to the coalescing strategy. The strategy can coalesce the query
and a region when their unified formula is a conjunction. For instance, it can
coalesce query a A b and the region a A —=b in one region. Three conditions are
sufficient: 1) the region has a one-term difference, say aj, from the query; 2)
symmetrically, the query has a one-term difference, say as, from the region; 3)
a1 is a negation of as?.

The replacement policy, as designed for the semantic containment, remains
the same for the semantic intersection. When a new query is issued, any seman-
tic region in the cache has its replacement value updated, 1. e. towards Vi,p,
proportionally to the region involvement in the answer.

The second caching algorithm covers both relations between the query and
semantic regions, that is, the semantic containment, as discussed in Sect. 3,
and the semantic intersection, as discussed above. Moreover, the algorithm does
not distinguish between regions providing the query containment and semantic
intersection. Both cases are processed uniformly.

2 Note, however, that a; and as have independent signatures due to the cache archi-
tecture (see Sect. 2).

Caching algorithm 2. Input: cache with semantic regions and query Q.
QOutput: answer to () and the cache updated.

1. (First scan) Check the query signature against the region signatures in the
cache.

2. Sg = Sg: if there is a region which formulais equivalent to the query, return
the region contents as the answer. Update the replacement value of the region
and stop.

3. Sg NSk = Sg: if one or more regions contain the query, choose the region
with the minimal cardinality. Scan the region contents and return the tuples
matching the query. Update the replacement value of the region and stop.

4. |Sq N Sgr| > |Sr| — k: Identify all regions, say Ro,..., Rp, m > 0, with
one-term difference from the query. Return the tuples matching the query in
the semantic regions of Ry, ..., Ry, discarding duplications. Construct the
query remainder @, as follows:

— Set the query remainder to query .
— For each region R;, i = 0,...,m, calculate the difference a; from the
query and constrain the query remainder with —a;.
Send the query remainder to the server.

5. (Second, optional scan) Scan the region signatures with the condition T,
where T'is a choice between |Sg N Sq| > |Sr| — 2k and [Sg N Sg| > 0. For
each region R fetched, check the @ N R formula intersection. If the formula
is not null, report the tuples from the region contents matching the query.

6. When the answer to the query remainder @), is received, update the cache
as follows.

— If regions R;,, ...
with formula).
— Ifaregion R is complement to query) and formula RUQ) is a disjunction,
substitute R and @ with a new region.
— Otherwise, add a new region to the cache with the formula @, .
Update the replacement values for all regions contributed to the partial

, I;, contain the query, replace them with a new region

answer.

Ezrample 6. Assume the cache contains the regions with formulas a Ab, cAdA—e,
and the user query be b A c¢; Figure 6.a shows the regions with their replacement
values (assuming Vio, = 7) and the query. The first scan detects that the region
a A'b has a one-term difference from the query and can constrain the query
remainder (), which is b A ¢ A —a. All tuples from the region contents matching
the query report their partial answer. The second scan detects the semantic
intersection for region ¢ A d A —e. The region contents is scanned and tuples
matching this query complete the partial answer.

Once the answer to the query remainder @), is received, a new region with
the formula ¢ A d A —e is created. The replacement value is set to Vi, = 8.
Also, both regions a A b and ¢ A d A —e have their replacement values updated,
in proportion to their contribution to the answer (see Fig. 6.b).

b~ c”nota

a) b)

Fig.6. Region coalescing for the semantic intersection: a) Query c A d is issued; b)
after the query has been issued

5 Experiments

We have conducted a number of experiments to test the caching algorithms
developed in the paper. As a Web information server, we have used the Li-
brary of Congress (about 6.3 million records) with the search page available at
http://leweb.loc.gov/. The search page supports one to three terms in the query;
the first term must not be negated, while others can. Since no full-text retrieval
is available, tuples are rather small with respect to the cache size. For any query,
terms were randomly chosen from a dictionary containing some 80 terms in the
field of computer science; these terms were taken from the Yahoo Classifier.?

Any query in the experiments contained one to three terms, with an equal
probability for each case. If a second or third term was included, it was negated
in one of three cases. Each algorithm tested in the experiments started with an
empty cache and used the first queries just to fill it. Once the cache becomes full,
the main parameters of the cache were evaluated during a series of s sequential
queries. The main parameters, including values for 7' and & of the signature
generation, are reported in Table 1.

Table 1. Experiment parameters

Parameter|Description Value

S Cache size 256k-1024k
F Number of bits in signature 48-96 bits
k Number of set bits for simple word|5-10 bits

s Length of query series 100

In the experiments we have tested three main parameters:

Cache efficiency: the average portion of the answer provided from the cache.
For one query, the efficiency is evaluated as r. /7, where 7 is the total number

? http://www.yahoo.com/Science/Computer_Science/.

of answer tuples, and r. is the number of the answer tuples retrieved from the
cache. For a series of s queries, the cache efficiency is the mean of individual
query efficiencies.

