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Abstract

We develop a new approach to valuing and hedging basket and spread options. We consider baskets of
assets with potentially negative portfolio weights (spread options are a subclass of such basket options).
The basket distribution is approximated using a generalized family of log-normal distributions. This
approximation copes with negative basket values as well as negative skewness of the basket distribution,
and it provides closed formulae for the option price and greeks. Numerical simulations show our ap-
proach provides a very close approximation to the option price, and performs remarkably well in terms
of the hedging error. We analyze option price sensitivitieswith respect to the assets’ volatilities and
correlations; and explain the seemingly paradoxical phenomenon of negative volatility vegas.

1. Introduction

Basket options are options whose payoff depends on the value of abasket, i.e., aportfolio of assets. Equity
index options and currency basket options are classical examples of basket options. However, basket options
are becoming increasingly widespread in commodity and particularly energy markets.

Commodity basket options are over-the-counter (OTC) instruments tailored tosuit the needs of a partic-
ular customer. For example, an oil company which owns a portfolio of energy products (crude oil, refined
products, natural gas) protects the portfolio value by buying a suitable basket call option. An important
subclass of basket options arespread options, where the underlying value is thespread(i.e. the difference)
between the prices of two commodities. For example, a power company purchases natural gas (or other
fuel) to produce and sell electricity. To protect its profits, the company buys a call option on the so-called
spark spread, which is the difference between the electricity price and the natural gas price multiplied by
the factor 0.681.

Other typical energy baskets are the so-calledcrack spreads, or refinery margins, which are the spreads
between crude oil and a number of refined products (for example, a 3:2:1crack spread is the difference
between the crude oil price and the heating oil and unleaded gasoline prices). In agricultural markets, the
soybean crush spreadis the difference between the price of soy and two soy products, soy oil and soy meal.
These are typical commodity baskets, comprising a number of different butclosely related commodities.

0Corresponding author, Delft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4, 2628 CD Delft,
The Netherlands. Email:s.a.borovkova@ewi.tudelft.nl.

1This factor is obtained from converting therms (natural gas energy units) into MWh (MegaWatt hour) and assuming 50%
generation efficiency, common in the UK.
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Options on such baskets are sold mostly over-the-counter and are widely used by commodity producers
and consumers. In recent years some exchange-traded commodity spread options have been introduced,
for example two types of crack spread options are traded nowadays on the New York Mercantile Exchange
(NYMEX)2.

Valuing basket options is a challenging task because the underlying value isa weighted sum of individ-
ual asset prices. The common assumption of log-normality (and hence, the famous Black-Scholes formula)
cannot be applied directly, because the sum of log-normal random variables is not log-normal. This problem
also occurs in pricing Asian options, and the existing approaches to pricingbasket options are those used for
Asian options. The Wakeman method (Turnbull and Wakeman (1991)) is based on a log-normal approxima-
tion of the basket value distribution by moment-matching. Milevsky and Posner (1995) use the reciprocal
Gamma distribution to approximate the basket distribution. Both approaches areattractive because they
lead to a closed formula for the approximate option price. However, they areonly applicable when all the
portfolio (i.e. basket) weights are positive.

Another class of methods is used to value spread options. Here the log-normal distribution cannot be
used even as an approximation, because spreads can (and often do) have negative values. One possible
solution is to assume the distribution of the spread can be approximated by the normal distribution. This
leads to theBachelier method, applied by Shimko (1994) to spread options. However, option prices obtained
by the Bachelier method are often significantly different to the real option prices or those obtained by Monte
Carlo simulation. This is due to the poor approximation of the spread distribution by the normal distribution.
Another, more successful approximation method is suggested by Kirk (1995) (inspired by the classical paper
of Magrabe (1978)), who replaced the difference of asset prices by the ratio and adjusted the strike price.
Pearson (1995) used a conditional argument to reduce a two-dimensional integral to a one-dimensional one,
to obtain an semi-numerical approximation for the spread option price. Most of the mentioned methods
provide closed formulae for the approximate option price, but can only deal with spreads between two
assets. Carmona and Durrelman (2003) give a good overview of spread options and propose precise lower
bounds to approximate spread option prices. Although they mention a possibilityto extend their method for
more than two assets, at present it can only deal with spread options.

Commodity market participants often deal with spreads and baskets comprisingmore than two assets,
where some of the assets may have negative portfolio weights, because producers must purchase some
”raw” commodity to produce their products. In soybean crush spread, soy enters with negative weight (raw
material) and soy oil and soy meal with positive weights (products). Analogously, in crack spread the raw
material is oil and has a negative weight, while unleaded gasoline and heatingoil are the oil products and
hence, have positive weights. More complex portfolios (baskets) are common in energy and agricultural
markets and so are OTC options on them.

