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abstract: An unresolved controversy regarding social behaviors is
exemplified when natural selection might lead to behaviors that max-
imize fitness at the social-group level but are costly at the individual
level. Except for the special case of groups of clones, we do not have
a general understanding of how and when group-optimal behaviors
evolve, especially when the behaviors in question are flexible. To
address this question, we develop a general model that integrates
behavioral plasticity in social interactions with the action of natural
selection in structured populations. We find that group-optimal be-
haviors can evolve, even without clonal groups, if individuals exhibit
appropriate behavioral responses to each other’s actions. The evo-
lution of such behavioral responses, in turn, is predicated on the
nature of the proximate behavioral mechanisms. We model a par-
ticular class of proximate mechanisms, prosocial preferences, and
find that such preferences evolve to sustain maximum group benefit
under certain levels of relatedness and certain ecological conditions.
Thus, our model demonstrates the fundamental interplay between
behavioral responses and relatedness in determining the course of
social evolution. We also highlight the crucial role of proximate
mechanisms such as prosocial preferences in the evolution of be-
havioral responses and in facilitating evolutionary transitions in
individuality.

Keywords: goal-oriented behavior, Price equation, two-tiered model,
kin selection, multilevel selection, community reciprocity.

Introduction

Among the many debates on the evolution of social be-
haviors, perhaps none is older or more controversial than
the one surrounding the role and importance of group-
level selection in the evolutionary process (Wynne-
Edwards 1962; Williams 1966; Hamilton 1975; West et al.
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2007; Wilson and Wilson 2007; Leigh 2010). There is now
at least one important consensus that multilevel-selection
processes (which are motivated historically from models
of group-level selection) are mathematically equivalent to
kin-selection processes (which historically derive from
analyses of individual-level selection; Hamilton 1975;
Queller 1992). Even though few now dispute that some
selection at the group level (between-group selection, in
current terminology) occurs (West et al. 2007; Wilson and
Wilson 2007; Gardner and Grafen 2009), other issues re-
main controversial. Among these is the original question
in the debate, namely, how likely natural selection is to
lead to behaviors that maximize fitness at the group level.
It is well known that when selection within a group is
completely abolished, between-group selection can lead to
maximization of group fitness when appropriate genetic
variation exists and other evolutionary forces are weak.
Within-group selection disappears when the expected fit-
ness of all individuals within a group is equalized either
as a result of clonality within groups or through mecha-
nisms such as policing (in social insects) or fair meiosis
(genomes of sexual organisms; Leigh 1977; Alexander and
Borgia 1978; Frank 2003). Some taxa, such as eusocial
aphids, do live in clonal groups, but this is generally ac-
cepted to be a rare condition in nature outside of some
prokaryotic lineages (Levin et al. 1999). Repression of
competition is much more widespread and is found in
social insects, vertebrates, and human societies (Frank
2003 and references therein).

Another route for diminishing within-group differences
in fitness is behavioral coordination through individuals’
responses to their groupmates’ actions. Virtually all or-
ganisms exhibit social behaviors that are flexible or con-
ditional on the behaviors of others, from bacteria (e.g.,
quorum sensing; Miller and Bassler 2001) to insects (e.g.,
reproductive strategies depending on social context; West-
Eberhard 1987), birds (e.g., responses of parents to each
other; Wright and Cuthill 1989), primates (e.g., reciprocal
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altruism; Brosnan and de Waal 2002), and obviously, hu-
mans. Not surprisingly, a large theoretical literature focuses
on the evolutionary consequences of particular kinds of
flexible (or conditional) behavior (e.g., Axelrod and Ham-
ilton 1981; McNamara et al. 1999; Lehmann and Keller
2006; Akçay et al. 2009; Boyd et al. 2010). However, the
general question of whether and when flexible behaviors
can allow group-optimal outcomes to be evolutionarily
stable has not been answered. Another related body of
work that deals with “indirect genetic effects” (IGEs; Grif-
fing 1967, 1981a, 1981b; Moore et al. 1997; Wolf et al.
1999; Bijma et al. 2007; Bijma and Wade 2008; McGlothlin
et al. 2010) uses quantitative genetics to measure how the
response of an individual’s phenotype to the phenotypes
of others affects selection pressures in social interactions.
However, these models do not consider how the IGEs
themselves evolve (Bijma and Wade 2008; McGlothlin et
al. 2010). An element missing from both strands of theory
is the role of proximate mechanisms: behavioral responses
(or IGEs) are produced by proximate mechanisms, which
can either constrain or facilitate the evolution of different
types of responses. Despite their significance, proximate
mechanisms are only infrequently integrated into models
of social evolution in structured populations. Thus, we
currently lack a general framework for understanding both
the selective effect and the evolution of behavioral re-
sponses in structured populations based on the proximate
mechanisms that generate such responses.

In this article, we demonstrate how such a framework
can be built from the Price equation (Price 1970, 1972).
Our framework shows that behavioral responses and re-
latedness due to population structure play exactly sym-
metric roles in determining the direction of selection on
a social trait. When using the multilevel-selection per-
spective, our framework also shows how cooperative be-
haviors are always selected against at the within-group level
while being selected for at the between-group level, re-
gardless of behavioral responsiveness or relatedness. We
then apply our framework to the problem of when natural
selection can lead to maximization of fitness at the group
level, or group optimality. Our focus on group optimality
is motivated in part by the fact that group optimality is
intimately related to evolutionary transitions in individ-
uality (ETIs), that is, groups becoming new, higher-level
individuals (Maynard Smith and Szathmáry 1995; Michod
2005, 2006). We show that behavioral responses signifi-
cantly increase the conditions under which group opti-
mality is evolutionarily stable. Using a specific proximate
mechanism for the production of behavioral responses, we
also show how behavioral responses that lead to group
optimality might evolve. The proximate mechanism we
employ is the social-preferences, or motivations, model of
Akçay et al. (2009), which we extend to the case of N-

player public-goods games. Group-optimal outcomes can
evolve in this model through the evolution of how much
individuals value the public good versus their private costs.

Model

Integrating Behavioral Responses and Kin Selection

We use a central framework of social-evolution theory, the
Price equation (Price 1970, 1972), to partition the effect
of selection on a heritable trait into components due to
the effect of the trait of the focal individual and those due
to effects on the traits of others in the population (the so-
called kin-selection partition; Price 1970; Queller 1992;
Bijma and Wade 2008). The change in the population-
average breeding value (additive genetic component) due
to the effect of selection can be written as

DG ∝ Var (G )[b ! (N " 1)rb ], (1)i F , p F , pi i i j

where Gi is the breeding value of the focal individual, N
is the size of the social-interaction group, r is scaled genetic
relatedness, and and are partial-regression co-b bF , p F , pi i i j

efficients of the focal individual’s fertility (Fi) on its own
phenotype (pi) and on its neighbors’ phenotypes (pj),
respectively.

In many structured populations, fitness is a function of
both fertility and demographic effects such as local com-
petition for limited resources with related individuals (Tay-
lor 1992; Queller 1994). The scaled-relatedness coefficient
r is defined to account for these demographic effects
(Frank 1998) and can be calculated under a variety of life-
history and demographic scenarios (Lehmann and Rousset
2010). As result of this accounting, and measureb bF , p F , pi i i j

the effects of the phenotypes on fertility only. For example,
in appendix A2, available online, we provide a derivation
of the scaled-relatedness coefficient r for a population with
overlapping generations and an island model of migration
between D different demes, each of which has n individuals
(Wright 1943). In that case, we find that

∗R " R
r p ,∗1 " R

where R is the unscaled-relatedness coefficient defined in
terms of probabilities of identity by descent and

2m 1 n " 1∗ 2R p (1 " m) ! ! R ;[ ]( )D " 1 n n

R in this example is Wright’s FST coefficient (Wright 1949;
Rousset 2004). For an island model with overlapping gen-
erations, , where s is the probability that adults sur-r ≈ s/n
vive from one generation to the next and D and n are
large and m is small (see app. A2). Finally, we make the
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Figure 1: Relationship between motivational traits pi and the actions
individuals choose at the behavioral equilibrium. For each individual
i in the social interaction, the motivational trait pi determines some
aspects of that individual’s neurophysiology, which in turn affect the
decision-making process of that individual. The behavioral equilib-
rium actions, , are the outcome of the behavioral∗ ∗ ∗a p (a , … , a )1 N

dynamic defined by the decision-making mechanisms of all the in-
dividuals involved in the interaction. Illustration from Pearson Scott
Foresman, released into public domain at Wikimedia Commons.

additional assumption that r is determined only by the
demographic parameters of the population and not by
individual phenotypes, which implies that r is a constant.
This assumption is justified by our assumption of weak
selection below (Rousset 2004).

Both and depend on how individuals respondb bF , p F , pi i i j

to each others’ actions. To model these behavioral re-
sponses, we generalize the modeling approach of a recent
series of models (McNamara et al. 1999; Taylor and Day
2004; André and Day 2007; Akçay et al. 2009; Akçay and
Roughgarden 2011) that consider the evolution of behav-
iors in a two-tiered dynamic. Consider a social interaction
with N individuals, where each individual i carries out an
action ai, which is a real, positive number. For example,
ai can denote how much individual i contributes to off-
spring provisioning in a cooperatively breeding group. In-
stead of treating the actions ai as being directly determined
by the genetic makeup of the individuals, we assume that
the actions that each individual carries out are determined
through a behavioral dynamic that operates at the time-
scale of the social interaction. We assume that this be-
havioral dynamic is fast and quickly settles on some equi-
librium action for each individual i. This “behavioral∗ai

equilibrium” (denoted by ) is a func-∗ ∗ ∗ ∗a p (a , a , … a )1 2 N

tion of the decision-making mechanism of the individuals,
that is, the proximate mechanism of behavior. For ex-
ample, McNamara et al. (1999) model the proximate
mechanism as a linear-response rule, where the action of
an individual is a linear function of its opponent’s action,
while Akçay et al. (2009) model the proximate mechanism
as a motivation to maximize a behavioral objective or
social preference function.