Duplication ratio: for one query it is evaluated as (S — Sq)/S, where S is
the total cache size and S; is the cache size when all tuple duplications are
removed.

False drop ratio: the average number of false drops per query, taken over a
series of s queries.

We have tested the following algorithms: Algorithm 1 (Sect. 3) and Algorithm
2 (Sect. 4, with the first scan only) combined with the coalescing? and no-
coalescing strategies; in the graphs, they are named Coal-1, NoCoal-1, Coal-2
and NoCoal-2; The algorithms are tested over the parameters : (1) signature
length F" and the number & of bits set to one in a term signature; (2) cache size.
The following graphs summarize the experiment results.

Cache efficiency (%)

- - - Codl2
30 1 —— NoCoal2
***** Codl
NoCoal1 _ -
20 - -
- -
”~
”~
”
10 -
— Cache size (kb)
256 512 1024

Fig. 7. Cache efficiency experiments

The cache efficiency grows almost linearly for all combinations, as the cache
size increases (see Fig. 7). The efficiency is higher using Algorithm 2 as semantic
intersection is more frequent than semantic containment. Similarly, the coalesc-
ing strategy works better than the no-coalescing strategy.

The duplication ratio graphs (see Fig. 8) demonstrate the difference between
the coalescing and no-coalescing strategies. The ratio is higher applying the
no-coalescing strategy which keeps different regions for queries which may se-
mantically intersect. Algorithm 2 is slightly better — with respect to minimizing
tuple duplications — than Algorithm 1 because it also detects query complements
(though, this rarely happens).

* In all tests, the coalescing strategy was adopted so that regions are coalesced if the
new region size is not superior to 10% of the total cache size.

Dublication ratio (%)

- — - Coa?2
NoCoal2

fffff Coall
20 1 —— NoCoal

10 - -

Cache size (kb)

256 512 1024

Fig. 8. Tuple duplication ratio in the cache

For all combinations of values F' and k that determine the signature construc-
tion, Algorithm 2 gives a higher level of false drops than Algorithm 1 as shown in
Fig. 9. To explain this fact, we recall that Algorithm 1 checks region signatures
for two containment conditions, namely, Sq N Sgp = S¢ and Sg N Sg = Sg.
Besides the same two conditions, Algorithm 2 also checks the condition (2) to
detect all intersections with a one-term difference. Although the false drop ratio
using Algorithm 2 is high for small values of F', it becomes reasonably low when
F increases. We point out that the space overhead is kept low, since the main
source of the space overhead is the tuple duplication in the content parts, and
not the size of signature files.

20 4 False drop ratio (%)
cache 256k, Coa2
16 cache 1024k, Coal2
cache 256k, Coa 1
12 cache 1024k, Coall
g - 0 F=48, k=5
" F=64, k=6
O F=80, k=8
4 4 ® F=96, k=10
&= “o® | Space overhead (%)

1 2 3 4 5

Fig. 9. False drops versus the space overhead

Our main conclusions from the experiments can be summarized as follows:

1. Algorithm 2 provides both a higher cache efficiency and a lower duplication
ratio, when compared to Algorithm 1. The false drop ratio in Algorithm 2 is
higher, but the difference i1s small. It can be neglected when using a slightly
enlarged signature length.

2. The coalescing strategy is always better than the no-coalescing strategy when
looking at the tuple duplications and the number of regions in the cache.

3. The experiments demonstrated the difference between the two major sources
of space overhead in the cache, namely, the use of signature files and tuple
duplications. For typical Web queries, the signature files do not occupy much
space, allowing control of the false drop ratio by the appropriate values of
I and k. However, tuple duplications can considerably reduce the cache
efficiency. It is extremely worthwhile to reduce the duplication ratio.

6 Conclusion and Open Issues

We have presented a new caching mechanism for conjunctive Web queries as re-
alized in the Knowledge Broker system [3]. The mechanism is based on signature
files and allows for an efficient reuse of already obtained answers. Two caching
algorithms were presented that cope with the relations of semantic containment
as well as semantic intersection between a user query and the semantic regions,
respectively.

The basic query model covers conjunctive queries only. With the superim-
posed coding used in signature files, the model cannot be extended to process
disjunctive queries directly in the cache. Such a query must be split into con-
junctions beforehand. A further analysis of signature file methods to overcome
this problem is a real challenge.

The caching mechanism works efficiently for a single Web repository. In the
case of a large set of different, possibly heterogeneous Web repositories, the cache
management becomes more complicated. The attempt to put an additional con-
straint like ”server=<repository-name>" does not solve the problem. It would
change the query processing completely: the key element in the proposed caching
mechanism is based on a one-term difference between the query and the semantic
regions! Our plans are to study this problem so that we can adopt the signature
method properly.

