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Abstract

We develop a new approach to valuing and hedging basket asddspptions. We consider baskets of
assets with potentially negative portfolio weights (spreptions are a subclass of such basket options).
The basket distribution is approximated using a genemlfaeily of log-normal distributions. This
approximation copes with negative basket values as wekkgative skewness of the basket distribution,
and it provides closed formulae for the option price and kgedNumerical simulations show our ap-
proach provides a very close approximation to the optiocepand performs remarkably well in terms
of the hedging error. We analyze option price sensitivitigth respect to the assets’ volatilities and
correlations; and explain the seemingly paradoxical phresmmn of negative volatility vegas.

1. Introduction

Basket options are options whose payoff depends on the valubasfi@ti.e., aportfolio of assetsEquity
index options and currency basket options are classical exampleskaftlogtions. However, basket options
are becoming increasingly widespread in commodity and particularly enendgetea

Commodity basket options are over-the-counter (OTC) instruments tailoseit the needs of a partic-
ular customer. For example, an oil company which owns a portfolio of grEaducts (crude oil, refined
products, natural gas) protects the portfolio value by buying a suitalsleebaall option. An important
subclass of basket options aeread optionswhere the underlying value is tispread(i.e. the difference)
between the prices of two commodities. For example, a power company paschatural gas (or other
fuel) to produce and sell electricity. To protect its profits, the companyg bugall option on the so-called
spark spreagdwhich is the difference between the electricity price and the natural gaes mwltiplied by
the factor 0.68.

Other typical energy baskets are the so-catlettk spreadsor refinery margins, which are the spreads
between crude oil and a number of refined products (for example, a &&ck spread is the difference
between the crude oil price and the heating oil and unleaded gasoling)priceagricultural markets, the
soybean crush spread the difference between the price of soy and two soy products, sogadda@y meal.
These are typical commodity baskets, comprising a number of differerdidsely related commodities.

%Corresponding author, Delft Institute of Applied Mathematics, Delft @rsity of Technology, Mekelweg 4, 2628 CD Delft,
The Netherlands. Emai$.a.borovkova@ewi.tudelft.nl.

This factor is obtained from converting therms (natural gas energy)units MWh (MegaWatt hour) and assuming 50%
generation efficiency, common in the UK.
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Options on such baskets are sold mostly over-the-counter and are wikslyby commodity producers
and consumers. In recent years some exchange-traded commodag sptéons have been introduced,
for example two types of crack spread options are traded nowadayse dtetin York Mercantile Exchange
(NYMEX)?Z.

Valuing basket options is a challenging task because the underlying vawesighted sum of individ-
ual asset prices. The common assumption of log-normality (and hencentioei$ Black-Scholes formula)
cannot be applied directly, because the sum of log-normal randonblegiia not log-normal. This problem
also occurs in pricing Asian options, and the existing approaches to phasigt options are those used for
Asian options. The Wakeman method (Turnbull and Wakeman (1991))ésllmasa log-normal approxima-
tion of the basket value distribution by moment-matching. Milevsky and Po4865] use the reciprocal
Gamma distribution to approximate the basket distribution. Both approachedti@etive because they
lead to a closed formula for the approximate option price. However, theyrdyeapplicable when all the
portfolio (i.e. basket) weights are positive.

Another class of methods is used to value spread options. Here the logdndistribution cannot be
used even as an approximation, because spreads can (and ofteswea)dgative values. One possible
solution is to assume the distribution of the spread can be approximated byrthal mistribution. This
leads to théBachelier methodapplied by Shimko (1994) to spread options. However, option priceinelota
by the Bachelier method are often significantly different to the real optimegor those obtained by Monte
Carlo simulation. This is due to the poor approximation of the spread distributitirebnormal distribution.
Another, more successful approximation method is suggested by Kirk){i@8pired by the classical paper
of Magrabe (1978)), who replaced the difference of asset prigebébratio and adjusted the strike price.
Pearson (1995) used a conditional argument to reduce a two-dimelrisiegaal to a one-dimensional one,
to obtain an semi-numerical approximation for the spread option price. Mdkeanentioned methods
provide closed formulae for the approximate option price, but can onllywi¢fa spreads between two
assets. Carmona and Durrelman (2003) give a good overview oftsppg@ns and propose precise lower
bounds to approximate spread option prices. Although they mention a possibéityend their method for
more than two assets, at present it can only deal with spread options.