We assume that the proximate mechanism is modulated
by a genetically encoded trait that we term the “motiva-
tional trait,” since it affects the decision making of the
individuals. The motivational trait is the phenotype p,
whose evolution we track in equation (1). In our model,
the motivational trait p is a proxy for neurophysiological
or endocrinological traits, such as the expression pattern
of neuropeptide receptors (e.g., oxytocin or vasopressin in
mammals) in key brain regions or the functional responses
of specific neural circuits to external stimuli. Recent re-
search has shown that such physiological traits in humans
and other animals affect many types of social behaviors,
such as pair bonding (Young et al. 2011), parental care
(Donaldson and Young 2008), trust in economic games
(Baumgartner et al. 2008), and the tendency to aggregate
in groups (Goodson and Wang 2006).

By tracking the evolution of the motivational trait p
instead of the equilibrium action , we can study the∗a
evolution of the proximate mechanism that generates be-
haviors instead of the behaviors alone. In principle, dif-
ferent proximate mechanisms (e.g., linear-response rules

or behavioral objectives) might produce the same outcome
in a specific behavioral context (e.g., parental care). How-
ever, in different behavioral contexts (e.g., food sharing),
the outcomes produced by these proximate mechanisms
can be divergent. Studying the proximate mechanisms un-
derlying behaviors would allow us to understand the evo-
lution of behavioral correlations across different social
contexts.

Figure 1 illustrates how, by determining properties of
neurophysiology, the motivational trait p modulates in-
dividual decision-making processes and thus affects the
actions that individuals choose at the behavioral equilib-
rium. The behavioral equilibrium is a function of the com-
bination of the social partners’ motivational traits, or
mathematically, . The action of each indi-∗a (p , … , p )1 N

vidual at the behavioral equilibrium (e.g., the level of help-
ing), in turn, determines the payoff that each individual
gets (e.g., the amount of resources an individual has as a
result of each partner’s level of helping). We denote as
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individual i’s payoff from the social in-u (a , a , … , a )i 1 2 N

teraction. In general, a focal individual’s fertility Fi will be
some function of the payoff ui, possibly integrated over
some time period and possibly including stochastic effects.
To keep the analysis tractable, we assume that the fertility
of individual i is proportional to the payoff ui evaluated
at the behavioral equilibrium ,∗a

∗ ∗F(p , … , p ) { u (a (p , … , p ), … , a (p , … , p )).i 1 N i 1 1 N N 1 N

This expression signifies that ultimately, the fertility of a
focal individual is a function of both its own and its part-
ners’ motivational traits.

Assuming that the effect of the motivational trait on
fertility is weak (i.e., that selection is weak; Taylor and
Frank 1996), the partial-regression coefficient of the focal
individual i’s fertility on its own motivational trait is the
direct effect of the change in the focal individual’s moti-
vational trait plus the indirect effect arising from other
individuals in the group responding to the focal individual,

∗!F !a !u !ui i i ib p p ! r , (2)!F , p iji i ( ) ∗!p !p !a !aj(i apai i i j

where the term quan-∗ ∗ ∗ ∗r p (!a /!p )/(!a /!p ) p !a /!aij j i i i j i

tifies how individual j’s equilibrium action changes in re-
sponse to individual i’s equilibrium action. Thus, rij de-
scribes the relative behavioral response of j to i; we term
it the “response coefficient” of j to i (Akçay et al. 2009).
The mechanistic details of a specific behavioral model,
such as coordinated punishment (Boyd et al. 2010) or
prosocial preferences (Levine 1998; Falk and Fischbacher
2006; Akçay et al. 2009), determine the value of the re-
sponse coefficient. In general, rij may capture the equilib-
rium effect of many different behavioral models, including
social norms and systems of rewards and punishments
(Levin 2009). We emphasize that even though we treat the
response coefficient rij as an index here, it is actually de-
termined by how individuals settle on their equilibrium
actions, and therefore it will evolve as the population dis-
tribution of the motivational trait evolves. We will turn to
the evolution of r itself shortly.

For the effect on fertility of a change in a social partner’s
motivational trait pj, we have

∗!a!F !u !uji i ib p p ! r . (3)!F , p jki j ( ) ∗!p !p !a !ak(j apaj j j k

Again, this partial-regression coefficient consists of the di-
rect effect on i’s payoff of changing social partner j’s action
plus the effects of responses such a change elicits from all
other individuals (including focal individual i).

Assuming that we are interested only in small deviations
in the motivational-trait distribution from a monomor-
phic population (a population composed of individuals

with the same trait), we can set for all andr p r j ( iij

. We further define a benefit∗ ∗!a /!p p !a /!p b {i i j j

for (“other-only” benefit; Pepper 2000) and!u /!a i ( ji j

a cost , where the derivatives are evaluatedc { "!u /!ai i

at ; b and c are generalizations of the∗ ∗ ∗a p (a , … , a )
benefits and costs, respectively, in a linear public-goods
game. Note that b and c are defined locally at the current
phenotypic value of the population and the behavioral
equilibrium it produces. As the behavioral equilibrium
changes because of shifts in the population motivational
trait, the values of b and c change as well.

Using the definitions of r, b, and c, we can rewrite the
change in the population-average breeding value in equa-
tion (1) as

DG ∝ k br(N " 1) " c ! r(N " 1)(
# {b[r(N " 2) ! 1] " rc} . (4))

By setting in equation (1), we obtain the first-DG p 0
order condition for a given motivational trait to be evo-
lutionarily stable (ES) as

b 1 ! rr(N " 1)
p . (5)

c (N " 1)[r ! r ! (N " 2)rr]

A motivational trait that satisfies this first-order condition
is a candidate evolutionarily stable strategy (ESS; Maynard
Smith and Price 1973). Equation (5) is a kind of Ham-
ilton’s rule (Hamilton 1964) incorporating behavioral re-
sponses among N interacting individuals. Expressions sim-
ilar to equation (5) are derived by Lehmann and Keller
(2006, eq. [4]) and by McGlothlin et al. (2010, eq. [18])
using IGEs, whereas Bijma and colleagues (Bijma et al.
2007; Bijma and Wade 2008) develop a related expression
(see eq. [15] in Bijma and Wade 2008) based on a different
approach to partitioning the Price equation.

Importantly, equation (5) is exactly symmetric in r and
r, meaning that behavioral responses and relatedness play
mathematically analogous roles in determining evolution-
ary stability. This does not mean, however, that one can
collapse them into a single index (e.g., an index of as-
sortment) without loss of generality, since the two appear
separately in equation (5). Hence, both behavioral re-
sponses and relatedness must be considered when deter-
mining the total selection pressure on a given social
behavior.

The first-order condition (eq. [5]) is necessary but not
sufficient for the candidate ESS to be the stable outcome
of an evolutionary dynamic; such stability requires that
certain second-order conditions hold as well. In particular,
the second-order ESS condition must be satisfied to ensure
that the candidate ESS is in fact a fitness maximum, as
opposed to a minimum. This condition can be difficult
to calculate exactly in structured populations, since it re-
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quires determining how selection changes relatedness (Ajar
2003; Rousset 2004), and we refrain from calculating it
here. Another second-order condition, called convergence
stability (CS; Eshel and Motro 1981; Christiansen 1991),
is required to ensure that a population that is near a can-
didate ESS evolves toward the candidate ESS through suc-
cessive invasion and fixation of mutations. In appendix
A4, available online, we derive a general expression for the
CS condition. The CS condition depends crucially on how
the response coefficient r changes with the evolving mo-
tivational trait, which in turn is a function of the proximate
mechanism that produces the behavioral responses. In
“The Evolution of Behavioral Responses through Prosocial
Preferences,” we model a proximate mechanism based on
goal-oriented motivations in public-goods games to study
the coevolution of behavioral responses and investment in
a public good.

Behavioral Responses and the Levels of Selection

In deriving equation (4), we used the kin-selection par-
tition of the Price equation; an alternative partition is the
“group-selection” (or “multilevel-selection”) partition that
decomposes the effect of selection into within-group and
between-group components (Hamilton 1975; Queller
1992; see app. A1, available online). Upon rearranging the
terms in equation (4) for , we find thatDG

DG ∝ k{[b(N " 1) " c][1 ! r(N " 1)][1 ! r(N " 1)]

" (N " 1)(b ! c)(1 " r)(1 " r)}, (6)

where the within-group component of selection is

"(N " 1)(b ! c)(1 " r)(1 " r) (7)

and the between-group component is

[b(N " 1) " c][1 ! r(N " 1)][1 ! r(N " 1)]. (8)

The within-group component is always negative for r !

and and vanishes when either is equal to 1. Hence,1 r ! 1
selection at the within-group level opposes an increase in
the amount of cooperation, but its force gets weaker as r
or r increases and disappears when either r or r equals 1.
Within-group selection vanishes with because thisr p 1
condition eliminates variation in the actions and hence∗a
within-group variation in fitness. Thus, even when indi-
viduals are highly responsive to one another’s actions,
within-group selection opposes an increase in the amount
of cooperation. The between-group selection component,
on the other hand, is positive when (as-b/c 1 1/(N " 1)
suming that and ; see ap-r 1 "1/(N " 1) r 1 "1/(N " 1)
pendixes A1 and A3, available online, for limits on r and
r), which is true so long as the total benefit of the social
trait outweighs the cost. This means that if cooperation is

potentially beneficial, then between-group selection always
favors an increase in the amount of cooperation, regardless
of levels of responsiveness and relatedness. In other words,
setting and using equation (6) together imply thatDG 1 0
the amount of cooperation increases if and only if
between-group selection is stronger than within-group se-
lection. A special case of this result was discovered by Wade
(1980), who considered fixed altruistic behaviors ( ).r p 0

In contrast to the group-selection partition, the direct
and indirect fertility effects ( and , respectively) inb bF , p F , pi i i j

the kin-selection partition, equation (1), can each be pos-
itive or negative, depending on r (eq. [4]; app. A1). In
the kin-selection terminology due to Hamilton (1964),
which defines “altruism” as a behavior with a negative
direct fitness effect and positive indirect fitness effects
(Rousset 2004; Lehmann and Keller 2006), this means that
whether cooperation is “altruistic” depends on both be-
havioral responsiveness and demographic factors that af-
fect the scaled-relatedness coefficient r. Thus, cooperation
in a public-goods game may be “mutually beneficial” (West
et al. 2007) and not “altruistic” when behavioral respon-
siveness is high, since the direct effect on fertility (and
consequently fitness) may be positive. The distinction be-
tween mutually beneficial and altruistic cooperation is
conceptually important in social evolution, and a number
of recent reviews attempt to clarify this issue in detail (e.g.,
Lehmann and Keller 2006; West et al. 2007), because it
has often generated confusion (Kerr et al. 2004). In this
regard, the group-selection partition may be a more nat-
ural framework for public-goods scenarios than the kin-
selection partition, since the direction of between- and
within-group selection does not depend on r or r. In fact,
a public-goods scenario could be defined by payoffs that
yield positive between-group selection and negative
within-group selection.