To our knowledge, there is no analytical approximation approach availablefor pricing and hedging of
general basket options, i.e. those comprising several assets with potentially negative portfolio weights.
Numerical or Monte Carlo methods are the only possibilities, but they may be slowand do not provide a
closed formula for the option price - something of great value to practitioners. A closed formula for the
option price (or its approximation) is not only easy to understand and implement,but it also leads to closed
formulae for the option greeks (i.e. sensitivities to the model parameters, such as volatilities), which then
can be quickly and accurately evaluated. This is essential for hedging theoption and managing an option
portfolio. Moreover, a closed formula for an option price can be invertedto imply the assets’ volatilities and
correlations.

We propose a method which deals with general basket and spread optionsand provides a closed formula
approximation to the option price and the greeks. Our approach is multi-factor, i.e. it assumes a separate

2For descriptions of these options seewww.nymex.com
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price processes for each asset3, and the dependencies between these processes are quantified by correla-
tions. Our approach is closely related to the log-normal approximation, whichis generally considered a
better approximation for the basket value than e.g. the normal distribution. Inthis respect our approach
is close in spirit to the Wakeman method, but is able to deal with negative basketvalues. Moreover, the
log-normality assumption means the classical tools of option pricing such as the Black-Scholes formula are
readily applicable.

Here we consider baskets of futures or forward contracts4 on different (but related) commodities. Such
basket options are very common in commodity markets, and certainly more common than basket options on
physical commodities (however, our approach can be readily extended tosuch basket options). For example,
all exchange-listed spread options are written on baskets (or spreads)of futures.

We assume that the futures in the basket and the basket option mature at the same time. In practice,
different commodity futures have different expiration schedules, and atypical basket option matures just
before the earliest expiring futures or forward contract in the basket.

In commodity markets, companies often purchase the so-calledcalendar strips of optionsto protect
their profits during extended periods of time. A strip of basket or futures options is a collection of options
maturing every calendar month for e.g. a year (a strip of 12 options) or six months (a strip of 6 options),
together with the underlying futures contracts. Often in practice, each option in the strip is priced as a
separate option, each with its own set of parameters. Theoretically, however, to price calendar strips of
options, forward curve models are needed, i.e. models describing the simultaneous dynamics of futures
prices with different maturities. An output of such a model is a collection of futures price volatilities (the
so-calledvolatility forward curve), which are then used for pricing a calendar strip of options. This subject,
however, is outside the scope of this paper; here we shall focus on valuing and hedging one option on a
basket of futures, all maturing at the same time.

2. The model

Consider a basket of futures, whose prices(Fi(t))i follow correlated Geometric Brownian Motions. The
basket value at timet is given by

B(t) =
N

∑

i=1

aiFi(t),

whereai is the weight (possibly negative) corresponding to the asseti.

A general basket can have negative values, which makes a direct approximation of its distribution by
the log-normal distribution impossible. Moreover, the basket distribution canbe negatively skewed, while
the log-normal distribution always has positive skewness. However, a ”family” of log-normal distributions
(obtained from the ordinary log-normal distribution by shifting it alongx-axis and/or reflecting it across
y-axis) is well-suited to approximating general basket distributions.

Under the assumption of Geometric Brownian Motion dynamics for the asset prices, the first few mo-
ments of the basket value can be easily calculated. The moment matching plays akey role in choosing
the appropriate approximating distribution and estimating its parameters. Finally, by applying the Black-
Scholes model, we calculate the European option price, which is then used to obtain closed formulae for the
greeks.

3One-factor approaches to spread options assume some stochastic process directly for the spread value, without separately
modelling the individual price processes and dependencies between them, see e.g. Wilcox (1990).

4Under the assumption of deterministic interest rates, futures and forward prices coincide, see e.g. Bjork (1999).
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2.1. Basket Distribution

Under the risk-adjusted probability measure, the futures prices are martingales, hence the stochastic differ-
ential equation forFi(t) is

dFi(t)

Fi(t)
= σidWi(t), i = 1, 2, ..., N (1)

whereFi(t) is the price of the futures contracti at timet, N is the number of assets in the basket,σi is the
volatility of futuresi, Wi(t) andWj(t) are the Brownian motions driving futuresi andj with correlation
ρi,j .

The dynamics (1) implies that the distribution of the futures prices is log-normal.Although the sum of
log-normal random variables is not log-normal, the log-normal distribution approximates the distribution of
such sum quite well, and certainly much better than the normal distribution (at least for a relatively small
number of summands). This has already been noted by Mitchell (1968), who studied the accuracy of the
log-normal approximation for the sum of log-normal random variables in theoptical context, i.e. a ray
propagating through a medium with randomly varying index of refraction. Studies from many other areas
of science, ranging from physics to life sciences to economics (see e.g. Aitchison and Brown (1957), Crow
and Shimizu (1988), Limpert, Stahel and Abbt (2001)) have confirmed thehigh accuracy of the log-normal
approximation for the sum of log-normal random variables.

