SOFSEM’93 — Hrdonov, Sumava, Czech Republic, 22.11. — 3.12.1993

A Remark about Forgetting Automata

Frantisek Mréaz, Martin Platek

Department of Computer Science, Charles University,
Malostranské ndm. 25, 118 00 Praha 1, Czech Republic,
e-mail: mrazf@cspgukl11.bitnet, platek@cspguk11.bitnet

Abstract: Forgetting automata are nondeterministic linear bounded automata whose rewriting
capability is restricted as follows: each cell of the tape can only be “erased” (rewritten by a
special symbol) or completely “deleted”. We show that the “erasing” is in some sense more
powerfull than the “deleting”.

Key words: forgetting automaton, operation erase, operation delete, pushdown automaton

1 Introduction

This paper is a supplement of the contribution [JMP92b].

We deal with forgetting automata, which are nondeterministic linear bounded automata
whose rewriting ability is restricted as follows: each cell of the tape can only be ”erased”
(rewritten by a special symbol) or completely ”deleted”.

We show here a simulation of nondeterministic forgetting automata with operations move to
the right and erase operations by nondeterministic pushdown automata. By this simulation we
complete the proof that the class of languages recognizable by this type of forgetting automata
equals to the class of context-free languages (CFL).

The fact, that CFL is contained in the class of languages recognizable by this type of forget-
ting automata is an obvious consequence of the main result from [JMP92a].

The erase operation is more general than the delete operation. Delete operation can be simu-
lated by erasing and skipping through erased item while preserving the current state. Moreover
we show here that nondeterministic forgetting automata with operations move to the right
and delete operations cannot recognize all context-free languages. It follows from this that the
operation erase is strongly more powerfull than the delete operation in this context.

See [JMP93] for the detailed description of classes of languages recognizable by several types
of forgetting automata.

2 Definitions

An F-automaton (forgetting automaton) F has a finite state control unit with one head moving
on a linear (doubly linked) list of items (cells); each item contains a symbol from a finite alphabet.
In the initial configuration, the control unit is in a fixed (initial) state, the list contains an input
word bounded by special sentinels #, $ and the head scans the item with the left sentinel #.

The computation of F' is controlled by a finite set of instructions of the form [g, a] — [q1, op],
with the following meaning: according to the actual state ¢ and the scanned symbol a, F' may
change the state to ¢q; and perform op, one of the following six operations:

MVg, MV, moving the head one item to the right (left)

3

— FERp,EFR; — erasing, i.e. rewriting the contents of the scanned item with a special
symbol, say * and moving the head one item to the right (left),

— DLpR, DL; — deleting, i.e. removing the scanned item from the list and moving the head
one item to the right (left)

Generally, F' is nondeterministic (more than one instruction can be applicable at the same
time).

An input word is accepted by F if there is a computation starting in the initial configuration
which achieves a configuration with the control unit being in one of accepting states.

L(F) denotes the language consisting of all words accepted by F; we say that F recog-
nizes L(F).

By [O], where O is a subset of {M Vg, MV, ERr, ER;,, DLg, DL}, we denote the class of
languages recognizable by F-automata using operations from O only. (We write [Op1, Opa, . . .,
Opy] instead of [{Op1,Opa,...,Op,}]).

The couple ERg, ER}, we abbreviate by ER; similarly for DL and MV

For the situations with the head scanning # ($§) we use the following technical assumption:

— on # only MVg - instruction is applicable, and

— on $ only move to the left-instruction is used (instead of ERy or DLy).

3 Results

First we show that forgetting automata with operations M Vg and ER only are not stronger
than pushdown automata.

Theorem 1 [M Vg, ER] is a subset of CFL.

The operation ERp could be replaced by a sequence of operations ER;,, MVg, MVg. So it
is easy to see, that [M Vg, ER| = [MVg, ERy]. Let F be a forgetting automaton with operations
MVg, ER;. We will give an outline of a construction of a pushdown automaton M simulating F'.
I can operate on sequences of erased items. What can happen when F enters a sequence of n
erased items in a state ¢ from the left end:

- after some number of steps in the erased sequence F' can halt in an accepting or non-
accepting state,

- or after some number of steps F' can leave the erased sequence through the left or the right
end in a state ¢'.

F operates in a similar way when it enters a sequence of erased items from the right. We
will call such description of operations of F' (actually a set of functions) for some sequence u of
n erased items for all states g of ' a behaviour of F on uw and denote it by B,. In particular
By will denote the behaviour of F' on the empty sequence of erased items (i.e. when F “enters”
such a sequence from the left (right) in some state then F' “leaves” it in the same state through
the right (left) end).

There are only finitely many different behaviours of F' on sequences of erased items. Having
the behaviour B,, of F' for some sequence of n erased items we can compute the behaviour B4
of F' for the sequence of n + 1 erased items without knowing the value n. Moreover having

behaviours By, By of F for two sequences of erased items we can compute the behaviour B of F'
for the concatenation of these sequences of erased items.

The automaton M will simulate the automaton F' in the following way: each contiguous
sequence of erased items to the left from the scanning head of F' is encoded in the pushdown
of M as a behaviour. The only way how F' can move to the left is the F Ry -operation. So there is
at most one contiguous sequence of erased items to the right from the head of F. This sequence
could be characterized by some behaviour B which will be stored in the finite control unit of M.
In the case that there are no erased items to the right from the head of F' the behaviour B
equals to By.

