
Signature File Methodsfor Semantic Query CachingBoris Chidlovskii1 and Uwe M. Borgho�21 Xerox Research Centre Europe, Grenoble Laboratory6, Chemin de Maupertuis, F{38240 Meylan, Francechildovskii@xrce.xerox.com2 Institut f�ur Softwaretechnologie, Fakult�at f�ur InformatikUniversit�at der Bundeswehr M�unchen, D-85577 Neubiberg, Germanyborgho�@informatik.unibw-muenchen.deAbstract. In digital libraries accessing distributed Web-based biblio-graphic repositories, performance is a major issue. E�cient query pro-cessing requires an appropriate caching mechanism. Unfortunately, stan-dard page-based as well as tuple-based caching mechanisms designed forconventional databases are not e�cient on the Web, where keyword-based querying is often the only way to retrieve data. Therefore, westudy the problem of semantic caching of Web queries and develop acaching mechanism for conjunctive Web queries based on signature �les.We propose two implementation choices. A �rst algorithm copes with therelation of semantic containment between a query and the correspondingcache items. A second algorithm extends this processing to more com-plex cases of semantic intersection. We report results of experiments andshow how the caching mechanism is successfully realized in the Knowl-edge Broker system.1 IntroductionDigital libraries operating in a networked environment process user queries bycontacting heterogeneous Web repositories that provide bibliographic data inparticular domains. Such systems invoke so-called wrappers to convert user queriesinto the target query language, and to control the return ow of data from theseservers [19{21]. As data are transferred over the network in HTML/XML format,the wrappers also extract answer documents from the retrieved HTML/XML�les before they report the �nal answers (often locally pre-�ltered) to the user.As in any client-server system, high performance in such a networked digi-tal library is often reached by e�cient utilization of computational storage re-sources at the client sites. In the networked environment, where data from remoteservers are brought to clients on-demand, local client memory is largely used tocache data and minimize future interaction with the servers. This data cachingis particularly important in Web-based digital libraries, as network tra�c andoverloaded servers can lead to long delays in answer delivery. As standard pagecaching is not possible on the Web, and tuple-caching has certain limitations,

much e�ort has been spent to cache user queries and corresponding answers(instead of pages or tuples) for possible future reuse [4, 9, 13].Query caching is particular advantageous when the user of a digital libraryre�nes a query several times, for example, by adding or removing a query term.In this case, many of the answer documents may already be cached and can bedelivered to the user right away.A typical query to a Web data repository is a conjunction of terms. Eachterm in the query is a keyword, possibly negated with the operator NOT, andapplied to one or more attributes (title, author, etc.). In most Web repositoriesallowing the search over the site contents, the operator NOT is equivalent to ANDNOT to force a query to contain at least one non-negated term.Semantic caching. Semantic caching manages the client cache as a collectionof semantic regions; access information is managed and cache replacement isperformed at the unit of semantic regions [9]. Semantic regions group togethersemantically related documents covered, for example, by a user query.Each semantic region has a constraint formula which describes its contents,a region signature, a counter of tuples in the contents, a pointer to the set ofactual tuples in the cache, and the additional information that is used by thereplacement policy to rank the regions. Like a query, any region formula is aconjunction of terms.When a query is posed at a client, it is split into two disjoint pieces: (1) theportion of the answer available in the local cache, and (2) a remainder query,which retrieves any missing information from the server. If the remainder queryis not null (i.e., the query asks for some documents that are not cached so far),the remainder query is sent to the server for further processing [5].A semantic model for query caching mechanisms in a client-server architec-ture was discussed in [9]. Query caching in heterogeneous systems was discussedin [13], where it is reduced to a Datalog query evaluation, which, however, mayby computationally hard. Intelligent query caching is also used in the SIMSproject [4], where some important principles for any intelligent caching mecha-nism were developed. These principles are: 1) a query cache should process bothcontainment and intersection cases; 2) a cache item should not be large; 3) acache item should have a simple formula to avoid too complex reasoning on thequery remainders.Semantic caching versus page and tuple caching. In a standard client-server architecture the transfer units between servers and clients are pages ortuple sets, unlike in a networked digital library. Page caching mechanisms assumethat each query posed at the client can be processed locally and be brokendown to the level of requests for individual pages. Then, if a requested pageis not present in the client cache, a request for the entire page is sent to theserver. Such a query processing is improper in a Web-based digital library, wherekeyword-based querying is often the only way to retrieve data and where the dataorganization at the servers is completely hidden from the clients.