Motivated by these studies, we choose the log-normal distribution for approximating the basket distri-
bution. However, for baskets containing negative weights the log-normalapproximation cannot be used
directly, due to potentially negative values and negative skewness. Let us illustrate this in the following two
examples. We consider two hypothetical baskets with two assets (i.e. spreads), for both we assume that the
(constant) interest rater is 3 % per annum and the time to maturityT is 1 year. We denoteF0 the vector of
futures prices at timet=0, σ is the vector of annualized futures volatilities,a is the vector of weights andρ
the correlation between the assets.

Figures 1 and 2 show the simulated distribution of the terminal basket values (at time T ) under the
risk-adjusted probability measure.
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Figure 1: Basket 1 distribution atT = 1 year.
F0=[100;120],σ=[0.2;0.3],ρ=0.9,a=[-1;1].
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Figure 2: Basket 2 distribution atT = 1 year.
F0=[150;100],σ=[0.3;0.2],ρ=0.3,a=[-1;1].

Note that the ”shape” of the distribution still resembles the log-normal distribution, due to the skewness
and one large tail, only in the first figure it is shifted along the horizontal axisto the left by approximately
25 units, and in the second figure it is reflected to the vertical axis and then shifted along horizontal axis to
the right by approximately 60 units. Such examples give us the idea to use the so-calledshiftedandnegative
log-normal distributionsto approximate distributions such as in Figures 1 and 2.
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Recall that the probability density function (p.d.f.) of the regular log-normaldistribution is given by

f(x) =
1

sx
√

2π
exp

(

− 1

2s2
(log x − m)2

)

, x > 0. (2)

The shifted log-normal distributionis defined by the probability density function

f(x) =
1

s(x − τ)
√

2π
exp

(

− 1

2s2
(log (x − τ) − m)2

)

, x > τ, (3)

and we define thenegative log-normal distributionby the probability density function

f(x) =
−1

sx
√

2π
exp

(

− 1

2s2
(log−x − m)2

)

, x < 0. (4)

The combination of the shift and the reflection in they-axis gives rise to thenegative shifted log-normal
distribution, defined by its probability density function

f(x) =
1

s(−x − τ)
√

2π
exp

(

− 1

2s2
(log (−x − τ) − m)2

)

, x < −τ. (5)

Everywherem is the scale,s is the shape andτ is the location parameters.
Note that, if a random variableX has the (regular) log-normal distribution, then the random variable

Y = X + τ has the shifted log-normal distribution and the random variableZ = −X the negative log-
normal distribution.

The shifted log-normal distribution can be used to approximate the distribution of the Basket 1, shown
in Figure 1, since the basket has positive skewness and can have negative values. Figures 3 (empirical
and approximating p.d.f.) and 4 (theQQ-plot) show that the shifted log-normal distribution approximates
the Basket 1 distribution very well (apart from slight deviations in one tail -an observation also noted by
Mitchell (1968)).
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Figure 3:Approximating and empirical distribu-
tions of Basket 1.
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Figure 4:QQ-plot of approximating vs. empiri-
cal distributions of Basket 1.

The Basket 2, shown in Figure 2 has negative skewness and can havepositive values. Hence we choose
the negative shifted log-normal as the approximating distribution. This approximation is again very good,
as shown in Figures 5 and 6. Such observations lead us to use the regular, shifted, negative and negative
shifted log-normal distributions for approximating the basket distribution.

At the time of writing a basket option, the basket parameters (weights, initial asset prices, volatilities,
correlations, the interest rate and the option’s strike and time to maturity) are fixed. However, it is impossible
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Figure 5:Approximating and empirical distribu-
tions of Basket 2.
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Figure 6:QQ-plot of approximating vs. empiri-
cal distribution of Basket 2.

to tell at a glance what is the shape the terminal basket distribution and so, which of the possible approx-
imating distributions (2), (3), (4) or (5) to use. The two parameters: the skewness and the location of the
basket distribution at timeT - allow us to select the correct approximating distribution. To calculate these
parameters, we use the moment matching procedure.

2.2. Parameters estimation

If the dynamics of the assets in the basket is given by (1), then calculationsshow that the first three moments
of the basket on the maturity dateT are

EB(T ) =
N

∑

i=1

aiFi(0), (6)

E
(

B(T )
)2

=
N

∑

j=1

N
∑

i=1

aiajFi(0)Fj(0) exp (ρi,jσiσjT ), (7)

E
(

B(T )
)3

=
N

∑

k=1

N
∑

j=1

N
∑

i=1

aiajakFi(0)Fj(0)Fk(0) exp [(ρi,jσiσj + ρi,kσiσk + ρj,kσjσk)T ]. (8)

In terms of the first three moments, the skewness of basket can be calculated as

ηB(T ) =
E

[

B(T ) − EB(T )
]3

s3
B(T )