Each (maximal) sequence s of steps of a computation of F' in which only erased items are
visited, except the last step of s when the segment of erased items is left, is simulated by one step
of the pushdown automaton M. Each (maximal) contiguous sequence e of erased items will be
represented by the corresponding behaviour. Using this behaviour M could nondeterministicaly
guess in which state and through which end will F' leave the sequence e or in which state F' will
halt without leaving e.

Let us describe how the remaining steps (which do not start on an erased items) are simulated:

a) MVpg instruction from an unerased item I with entering a state p:

al) B = By (i.e. the item to the right from I will be visited for the first time) - M pushes
the contents of the item I on the pushdown store and reads the next symbol from
the input tape; B remains unchanged.

a2) Bisnot By (i.e. the item to the right from I was previously visited and consequently
it is erased) - all consequent steps of F' until it leaves the sequence of erased items
are simulated nondeterministicaly using the behaviour B and the state ¢ as described
above. If F' will halt in a state gy then M halts in the state q;. If ' will leave the
erased sequence to the left, then M enters a new state only. If F' will leave the erased
sequence to the right, then M pushes the contents of the item I on the pushdown
store, pushes the behaviour B onto the pushdown store, reads the next symbol from
the input tape, enters the new state and puts By into B.

b) ERy instruction on an unerased item I with entering a state g:

Then the behaviour B stored in the finite control of M is changed to B’ to represent
the new longer sequence of erased items. The contents of the item [is poped from the
pushdown store and the top of the pushdown store is inspected. We distinguish two cases.

bl) There is an input symbol on the top of the pushdown store. Then M enters the
state ¢ only.

b2) There is a behaviour B” on the top of the pushdown store - i.e. the automaton F
enters a sequence of erased items from the right. Then M computes a behaviour B,
representing the whole sequence of erased items on the working list of F' (using B’
and B”) and M nondeterministicaly chooses in which state and in which direction
will the new erased segment be left. If ' will halt in a state gy then M halts in the
state gf. When F will leave the erased segment to the left then M pops B” from
the pushdown store, stores the new behaviour B, in B and enters the chosen state.
When F' will leave the erased sequence to the right, then M changes the behaviour on
the top of the pushdown store to the new one, reads the next input symbol from the
input tape and pushes it onto the top of the pushdown store and enters the chosen
state.

It is easy to see that if there is an accepting computation of the F-automaton F on a word w,
then there is an accepting computation of the pushdown automaton M on w. On the other side,

when there is no accepting computation of F' on an input word w, then M cannot accept it. So
L(F) = L(M).

The following theorem can be easily derived from the main result from [JMP92a] and from
the previous theorem.

Theorem 2 [MVy, ER] is equal to the CFL.

To show that the operation FRASE is more powerful than the operation DELETE we
will show that by replacing the FRASE operation by the operation DELETE in the above
mentioned class of forgetting automata we get a subclass of CFL.

Theorem 3 [MVg, DL] is a strict subclass of CFL.

The inclusion [M Vg, DL] C CFL follows trivially from Theorem 1. This inclusion is proper
and it could be proved using the language L(G) generated by the following context-free grammar
G = ({S, A1, As},{a1,a2,d1,ds, s}, S, R) where S is the starting nonterminal and R:

S—> A]Sd] ’ AQSdQ | S
Ay — cAie | aq
A9 — cAyc | ay

Obviously [MVg, DL] = [M Vg, DL] (similarly as in the proof of Theorem 1). The language
L(G) cannot be recognized by a forgetting automaton with operations MVg and DLy, only.

The complete proof is too technical and rather long for presentation in this proceedings
and can be found in [JMP93]. It may be interesting, that in the proof there are used two
notions, dependency and projectivity, which we have learnt from linguistics. These are the
fundamental properties of “moving trees” introduced in [JMP93]. For each computation of a
forgetting automaton with operations M Vg and DLj, only we can construct a moving tree which
comprises the complete information about the computation. For these trees we can prove two
“pumping lemmas”. The proof in [JMP93] is based on these two pumping lemmas and a careful
analysis of some sets of moving trees for accepting computations of F-automata with operations
MVg and DLy, only.

4 Conclusions

Obviously [ER] = [DL] = [MVy, ER] = [MVy, DL] (see [JMP92b] or [JMP93]).

We have shown that the operation FERASE is more powerfull than DELETE when combined
with the operation MVy. I.e. [MVyg, DL] is a proper subset of [M Vg, ER)].

In [JMP92b] and [JMP93] we conjectured that [MV, DL] is a proper subset of [MV, ER] but
this is still an open problem.

5 References

[JMP92a] Jancar P., Mraz F., Platek M.: Characterization of Contezt-Free Languages by Eras-
ing Automata, in Proceedings of the 17th International Symposium on Mathemati-

cal Foundations of Computer Science 1992, Lecture Notes in Computer Science, Vol.
629, Springer-Verlag, Berlin 1992, pp.305-314

[JMP92b] Jancar P., Mraz F., Platek M.: Forgetting automata and the Chomsky hierarchy, in
Proc. SOFSEM 92, Zdiar, Slovakia, November 1992, pp. 41-44

[JMP93] Jancar P., Mraz F., Platek M.: A Tazonomy of Forgetting Automata, Tech. Report
No. 101, KTTI MFF Charles University, Prague, June 1993