With tuple caching, the cache is maintained in terms of individual tuples ordocuments, allowing a higher degree of exibility than pure page caching. Onthe Web, tuple caching is possible though not very attractive, as there is noway to inform the servers about quali�ed tuples in the client cache. Moreover,clients can not detect whether their local caches provide a complete answer tothe queries. As a result, clients are forced to ignore their cache entries whileperforming the query. Once the query is sent to the server and all qualifyingtuples are returned, the clients detect and discard the duplications.Our contribution. In this paper, we develop a new mechanism for cachingWeb queries which is based on so-called signature �les. Each semantic region inthe cache is associated with a signature. For a user query, the signature is createdin a similar way and veri�ed against the region signatures stored in the cache.The proposed caching mechanism includes a procedure that identi�es all cacheitems quali�ed for the query, i.e., it detects which cache items can be re-usedimmediately, and which missing information must be requested from the servers.This mechanism has three main advantages. First, it processes both criticalcases in the same elegant way, 1) when a query is contained in the cache, or2) when it intersects some regions. As a result, the proposed mechanism avoidsmost cases of tuple duplications, and has a moderate storage requirement. Sec-ond, it supports e�cient reporting of partial answers and generating of queryremainders. Finally, it provides a simple solution for the region coalescing andthe replacement policy.Although the main motivation and the targeted use of our proposed algo-rithms are Web-based digital libraries, we point out that the presented approachcan be easily generalized to full-edged distributed database environments.The remainder of the paper is organized as follows. Section 2 introduces thesignature �le methods and discusses the cache architecture based on semanticregion signatures. Section 3 studies the semantic containment between a queryand semantic regions. The �rst caching algorithm is presented. In Section 4, wedevelop a second algorithm which covers the semantic intersection too. Resultsof experiments with the caching algorithms are reported in Section 6. Section 7discusses some open issues and concludes the paper.2 Signature Files and Cache ArchitectureSignature �les were originally designed for the retrieval of full-text fragmentscontaining query words [10,11]. Consequently, signature �les where used in a va-riety of applications, including navigation in OODBS, indexing of Prolog items,and multimedia o�ce management [11,12, 15]. The best known technique usesthe superimposed coding to associate each semantic region with a formula in theconjunctive form. Each term in a region formula is assigned a term signaturerepresented as a binary sequence of ones and zeros. The region signature is gen-erated by superimposing (bit-wise OR-ing) all term signatures generated fromthe region formula. Figure 1.a shows the signature generation for the semantic

Region formula: \query ^ caching"Term signatures:query 0010 0010 1000caching 0100 0100 0001Region signature: 0110 0110 1001a)Queries Query Signatures Results1) Web 1000 0001 1000 no match2) caching 0100 0100 0001 region containment3) query ^ caching 0110 0110 1001 equivalence4) Web ^ query ^ caching 1110 0111 1101 query containment6) false ^ drop 0110 0110 1001 false dropb)Fig. 1. a) Region signature construction; b) Sample queries and their signaturesregion \query ^ caching". For a user query { which is also a conjunction { allterms are assigned signatures and superimposed onto a query signature in a waysimilar to regions. Then, the query signature is matched against each region sig-nature in the signature �le to provide a partial answer and construct the queryremainder.The two caching algorithms proposed in this paper work with di�erent seman-tic relations between semantic regions and the query. The �rst caching algorithmcopes with semantic containment between the query and a region, where onecontains the other. The second caching algorithm described in Sect. 4 extendsthis processing to the more frequent and complex cases of semantic intersection,when neither region contains the query nor vice versa. We begin with the seman-tic containment which consists of three cases. Query Q is equivalent to a regionR if their formulas are equivalent. A region R contains query Q if the query for-mula can be obtained from the region formula by dropping one or more terms.In this case, the answer to the query is a proper subset of the region contents.Inversely, the semantic region R is contained in a query Q if the region formulacan be obtained from the query by dropping one or more query terms. The re-gion containment implies that the answer is a superset of the region contents.In any of the three cases described above, the region R is quali�ed for query Q.Let SQ and SR denote a query signature and a region signature, respectively.With the bit-wise comparison of the signatures, the semantic containment isdetected as follows:Region containment, SQ � SR: for each bit in the query signature set to one,the corresponding bit in the region signature is also set to one (see Query 2in Fig. 1.b).

Equivalence, SQ = SR: the region and query signatures have the same bits setto one (see Query 3 in Fig. 1.b).Query containment, SQ � SR: for each bit in the region signature set to one,the corresponding bit in the query signature is also set to one (see Query 4in Fig. 1.b).A signature �le eliminates most, but not all of the regions which are notquali�ed for the query. Query 6 in Fig. 1.b represents a false drop. False dropsare semantic regions where the signatures are quali�ed for the query, but theyshould not have quali�ed. False drops are eliminated by further comparing thequery with the regions. If false drops are numerous, the performance degradesdramatically.Much work has been done on minimizing the false drop probability [14,12]. Ithas been shown that in order to minimize the false drop probability, the expectednumber of zeros and ones in a signature must be the same [12]. When the lengthof the signatures increases { for the same number of distinct keywords in a regionor query formula { the density of ones in the signatures decreases. The chance ofgetting false drops will decrease correspondingly. However, the storage overheadincreases. If the signature length is F bits and the maximal number of terms inthe query is t, the optimal number kopt of bits set to one in a term signature isgiven as kopt = F � ln2t : (1)In information retrieval, the signature �le method is a compromise betweenconventional inverted �le and full-text scanning methods. The advantage of themethod over an inverted �le method lies in its moderate storage overhead. Thestorage overhead is some 10-20% for signature �les compared to 100% and morefor inverted �les. On the other hand, the retrieval speed of the signature �lemethod is higher than in the case of full scanning of text blocks, but lower thanin the case of inverted �les [15].In semantic caching of Web queries, the number of terms in a query or regionformula can vary. Still, the number remains small when compared to the numberof words in a text block. Consequently, the signature storage overhead is againreduced when compared to the signature methods used in information retrieval.When di�erent regions intersect and tuple duplicates are stored, unfortunately,there is another source of storage overhead in the case of semantic caching. InSect. 4, we discuss this problem in some detail.Cache organization. To process a query faster, our cache architecture main-tains region signatures separately from region contents (see Fig. 2). Apart from asignature, each entry (region) in the signature part contains the region formula,the counter of tuples, the link to the corresponding region contents, and thevalue of a replacement function. Quali�ed regions are detected in the signaturepart. Once a semantic region is quali�ed for a full or partial answer, tuples inthe region contents that match the query are reported to the user.