, (9)

wheresB(T ) =
√

EB2(T ) − (EB(T ))2 is the standard deviation of the basket value at timeT .
For each of the distributions (2), (3), (4) and (5), we can also derivethe first three moments in terms of

the parametersm, s, τ . For example, for the shifted log-normal distribution (3) the first three moments are

M1(T ) = τ + exp (m +
1

2
s2) (10)

M2(T ) = τ2 + 2τ exp (m +
1

2
s2) + exp (2m + 2s2) (11)

M3(T ) = τ3 + 3τ2 exp (m +
1

2
s2) + 3τ exp (2m + 2s2) + exp (3m +

9

2
s2) (12)

The parameters of the approximating distribution, e.g. the shifted log-normal, are estimated by matching
the first three moments of the basket (6), (7), and (8) with the first three moments of the shifted log-normal
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distribution (10), (11) and (12). This amounts to solving a nonlinear systemof three equations with three
unknowns (m, s andτ ). If the approximating distribution is chosen negative (shifted) log-normal,then the
distribution parameters are obtained by solving the same nonlinear equation system, only the momentsM1

andM3 in (10) and (12) are replaced by by−M1 and−M3.
The choice of the approximating distribution (regular (shifted) or negative(shifted) log-normal) depends

on the distribution skewness: if the skewness is positive, the regular or shifted log-normal distribution should
be chosen as an approximating distribution. If the skewness is negative, then the approximating distribution
is the negative or negative shifted log-normal.

The location parameterτ determines the shift of the approximating distribution. However, the regular
log-normal distribution often provides a better fit than the shifted distribution,even whenτ 6= 0. This
happens when the basket distribution is positively skewed and basket value cannot be negative. We illustrate
this on the example of the Basket 3 with the parametersF0 = (110, 90), σ = (0.3, 0.2), a = (0.7, 0.3), ρ =
0.9. Its terminal distribution (at timeT ) is shown in Figure 7.

If we match the moments of this basket to the shifted log-normal distribution, the estimate of the location
parameterτ is 34, so it seems that the shifted log-normal distribution provides the right approximation.
However, Figures 8, 9 and theQQ-plots in Figures 10 and 11 suggest that the regular log-normal distribution
provides a better fit.
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Figure 7: Histogram of Basket 3
terminal values (at timeT ).
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Figure 8: Shifted log-normal ap-
proximation and empirical distribu-
tion of Basket 3.
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Figure 9: Regular log-normal ap-
proximation and empirical distribu-
tion of Basket 3.
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Figure 10: QQ-plot of shifted log-normal vs.
empirical distribution of Basket 3.
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Figure 11: QQ-plot of regular log-normal vs.
empirical distribution of Basket 3.

So for a positively skewed basket distribution, we choose the shifted log-normal approximationonly
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whenτ < 0, to cope with negative basket values, and whenτ ≥ 0 we suggest to use the regular log-
normal distribution5. Analogously, for negatively skewed distributions, we use the negativeshifted log-
normal distribution only whenτ < 0, and otherwise we use the negative log-normal distribution. Table 1
summarizes the choice of the approximating distribution for different parameter combinations.

Skewness η > 0 η > 0 η < 0 η < 0

Location parameter τ ≥ 0 τ < 0 τ ≥ 0 τ < 0

Approximating distribution regular shifted negative neg.shifted

Table 1: Choice of the approximating distribution

3. Option valuation and the greeks

Recall that we consider baskets of contemporaneous futures contracts. The basket itself can then be consid-
ered as a futures contract (see e.g. Hull (2002)), and hence, options on it can be valued using the Black’s
(1976) formula. However, this is only possible if the distribution of the basket value is log-normal. So we
shall reduce the problem of valuing options on general baskets (i.e. those having the shifted or negative
shifted log-normal distribution) to valuing options on baskets having regularlog-normal distribution.

Let the value of the basket 1(B1) be (regular) log-normally distributed with parametersm, s. Further-
more, let the basket 2(B2) have the following relationship with the basket 1:

B2(T ) = B1(T ) + τ

whereτ is a constant. The distribution of the basket 2 must be shifted log-normal with the parameters
m, s, τ. On the maturity dateT , the payoff of a call option on the basket 2 is

(

B2(T ) − X
)+

=
(

(B1(T ) + τ) − X
)+

=
(

B1(T ) − (X − τ)
)+

.

This is the payoff of a call option on the basket 1 with the same maturity dateT and the strike price(X−τ),
and such a call option can be valued by the Black’s formula.

Next, suppose that the basket 3(B3) has the following relationship to the basket 1:

B3(T ) = −B1(T ).

The distribution of the basket 3 must be negative log-normal with parametersm, s. On the maturity dateT ,
the payoff of a call option on the basket 3 is

(B3(T ) − X)+ =
(

(−X) − B1(T )
)+

.