Evolutionary Stability of Group-Optimal Behaviors

Exactly Group-Optimal Behaviors

During an ETI, selection within groups is eliminated and
between-group selection determines whether social be-
haviors increase or decrease in frequency. Continued
between-group selection will eventually lead to a conver-
gence-stable outcome with social behaviors that maximize
the aggregate payoff to the group (see eq. [6]). With a
monomorphic population, maximizing the aggregate
group payoff implies that

b 1
p (9)

c N " 1

(see app. A6, available online). The ratio that satisfiesb/c
the group-optimality condition (9) will not, in general,
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Figure 2: Threshold r from equation (11) required to make an out-
come evolutionarily stable with a given level of divergence from the
group-optimal outcome. Here, we assume that . The solidN p 10
curve is for a ratio 10% higher than the group-optimal ratio, theb/c
dashed curve is for a ratio 1% higher, and the dotted curve isb/c
for a ratio 0.1% higher.b/c

maximize a single individual’s payoff, if one kept all other
individuals’ actions constant. For example, a focal indi-
vidual might selfishly withhold its contribution to a public
good and increase its own payoff while hurting the ag-
gregate payoff. However, when the social behaviors are
flexible, we also have to take into account how other in-
dividuals will respond to any changes in the focal indi-
vidual’s behavior, which is done in equation (5).

Combining conditions (5) and (9), we can see that a
group-optimal outcome can be ES when

r ! r " rr p 1. (10)

Equation (10) is satisfied only when r or r or both are
equal to 1. In other words, evolutionary stability of a
group-optimal behavior requires either perfect relatedness,
corresponding to clonal groups, or perfect responsiveness,
corresponding to perfect behavioral matching of actions.
Either of these conditions is sufficient; that is, group-
optimal outcomes can be ES when regardless of r,r p 1
and vice versa. The first condition ( ) is well known,r p 1
while a special case of the second condition has recently
been discovered in the two-person continuous prisoner’s
dilemma game without population structure (André and
Day 2007).

Almost-Group-Optimal Behaviors

The requirement that either or might stillr p 1 r p 1
seem restrictive, but it is essentially an artifact of requiring
exact group optimality. In reality, empirically distinguish-
ing between exactly group-optimal behaviors and those
that are almost, but not precisely, group optimal is likely
to be difficult. This implies that the scope for what “looks”
group optimal might be even broader than previously ex-
pected. To see this, we can consider an outcome that∗a (")
is approximately group optimal and induces a ratio

, where . As , the outcomeb/c p (1 ! ")/(N " 1) " 1 0 " r 0
approaches the exact group-optimal outcome. A∗a (")

ratio that is lower than implies an out-b/c (1 ! ")/(N " 1)
come closer to group optimality than is . We can show∗a (")
that a ratio smaller than will be ESb/c (1 ! ")/(N " 1)
whenever

1 " r(1 ! ")
r 1 . (11)

1 " r ! "[1 ! r(N " 2)]

Since the right-hand side is always less than 1 for all
and , we can find a thatN ≥ 2 1 1 r 1 "1/(N " 1) r ! 1

will make it possible for an outcome arbitrarily close to
the group-optimal outcome to be ES. Furthermore, we
can see in figure 2 that the threshold r required to make
an outcome ES is strictly decreasing with increased relat-
edness in the population. Figure 2 also shows that a com-

bination of moderate r and moderate r is sufficient to
bring the ES outcome within 10% of group optimality,
suggesting that the scope for approximately group-optimal
behaviors can be much wider than previously recognized.
This also suggests that partial ETIs with meager amounts
of within-group selection require only moderate levels of
relatedness and behavioral responsiveness.

The Evolution of Behavioral Responses through
Prosocial Preferences

In the previous section, we discussed the effect of the
response coefficient r on selection acting on social be-
haviors, but we did not ask how r itself evolves. Previous
work shows that direct selection on r as an independent
trait occurs only to second order in the strength of selec-
tion (André and Day 2007; Akçay et al. 2009). However,
the behavioral response r is not independent of the social
action : both are produced by the proximate behavioral∗a
mechanism. Hence, as the motivational traits underlying
the proximate mechanisms evolve, both and r will co-∗a
evolve with the motivational traits. Therefore, to study how
the response coefficient r evolves, we have to specify how
both the equilibrium actions and the behavioral responses
are produced by the proximate mechanism of behavior.
In this section, we do this by using a model for the evo-
lution of prosocial preferences as the proximate cause of
social behavior.

In particular, we concentrate on the evolution of the
response coefficient , which ensures the stability ofr p 1
group-optimal behaviors, from lower values of r. Our ap-
proach in this section is somewhat inverted, relative to
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conventional ESS analysis. Instead of searching for a gen-
eral ES and CS outcome and determining when such an
outcome is group optimal, we find the conditions under
which the group-optimal outcome is ES and CS.

We analyze public-goods games where each individual
has the option to invest in an action that benefits everyone
in the group (including the focal individual) but incurs a
personal cost. Thus, the payoff to an individual i is given
by: , where is the public ben-u p B(a , … , a ) " C(a ) Bi 1 N i

efit and denotes the private cost. (Note that these func-C
tions are different from b and c defined above.) This model
is a stylized description of many important social inter-
actions, including cooperative hunting and defense or pro-
visioning of a common brood of offspring.

Extending a recent model by Akçay et al. (2009), we
model individuals’ motivations for investment in the pub-
lic good as deriving from innate goals. We represent these
innate goals mathematically by an objective function,

for individual i. The objective functionx (a , a , … , a )i 1 2 N

fulfills a role similar to that of a utility or preference func-
tion in economics (e.g., Heifetz et al. 2007b) and is the
proximate cause of behavior: each individual “wants” to
achieve the maximum value of its objective function, given
what others do. The shape of the objective function of
individual xi is, in turn, determined by the motivational
trait pi that is the target of natural selection. The behavioral
equilibrium for this maximization process satisfies∗a

!xi p 0 (12)F
∗!a apai

for all (see app. A3 for stability conditions).i ! {1, … , N}
To obtain the response coefficient, we choose some j (
, differentiate with respect to the motivationali !x /!a p 0j j

trait of the focal individual pi, and solve for r p
evaluated at in a monomorphic pop-∗(!a /!p )/(!a /!p ) aj i i i

ulation, to obtain

2! x /!a !aj i j
r p " . (13)2 2 2(N " 2)(! x /!a !a ) ! (! x /!a )j i j j j

Expression (13) reduces to equation (9) of Akçay et al.
(2009) for .N p 2

The objective function x allows a natural characteri-
zation of the variation in prosocial preferences. First, in-
dividuals might vary in how they value the public benefit
relative to their private cost. Second, individuals might be
more or less cost averse, depending on how much public
benefit they receive, and thus vary in the direction and
strength of this aversion. To account for these two effects,
we assume that the objective function is determined by

and and is parametrized by two motivational traits vB C
and f, such that

x (a , … , a ) p vB " (1 " fB)C. (14)i 1 N

Individuals with higher v place greater value on the public
good and are more unconditionally prosocial. Individuals
with positive f discount their costs as the provision of the
public good increases, similar to the behavior found in
some public-goods experiments (Fischbacher et al. 2001).
A pattern of conditional discounting of private costs,
which results in a conditional willingness to contribute,
might be termed “community reciprocity,” reflecting the
fact that individuals’ motivations are reciprocal not to any
particular individual but to the overall provision of public
good. The response coefficient r, given by equation (13),
evolves as both v and f evolve.

We first determine, for given a payoff function, the val-
ues of the phenotypic traits and that generate an∗ ∗v f
objective function that leads to an ES group-optimal out-
come. These traits must satisfy two conditions: first, the
group-optimal outcome must be a proper behavioral equi-
librium and satisfy equation (12) evaluated at and ;∗ ∗v f
and second, the objective functions must yield a response
coefficient at the group-optimal behavioral equi-r p 1
librium. These conditions allow us to find a unique

pair that satisfies the first-order condition for evo-∗ ∗(v , f )
lutionary stability at the group-optimal behavioral
equilibrium.