Commodity market participants often deal with spreads and baskets compmishegthan two assets,
where some of the assets may have negative portfolio weights, becatkegns must purchase some
"raw” commodity to produce their products. In soybean crush spregcemsters with negative weight (raw
material) and soy oil and soy meal with positive weights (products). Anaklgoin crack spread the raw
material is oil and has a negative weight, while unleaded gasoline and hedtarg the oil products and
hence, have positive weights. More complex portfolios (baskets) anenom in energy and agricultural
markets and so are OTC options on them.

To our knowledge, there is no analytical approximation approach availabfgicing and hedging of
general basket options, i.e. those comprising several assets with pbtemggative portfolio weights.
Numerical or Monte Carlo methods are the only possibilities, but they may beasidvdo not provide a
closed formula for the option price - something of great value to practition®rsosed formula for the
option price (or its approximation) is not only easy to understand and impleimérit,also leads to closed
formulae for the option greeks (i.e. sensitivities to the model parametets aswlatilities), which then
can be quickly and accurately evaluated. This is essential for hedgiraptlom and managing an option
portfolio. Moreover, a closed formula for an option price can be invedeachply the assets’ volatilities and
correlations.

We propose a method which deals with general basket and spread @pisbpsovides a closed formula
approximation to the option price and the greeks. Our approach is multi-faetoit assumes a separate

2For descriptions of these options se@w.nymex.com
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price processes for each assetnd the dependencies between these processes are quantifiedels cor
tions. Our approach is closely related to the log-normal approximation, vidighnerally considered a
better approximation for the basket value than e.g. the normal distributiothisimespect our approach
is close in spirit to the Wakeman method, but is able to deal with negative beskets. Moreover, the
log-normality assumption means the classical tools of option pricing such asatie Bcholes formula are
readily applicable.

Here we consider baskets of futures or forward contfamsdifferent (but related) commaodities. Such
basket options are very common in commodity markets, and certainly more comamopatsket options on
physical commodities (however, our approach can be readily extendedhdasket options). For example,
all exchange-listed spread options are written on baskets (or spafdds)res.

We assume that the futures in the basket and the basket option mature anéhéirae. In practice,
different commodity futures have different expiration schedules, atypiaal basket option matures just
before the earliest expiring futures or forward contract in the basket.

In commodity markets, companies often purchase the so-cedllssthdar strips of optionso protect
their profits during extended periods of time. A strip of basket or futupti®ios is a collection of options
maturing every calendar month for e.g. a year (a strip of 12 options) or sithmda strip of 6 options),
together with the underlying futures contracts. Often in practice, eachrnojtithe strip is priced as a
separate option, each with its own set of parameters. Theoretically, bowewrice calendar strips of
options, forward curve models are needed, i.e. models describing the sisautadynamics of futures
prices with different maturities. An output of such a model is a collection tfrés price volatilities (the
so-calledvolatility forward curve, which are then used for pricing a calendar strip of options. This stjbjec
however, is outside the scope of this paper; here we shall focus omgalad hedging one option on a
basket of futures, all maturing at the same time.

2. Themodéd

Consider a basket of futures, whose pri¢é¥(t)); follow correlated Geometric Brownian Motions. The
basket value at timeis given by

whereq; is the weight (possibly negative) corresponding to the asset

A general basket can have negative values, which makes a diraoixapption of its distribution by
the log-normal distribution impossible. Moreover, the basket distributiorbeamegatively skewed, while
the log-normal distribution always has positive skewness. Howevdanailyy” of log-normal distributions
(obtained from the ordinary log-normal distribution by shifting it alongxis and/or reflecting it across
y-axis) is well-suited to approximating general basket distributions.

Under the assumption of Geometric Brownian Motion dynamics for the assespthe first few mo-
ments of the basket value can be easily calculated. The moment matching Meysae in choosing
the appropriate approximating distribution and estimating its parameters. Finatygbying the Black-
Scholes model, we calculate the European option price, which is then usketio dosed formulae for the
greeks.