This is the payoff of a put option on the basket 1 on the maturity dateT with the strike price(−X), and to
value such a put option, the Black’s formula can be applied again.

These arguments lead to the following closed form formulae for the price of the basket call option with
the strike priceX and the time of maturityT :

• Using the regular log-normal approximation (Wakeman method)

c = exp(−rT )[M1(T )N(d1) − XN(d2)] (13)

5Note that in this case our method is equivalent to the Wakeman method (Turnbull and Wakeman (1991))
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where d1 =
log(M1(T )) − log X + 1

2V 2

V

d2 =
log(M1(T )) − log X − 1

2V 2

V

V =

√

log

(

M2(T )

(M1(T ))2

)

• Using the shifted log-normal approximation

c = exp(−rT )[(M1(T ) − τ)N(d1) − (X − τ)N(d2)] (14)

where d1 =
log(M1(T ) − τ) − log (X − τ) + 1

2V 2

V

d2 =
log(M1(T ) − τ) − log (X − τ) − 1

2V 2

V

V =

√

log

(

M2(T ) − 2τM1(T ) + τ2

(M1(T ) − τ)2

)

• Using the negative log-normal approximation

c = exp(−rT )[−XN(−d2) + M1(T )N(−d1)] (15)

where d1 =
log(−M1(T )) − log (−X) + 1

2V 2

V

d2 =
log(−M1(T )) − log (−X) − 1

2V 2

V

V =

√

log

(

M2(T )

(M1(T ))2

)

• Using the negative shifted log-normal approximation

c = exp(−rT )[(−X − τ)N(−d2) + (M1(T ) + τ)N(−d1)] (16)

where d1 =
log(−M1(T ) − τ) − log (−X − τ) + 1

2V 2

V

d2 =
log(−M1(T ) − τ) − log (−X − τ) − 1

2V 2

V

V =

√

log

(

M2(T ) + 2τM1(T ) + τ2

(M1(T ) + τ)2

)

EverywhereM1(T ) andM2(T ) denote the first two moments of the basket on the maturity dateT (given in
(6) and (7)) andN(·) is the cumulative distribution function of the standard normal distribution.

Note that, for the regular and negative log-normal distributions, a quantity analogous to the basket
”volatility” can be defined asσB(T ) = V

√

T
. For the shifted and negative shifted log-normal distributions,
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such analogy does not hold, since in these cases the quantityV
√

T
is the ”volatility” of the basket value minus

the shiftτ . Generally, we believe that it does not make sense to define the ”volatility” ofa general basket or a
spread. In one-factor approaches, the dynamics of a basket is explicitly modelled (by e.g. a continuous-time
diffusion driven by a Brownian motion), and hence the volatility is specified.Our approach is multi-factor,
so we do not assume any dynamics directly for the basket value, but only for the underlying assets; hence,
the basket ”volatility” is not defined in this way. To define the volatility as the standard deviation of the log-
returns or relative returns on a basket is also impossible, because for general baskets the log-returns cannot
be defined at all (due to negative values), and the relative returns may explode, since the basket value can be
arbitrary close to zero. However, some authors have attempted to define such a quantity; for example, Kirk
(1995) defines the spread volatility as

σspread =
√

σ2
1 + σ2

2 − 2σ1σ2ρ, (17)

whereσ1,2 are the volatilities of the assets in the spread andρ is the correlation coefficient. Note that this
is not the volatility in traditional sense, but the standard deviation of the difference between the assets’
log-returns, which is not the spread return. In fact, using the expression (17) to price options can lead
to underpricing (as we shall see in the next section), because the standard deviation of the spread relative
returns can be much higher, due to spread values close to 0. So we avoid the use of the term ”basket
volatility” or ”spread volatility” and derive the basket option price in terms of the basket moments.

To manage risks during the lifetime of an option, traders monitor changes in the option price caused by
changes in the underlying values or the model parameters, such as volatilities. These changes are quantified
by the option’sgreeks(which are the partial derivatives of the option price with respect to the parameters),
which play a crucial role in hedging the option and managing risks associatedwith options portfolio. The
advantage of having a closed formula for the option price is that it also leadsto the closed formulae for the
greeks, which can be quickly and accurately evaluated.

We can differentiate equations (13)-(16) with respect to the underlying asset prices, time to maturity,
volatilities, correlations and the interest rate, to obtain closed formulae for option’s deltas (∆), theta (Θ),
vegas (ϑ) and rho (ρ). There is a subtlety, however, since the formulae for the option price in thecase
of the shifted and negative shifted log-normal distribution contain the parameter τ , which also implicitly
depends onFi, σi, ρ andT . So when we differentiate formulae (13)-(16), we must take this dependence
into account.