To illustrate, we set and use the following public-N p 3
benefit and private-cost functions:

3

" "B(a , a , a ) p (1 " n) a ! n a a a ,!1 2 3 i 1 2 3
ip1

2C(a) p a . (15)

The parameter n ( ) measures how different in-"1 ! n ! 1
dividuals’ contributions to the public benefit interact with
each other. When , investments by different individ-n 1 0
uals interact synergistically with each other: the more one
individual invests, the more valuable another individual’s
contribution becomes. The opposite holds when andn ! 0
individuals’ investments become substitutes for each other.
The parameter n therefore captures an important aspect
of the ecology of the interaction. For example, cooperative
hunting might require simultaneous, synergistic efforts
from multiple individuals because of the requirement to
close all escape routes for the prey. This would make for
a positive n. Conversely, when provisioning offspring, the
increased effort by one individual would increase the food
coming into the nest and would decrease value of addi-
tional food from another individual. This would create a
negative n. In economics, these two possibilities are termed
complementary and substitutable inputs, respectively;
hence, we call n the complementarity parameter. Note that
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Figure 3: Values of (solid curve) and (dashed curve) that result∗ ∗v f
in an evolutionarily stable group-optimal outcome, plotted as func-
tions of the parameter n that modulates whether different individuals’
contributions to the public benefit are substitutes ( ) or com-n ! 0
plements ( ).n 1 0

Figure 4: Threshold value of relatedness required to make the group-
optimal trait values convergence stable, as a function of the com-
plementarity parameter n. For this plot, we fixed the interaction term
f at its group-optimal value and looked at the convergent stability
of the valuation of the public good v when approaching its group-
optimal value.

is always positive (for positive a), regardless of the signB
of n.

Figure 3 shows and as functions of the parameter∗ ∗v f
n; the more complementary the inputs from different in-
dividuals (higher n), the higher the valuation of the public
benefit relative to the private cost ( ). Furthermore, over∗v
the entire range of n, the trait for the interaction between
the public benefit and private cost, , is positive and∗f
increases with n. This means that an objective function
satisfying at the group-optimal behavioral equilib-r p 1
rium exhibits the community-reciprocity property. As the
public benefit becomes more complementary, the level of
community reciprocity at the group-optimal outcome also
increases.

How do prosocial preferences with community reci-
procity maintain a response coefficient of proxi-r p 1
mately? Suppose a focal individual i has a positive f trait.
When its partner j increases investment aj in the public
good, this raises the value of . From equation (14), oneB
can see that the focal individual i will then discount its
own cost more. This, in turn, would make the focal in-
dividual more willing to invest and would give rise to a
positive response coefficient (the reverse argument applies
when the partner invests less). Perfectly matching re-
sponses, , simply constitute an extreme case of suchr p 1
positive responses.

However, as mentioned above, the first-order condition
for evolutionary stability does not guarantee that a pop-
ulation will in fact evolve to the candidate ESS when it is
initially away from it; this requires the convergence-
stability (CS) condition to be satisfied as well (Eshel and
Motro 1981; Christiansen 1991). Evaluating the CS con-
dition for the group-optimal and traits found above,∗ ∗v f

we find that whether and are CS depends on the∗ ∗v f
relatedness coefficient r, which must be above a threshold
value to satisfy the CS condition (fig. 4). One interpre-
tation of this result is that even though guaranteesr p 1
that the first-order ES condition is satisfied for a group-
optimal outcome, the evolution of r to this value crucially
depends on the relatedness being high enough. Thus, re-
latedness still plays an important role in determining
whether natural selection can drive a population to reach
these trait values. However, one can also observe from
figure 4 that the value of r required to render the group-
optimal traits CS is much less than 1 and that it decreases
as the complementarity parameter n increases. Hence, the
evolution of behaviors that maximize group benefit is pos-
sible for a range of organisms much wider than only those
that form clonal groups. Furthermore, ecological scenarios
with synergistic effects (such as cooperative hunting) per-
mit the evolution of group-optimal outcomes under a
wider range of demographic conditions than do those with
substitute effects (such as offspring provisioning).

Discussion

In this article, we provide a general analysis, based on the
Price equation, of the evolution of flexible social behaviors
in structured populations. We show that behavioral re-
sponses and genetic relatedness (or similarity) have sym-
metric but independent effects on evolutionary stability;
thus, they cannot be collapsed into a single index (e.g., an
index of assortment; Fletcher and Doebeli 2009). Incor-
porating behavioral responses into a group-selection per-
spective elegantly emphasizes that social behaviors, such
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as cooperation, that benefit others at a cost to self are
always counterselected at the within-group level and pos-
itively selected at the between-group level, regardless of
how tightly coordinated individuals’ actions are. We also
show that the classic result that cooperation increases in
populations if and only if between-group selection is stron-
ger than within-group selection (Wade 1980) generalizes
to the case with behavioral responses. Furthermore, we
show that behavioral responses and relatedness can inter-
act synergistically in promoting the evolution of social
behavior and specifically the evolution of group-optimal
traits that might lead to ETIs. This synergistic relationship
becomes particularly apparent in considerations of
whether or not a group-optimal outcome is convergence
stable, since relatedness must exceed a threshold value in
order for convergence stability to be achieved. By applying
our general model to a proximate mechanism based on
behavioral objectives or social preferences, we also show
how behavioral responses can evolve through the evolution
of the valuation of public goods versus private costs and
how this evolution depends on the level of synergism in
contributions to the ecological benefit.

The Scope for Group Optimality

Our model provides a new analysis of the conditions that
can lead to group optimality. In this respect, it is useful
to compare our model to recent work by Gardner and
Grafen (2009), who analyze the premise that natural se-
lection is always expected to lead to group-optimal out-
comes. Linking optimization of group fitness to a Price
equation formalism, they find a formal justification for
this premise only with clonal groups when . In ther p 1
general case when , their analysis finds that groupr ( 1
adaptations are not expected but are also not ruled out.
Since Gardner and Grafen focus exclusively on genetically
fixed behaviors, their analysis does not include the possible
effects of evolving behavioral responses. In contrast, our
model explicitly incorporates the effects of behavioral re-
sponses generated by proximate mechanisms, which allows
us to consider the evolution of proximate mechanisms that
eliminate within-group conflict (by yielding ) evenr p 1
without complete clonality. This allows us to derive more
specific conditions for when group-optimal behaviors are
evolutionarily and convergent stable; such behaviors satisfy
Gardner and Grafen’s definition of a group adaptation (for
an alternative definition, see Sober and Wilson 2011). We
find that group adaptations sensu Gardner and Grafen are
possible without clonal groups so long as relatedness meets
a threshold that depends on the ecology of the interaction.
Thus, we argue that their conclusion that “between-group
selection can lead to group adaptation, but only in rather
special circumstances” (Gardner and Grafen 2009, p. 668)

underestimates the scope for group optimality. It is true
that there is no unqualified justification for group fitness
maximization, but as we show, there exists ample scope
for the evolution of traits that result in either exactly or
approximately group-optimal outcomes without requiring
clonal groups.

One of the reasons that group optimality is important
is its connection to ETIs. In order for an ETI to occur,
either a demographic mechanism that ensures high relat-
edness (such as group formation by single propagules;
Rainey and Kerr 2010) or a behavioral mechanism that
ensures high behavioral responsiveness (such as strong
prosocial preferences or policing) is needed to eliminate
within-group selection. Once within-group selection is
eliminated, extended between-group selection can drive a
population toward a convergence-stable outcome with so-
cial behaviors that maximize group fitness. By illuminating
the synergistic relationship between behavioral respon-
siveness and relatedness in determining when group op-
timality is convergence stable, our work suggests condi-
tions under which ETIs themselves might be stable. Of
course, a complete model of an ETI must detail how in-
dividuals specialize on different tasks (Gavrilets 2010) or
how some types reproduce and others do not, such as in
the germ-soma distinction (Michod et al. 2006); explicitly
incorporating behavioral responses into models of task
specialization is thus an important next step in future
work.

Proximate Mechanisms and Objective Functions

The distinction between proximate and ultimate causes of
behavior has been much emphasized in evolutionary bi-
ology with the recognition that proximate mechanisms can
constrain adaptation of social behaviors (West et al. 2007).
However, there has been little explicit modeling of the role
of proximate mechanisms in social evolution. In this re-
gard, our model provides a connection between social-
evolution theory and the conceptual work in evolutionary
genetics that focuses on dissecting the genotype-phenotype
map and determining how this map evolves (i.e., the evo-
lution of epistasis and pleiotropy; Hansen 2006; Wagner
and Zhang 2011). In our model, the genotype-phenotype
map is produced by the proximate behavioral mechanism,
which translates heritable motivational traits (e.g., pro-
social preferences) into actions. Given that the phenotype
of interest is often fitness, the map also includes how ac-
tions translate into fitness through ecological payoffs. Just
as the structure of gene regulatory networks determines
how mutations affect gene expression, the cognitive and
ecological constraints produced by a particular behavioral
mechanism determine how responsive individuals can be
to one another, given a particular demographic context
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and relatedness. At the same time, our results also highlight
the fact that behavioral responses through proximate
mechanisms not only can constrain but also can facilitate
the evolution of certain behaviors, such as those that max-
imize group benefit.

On a more practical level, our approach provides a tool-
kit to answer empirically salient questions about how spe-
cific behavioral mechanisms evolve. Here, we illustrate this
by considering a proximate mechanism based on social
preferences and asking how individuals evolve to value
public goods and private costs in a public-goods game.
We find that the objective functions that result in group-
optimal outcomes involve discounting of the private cost
of each individual as the provision of the public good
increases (i.e., a positive f trait). We also show that re-
latedness and complementarity of benefits enhances this
discounting. Although direct measurements of motiva-
tions are scarce to nonexistent, some indirect evidence for
such a pattern exists. For example, Fischbacher et al.
(2001) performed an experiment that asked for a contri-
bution schedule to a public good as a function of the
average contributions of others and found that the most
common pattern among Swiss undergraduates was mono-
tonically increasing contributions; this is consistent with
the pattern that would be produced by a positive f trait.
We believe that experiments in humans and animals di-
rectly aimed at capturing motivational states will be helpful
in elucidating the underlying mechanism of decision mak-
ing in social dilemmas.