tuple13
tuple12

tuple21
tuple22

tuple42
tuple41

tuple32
tuple31
tuple24
tuple23

tuple51

tuple11

Contents part

3

4
2
2

1

Formula

Signature part

database ^ performance
query ^ caching

optimization
signature ^ not file
signature ^ cryptography

Signature

1100 0100 1101
0110 0110 1001
0000 1010 0010
1000 0001 1000
0010 0110 1101

4
1
2
5
3

Counter Replacement
value

Fig. 2. Cache architectureNegation. Any region formula contains keywords as well as their negations. Toprovide a smooth processing for queries with negations, signatures for a keywordand its negation can be related. A negated term is coded as a signature with abit-wise negation of the basic term signature. However, as the number k of bitsset to one in a term signature is much smaller than the signature length F , thiswould result in F � k bits set to one in the negated term signature. Therefore,this solution would have a considerably higher false drop probability, for anyregion's formula containing the negated term. To avoid this problem, we treat akeyword and its negation (and their signatures) as two independent terms, withk bits set to one in both signatures.3 A Simple Caching AlgorithmThe �rst algorithm processes three cases of the semantic containment, namely,(1) equivalence, (2) query containment, and (3) region containment. If the queryis equivalent to a region in the cache, the query answer coincides with the re-gion contents. If a region contains the query, the complete answer can also beproduced from the region contents, with the query formula used as a �lter.Moreover, if two or more regions contain the query, any of them can producethe answer. To reduce the �ltering overhead, the algorithm selects and �lters theregion where the content has the smallest number of tuples. In the case of regioncontainment, the algorithm extracts a partial answer from the region contentsand generates the query remainder which is then sent to the server. If severalregions are contained in the query, any or all of them can produce the partialanswer. As the number of such regions can be huge, the algorithm selects thetop m regions with a maximal number of tuples.If no semantic containment is detected, the cache is not used at all, and theinitial query is sent to the server. When an answer to this query is received, a

new cache region is created. If the cache space is already used up, one or several\old" regions are released. As the basic replacement strategy, we use the well-known LRU (\least recently used"). The strategy is appropriate for the Web,where searching is always coupled with navigation and discovery. Typically, anew query re�nes a previous query [22].With the algorithmic framework described above, three important issues re-quire further analyses, namely, the construction of region remainders, regioncoalescing and cache region replacement.3.1 Constructing query remaindersAssume that m semantic regions, R1; : : : ; Rm, are contained in the query. Al-though the query remainder Qr can be constructed as Qr = Q�R1� : : :�Rm =Q^:R1^ : : :^:Rm, such a constraint formula, after simpli�cation, can containdisjunctions, and may not be appropriate for a server that accepts conjunctivequeries only. For example, for the query a and the region a^b^c1, the constraintformula a� a ^ b ^ c results in the following disjunction formula:a� a ^ b ^ c = a ^ :(a ^ b ^ c) = a ^ :b _ a ^ :c:To distinguish the regions which drive the query remainder to a conjunctiveform from those which do not, we introduce a di�erence measure between thequery and the region formulas. The di�erence is de�ned as the number of termsin the region formula not presented in the query. This de�nition splits the setof regions R1; : : : ; Rm into groups, where all regions in a group di�er in l termsfrom the query, l = 1; 2; : : :: In the example given above, the region formulaa ^ b ^ c has a two-term di�erence from the query a. Note, however, that thecase l = 0 is also valid. When a query and a region are equivalent, or when aregion contains a query, the di�erence is zero, and, correspondingly, the queryremainder is null.As stated in the following theorem, the di�erence measure allows us to guar-antee that regions with one-term di�erence preserve the conjunctive form of thequery remainder.Theorem 1. Assume a cache containing m region formulas have one-term dif-ferences, say a1; a2; : : : ; am, from a query formula Q. Then, the query remainderQr is Q ^ :a1 ^:a2 ^ : : :^ :am.Proof. Let E denote the set of all possible query terms. As all m regionscontain the query, we can denote the region formulas, without loss of generality,as Q ^ a1, Q ^ a2, : : :, Q ^ am.Then we obtain:Qr = Q� (Q ^ a1) � : : :� (Q ^ am) = Q ^ (E � a1 � : : :� am) == Q ^ (E ^ :a1 ^ : : :^ :am) = Q ^ :a1 ^ : : :^ :amut1 We use characters from the beginning of the alphabet to denote query terms.