30ne-factor approaches to spread options assume some stochaséisspdirectly for the spread value, without separately
modelling the individual price processes and dependencies betweengbe e.g. Wilcox (1990).
4Under the assumption of deterministic interest rates, futures and fbpwiges coincide, see e.g. Bjork (1999).
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2.1. Basket Distribution

Under the risk-adjusted probability measure, the futures prices are naesngence the stochastic differ-
ential equation fo;(¢) is

= 0 dWi(t), i=1,2,..N 1)

whereF;(t) is the price of the futures contracat timet, N is the number of assets in the baskstis the
volatility of futuresi, W;(t) andW;(¢) are the Brownian motions driving futurésind j with correlation
Pije

The dynamics (1) implies that the distribution of the futures prices is log-noriiddough the sum of
log-normal random variables is not log-normal, the log-normal distributopmaimates the distribution of
such sum quite well, and certainly much better than the normal distribution &tfteaa relatively small
number of summands). This has already been noted by Mitchell (1968)studied the accuracy of the
log-normal approximation for the sum of log-normal random variables irofitecal context, i.e. a ray
propagating through a medium with randomly varying index of refractiondi€sufrom many other areas
of science, ranging from physics to life sciences to economics (see ikchisén and Brown (1957), Crow
and Shimizu (1988), Limpert, Stahel and Abbt (2001)) have confirmetigieaccuracy of the log-normal
approximation for the sum of log-normal random variables.

Motivated by these studies, we choose the log-normal distribution foogppating the basket distri-
bution. However, for baskets containing negative weights the log-noapm@ioximation cannot be used
directly, due to potentially negative values and negative skewnessslilistrate this in the following two
examples. We consider two hypothetical baskets with two assets (i.e. spreadoth we assume that the
(constant) interest rateis 3 % per annum and the time to maturfiyis 1 year. We denoté&j the vector of
futures prices at timé&=0, o is the vector of annualized futures volatilitiesis the vector of weights and
the correlation between the assets.

Figures 1 and 2 show the simulated distribution of the terminal basket valugmél’) under the
risk-adjusted probability measure.

frequency
frequency

20 40 60 80 100 120 = = -250 -200 -150 -100 -50 o 50 100
basket values basket value

Figure 1: Basket 1 distribution af’ = 1 year. Figure 2: Basket 2 distribution af’ = 1 year.
F,=[100;120],5=[0.2;0.3],p=0.9,a=[-1;1]. F,=[150;100],5=[0.3;0.2],p=0.3,a=[-1;1].

Note that the "shape” of the distribution still resembles the log-normal distrifpudioe to the skewness
and one large tail, only in the first figure it is shifted along the horizontal taxibe left by approximately
25 units, and in the second figure it is reflected to the vertical axis and fiiféedsalong horizontal axis to
the right by approximately 60 units. Such examples give us the idea to use tlafledshiftedandnegative
log-normal distributiongo approximate distributions such as in Figures 1 and 2.
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Recall that the probability density function (p.d.f.) of the regular log-nowfigttibution is given by
1

sT\ 21w

fz) =

1 2
exp(—@(logx—m) ),1:>0. (2)

The shifted log-normal distributiois defined by the probability density function

1 1
f(a:):mexp(—@(log(x—T)—m)2),x>7'7 3)

and we define thaegative log-normal distributioby the probability density function

f(x) = Sx_l% exp ( - QLSQGOg -z — m)2>,x <0. (4)

The combination of the shift and the reflection in th@xis gives rise to th@egative shifted log-normal
distribution, defined by its probability density function

1 1
flx) = m exp ( - @(log (—x—1)— m)2>,:v < —T. (5)

Everywheremn is the scales is the shape and is the location parameters.

Note that, if a random variabl& has the (regular) log-normal distribution, then the random variable
Y = X + 7 has the shifted log-normal distribution and the random variable —X the negative log-
normal distribution.

The shifted log-normal distribution can be used to approximate the distributitve @asket 1, shown
in Figure 1, since the basket has positive skewness and can havev@egdues. Figures 3 (empirical
and approximating p.d.f.) and 4 (tkig)-plot) show that the shifted log-normal distribution approximates
the Basket 1 distribution very well (apart from slight deviations in one tait observation also noted by
Mitchell (1968)).
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Figure 3:Approximating and empirical distribu- Figure 4: QQ-plot of approximating vs. empiri-
tions of Basket 1. cal distributions of Basket 1.

The Basket 2, shown in Figure 2 has negative skewness and capdsitree values. Hence we choose
the negative shifted log-normal as the approximating distribution. This &jppation is again very good,
as shown in Figures 5 and 6. Such observations lead us to use the rspiitad, negative and negative
shifted log-normal distributions for approximating the basket distribution.