Indirect Genetic Effects and Behavioral Responses in
Structured Populations

There are important connections between our model and
indirect-genetic-effects (IGE) models of quantitative ge-
netics (e.g., Moore et al. 1997; Wolf et al. 1999; Bijma and
Wade 2008; McGlothlin et al. 2010). The IGE approach
measures the strength of selection on social behaviors by
modeling the trait value of a focal individual as the sum
of a direct genetic effect due to the focal individual and
an IGE due to social partners. Using this framework,
McGlothlin et al. (2010) derive an expression for the
change in the mean of phenotype due to both individual
and social effects on fitness analogous to our equation (4).
In appendix A9, available online, we show that their co-
efficient of IGE, w, fulfills a role similar to r and that the
change in mean phenotype from our equation (4) and that
from equation (18) of McGlothlin et al. (2010) become
equivalent when , their nonsocial-w p r/[1 ! r(N " 2)]
selection gradient bN is the cost "c, and their social-
selection gradient bS is the benefit b. Thus, it is possible
to map between our model and the IGE framework with-
out changing the first-order evolutionary-stability predic-

tions. However, our formulation highlights the exact sym-
metry between the scaled relatedness r and r. In contrast,
r and w are not symmetric for in phenotypic IGEN 1 2
models (McGlothlin et al. 2010), and other IGE models
wrap behavioral responses into effects on variance com-
ponents (see app. A9; Griffing 1981a; Bijma et al. 2007;
Bijma and Wade 2008). The exact symmetry between r
and r is an important feature because it reflects the fact
that correlations between individuals’ behavior have the
same structural effect on selection regardless of whether
those correlations are due to behavioral responses on the
timescale of an interaction or to demographic factors that
operate on a longer timescale. Moreover, we explicitly
model the dependence of r on the proximate mechanisms
that generate behavioral responses (such as the mechanism
modeled in eq. [12]). This approach allows us to directly
address the evolution of the phenotypic correlations given
by r rather than treating it as an exogenously determined
index, as the IGE literature has done so far.

In simple panmictic populations, there has been much
work in both biology and economics on the evolution of
flexible, responsive, or contingent behaviors. The most
closely related models in biology are models of the con-
tinuous iterated prisoner’s dilemma (CIPD; McNamara et
al. 1999; Wahl and Nowak 1999; André and Day 2007)
that look at the evolution of linear-response rules; given
a behavioral mechanism of linear responses, the response
slope is analogous to r. In economics, the most related
field is that of “indirect evolution” (Güth 1995; Dekel et
al. 2007; Heifetz et al. 2007a; Alger and Weibull 2010),
which allows individuals to choose actions based on in-
dividual preferences and studies the evolution of those
preferences. This work has focused mostly on the infor-
mational constraints required for players to act in a way
that does not maximize their immediate self-interest. Un-
like either the CIPD approach or most of the indirect-
evolution literature, we embed the behavioral model in a
structured population that allows for multiple levels of
selection and selection among kin. Importantly, our gen-
eral framework can be used with any behavioral model
that allows one to calculate expected equilibrium behav-
ioral outcomes and behavioral responses at that
equilibrium.

In addition, our unified framework can also be used to
study how group size and demographic parameters sep-
arately affect behavioral responsiveness and relatedness.
For example, although larger groups are often less coop-
erative than smaller ones because of the decrease of re-
latedness with increasing group size, we can show that the
opposite may be true under special conditions (app. A8,
available online). Future work should therefore focus on
how group-beneficial outcomes might evolve in response
to environmental variability and a number of demographic
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variables, including population size, dispersal rate, extinc-
tion risk, and carrying capacity (Lehmann and Rousset
2010).

Conclusion

We show that behavioral responses can significantly ex-
pand the scope for group-optimal behaviors that are as-
sociated with ETIs. Our results emphasize the important
interplay between behavioral responses and relatedness
and show that the two can reinforce each other to sustain
higher levels of group benefit than would result from each
in isolation. Our model also highlights the crucial role of
proximate mechanisms of behavior in determining the
magnitude and evolution of behavioral responses. A prom-
ising direction for future work is to combine models such
as this one and experiments in humans and animals aimed
at capturing motivational states: experiments can elucidate
the underlying neurological mechanisms of decision mak-
ing in social dilemmas, whereas models can illuminate
relevant selection pressures that shape the evolution of
these mechanisms.
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Güth, W. 1995. An evolutionary approach to explaining cooperative
behavior by reciprocal incentives. International Journal of Game
Theory 24:323–344. doi:10.1007/BF01243036.

Hamilton, W. D. 1964. The genetical evolution of social behaviour.
I. Journal of Theoretical Biology 7:1–16.

———. 1975. Innate social aptitudes of man: an approach from
evolutionary genetics. Pages 133–153 in R. Fox, ed. Biosocial an-
thropology. Malaby, London.

Hansen, T. F. 2006. The evolution of genetic architecture. Annual
Review of Ecology, Evolution, and Systematics 37:123–157. doi:
10.1146/annurev.ecolsys.37.091305.110224.

Heifetz, A., C. Shannon, and Y. Spiegel. 2007a. The dynamic evo-
lution of preferences. Economic Theory 32:251–286. doi:10.1007/
s00199-006-0121-7.

———. 2007b. What to maximize if you must. Journal of Economic
Theory 133:31–57. doi:10.1016/j.jet.2005.05.013.

Kerr, B., P. Godfrey-Smith, and M. W. Feldman. 2004. What is al-
truism? Trends in Ecology & Evolution 19:135–140. doi:10.1016/
j.tree.2003.10.004.

Lehmann, L., and L. Keller. 2006. The evolution of cooperation and
altruism: a general framework and a classification of models. Jour-
nal of Evolutionary Biology 19:1365–1376. doi:10.1111/j.1420-
9101.2006.01119.x.

Lehmann, L., and F. Rousset. 2010. How life history and demography
promote or inhibit the evolution of helping behaviours. Philo-
sophical Transactions of the Royal Society B: Biological Sciences
365:2599–2617. doi:10.1098/rstb.2010.0138.

Leigh, E. G., Jr. 1977. How does selection reconcile individual ad-
vantage with the good of the group? Proceedings of the National
Academy of Sciences of the USA 74:4542–4546.

———. 2010. The group selection controversy. Journal of Evolu-
tionary Biology 23:6–19.

Levin, B. R., M. Lipsitch, and S. Bonhoeffer. 1999. Population biology,
evolution, and infectious disease: convergence and synthesis. Sci-
ence 283:806–809.

Levin, S. A. 2009. Games, groups, norms, and societies. Pages 143–
153 in S. A. Levin, ed. Games, groups, and the global good.
Springer Series in Game Theory. Springer, Berlin.

Levine, D. K. 1998. Modeling altruism and spitefulness in experi-
ments. Review of Economic Dynamics 1:593–622. doi:10.1006/
redy.1998.0023.

Maynard Smith, J., and G. R. Price. 1973. The logic of animal conflict.
Nature 246:15–18.

Maynard Smith, J., and E. Szathmáry. 1995. The major transitions
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Appendix A from E. Akçay and J. Van Cleve, “Behavioral Responses
in Structured Populations
Pave the Way to Group Optimality”
(Am. Nat., vol. 179, no. 2, p. 257)

Methods and Additional Analysis
A1. Genetic Response to Selection with Behavioral Responses
We start with the “kin-selection” partition of fitness, using the Price equation (Price 1970; Queller 1992; Bijma
and Wade 2008), which gives the genetic response to selection as

DG p Cov (G , w) p b Cov (G , p )! b Cov (G , p ).!i w,p i i w,p i ji j
j(i

Here, Gi is the additive genetic (breeding) value of the focal individual and and are partial-regressionb bw,p w,pi j

coefficients of a focal individual i’s fitness on its own motivational trait (pi) and its neighbors’ motivational trait
(pj), respectively. Following common assumptions in quantitative-genetic approaches (Moore et al. 1997; Wolf et
al. 1999; Bijma and Wade 2008), we assume additive effects of genotype and environment on the trait. We
further use the relation , where R is the coefficient of relatedness between groupCov (G , G ) p RVar (G )i j i

members and is the additive genetic variance (Queller 1992; Frank 1998), to obtainVar (G )i

DG p Var (G )[b ! (N " 1)Rb ]. (A1)i w,p w,pi j

Equation (A1) holds for populations with arbitrarily complex demographic structures, but care must be taken
in evaluating the fitness effects (the partial-regression coefficients) and relatedness. In many structured
populations, local competition for limited resources with related individuals can counteract the effect of a
motivational trait on a focal individual’s fitness (Taylor 1992; Queller 1994; West et al. 2002; Rousset 2004;
Lehmann and Rousset 2010). This effect of local competition can be found in the partial-regression coefficients

and , which give the effect of the motivational trait (pi or pj) on the fertility of the focal individual plusb bw,p w,pi j

the effect of local competition, which is a function of the total change in fertility in the population. The local-
competition term is a function of demographic parameters such as population size and dispersal rate. Generally,
one can rearrange equation (A1) so that a scaled-relatedness coefficient r includes the effect of local competition
and the partial-regression coefficients and measure only the effects of the motivational trait on fertilityb bF ,p F ,pi i i j

F. We present an example of how this is done in an island model in appendix A2. In this way, we can write
equation (1):

DG ∝ Var (G )[b ! (N " 1)rb ].i F ,p F ,pi i i j

(Queller 1994; Lehmann and Rousset 2010). Although strong local competition may result in a negative value of
this scaled-relatedness coefficient, r is generally greater than for many well-studied"1/(n " 1) ≥ "1/(N " 1)
demographic scenarios; n is the local population or deme size (Lehmann and Rousset 2010), and , sincen ≥ N
social groups are embedded in demes.
Substituting equations (2) and (3) into equation (1), we can write, for the genetic change in the population

after one round of selection,

!a !u !u !a !u !ui i i j i iDG ∝ Var (G ) ! r ! (N " 1)r ! r . (A2)! !i ij jk[ ( ) ( )]!p !a !a !p !a !aj(i k(ji i j j j k
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When derivatives are evaluated in a monomorphic population, , and we can simplify this!a /!p p !a /!pi i j j

equation by setting and writingk p Var (G )(!a /!p )i i i

!u !u !u !ui i i iDG ∝ k ! r ! (N " 1)r ! r . (A3)! !ij jk[( ) ( )]!a !a !a !aj(i k(ji j j k