Although there is no closed formula forτ in terms of the model parameters, it is possible to obtain such
closed formulae for the partial derivatives ofτ with respect toFi, σi, ρ, T . Recall thatm, s andτ were
obtained by the moment matching procedure, which amounts to solving a nonlinear system of equations,
such as (10)-(12) for the shifted log-normal distribution. A similar system can be written down for the partial
derivatives of the first three basket momentsM1, M2, M3 with respect to the model parameters, and then
solved for the partial derivatives of the parametersm, s andτ . For example, to obtain the option’s deltas,
we differentiate the call price and the first three moments with respect to the asset pricesFi. The derivative
of the call price with respect toFi contains∂τ/∂Fi, which can be found by solving the following (linear)
equation system:





1 α s
2(τ + α) 2τα + β 2s(τα + 2β)
3(τ2 + 2τα + β) 3(τ2α + 2τβ + γ) 3s(τ2α + 4τβ + 3γ)



 ×





∂τ/∂Fi

∂m/∂Fi

∂s/∂Fi



 =





∂M1/∂Fi

∂M2/∂Fi

∂M3/∂Fi



 ,

whereα = exp(m + 1/2s2), β = exp(2m + 2s2) andγ = exp(3m + 9/2s2). In the negative shifted
log-normal case, the derivative∂M1/∂Fi changes to−∂M1/∂Fi and∂M3/∂Fi to−∂M3/∂Fi. The partial
derivatives∂τ/∂σi, ∂τ/∂ρ and∂τ/∂T are obtained analogously.



Closed Form Approach to Valuation and Hedging of Basket Options 11

Due to these rather involved computations, the final closed formulae for the basket option’s greeks are
somewhat cumbersome (although easily implementable), and hence are reported in the Appendix.

In the next section we shall evaluate the model’s performance by comparingoption prices obtained by
our method to those obtained by other methods (whenever possible) and Monte Carlo simulations. We shall
also investigate the performance of the delta hedging and analyze the behavior of the greeks, especially
those related to the volatilities and correlations, i.e. vegas.

To conclude this section, we summarize the algorithm for pricing general basket options.
1. Given the basket parameters (initial asset prices, volatilities, correlations and weights), as well as the time
to the option’s maturity and the interest rate, compute the first three moments of theterminal basket value
according to equations (6), (7) and (8), and the basket skewness according to the formula (9).
2. If the basket skewnessη is positive, the first guess of the approximating distribution is shifted log-normal;
if the skewness is negative, it is the negative shifted log-normal distribution.
3. Match the moments of the distribution chosen in the step 2 to the basket’s moments,to find the parameters
m, s andτ .
4. Adjust the choice of the approximating distribution on the basis of the skewnessη and the shift parameter
τ according to the Table 1.
5. Compute the European call basket option price according to the appropriate formula (13)-(16), and the
option’s greeks according to the corresponding formulae given in Appendix.

4. Simulation study

We apply our approach to a number of hypothetical baskets, chosen so that all possible approximating
distributions occur. The parameters of the test baskets are given in the Table 2 and the European call option
prices on these baskets are given in the Table 3. The sign ”-” means that the corresponding method cannot
be applied to a particular basket.

Basket 1 Basket 2 Basket 3 Basket 4 Basket 5 Basket 6

Futures priceF0 [100,120] [150,100] [110,90] [200,50] [95,90,105] [100,90,95]

Volatility σ [0.2,0.3] [0.3,02] [0.3,0.2] [0.1;0.15] [0.2,0.3,0.25] [0.25,0.3,0.2]

Weightsa [-1,1] [-1,1] [0.7,0.3] [-1,1] [1,-0.8,-0.5] [0.6,0.8,-1]

Correlationρ ρ1,2=0.9 ρ1,2=0.3 ρ1,2=0.9 ρ1,2=0.8 ρ1,2=ρ2,3=0.9 ρ1,2=ρ2,3=0.9
ρ1,3=0.8 ρ1,3=0.8

Strike priceX 20 -50 104 -140 -30 35

Skewnessη η > 0 η < 0 η > 0 η < 0 η < 0 η > 0

Location parameterτ τ < 0 τ < 0 τ > 0 τ > 0 τ < 0 τ < 0

Table 2: Basket parameters

Baskets 1,2 and 4 are spreads. Basket 3 is a ”regular” basket, consisting of two assets with positive
weights, so for this basket our approach reduces to the Wakeman method.Baskets 5 and 6 consist of three
assets, some with negative portfolio weights. For these general baskets there is no closed form approach,
apart from the one presented here, so we can only compare the corresponding option prices to the Monte
Carlo simulations.