At the time of writing a basket option, the basket parameters (weights, initat gsices, volatilities,
correlations, the interest rate and the option’s strike and time to maturity) ade fitowever, it is impossible
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Figure 6: QQ-plot of approximating vs. empiri-
cal distribution of Basket 2.

Figure 5: Approximating and empirical distribu-
tions of Basket 2.

to tell at a glance what is the shape the terminal basket distribution and s @ftthe possible approx-
imating distributions (2), (3), (4) or (5) to use. The two parameters: thergées and the location of the
basket distribution at timé’ - allow us to select the correct approximating distribution. To calculate these
parameters, we use the moment matching procedure.

2.2. Parameters estimation

If the dynamics of the assets in the basket is given by (1), then calculatiomsthat the first three moments
of the basket on the maturity ddteare

M=

EB(T) = a; F;(0), (6)
i=1
) N N
E(B(T)” = > aia;F;(0)F;(0)exp (p; joi05T), @)
j=1i=1
, N N N
E(B(T))" = Z Z Z a;a;aF;(0)F;(0)Fy(0) exp [(ps,joioj + pikoiok + pjrojor)T].  (8)
k=1 j=1 i=1
In terms of the first three moments, the skewness of basket can be calagate
E[B(T) — EB(T)]*
NB(T) = [ 3 | ; 9)
¥B(T)

wheresp ) = /EB?(T) — (EB(T))? is the standard deviation of the basket value at tifme
For each of the dlstrlbutions (2), (3), (4) and (5), we can also déniedirst three moments in terms of
the parameters., s, 7. For example, for the shifted log-normal distribution (3) the first three madsreme

1
M(T) = 7+exp(m+ 552) (10)
1
My(T) = 7%+ 27rexp(m+ 582) + exp (2m + 257) (11)
. 1
Ms(T) = 73 4+ 372 exp (m+ 532) + 37 exp (2m + 282) + exp (3m + 232) (12)

The parameters of the approximating distribution, e.g. the shifted log-noma@&stamated by matching
the first three moments of the basket (6), (7), and (8) with the first thresents of the shifted log-normal
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distribution (10), (11) and (12). This amounts to solving a nonlinear sysfahree equations with three
unknowns {n, s andr). If the approximating distribution is chosen negative (shifted) log-northah the
distribution parameters are obtained by solving the same nonlinear equattemspnly the moment&/;
andMs in (10) and (12) are replaced by byM; and— Ms.

The choice of the approximating distribution (regular (shifted) or negéivited) log-normal) depends
on the distribution skewness: if the skewness is positive, the regulaifiedsiog-normal distribution should
be chosen as an approximating distribution. If the skewness is negatinehi approximating distribution
is the negative or negative shifted log-normal.

The location parameter determines the shift of the approximating distribution. However, the regular
log-normal distribution often provides a better fit than the shifted distribugeen whenr # 0. This
happens when the basket distribution is positively skewed and basketoannot be negative. We illustrate
this on the example of the Basket 3 with the paramefigrs: (110,90), o0 = (0.3,0.2),a = (0.7,0.3),p =
0.9. Its terminal distribution (at tim&") is shown in Figure 7.

If we match the moments of this basket to the shifted log-normal distribution, tineeds of the location
parameterr is 34, so it seems that the shifted log-normal distribution provides the rigitbgipnation.
However, Figures 8, 9 and tlig)-plots in Figures 10 and 11 suggest that the regular log-normal distribution
provides a better fit.
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So for a positively skewed basket distribution, we choose the shifteddogral approximatioronly
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whent < 0, to cope with negative basket values, and wheix 0 we suggest to use the regular log-
normal distributioA. Analogously, for negatively skewed distributions, we use the negaliifeed log-
normal distribution only whem < 0, and otherwise we use the negative log-normal distribution. Table 1
summarizes the choice of the approximating distribution for different paramatebinations.

Skewness n>0 | n>0 n<0 n<o0
Location parameter 7>0 | 7<0 | 7>0 T<0
Approximating distribution| regular| shifted | negative| neg.shifted

Table 1: Choice of the approximating distribution

3. Option valuation and the greeks

Recall that we consider baskets of contemporaneous futures confrhetbasket itself can then be consid-
ered as a futures contract (see e.g. Hull (2002)), and hence, stipit can be valued using the Black’s
(1976) formula. However, this is only possible if the distribution of the bagikie is log-normal. So we
shall reduce the problem of valuing options on general baskets (i.ee ttasng the shifted or negative
shifted log-normal distribution) to valuing options on baskets having re¢pganormal distribution.