If we accept by convention that , that is, that an increase in the phenotypic value leads to an increase!a /!p 1 0i i

in the behavioral action, then , and hence the sign of is determined by the sign of the term in thek 1 0 DG
brackets. In particular, the value of p that sets the brackets in equation (A3) equal to 0 and is aDG p 0
candidate evolutionarily stable strategy. Using the brackets in equation (A3), we are ready to ask when group-
beneficial behaviors can be evolutionarily stable (ES).
Using the definitions of b and c given in the main text and noting that in a monomorphic population, r p rij

for all ( by definition), we can writej ( i r p 1ii

!u !u !u !ui i i i! r p ! (N " 1)r p br(N " 1)" c (A4)! ij!a !a !a !aj(ii j i j

and

!u !u !u !u !ui i i i i! r p ! r ! (N " 2) p b[r(N " 2)! 1]" rc. (A5)! jk [ ]!a !a !a !a !ak(jj k j i k

Equation (A4) represents the direct fertility effect of a small change in the motivational trait of the focal
individual on itself, while equation (A5) represents the indirect fertility effect of a small change in the
motivational trait of a neighbor related to the focal individual. The magnitude and sign of these direct and
indirect effects depend on the level of responsiveness measured by r. When there is no responsiveness, ,r p 0
the direct and indirect fertility effects are and b, respectively, as found in classic models of kin selection"c
(Hamilton 1964). Substituting equations (A4) and (A5) into equation (A3) and rearranging gives us

DG ∝ k br(N " 1)" c ! r(N " 1){b[r(N " 2)! 1]" rc} , (A6)( )
which is equation (4). Setting equation (4) equal to 0 and rearranging yields equation (5). In order to ensure that
the ratio has a unique solution in equation (5), must be monotonically decreasing; conditions for such ab/c b/c
decrease are given in appendix A5.

The Group-Selection Partition

The group-selection partition of fitness is given by

 DG p Cov (G , w) p b Cov (G , p)! b Cov (G , Dp ), (A7) i w,p i w,Dp i i

where is the mean motivational trait of the group and Dp is the deviation of the focal individual’s motivational p
trait from the group mean. The first term then corresponds to selection among groups, and the second term gives
selection within groups. The partial-regression coefficients and can be written asb b w,p w,Dpi

b p b ! (N " 1)b , (A8) w,p w,p w,pi j

b p b " b (A9)w,Dp w,p w,pi i j

(Bijma and Wade 2008), where is the partial regression of the focal individual’s fitness on the mean groupb  w,p

phenotype and is the partial regression of the focal individual’s fitness on the difference between the focalbw,Dpi

individual’s phenotype and the mean group phenotype. After substituting equations (A8) and (A9) into equation
(A7), using the same rearrangement of fertility and demographic effects as in equation (1), and using the
definitions of b, c, and r, we can write the genetic response to selection as

DG ∝ k{[b(N " 1)" c][1! r(N " 1)][1! r(N " 1)]" (N " 1)(b ! c)(1" r)(1" r)},

which is the same as equation (6).

A2. Scaled-Relatedness Coefficient in an Island Model with Overlapping Generations
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In equation (1), the relatedness coefficient r is assumed to be appropriately defined so as to account for
demographic effects such as local competition. In this section, we work out a simple example explicitly to
illustrate how this can be done. We assume that our population obeys a finite-island model of migration (Wright
1943) with overlapping generations (Taylor and Irwin 2000), with the following life cycle: (1) n haploid adult
individuals randomly mate and produce a large number of offspring; (2) offspring migrate or disperse
independently to each of the other demes in the population with probability or remain in theirD ! 1 m/(D ! 1)
natal deme with probability ; (3) each adult survives to the next generation with probability s, and adults1! m
who die are replaced by offspring who mature into new adults; (4) all adults express a social trait that affects
their fertility and the fertility of the neighbors in their deme.
Under weak selection, the expected change in the average frequency of a mutant allele, E(Dq), is proportional

to the selection gradient S (Rousset 2004); in an island model of population structure, S is given by

!w !w !wi i iS p " Q " Q , (A10)0 1!p !p !pi 0 1

where wi is the expected number of offspring of a focal individual i (fitness), pi is the focal individual’s
phenotype, p0 is the average phenotype of the focal individual’s deme (excluding the focal individual), and p1 is
the average phenotype of all demes, excluding the focal deme. Further, Q0 is the probability of identity by state
for two alleles drawn randomly without replacement from the same deme, and Q1 is the probability of identity
by state for two alleles drawn from different demes. If we assume that total population size is fixed (i.e.,
inelastic demography), then the sum of all partial derivatives of wi is 0 (Rousset and Billiard 2000). Thus, we
can rewrite S as

!w !wi iS p (1! Q ) " R , (A11)1 ( )!p !pi 0

where is Wright’s FST (Wright 1943, 1949) and is a measure of relatedness. The fitnessR p (Q ! Q )/(1! Q )0 1 1

of a focal individual is given by (to first order in the strength of selection)

(1! s)(1! m)F(p , p )i 0w p s "i (1! m)F(p , p )" mF(p , p )0,R 0,R 1 1

(1! s)mF(p , p )i 0" . (A12)
(1! m)F(p , p )" [m/(D ! 1)][(D ! 2)F(p , p )" F(p , p )]1 1 1 1 0,R 0,R

A social interaction between individual i and other individuals j1 through in its deme with phenotypesN ! 1 jN!1

pi and through , respectively, changes the fertility of individual i, which is measured byp pj j1 N!1

. Since we assume weak selection and continuous phenotypes, the fitness of the focalF(p , p , … , p )i j j1 N!1

individual depends on its own phenotype, pi, the average phenotype in its deme (excluding itself), p0, and the
average phenotype across all demes except the focal deme, p1. Note that p0, R is the average phenotype in the
focal deme including the focal individual and is equal to .(1/n)p " [(n ! 1)/n]pi 0

To calculate S, we must calculate the derivatives in equation (A11). The derivative of the focal individual’s
fitness with respect to its own phenotype is given by

2!w 1! s !F 1 m !F !Fi i i i2p ! (1! m) " " (N ! 1) , (A13){ [ ][ ]}!p F !p n D ! 1 !p !pi r i i j

where the derivatives and are evaluated at and , the fertility of!F /!p !F /!p p p p p p F p F(p , p , … , p )i i i j i j r r r r r

the resident phenotype. The derivatives of the fertility functions, and , correspond to the partial-!F /!p !F /!pi i i j

regression coefficients and , respectively, in equation (1). From equations (A4) and (A5), we haveb bF ,p F ,pi i i j

!F !aip [br(N ! 1)! c] (A14)
!p !pi i
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and

!F !aip {b[r(N ! 2)" 1]! rc}, (A15)
!p !pj i

respectively. Combining equations (A14) and (A15) with equation (A13) yields

2!w (1! s)(!a /!p ) 1" (N ! 1)r mi i i 2p br(N ! 1)! c ! (1! m) " [b(N ! 1)! c] , (A16){ [ ] }!p F n D ! 1i r

!w (1! s)(!a /!p )i i ip
!p F0 r

2(n ! 1)[1" (N ! 1)r] m2# (N ! 1){b[r(N ! 2)" 1]! rc}! (1! m) " [b(N ! 1)! c] . (A17)( { })n D ! 1

Using equations (A16) and (A17) in equation (A11), we obtain

(1! s)(!a /!p )(1! Q )i i 1S p br(N ! 1)! c " (N ! 1){b[r(N ! 2)" 1]! rc}R(Fr

2m 1 n ! 12! [1" (N ! 1)r][b(N ! 1)! c] (1! m) " " R . (A18)[ ]( ))D ! 1 n n

Using equation (A18), we can rewrite the condition asS p 0

b 1" rr(N ! 1)
p ,

c (N ! 1)[r " r " rr(N ! 2)]

which is the Hamilton-type rule given in equation (5); here,
*R ! R

r p (A19)*1! R

is the scaled relatedness corrected for the effect of local competition and

2m 1 n ! 1* 2R p (1! m) " " R . (A20)[ ]( )D ! 1 n n

Solving the appropriate equilibrium equation for R when ,D r #

1 n ! 1 1 n ! 12 2 2R p s R " 2s(1! s)(1! m) " R " (1! s) (1! m) " R( ) ( )n n n n

(Taylor and Irwin 2000), yields

(1! m)[1! m(1! s)" s]
R p (A21)21" 2m(n ! 1)! m (n ! 1)(1! s)" s

for the relatedness coefficient. Plugging this value of R into equations (A19) and (A20) yields a scaled-
relatedness coefficient of

2(1! m)s
r p ,

n[2! m(1! s)]" 2(1! m)s

which simplifies to to first order in both and m.r p s/n 1/n

A3. Stability Condition for the Behavioral Equilibrium
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In this section, we derive necessary and sufficient conditions for the behavioral equilibrium to be stable under*a
the dynamical system given by

da !xi ip . (A22)
dt !ai

The behavioral equilibrium is defined as the N-tuple that sets the right-hand side of equation* * *a (a , … , a )1 N

(A22) equal to 0. In order for to be a stable rest point of equation (A22), the eigenvalues of the Jacobian*a
matrix,

2 2 2! x ! x ! x1 1 1! "…
2!a !a !a !a !a1 1 2 1 N

2 2 2! x ! x ! x2 2 2…
2!a !a !a !a !a1 2 2 2 NJ p , (A23)

_ _ 5 _

2 2 2# $! x ! x ! xN N N…
2!a !a !a !a !a% &1 N 2 N N

must have negative real part. Since we are interested in evolutionary stability, we can evaluate equation (A23) at
a monomorphic equilibrium where all individuals are genetically identical. This means that and2 2! x /!a p di i 1

for some d1 and d2 for all i and j in . Thus, we can rewrite J as2! x /!a !a p d (1, … , N)i i j 2