3.2 Region coalescingAs we have explained before, when a query and a region are equivalent, or whena region contains a query, the query remainder is null. The query is not sentto a server but processed locally. The cache contents are kept unchanged. Theregion providing the answer to the query updates the replacement values (seeSect. 3.3).In the region containment case, i. e. when a query contains a region, thequery remainder is not null, and, moreover, it is a complement to a semanticregion R (see Fig. 3.a). When an answer to the query remainder Qr is received,there are two strategies to add the answer to the cache. With the no-coalescingstrategy, a new cache region is created for the query remainder. This impliesthat smaller regions appear in the cache. However, such regions may result inthe degradation of the cache reuse. With the coalescing strategy, no new cacheregion is added; instead, region R's contents are extended with the answer tothe remainder. The region formula R is substituted (relaxed) with Q.Obviously, both strategies require the same cache space to store tuples. Still,the coalescing strategy appears to be preferable. First, it uses only one regioninstead of two. Furthermore, if m semantic regions, R1; : : : ; Rm, yield the regioncontainment (see Fig. 3.b), the coalescing strategy is even more advantageous.The query remainder Qr = Q�R1 � : : :�Rm is a complement to the union ofthe regions. Here, the coalescing strategy will keep a single region (with formulaQ), instead of m individual regions R1; : : : ; Rm, and the query remainder. Asregions R1; : : : ; Rm may contain tuple duplications, the coalescing strategy pro-vides better storage utilization, both for the signature parts and for the contentparts of the cache.3.3 Replacement strategyAs the cache space is a scarce and limited resource, the cache may discard theleast recently used regions to free space for new regions. The standard LRUstrategy was designed for the replacement of pages or tuples in the cache. It actsupon objects of the same size, that is, the replacement unit is one page or onetuple.In the query caching case, the situation is di�erent. When a region R quali�esfor a query, the involvement of the region in the answer can vary. If the querycontains the region { as depicted in Fig. 3.a { the region contents is completelyinvolved in responding, as all tuples from the region contents appear in theanswer. By contrast, if the region contains the query (see Fig. 3.c), the regioninvolvement is partial, as only some of the tuples in the region match the query.Therefore, the replacement function should take into account the region in-volvement in the answer of the query. If the region involvement is complete,the new replacement value for the region is \the most recent one", as in thecase when the answer to the query is shipped from the server. If the region in-volvement is partial, and there are tuples in the region contents not matching

Q

R
R1

Q
R2

c) d)

a) b)

R1

R2
R3

Q

R

Q

Fig. 3. Semantic containment cases: a) Single region containment; b) multiple regioncontainment; c) single query containment; d) multiple query containmentthe query, the change of the replacement value toward \the most recent one"depends on how large the portion of the matched tuples is.The region involvement can be measured as p = TQ=T , where TQ is thenumber of tuples appearing in the answer to the query, and where T is the totalnumber of tuples in R's contents.Without loss of generality, we assume that \the most recent value", Vtop, isincremented by one, each time a new query is issued. If the current replacementvalue of region R is VR, VR < Vtop, and the region involvement is p, we calculatea new replacement function as V 0R = VR+(Vtop�VR)�p. If p = 1, then V 0R = Vtop.If p = 1=2, then V 0R = (Vtop + VR)=2. Note, that this replacement function canbe implemented for any region in the cache, whether the region quali�es forthe query or not. If a region does not qualify for the query, and, therefore, itsinvolvement p is zero, the region replacement value is kept unchanged.Example 2. The cache contains three regions with formulas a ^ b ^ c, b ^ d andd ^ :a. Figure 4.a1 shows the regions with their replacement values (assumingVtop = 6). Assume a new query is d. The second and third regions yield thequery containment. As both region formulas di�er from the query formula inone word only (b for the second region and :a for the third one), the generatedquery remainder is given as d ^ a ^ :b. Once the complete answer is produced,the second and third region, as well as the query remainder are substituted withone region with formula d (Fig. 4.a2). Its replacement value is Vtop = 7.

Now we assume instead that the query is b^d^f (see Fig. 4.b1). Two regions,b ^ d, and d ^ :a, contain the query. The former is selected as the answer tothe query, as it has less tuples in the contents. Its replacement value is updated(from 3 to 4) accordingly to the portion of tuples matching the query in theregion contents.
a ^ b ^ c

5
a ^ b ^ c

5

a ^ b ^ c
5

a ^ b ^ c
5

b ^ d

d ^ not a

2b ^ d
3

d ^ not a

Query
b ^ d ^ f

2
4

b1) b2)

d

b ^ d

d

3

d ^ not a

7

a ^ b ^ c ^ d

2

Query

a1) a2)

Fig. 4. Region coalescing examples: a1) Query Q = d is issued; a2) Regions coalescedafter the query; b1) Query Q = b^d^f is issued; b2) Regions updated after the queryCaching algorithm 1. Input: cache with semantic regions and query Q.Output: answer to Q and the cache updated.1. Verify the query signature against all region signatures in the cache.2. SQ = SR: If there is a region which formula is equivalent to the query, returnthe region contents as the query answer. Update the replacement functionvalue of the region and stop.3. SQ � SR: If one or more regions contain the query, choose the region withthe minimal cardinality. Scan tuples in the region contents and return onesmatching the query. Update the replacement function value of the regionand stop.4. SQ � SRi : If several regions are contained in the query, choose top m re-gions, R1; : : : ; Rm, with the maximal cardinality. Return all tuples from the

regions contents of R1; : : : ; Rm, discarding duplications. Construct the queryremainder as follows:{ Set the query remainder to query Q.{ For each region Ri providing the region containment, calculate the dif-ference between the region formula and the query. If the di�erence is oneterm ai only, constrain the query remainder with :ai.Send the query remainder to the server. When the answer is received, replaceregions R1; : : : ; Rm with one region Q. Put Vtop as the replacement value forQ and stop.5. Otherwise, send query Q to the server. Once the answer is received, createa new region for Q in the cache. To free space for the region, remove theregions with the least replacement values, until query Q �ts the cache.4 The Advanced Caching AlgorithmThe caching algorithm described in the previous section e�ciently manages thesemantic containment and equivalence cases. However, it does not manage themore frequent and complex case of semantic intersections. In a semantic inter-section, a region can produce a portion of the answer, but it neither containsnor is contained in the query.Example 3. Assume, the cache contains regionR1 with formula \query ^ caching"and query Q is \optimal ^ query" (see Fig. 5.a). Since there is no containment,Algorithm 1 does not exploit R1 for the partial answer, although the tuples inthe region contents matching the formula \optimal ^ query ^ caching" matchalso the query. Moreover, when Algorithm 1 receives the answer to query Q fromthe server, it creates a new semantic region R2 with the same formula \optimal^query" (see Fig. 5.b). Two semantic regions R1 and R2 contain tuple duplicates,which match their intersection formula \optimal ^ query ^ caching". In otherwords, in the semantic intersection cases, Algorithm 1 retains a low cache useand a high tuple duplication level.
R1 Q R1

b)