References

1. S. Adal, K. S. Candan, Y. Papakonstantinou, V. S. Subrahmanian. Query
Caching and Optimization in Distributed Mediator Systems. In Proc. SIGMOD
'96 Conf., pp. 137-148, 1996.

2. R. Alonso, D. Barbara, H. Garcia-Molina. Data Caching Issues in an Information
Retrieval System. In ACM TODS 15: 3, 359-384, 1990.

3. J.-M. Andreoli, U. M. Borghoff, R. Pareschi. Constraint-Based Knowledge Bro-
ker Model: Semantics, Implementation and Analysis. In Journal of Symbolic
Computation bf 21: 4, 635-667, 1996.

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Y. Arens and C. A. Knoblock. Intelligent Caching: Selecting, Representing, and
Reusing Data in an Information Server. In Proc. CIKM ’94 Conf., Gaithersburg,
MD, pp. 433-438, 1994.

. U. M. Borghoff, R. Pareschi, F. Arcelli, F. Formato. Constraint-Based Protocols

for Distributed Problem Solving. In Science of Computer Programming 30, 201—
225, 1998.

. M. J. Carey, M. J. Franklin, M. Livny, E. J. Shekita. Data Caching Tradeoffs in

Client-Server DBMS Architectures. In Proc. SIGMOD °91 Conf., pp. 357-366,
1991.

. C.-C. K. Chang, H. Garcia-Molina, A. Paepcke. Boolean Query Mapping Across

Heterogeneous Information Sources. In IEFE TOKDE 8: 4, 1996.

. C.-C. K. Chang and H. Garcia-Molina. Evaluating the Cost of Boolean Query

Mapping. In Proc. 2nd ACM Int’l. Conf. on Digital Library, 1997.

. S. Dar, M. J. Franklin, B. Jonsson, D. Srivastava, M. Tan. Semantic Data

Caching and Replacement. In Proc. 22nd VLDB Conf., Bombay, India, pp. 330—
341, 1996.

C. Faloutsos. Signature files: Design and Performance Comparison of Some Sig-
nature Extraction Methods. In Proc. SIGMOD ’85 Conf., pp. 63-82, 1985.

C. Faloutsos and S. Christodoulakis. Signature Files: An Access Method for
Documents and Its Analytical Performance Evaluation. In ACM TOIS 2: 4,
267-288, 1984.

C. Faloutsos and S. Christodoulakis. Description and Performance Analysis of
Signature File Methods for Office Filing. In ACM TOIS 5: 3, 237-257, 1987.

P. Godfrey and J. Gryz. Semantic Query Caching For Heterogeneous Databases.
In Proc. 4th KRDB Workshop on Intelligent Access to Heterogeneous Informa-
tion, Athens, Greece, pp. 6.1-6.6, 1997.

H. Kitagawa, J. Fukushima, Y. Ishikawa and N. Ohbo.. Estimation of False
Drops in Set-valued Object Retrieval with Signature Files. In Proc. 4th Int’l
Conf. FODO 93, Chicago, IL. Springer-Verlag, LNCS 730, 146—63, 1993.

D. L. Lee, Y. M. Kim and G. Patel. Efficient Signature File Methods for Text
Retrieval. In IEFEE TOKDE 7: 3, 423-435, 1995.

A. Y. Levi, A. Rajaraman, J. .J. Ordille. Quering Heterogeneous Information
Sources Using Source Descriptions. In Proc. 22nd VLDB Conf., Bombay, India,
pp. 251-262, 1996.

P. T. Martin and J. I. Russell. Data caching strategies for distributed full text
retrieval systems. In Information Systems 16: 1, 1-11, 1991.

A. Paepcke, S. B. Cousins, H. Garcia-Molina, et al. Towards Interoperability
in Digital Libraries: Overview and Selected Highlights of the Stanford Digital
Library Project. In ITEEF Computer Magazine 29: 5, 1996.

Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, J. Ullman. A Query Trans-
action Scheme for Rapid Implementation of Wrappers. In Proc. DOOD’95 Con-
ference. Springer-Verlag, LNCS 1013, 161-186, 1995.

Y. Papakonstantinou, H. Garcia-Molina, J. Ullman. MedMaker: A Mediation
System Based on Declarative Specifications. in Proc. ICDE’96 Conf., pp.132—
141, 1996.

Ch. Reck and B. Konig-Ries. An Architecture for Transparent Access to Seman-
tically Heterogeneous Information Sources. In Proc. Cooperative Information
Agents. Springer-Verlag, LNCS 1202, 1997.

A. Yoshida. MOWS: Distributed Web and Cache Server in Java. In Computer
Networks and ISDN Systems 29: 8-13, 965-976, 1997.