…! "d d d1 2 2

…d d d2 1 2
. (A24)

_ _ 5 _# $
…d d d% &2 2 1

We next calculate the eigenvalues of J by solving for l, where I is the identitydet (lI! J) p 0 N # N
matrix. Using elementary row and column operations and expanding the determinant via minors, we can show
that

…! "l ! d !d !d1 2 2

…d ! d ! l l " d ! d 01 2 2 1
det (lI! J) p det

_ _ 5 _# $
…d ! d ! l 0 l " d ! d% &1 2 2 1

…! "l " d ! d 02 1

p (l ! d ) det _ 5 _1 # $
…0 l " d ! d% &2 1

…! "d ! d ! l 0 01 2

…d ! d ! l l " d ! d 01 2 2 1
" (N ! 1)d det (A25)2

_ _ 5 _# $
…d ! d ! l 0 l " d ! d% &1 2 2 1

N!1 N!1p (l ! d )(l " d ! d ) ! (N ! 1)d (l " d ! d )1 2 1 2 2 1

N!1p (l " d ! d ) [l ! d ! (N ! 1)d ].2 1 1 2
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Setting equation (A25) equal to 0 shows that the two eigenvalues are and . Wel p d ! d l p d " (N ! 1)d1 1 2 2 1 2

assume that , since this means that the behavioral equilibrium is a local peak of each individual i’sd ! 01

objective function xi with respect to its own action ai for all i. Thus, in order for l1 and l2 to be negative, the
following inequality must be met:

!d1d ! d ! . (A26)1 2 N ! 1

If we define the response coefficient r as in equation (13), then the condition in equation (A26) means that r
must satisfy the inequality

!1
! r ! 1. (A27)

N ! 1

A4. Deriving the Second-Order Convergence-Stability (CS) Condition
In this section, we derive the second-order CS condition. In order to calculate the CS condition, we set p pi

for all , reflecting the requirement that we look at how the selection gradient changes with differentp p p i, jj R

motivational traits pR fixed in the population. Assuming that the genetic variance in the trait does not change
with the trait value, the CS condition is that the derivative of the terms in the brackets in equation (A2) with
respect to the resident motivational trait pR be less than 0; that is,

d !a !u !a !ui i j ir " (N ! 1)r r ! 0, (A28)! !ij jk[ ]dp !p !a !p !aj k pRR i j j k

where the subscript on the bracket indicates that all derivatives, as well as rij and rjk, are to be evaluated at p p1
and the corresponding behavioral equilibrium actions . Expanding this derivative, we get*p p … p p p p a2 N R

d !a !u d !a !ui j j ir " (N ! 1)r r! !ij jk( ) ( )dp !p !a dp !p !aj kR i j R i k

!a dr !u d !u !a dr !u d !ui ij i i j jk i i" " r " (N ! 1)r " r . (A29)! !ij jk( ) ( )!p dp !a dp !a !p dp !a dp !aj ki R j R j j R k R k

Note that because we are changing all motivational traits at the same time, the total derivative of, say, rij with
respect to pR can be written as

dr dr dr drij ij ij ijp " " .!dp dp dp dpk(i, jR i j k

The total derivatives with respect to pi, pj, and pk are evaluated as illustrated in the following example:

dr !r !a !rij ij i ijp " r ,! ikdp !p !p !aki i i k

where we have used the definition . To evaluate the sum, we note that there are threer { (!a /!p )/(!a /!p )ik k i i i

unique cases for : , , and . Hence, we can write!r /!a k p i k p j k ( i, jij k

dr !r !a !r !r !rij ij i ij ij ijp " r " r " r .!ii ij ik( )dp !p !p !a !a !ak(i, ji i i i j k

Noting that by definition and using symmetry, we can simplify asr p 1 dr /dpii ij i

dr !aij i′ ′ ′ ′p r " [r " rr " (N ! 2)rr ],p 1 2 31dp !pi i
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where , , , and for . Using this logic, we can rewrite′ ′ ′ ′!r /!p { r r { !r /!a r { !r /!a r { !r /!a k ( i, jij i p 1 ij i 2 ij j 3 ij k1

the following term in expression (A29) as

dr !u dr dr dr !uij i ij ij ij ip ! !! ! !( )dp !a dp dp dp !aj j k(i, jR j i j k j

dr dr dr !uij ij ij ip ! !! !( )dp dp dp !aj(i k(i, ji j k j

!a !ai j′ ′ ′ ′ ′ ′ ′ ′p b r ! [r ! rr ! (N " 2)rr ]! r ! [rr ! r ! (N " 2)rr ]! p 1 2 3 p 1 2 31 2( !p !pj(i i j

!ak′ ′ ′ ′! r ! {rr ! rr ! [1! (N " 3)r]r }! p 1 2 33 )!pk(i, j k

!ai′ ′ ′ ′ ′ ′p b(N " 1) r ! r ! (N " 2)r ! [1! (N " 1)r][r ! r ! (N " 2)r ] ,p p p 1 2 31 2 3{ }!pi
where derivatives of vanish in the second line, , and for . Completing′ ′r p 1 !r /!p { r !r /!p { r k ( i, jii ij j p ij k p2 3

the other terms in expression (A29) in the same manner and performing some algebra, one can write the CS
condition for a monomorphic population as

2 2! a ! ai i! (N " 1) br(N " 1)" c ! r(N " 1){b[r(N " 2)! 1]" rc}( )2[ ]!p !p !pi i j

!a !ai i ′ ′ ′ ′ ′ ′! [(N " 1)r ! 1][(N " 2)r ! r ! r ]! (N " 2)r ! r ! r3 2 1 p p p3 2 1{ }[!p !pi i

# (N " 1){b ! r[(N " 2)b " c]}

!ai! [(N " 1)r ! 1] (A30)
!pi

′ ′ ′#(N " 1)[(N " 2)b ! b ! b ]{r ! r[(N " 2)r ! 1]}( 3 2 1

′ ′! [(N " 1)b " c ][1! (N " 1)rr] ! 0.)1 ]
The following definitions, with and , were used in expression (A30):j ( i k ( i, j

2! ui′b { ,1 !a !ai j

2! ui′b { ,2 2!aj
2! ui′b { ,3 !a !ak j

2! ui′c { " .2!ai

A5. Condition for Decreasing b/c
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When the benefits-to-costs ratio decreases monotonically as a function of action at a monomorphic behavioralb/c
equilibrium , there is a unique that satisfies the first-order ES condition in equation (5). This also means that* *a a
lower levels of investment in cooperation given by smaller values of correspond uniformly to higher values of*a
, compared to higher levels of cooperation. Recall that and , where the partialb/c b p !u /!a c p !!u /!ai j i i

derivatives are evaluated at a monomorphic behavioral equilibrium . The derivative of* * *a p … p a p a b/c1 N

evaluated at is*a
!2

N N2 2! b !u ! u !u ! u !ui i i i ip ! . (A31)! !* ( ) ( )( )!a c !a !a !a !a !a !a akp1 kp1i j k j i k i

Since we evaluate all the partial derivatives assuming that the behavioral equilibrium is monomorphic, we can
use symmetry, the notation of section A4 for the partial derivatives of ui, and equation (A31) to write

as*!/!a (b/c) ! 0
′ ′ ′ ′ ′b[(N ! 1)b ! c ]" c[b " b " (N ! 2)b ] ! 0. (A32)1 1 2 3

It is common to assume that marginal benefits decrease with individual actions and and that′ ′b ! 0 b ! 02 3

marginal costs increase with individual actions, (Akçay et al. 2009). Given these assumptions, a sufficient′c 1 0
condition for is that*!/!a (b/c) ! 0

′c′ ′ ′b ! min , ! b ! (N ! 2)b . (A33)1 2 3( )N ! 1

The actions of the focal individual and its partners produce payoffs in a complementary or positively synergistic
way when , and the actions produce payoffs in a substitutable or negatively synergistic way when .′ ′b 1 0 b ! 01 1

Thus, the sufficient condition for requires that complementarity not be too high when compared to*!/!a (b/c) ! 0
the rate of decrease in marginal benefits and the rate of increase in marginal costs.

A6. Characterizing the Group-Optimal Outcome
In a monomorphic population, the behavioral-equilibrium outcome will be symmetric, that is, for all i.* *a p ai

Hence, the group-optimal outcome is the symmetric outcome that maximizes the payoff ui. Formally, the
following has to hold at the group-optimal outcome:

!ui p 0. (A34)! F!a ∗j j a pa p…pa pa1 2 N

In terms of b and c, condition (A34) implies

b 1
p , (A35)

c N ! 1

which is equation (9).