R2

optimal ^ query ^ caching

a)

query ^ caching optimal ^ query query ^ caching optimal ^ queryFig. 5. Semantic intersection example

In this section we develop an advanced caching algorithm which, besidesthe containment cases, also processes the semantic intersection. This helps toimprove cache utilization and to reduce tuple duplications.The intersection of a semantic region R and a query Q is given by the inter-section of their formula : R \ Q. Given the region signature SR and the querysignature SQ, we use their signature intersection SQ \ SR, which is obtained bybit-wise AND-ing of SQ and SR. Then, for a signature S, the signature cardi-nality jSj denotes the number of bits set to one in the signature.In the semantic intersection of a semantic region R and a query Q, we dis-tinguish two cases:Complement: Q \R = ;; the formula intersection is null. For instance, querya^ b is a complement to the region a^:b. Consequently, the region containsno tuples to answer to the query. However, in the complement case, theregion coalescing is possible. For the query and region above, the coalescingwould result in one region with formula a.Intersection: The Q \ R 6= ;; the formula intersection is not null. There aretwo following sub-cases:{ Query and region formulas have some common terms appearing in theintersection (in Example 2, region \query ^ caching" and query \optimal^ query" have term \query" in common).{ Query and region formulas have no common words. For instance, regiona and query b have no common terms, but their intersection a^ b is notempty, and, therefore, the region can contribute to the partial answer.Semantic intersection in signature �les. If the query Q and a region R havesome common terms, their signatures have bits set to one which correspond tosignatures of the common terms. The more terms formulas Q and R have incommon, the larger the number of bits jointly set to one. The semantic intersec-tion of Q and R could be measured as the number jSQ \ SRj of correspondingbits set to one in both signatures. Unfortunately, this is not always true. Forexample, even though the signature intersection of a region with formula a anda query b may have no bits set to one, the region with formula a might indeedhave tuples matching the formula b ^ a.In the remainder of this section, we show how the signature �le method al-lows for an e�cient detection of region intersections with the query. Moreover, itsupports partial answer deliveries and helps constrain the query remainder. Notethat the following discussion about the semantic intersection assumes that nei-ther equivalence nor query containment is detected in the cache, and, therefore,the query remainder is not null.As in semantic containment, not all of the regions intersecting with the querycan contribute to the query remainder; again because of the problem of conjunc-tive queries. To detect the regions that can contribute to a valid formula, weuse again term di�erences, as introduced in Sect. 3. In addition, we make use ofTheorem 1, which, while proven for the semantic containment only, also appliesto the case of semantic intersection. We argue as follows: if a cache contains m

regions where the corresponding formulas are not contained in the query Q, buthave one-term di�erences, say a1; a2; : : : ; am, the query remainder Qr can beconstructed as Q ^:a1 ^ :a2 ^ : : :^ :am.To use the theorem, we must revise one step in the proof which di�erentiatesthe semantic intersection from semantic containment. Indeed, with the semanticintersection, no region is contained in the query, and, therefore, no region formulacan be presented as Q^ai. For the case m = 1, we have Qr = Q�R1 = Q�Q^R1.The constraint formula Q^R1 has one-term di�erence from query Q too, but iscontained in Q. Hence, it can be represented as Q^a1. Therefore, Qr = Q^:a1:The case m > 1 of the proof is derived in a similar way.Example 4. As region \caching ^ query" has one-term di�erence from the query\optimal^ query", the region can report the portion \optimal^ query ^ caching"to the user and construct the query remainder \optimal ^ query ^ : caching".Similarly, the region with formula a has one-term di�erence from query b. There-fore, the portion a ^ b is reported, and the query remainder is set to b ^ :a.This feature of semantic regions with one-term di�erence from the query inconstraining the query remainder leads us to a double-scan evaluation of thequery against the cache contents. The �rst, fast scan over the region signaturesidenti�es all regions with one-term di�erence in order to quickly construct thequery remainder and to produce the �rst partial answer. The second, slow scanchecks whether other intersection cases can enrich the partial answer. The twoscans over the region signatures di�er in the �ltering function applied to theregion signatures.Each region R �ltered during the �rst scan should have at most one-termdi�erence from the query. Therefore, if the region signature has jSRj bits set toone, and its intersection with the query signature has jSR \ SQj such bits, thedi�erence between the two numbers should be at most k bits, where k is thenumber of bits set to one in a term signature. The following theorem states thisfact explicitly.Theorem 5. If region R has one-term di�erence from query Q, thenjSR \ SQj � jSRj � k: (2)The �rst scan veri�es the condition (2) on the region signatures. If the con-dition holds for a region signature, the region formula is checked for a one-termdi�erence. As in the case of semantic containment, a false drop appears if con-dition (2) holds but the region formula does not provide a one-term di�erence.In Sect. 5, we report the results of some experiments and show that the numberof false drops when verifying the condition (2) can be kept small through someappropriate choices of signature �le parameters, calculated using formula (1).The second scan detects regions where the corresponding formulas di�er intwo and more terms. These regions do not qualify to constrain the query remain-der. By analogy with one-term di�erence, a region R where the correspondingformula di�ers in l; l � 2 terms from the query, satis�es the conditionjSR \ SQj � jSRj � k � l: (3)