We chose high correlations between the assets to imitate realistic commodity baskets, where the assets in
the basket are closely related. The assets’ volatilities are also quite high (20-30%), again to reflect volatility
levels typical for commodities. The options on baskets 1, 2, 5 and 6 are (nearly) at-the-money and 3 and 4
are out-of-the-money. The approximating distributions are chosen on the basis of the basket skewnessη and
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Method Basket 1 Basket 2 Basket 3 Basket 4 Basket 5 Basket 6

Our approach 7.751 16.910 10.844 1.958 7.759 9.026
(shifted) (neg.shifted) (regular) (neg.regular) (neg.shifted) (shifted)

Bachelier 8.052 17.237 - 2.121 - -
Kirk 7.734 16.678 - 1.507 - -

Monte Carlo 7.744 16.757 10.821 1.966 7.730 9.022
(0.014) (0.023) (0.018) (0.005) (0.01) (0.015)

Table 3: Call option prices

the estimated shiftτ , and are reported in the Table 3.
The Monte Carlo simulation is repeated 1000 times for each basket, to obtain the means and standard

errors of call prices (which are given in parenthesis in the last row of the Table 3).
Call prices obtained by our approach are remarkably close to those obtained by the Monte Carlo simula-

tions, and in all cases but one (Basket 2) are within the 95% Monte Carlo confidence bounds. This is not an
inherent feature of the negative shifted log-normal approximation: for the Basket 5 the same approximating
distribution was chosen and the call price is close to the Monte Carlo result. Note that our call prices in
all cases are greater than those obtained by the Kirk method, and lower thanthe prices resulting from the
Bachelier method. Recall that the Kirk method uses the spread volatility given by (17) to price options, and
hence, leads to too low option prices, as discussed in the previous section.The Bachelier method performs
poorly and significantly overestimates the call prices. The Kirk method performs better, but is inapplicable
to Baskets 5 and 6, whereas our method provides a very close approximation to the call price. Moreover,
for Basket 4, our price is much closer to the Monte Carlo result than that obtained by the Kirk method. In
this case (skewness of basket is negative, and the estimate ofτ is positive) the Kirk method significantly
underestimates the call price.

Next, we investigate the performance of our method on the basis of delta-hedging the option. We
generate price paths of the basket assets from the time of writing the option until maturity, and on each
hypothetical day we calculate the option’s deltas with respect to each asset.We then re-adjust daily the
hedging portfolio according to the deltas. We define the hedge error as thedifference between the option
price and the discounted hedge cost (i.e. the cost of maintaining the delta-hedged portfolio). If the hedging
scheme works perfectly, the hedge cost would be exactly equal to the theoretical option price and the hedge
error would be zero. In practice it is not zero due to the model error anddiscrete (e.g. daily) hedging. We
expect the hedge error and its standard deviation to decrease when the hedge interval decreases, i.e. when
hedging is done more frequently.

We investigate the delta-hedging performance of our approach on the example of two baskets, one a
spread with the parametersF0 = [100, 110], σ = [0.1, 0.15], a = [−1, 1], ρ = 0.9, X = 10, and the
other one a general basket with parametersF0 = [95, 90, 105], σ = [0.2, 0.3, 0.25], a = [1,−0.8,−0.5],
ρ1,2 = ρ2,3 = 0.9, ρ1,3 = 0.8, X = −30. For both examples the interest rate is 3% per annum and the time
to maturity is one year. For each basket 1000 price paths were generatedand the hedge errors computed for
each price path.

In Figures 12 and 13 we plot the ratio of the hedge error standard deviation to the call price vs. the
hedge interval. Both figures show that this ratio (and so, the standard deviation of the hedge error) decreases
together with the hedge interval, as we expect. This is also the case for the mean hedge error. For both
examples, the mean hedge error is around 5% for daily hedging.

For multi-asset derivatives, the analysis of vegas with respect to the individual volatilities and particu-
larly the inter-asset correlations becomes essential. A typical behavior ofthe correlation vega is shown in
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Figure 12: Hedge error vs. hedge inter-
val. The basket parameters areF0=[100,110],
σ=[0.1,0.15],a=[-1,1], ρ=0.9,X=10.
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Figure 13: Hedge error vs. hedge interval.
The basket parameters areF0=[95,90,105],
σ=[0.2,0.3,0.25], a=[1,-0.8,-0.5], ρ1,2 =
ρ2,3=0.9,ρ1,3=0.8,X=-30.

Figures 14-16. The underlying value is a spread with the parametersF0 = [100, 110], a = [−1, 1], σ =
[0.1, 0.15], r = 0.03, T = 1. The terminal basket distribution is approximated by the shifted log-normal.
In this example, the correlation vega is negative, i.e. increasing correlationleads to decreasing option price.
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Figure 14: Correlation vega vs.
correlations and strike prices.
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Figure 15: Correlation vega vs.
correlations for different strike
prices
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Figure 16: Correlation vega vs.
strike prices for different corre-
lations