A7. Group-Optimal Objective Function Traits
Suppose that the objective function is given by a general functional form f of the public good andB(a , … , a )1 N

private cost (ai), that is,C

x p (a , … , a ) p f (B, C). (A36)i 1 N

We know that at the group-optimal outcome , so we substitute the objective function in equation (A36)r p 1
into equation (13) for r and set equation (13) equal to 1 to obtain

2
2 2 2 2!f dC ! B ! B !f !B dC ! f !B ! f

" (N ! 1) " " (N " 1) " N p 0. (A37)2 2 2[ ] ( )!C da !a !a !a !B !a da !B!C !a !Bi j i i i i i
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Here, we have again used the symmetry assumption, which implies for all .2 2! B/!a !a p ! B /!a !a k, j ( ij i k i

Furthermore, we also know that this behavioral outcome satisfies equation (12), which yields

!f !B !f dC
! p 0. (A38)

!B !a !C dai i

Substituting for f the expression on the right-hand side of equation (14) into equations (A37) and (A38) and
solving for v and f, we obtain

(dC /da )W " CQiv p ,
(!B /!a )W ! BQi

Q
f p , (A39)

(!B/!a )W ! BQi

where

dC !B
W p (N ! 1) ,

da !ai i

2 2 2d C !B dC ! B ! B
Q p " (N " 1) ! .2 2[ ]da !a da !a !a !ai i i i j i

When we evaluate the right-hand sides of equations (A39) at the group-optimal outcome defined by b/c p
, we find the v and f traits that make the group-optimal outcome a behavioral equilibrium and also1/(N " 1)

satisfy the first-order ES condition ( at the group-optimal outcome).r p 1

A8. Effects of Group Size on the Evolution of Cooperation in Public-Goods Dilemmas
Group size N is important in determining the evolutionarily stable benefits-to-costs ratio. When the ratio of
benefits to costs increases with increasing group size N, it will be harder to evolve increased levels of
cooperation in larger groups than in smaller groups, and vice versa when the benefits-to-costs ratio is decreasing
with N. In order to correct for the effect of group size on the total benefit individuals receive from the social
interaction, we define , which is the total benefit accruing to a single individual from all otherb̂ p (N " 1)b
individuals in the group. In terms of , the evolutionary-stability condition in equation (5) can be rewritten asb̂

b̂ 1! rr(N " 1)
p . (A40)

c r ! r ! (N " 2)rr

Condition (A40) simplifies to when or and the outcome is group optimal. If there is eitherb̂/c p 1 r p 1 r p 1
no behavioral responsiveness, , or no effect of relatedness, , then condition (40) becomes analogousr p 0 r p 0
to the result from Hamilton’s rule: for and for . As expected in all of theseˆ ˆb/c p 1/r r p 0 b/c p 1/r r p 0
limits, the evolutionarily stable fraction is independent of group size N. Assuming that r and r can be heldb̂/c
constant as N changes, the derivative of condition (A40) with respect to N is proportional to ,"r(1" r)r(1" r)
which is always negative. This suggests that larger groups tend to be more cooperative than smaller groups when
r and r are independent of N. From condition (A40), the ratio becomes, for large N,b̂/c

(1" r)(1" r)
1! ,

rrN

which indicates that for large group sizes is close to the group-optimal outcome and is insensitive to both rb̂/c
and r (so long as and ).r k 0 r k 0
However, both the response coefficient r and the relatedness r are likely to be decreasing functions of N.

Responsiveness likely decreases with N as coordination becomes more difficult in larger groups. Relatedness
decreases in general with increases in population size n and will decrease with group size N so long as N is
correlated with population size. This suggests that the evolutionarily stable value of will usually increase withb̂/c
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N and that larger groups will tend to be less cooperative than smaller ones. Nonetheless, the evolutionarily stable
can decrease with N whenb̂/c

1! (N " 1)r 1! (N " 1)r′ ′ ′" r n " r ! 1, (A41)
rr(1" r) rr(1" r)

where n′ and r′ are derivatives with respect to N and r ′ is a derivative with respect to n. Both fractions in
inequality (A41) are positive, while r ′ and r′ are negative; hence, the left-hand side is a positive number.
Inequality (A41) can be satisfied if r ′ and r′ have sufficiently small absolute values and the denominators in both
fractions are not too small. In other words, the evolutionarily stable ratio of benefits to costs can decrease with
group size N when both r and r are only weakly decreasing in N and neither r nor r is close to 0 or 1. Thus, if
either relatedness or behavioral responsiveness is too low or too high, smaller groups will tend to be more
cooperative than larger ones, while moderately related populations with moderate levels of behavioral
responsiveness may result in larger groups being more cooperative than smaller ones.

A9. Mapping between Indirect Genetics Effects and Behavioral Responses

The current framework for modeling behavioral responses in a structured population uses a response coefficient r
that is defined as the effect of a change in the action of a focal individual on the action of one of its social
partners (Akçay et al. 2009). In this framework, actions are quantities defined on a behavioral timescale and are
what individuals actually do in the interaction. Which actions an individual chooses to perform are affected by
its motivational trait and the motivational traits of its social partners. In models that use indirect genetics effects
(IGEs) to study social interactions, a regression coefficient w is used to measure directly the effect of the
phenotype (such as the behavior) of a social partner on the phenotype of a focal individual (Moore et al. 1997;
Wolf et al. 1999; McGlothlin et al. 2010). Since both the current framework and the IGE framework as
implemented by McGlothlin et al. (2010) use the Price equation to measure the evolutionary change in
behavioral phenotype, we can create a mapping between responsiveness (r) and the strength of IGEs (w) by
comparing the conditions required for an increase in the mean phenotype.
Since our framework considers selection on a single trait, we present single-trait versions of the equations

from McGlothlin et al. (2010). We begin with the phenotype of a focal individual, equation (B5) from
McGlothlin et al. (2010),

′ ′ˆ   z p w{(a ! e)[1" (N " 2)w]! (N " 1)w(a ! e )}, (A42)

where a is the additive genetic value, e is an environmental effect, N is group size, and ŵ p [1" (N " 2)w "
. A prime in equation (A42) denotes values for social partners, and the overbar represents an2 "1(N " 1)w ]

average over the social partners of the focal individual. The average phenotype in the group of the focal z
individual (excluding the focal individual) is given by

′ ′ˆ    z p w[(a ! e )! w(a ! e)]. (A43)

The evolutionary change in mean phenotype is given by equation (17) of McGlothlin et al. (2010), which in the
current notation is

  Dz p Cov (A, z)b !Cov (A, z)b , (A44)N S

where is the total breeding value from equation (B7) of McGlothlin et al. (2010) and˜ ˜A p wa w p [1" (N "
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. In equation (A44), bN is the nonsocial-selection gradient and bS is the social-selection gradient.!11)w]
Substituting equations (A42) and (A43) into equation (A44) yields

′ ′ˆ ˜    Dz p ww Cov a, (a " e)[1! (N ! 2)w]" (N ! 1)w(a " e ) b[ ( ) N

′ ′  " (N ! 1) Cov a, (a " e )" w(a " e) b( ) )]N

ˆ ˜p wwCov a, (a " e){[1! (N ! 2)w]b " (N ! 1)wb } (A45)( )[ N S

′ ′  " (N ! 1) Cov a, (a " e )(wb " b )( )]N S

ˆ ˜p wwVar (G){[1! (N ! 2)w]b " (N ! 1)wb " r(N ! 1)(wb " b )},N S N S

which is equation (18) in McGlothlin et al. (2010). If we use the mapping of w to r given by

w
r p , (A46)

1! (N ! 2)w

then we can factor out from equation (A45) to obtain1! (N ! 2)w

ˆ ˜wwVar (G) bS Dz p b " (N ! 1)rb " r(N ! 1) rb " . (A47)N S N[ ( )]1! (N ! 2)w 1! (N ! 2)w

But from our mapping in equation (A46),

r
w p , (A48)

1" r(N ! 2)

so

1 r
p p 1" r(N ! 2), (A49)

1! (N ! 2)w w

and equation (A47) becomes

ˆ ˜wwVar (G) Dz p b r(N ! 1)" b " r(N ! 1){b [1" r(N ! 2)]" rb } . (A50)( )S N S N1! (N ! 2)w

Given the mapping in equation (A46) and that , from appendix A3, w must obey the!1/(N ! 1) ! r ! 1
inequality

1
!1 ! w ! , (A51)

N ! 1

which was suggested by McGlothlin et al. (2010) on the basis of either of or having a denominator of 0.ˆ ˜w w
We can show that , using the inequality in equation (A51), which means that we canˆ ˜ww/[1! (N ! 2)w] 1 0
compare the terms inside the outermost parentheses of equation (A50) to the terms in the outermost parentheses
in the equation for , equation (4). If we map the nonsocial-selection gradient of McGlothlin et al. (2010) toDG
!c, , and the social-selection gradient to b, , then equation (A50) is proportional to equationb p !c b p bN S

(4); this proves that the mapping of w to r in equation (A46) is the right mapping, since it yields identical
conditions from the two frameworks for when the mean phenotype increases as a result of selection.
In fact, the reason that w in the IGE model of McGlothlin et al. (2010) does not map exactly onto r is that

the McGlothlin et al. (2010) model (and other models of IGEs, e.g., Moore et al. 1997; Wolf et al. 1999; Wolf
and Moore 2010) assumes that the phenotype of the focal individual feeds back to affect the phenotypes of the
social partners. Without this feedback or reciprocal effect, w maps directly onto r. We can show this simply by
writing expressions for the focal phenotype z and average phenotype and then calculating again using  z Dz
equation (A44). The phenotypes without feedback are

′ ′  z p a " e " (N ! 1)w(a " e ) (A52)
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and
′ ′   z p (a ! e )[1! (N " 2)w]! w(a ! e) (A53)

(Moore et al. 1997; McGlothlin and Brodie 2009), and the total breeding value . PluggingA p a[1! (N " 1)w]
equations (A52) and (A53) and A into equation (A44) and rearranging yields

 Dz p Var (G)[1! (N " 1)w] b w(N " 1)! b ! r(N " 1){b [1! (N " 2)w]! wb } ,( )S N S N

which leads to equation (5) when and . Thus, w in this IGE specification yields the sameb p "c b p bN S

conditions for an increase in mean phenotype as r.
Finally, we can also relate r to the variances and covariance of direct and social breeding values used in the

variance-component IGE models of Griffing (1967, 1981a, 1981b) and Bijma and colleagues (Bijma et al. 2007;
Bijma and Wade 2008). For example, the equation for the response to selection in the and elementsr ( 0 g ( 0
of table 4 in Bijma and Wade (2008) is equivalent to equation (4) when the direct-selection coefficient ofbW ,PD

Bijma and Wade (2008) is "c, the social-selection coefficient is b, and the response coefficient isbW , PS

2j ! (N " 1)jA ADS Sr p , (A54)2j ! (N " 1)jA AD DS

where and are the variances of the direct and social breeding values, respectively, and is the2 2j j jA A AD S DS

covariance of direct and social breeding values.
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