However, this condition can not be used to full extent for the second scan.First, the condition (3) loses its importance for increasing values of k. In fact,a typical Web query or region formula has an average of three or four terms.Condition (3) is often reduced to a simple jSR\SQj � 0. This would sweep all theregion signatures, resulting in a large number of false drops, and a high �lteringoverhead. Second, regions di�ering in two or more terms from the query, usuallycontribute much less to the answer than regions with a one-term di�erence.Third, the tuples they contribute will be duplicated in the answer to queryremainder, as their formulas were not excluded from the remainder. Therefore,the second scan can be omitted for some of the Web-based data repositories. Forinstance, if we know that regions with two-term di�erence contribute less than1% to the partial answer (the Library of Congress discussed in Sect. 5 is such arepository), the query processing can stop after the �rst scan.If the regions with two-term di�erence appear to be useful for partial answers,we consider two options for the second scan:{ jSR \ SQj � jSRj � 2k: this option fetches mainly the regions with two-termdi�erence from the query. Therefore, some regions di�ering in more termswill not be fetched.{ jSR \ SQj � 0: all region formulas satisfy this option, yielding to numerousfalse drops. However, all tuples in the cache matching the query are retrieved.In most cases, the �rst option is more preferable as it provides a good tradeo�between the number of false drops and the number of tuples retrieved. The secondoption can be used if the cache space is very small, or if the application is keento retrieve all tuples from the cache matching the query.Region coalescing and region replacement. The semantic intersection givesa new extension to the coalescing strategy. The strategy can coalesce the queryand a region when their uni�ed formula is a conjunction. For instance, it cancoalesce query a ^ b and the region a ^ :b in one region. Three conditions aresu�cient: 1) the region has a one-term di�erence, say a1, from the query; 2)symmetrically, the query has a one-term di�erence, say a2, from the region; 3)a1 is a negation of a22.The replacement policy, as designed for the semantic containment, remainsthe same for the semantic intersection. When a new query is issued, any seman-tic region in the cache has its replacement value updated, i. e. towards Vtop,proportionally to the region involvement in the answer.The second caching algorithm covers both relations between the query andsemantic regions, that is, the semantic containment, as discussed in Sect. 3,and the semantic intersection, as discussed above. Moreover, the algorithm doesnot distinguish between regions providing the query containment and semanticintersection. Both cases are processed uniformly.2 Note, however, that a1 and a2 have independent signatures due to the cache archi-tecture (see Sect. 2).

Caching algorithm 2. Input: cache with semantic regions and query Q.Output: answer to Q and the cache updated.1. (First scan) Check the query signature against the region signatures in thecache.2. SQ = SR: if there is a region which formula is equivalent to the query, returnthe region contents as the answer. Update the replacement value of the regionand stop.3. SQ \ SR = SR: if one or more regions contain the query, choose the regionwith the minimal cardinality. Scan the region contents and return the tuplesmatching the query. Update the replacement value of the region and stop.4. jSQ \ SRj � jSRj � k: Identify all regions, say R0; : : : ; Rm, m � 0, withone-term di�erence from the query. Return the tuples matching the query inthe semantic regions of R0; : : : ; Rm, discarding duplications. Construct thequery remainder Qr as follows:{ Set the query remainder to query Q.{ For each region Ri, i = 0; : : : ;m, calculate the di�erence ai from thequery and constrain the query remainder with :ai.Send the query remainder to the server.5. (Second, optional scan) Scan the region signatures with the condition T ,where T is a choice between jSR \ SQj � jSRj � 2k and jSR \ SQj � 0. Foreach region R fetched, check the Q \R formula intersection. If the formulais not null, report the tuples from the region contents matching the query.6. When the answer to the query remainder Qr is received, update the cacheas follows.{ If regions Ri1 ; : : : ; Rip contain the query, replace them with a new regionwith formula Q.{ If a regionR is complement to query Q and formulaR[Q is a disjunction,substitute R and Q with a new region.{ Otherwise, add a new region to the cache with the formula Qr.Update the replacement values for all regions contributed to the partialanswer.Example 6. Assume the cache contains the regions with formulas a^b, c^d^:e,and the user query be b^ c; Figure 6.a shows the regions with their replacementvalues (assuming Vtop = 7) and the query. The �rst scan detects that the regiona ^ b has a one-term di�erence from the query and can constrain the queryremainder Qr which is b ^ c ^:a. All tuples from the region contents matchingthe query report their partial answer. The second scan detects the semanticintersection for region c ^ d ^ :e. The region contents is scanned and tuplesmatching this query complete the partial answer.Once the answer to the query remainder Qr is received, a new region withthe formula c ^ d ^ :e is created. The replacement value is set to Vtop = 8.Also, both regions a ^ b and c ^ d ^ :e have their replacement values updated,in proportion to their contribution to the answer (see Fig. 6.b).

b)

c ^ d ^ not e

a)