A characteristic feature of the Black-Scholes model is that the vega (i.e. thesensitivity of the option
price with respect to the underlying asset’s volatility) is always positive, i.e.the option price can only
increase if the volatility increases. This is not the case for basket and spread options. All vegas (i.e. with
respect to volatilities and correlations) can be positive as well as negative. The first two plots in Figure
17 show the volatility vegas for the spread option characterized byF0 = [100, 110], a = [−1, 1], ρ =
0.8, r = 0.03, T = 1, X = 10, versus various volatility levels. Note that there are regions of volatilities
where one or both volatility vegas are negative. These regimes are also visible in the right plot of Figure 17
(where we plot the spread call price vs. the volatilitiesσ1 andσ2) and in Figure 18, showing slices of the
surface plots. ¿From these plots it is clear that the call price does not necessarily increase with increasing
individual volatilities. This does not contradict the Black-Scholes theory:in such regions, increase in one of
the volatilities leads to a lower ”variability” of the spread, which ultimately drives down the spread option
price.
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Figure 17: Volatility vegas for different volatilitiesσ1 andσ2, and call price vs.σ1 andσ2.
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Figure 18: Volatility vega and call price forσ1 = 0.3 (left) andσ2 = 0.2 (right).

5. Conclusions and future work

We have introduced a new approach for pricing and hedging general basket and spread options. Our ap-
proach is based on approximating the basket distribution by a ”family” of log-normal distributions: regular,
shifted, negative or negative shifted log-normal. Such a log-normal approximation means that the widely
used tools of option pricing such as the Black-Scholes formula are readily applicable. Our method leads
to a closed-form solution for the European option price and option’s greeks; it can be easily understood
and implemented by market practitioners. Moreover, using our closed formula for the option price, inter-
commodity correlations can be implied from the market prices of spread and basket options. To our knowl-
edge, ours is the only existing analytic approach to general basket options - typical derivatives in many
commodity markets. Numerical simulations have shown that the option prices obtained by our method
approximate the prices resulting from Monte Carlo simulations remarkably well, and the delta-hedging
performance of our method is also very good.

Here we considered baskets of futures or forward contracts. Our approach can be easily extended to bas-
kets of physical commodities, by specifying the dynamics of spot commodity prices under the risk-adjusted
probability measure. This, however, requires specification of the parameters such as the convenience yield
and the market price of commodity risk, which have to be calibrated from market data. The extension of our
method to physical commodity baskets will be reported shortly.

An important feature of energy markets is that most delivery contracts arepriced on the basis of an
average price over a certain period. Hence, most energy derivatives (also basket and spread options) are
Asian-style. So Asian basket options (that is, an Asian option on a basketof assets) need to be considered
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as well. Extension of our approach for valuation and hedging of Asian basket option is a topic of future
research.
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Appendix

The closed form expressions for the greeks are given by:
Using the regular log-normal approximation (Wakeman method)
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= exp (−rT )
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]
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Using the shifted log-normal approximation
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Using the negative regular log-normal approximation
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∂T

=
1

2(M1 + τ)(M2 + 2τM1 + τ2)V

[

(M1 + τ)(M1 + τ)
∂M2

∂T
− 2(M2 − M2

1 )
∂τ

∂T

]
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Note that:

∂M1

∂σi
= 0,

∂M1

∂ρi,j
= 0,

∂M1

∂T
= 0,

∂M1

∂Fi
= ai

∂M2

∂Fi
= 2ai

N
∑

j=1

ajFj(0) exp (ρi,jσiσjT )

∂M2

∂σi
= 2aiFi(0)

N
∑

j=1

ajFj(0)ρi,jσjT exp (ρi,jσiσjT )

∂M2

∂ρi,j
= 2aiajFi(0)Fj(0)σiσjT exp (ρi,jσiσjT ), i 6= j

∂M2

∂T
=

N
∑

j=1

N
∑

i=1

aiajFi(0)Fj(0)ρi,jσiσj exp (ρi,jσiσjT )

∂M3

∂Fi
= 3ai

N
∑

j=1

ajakFj(0)Fk(0) exp (ρi,jσiσjT + ρi,kσiσkT + ρj,kσjσkT )

∂M3

∂σi
= 3aiFi(0)

N
∑

k=1

N
∑

j=1

ajakFj(0)Fk(0)
(

ρi,jσjT + ρi,kσkT
)

exp (ρi,jσiσjT + ρi,kσiσkT + ρj,kσjσkT )

∂M3

∂ρi,j
= 6aiajFi(0)Fj(0)Tσiσj

N
∑

k=1

akFk(0) exp (ρi,jσiσjT + ρi,kσiσkT + ρj,kσjσkT ), i 6= j

∂M3

∂T
=

N
∑

k=1

N
∑

j=1

N
∑

i=1

(ρi,jσiσj + ρi,kσiσk + ρj,kσjσk)aiajakFi(0)Fj(0)Fk(0)

exp (ρi,jσiσjT + ρi,kσiσkT + ρj,kσjσkT )

EverywhereN(·) denotes the cumulative distribution function andn(·) the density of the standard nor-
mal distribution.