2 4
33

a ^ b
c ^ d ^ not e

b ^ c ^ not ab ^ c

a ^ b

8

queryFig. 6. Region coalescing for the semantic intersection: a) Query c ^ d is issued; b)after the query has been issued5 ExperimentsWe have conducted a number of experiments to test the caching algorithmsdeveloped in the paper. As a Web information server, we have used the Li-brary of Congress (about 6.3 million records) with the search page available athttp://lcweb.loc.gov/. The search page supports one to three terms in the query;the �rst term must not be negated, while others can. Since no full-text retrievalis available, tuples are rather small with respect to the cache size. For any query,terms were randomly chosen from a dictionary containing some 80 terms in the�eld of computer science; these terms were taken from the Yahoo Classi�er.3Any query in the experiments contained one to three terms, with an equalprobability for each case. If a second or third term was included, it was negatedin one of three cases. Each algorithm tested in the experiments started with anempty cache and used the �rst queries just to �ll it. Once the cache becomes full,the main parameters of the cache were evaluated during a series of s sequentialqueries. The main parameters, including values for F and k of the signaturegeneration, are reported in Table 1.Table 1. Experiment parametersParameter Description ValueS Cache size 256k-1024kF Number of bits in signature 48-96 bitsk Number of set bits for simple word 5-10 bitss Length of query series 100In the experiments we have tested three main parameters:Cache e�ciency: the average portion of the answer provided from the cache.For one query, the e�ciency is evaluated as rc=rt, where rt is the total number3 http://www.yahoo.com/Science/Computer Science/.

of answer tuples, and rc is the number of the answer tuples retrieved from thecache. For a series of s queries, the cache e�ciency is the mean of individualquery e�ciencies.Duplication ratio: for one query it is evaluated as (S � Sd)=S, where S isthe total cache size and Sd is the cache size when all tuple duplications areremoved.False drop ratio: the average number of false drops per query, taken over aseries of s queries.We have tested the following algorithms:Algorithm 1 (Sect. 3) and Algorithm2 (Sect. 4, with the �rst scan only) combined with the coalescing4 and no-coalescing strategies; in the graphs, they are named Coal-1, NoCoal-1, Coal-2and NoCoal-2; The algorithms are tested over the parameters : (1) signaturelength F and the number k of bits set to one in a term signature; (2) cache size.The following graphs summarize the experiment results.
10

Coal2
NoCoal2
Coal1
NoCoal1

Cache size (kb)

Cache efficiency (%)

20

30

256 512 1024Fig. 7. Cache e�ciency experimentsThe cache e�ciency grows almost linearly for all combinations, as the cachesize increases (see Fig. 7). The e�ciency is higher using Algorithm 2 as semanticintersection is more frequent than semantic containment. Similarly, the coalesc-ing strategy works better than the no-coalescing strategy.The duplication ratio graphs (see Fig. 8) demonstrate the di�erence betweenthe coalescing and no-coalescing strategies. The ratio is higher applying theno-coalescing strategy which keeps di�erent regions for queries which may se-mantically intersect. Algorithm 2 is slightly better { with respect to minimizingtuple duplications { than Algorithm 1 because it also detects query complements(though, this rarely happens).4 In all tests, the coalescing strategy was adopted so that regions are coalesced if thenew region size is not superior to 10% of the total cache size.

10

 20

Cache size (kb)

Dublication ratio (%)

Coal2
NoCoal2
Coal1
NoCoal1

256 512 1024Fig. 8. Tuple duplication ratio in the cacheFor all combinations of values F and k that determine the signature construc-tion, Algorithm 2 gives a higher level of false drops than Algorithm 1 as shown inFig. 9. To explain this fact, we recall that Algorithm 1 checks region signaturesfor two containment conditions, namely, SQ \ SR = SQ and SQ \ SR = SR.Besides the same two conditions, Algorithm 2 also checks the condition (2) todetect all intersections with a one-term di�erence. Although the false drop ratiousing Algorithm 2 is high for small values of F , it becomes reasonably low whenF increases. We point out that the space overhead is kept low, since the mainsource of the space overhead is the tuple duplication in the content parts, andnot the size of signature �les.
False drop ratio (%)

Space overhead (%)

2 41 3 5

4

8

12

16
cache 256k, Coal2
cache 1024k, Coal2
cache 256k, Coal1
cache 1024k, Coal1

F=48, k=5
F=64, k=6

20

F=80, k=8
F=96, k=10Fig. 9. False drops versus the space overheadOur main conclusions from the experiments can be summarized as follows:

1. Algorithm 2 provides both a higher cache e�ciency and a lower duplicationratio, when compared to Algorithm 1. The false drop ratio in Algorithm 2 ishigher, but the di�erence is small. It can be neglected when using a slightlyenlarged signature length.2. The coalescing strategy is always better than the no-coalescing strategy whenlooking at the tuple duplications and the number of regions in the cache.3. The experiments demonstrated the di�erence between the two major sourcesof space overhead in the cache, namely, the use of signature �les and tupleduplications. For typical Web queries, the signature �les do not occupy muchspace, allowing control of the false drop ratio by the appropriate values ofF and k. However, tuple duplications can considerably reduce the cachee�ciency. It is extremely worthwhile to reduce the duplication ratio.6 Conclusion and Open IssuesWe have presented a new caching mechanism for conjunctive Web queries as re-alized in the Knowledge Broker system [3]. The mechanism is based on signature�les and allows for an e�cient reuse of already obtained answers. Two cachingalgorithms were presented that cope with the relations of semantic containmentas well as semantic intersection between a user query and the semantic regions,respectively.The basic query model covers conjunctive queries only. With the superim-posed coding used in signature �les, the model cannot be extended to processdisjunctive queries directly in the cache. Such a query must be split into con-junctions beforehand. A further analysis of signature �le methods to overcomethis problem is a real challenge.The caching mechanism works e�ciently for a single Web repository. In thecase of a large set of di�erent, possibly heterogeneous Web repositories, the cachemanagement becomes more complicated. The attempt to put an additional con-straint like "server=<repository-name>" does not solve the problem. It wouldchange the query processing completely: the key element in the proposed cachingmechanism is based on a one-term di�erence between the query and the semanticregions! Our plans are to study this problem so that we can adopt the signaturemethod properly.References1. S. Adali, K. S. Candan, Y. Papakonstantinou, V. S. Subrahmanian. QueryCaching and Optimization in Distributed Mediator Systems. In Proc. SIGMOD'96 Conf., pp. 137{148, 1996.2. R. Alonso, D. Barbara, H. Garcia-Molina. Data Caching Issues in an InformationRetrieval System. In ACM TODS 15: 3, 359{384, 1990.3. J.-M. Andreoli, U. M. Borgho�, R. Pareschi. Constraint-Based Knowledge Bro-ker Model: Semantics, Implementation and Analysis. In Journal of SymbolicComputation bf 21: 4, 635{667, 1996.

4. Y. Arens and C. A. Knoblock. Intelligent Caching: Selecting, Representing, andReusing Data in an Information Server. In Proc. CIKM '94 Conf., Gaithersburg,MD, pp. 433{438, 1994.5. U. M. Borgho�, R. Pareschi, F. Arcelli, F. Formato. Constraint-Based Protocolsfor Distributed Problem Solving. In Science of Computer Programming 30, 201{225, 1998.6. M. J. Carey, M. J. Franklin, M. Livny, E. J. Shekita. Data Caching Tradeo�s inClient-Server DBMS Architectures. In Proc. SIGMOD '91 Conf., pp. 357{366,1991.7. C.-C. K. Chang, H. Garcia-Molina, A. Paepcke. Boolean Query Mapping AcrossHeterogeneous Information Sources. In IEEE TOKDE 8: 4, 1996.8. C.-C. K. Chang and H. Garcia-Molina. Evaluating the Cost of Boolean QueryMapping. In Proc. 2nd ACM Int'l. Conf. on Digital Library, 1997.9. S. Dar, M. J. Franklin, B. Jonsson, D. Srivastava, M. Tan. Semantic DataCaching and Replacement. In Proc. 22nd VLDB Conf., Bombay, India, pp. 330{341, 1996.10. C. Faloutsos. Signature �les: Design and Performance Comparison of Some Sig-nature Extraction Methods. In Proc. SIGMOD '85 Conf., pp. 63{82, 1985.11. C. Faloutsos and S. Christodoulakis. Signature Files: An Access Method forDocuments and Its Analytical Performance Evaluation. In ACM TOIS 2: 4,267{288, 1984.12. C. Faloutsos and S. Christodoulakis. Description and Performance Analysis ofSignature File Methods for O�ce Filing. In ACM TOIS 5: 3, 237{257, 1987.13. P. Godfrey and J. Gryz. Semantic Query Caching For Heterogeneous Databases.In Proc. 4th KRDB Workshop on Intelligent Access to Heterogeneous Informa-tion, Athens, Greece, pp. 6.1{6.6, 1997.14. H. Kitagawa, J. Fukushima, Y. Ishikawa and N. Ohbo.. Estimation of FalseDrops in Set-valued Object Retrieval with Signature Files. In Proc. 4th Int'l.Conf. FODO '93, Chicago, IL. Springer-Verlag, LNCS 730, 146{63, 1993.15. D. L. Lee, Y. M. Kim and G. Patel. E�cient Signature File Methods for TextRetrieval. In IEEE TOKDE 7: 3, 423{435, 1995.16. A. Y. Levi, A. Rajaraman, J. .J. Ordille. Quering Heterogeneous InformationSources Using Source Descriptions. In Proc. 22nd VLDB Conf., Bombay, India,pp. 251{262, 1996.17. P. T. Martin and J. I. Russell. Data caching strategies for distributed full textretrieval systems. In Information Systems 16: 1, 1{11, 1991.18. A. Paepcke, S. B. Cousins, H. Garcia-Molina, et al. Towards Interoperabilityin Digital Libraries: Overview and Selected Highlights of the Stanford DigitalLibrary Project. In IEEE Computer Magazine 29: 5, 1996.19. Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, J. Ullman. A Query Trans-action Scheme for Rapid Implementation of Wrappers. In Proc. DOOD'95 Con-ference. Springer-Verlag, LNCS 1013, 161{186, 1995.20. Y. Papakonstantinou, H. Garcia-Molina, J. Ullman. MedMaker: A MediationSystem Based on Declarative Speci�cations. in Proc. ICDE'96 Conf., pp.132{141, 1996.21. Ch. Reck and B. K�onig-Ries. An Architecture for Transparent Access to Seman-tically Heterogeneous Information Sources. In Proc. Cooperative InformationAgents. Springer-Verlag, LNCS 1202, 1997.22. A. Yoshida. MOWS: Distributed Web and Cache Server in Java. In ComputerNetworks and ISDN Systems 29: 8{13, 965{976, 1997.