Let the value of the basket(1B;) be (regular) log-normally distributed with parameters s. Further-
more, let the basket @3,) have the following relationship with the basket 1:

BQ(T) = Bl(T) + 7

wherer is a constant. The distribution of the basket 2 must be shifted log-normal vétpatameters
m, s, 7. On the maturity datd’, the payoff of a call option on the basket 2 is

(Bo(T) — X) ™ = ((BuUT) +7) — X) " = (By(T) — (X — 7))

This is the payoff of a call option on the basket 1 with the same maturityldatel the strike pricéX — 1),
and such a call option can be valued by the Black’s formula.
Next, suppose that the basket3;) has the following relationship to the basket 1:

B3(T) = =B (1).

The distribution of the basket 3 must be negative log-normal with parametessOn the maturity daté’,
the payoff of a call option on the basket 3 is

(Bs(T) - X)* = ((-X) - Bu(T)) ™.

This is the payoff of a put option on the basket 1 on the maturity @atéth the strike pricg —X ), and to
value such a put option, the Black’s formula can be applied again.

These arguments lead to the following closed form formulae for the priceedidbkket call option with
the strike priceX and the time of maturit{":

¢ Using the regular log-normal approximation (Wakeman method)

¢ = exp(—rT)[M1(T)N(d1) — X N(d2)] (13)

SNote that in this case our method is equivalent to the Wakeman method(iliaind Wakeman (1991))
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log(M:(T)) —log X + V2
%

_ log(M;(T)) —log X — 3V?

N 1%

v = o ()

¢ Using the shifted log-normal approximation

where d; =

do

c=exp(—rT)[(Mi(T) — 7)N(dy) — (X — 7)N(d2)] (14)

log(M1(T) — 1) —log (X —7) + %V2

where d; = v
log(My(T) — 1) —log (X — 1) — $V?
2 p—
v
B MQ(T)—QTMl(T)+T2
b \/10g < (ML(T) — 7)?
e Using the negative log-normal approximation
¢ =exp(—rT)[-XN(—dy) + M1 (T)N(—d;)] (15)

log(—M1(T)) — log (= X) + 4V?

where d; = %
log(—=My(T)) —log (=X) — 5V
dy = %

v = o ()

¢ Using the negative shifted log-normal approximation

¢ = exp(—rT)[(=X — 7)N(=d2) + (M(T) + 7)N(—=d1)] (16)

log(—M;(T) —7) —log (—X — 7) + 3V?

where d; = %
log(—=M(T) —7) —log (—X — 1) — %VQ
do = v

MQ(T) + 2TM1(T) + 7'2)
Vo =41
\/°g ( (ML(T) + 772
EverywherelM; (T") and M, (T') denote the first two moments of the basket on the maturity dtgven in
(6) and (7)) andV(+) is the cumulative distribution function of the standard normal distribution.
Note that, for the regular and negative log-normal distributions, a quantdajogous to the basket

"volatility” can be defined ag (1) = % For the shifted and negative shifted log-normal distributions,
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such analogy does not hold, since in these cases the qu%tiitythe "volatility” of the basket value minus
the shiftr. Generally, we believe that it does not make sense to define the "volatilisyefieral basket or a
spread. In one-factor approaches, the dynamics of a basket isitgxptiodelled (by e.g. a continuous-time
diffusion driven by a Brownian motion), and hence the volatility is specifi@dr approach is multi-factor,
so we do not assume any dynamics directly for the basket value, butamilyef underlying assets; hence,
the basket "volatility” is not defined in this way. To define the volatility as thedsash deviation of the log-
returns or relative returns on a basket is also impossible, becausenferay baskets the log-returns cannot
be defined at all (due to negative values), and the relative returnsxpkgde, since the basket value can be
arbitrary close to zero. However, some authors have attempted to defma suantity; for example, Kirk
(1995) defines the spread volatility as

Ospread = \/U% + U% — 20109p, (17)

whereo » are the volatilities of the assets in the spread amslthe correlation coefficient. Note that this
is not the volatility in traditional sense, but the standard deviation of the difter between the assets’
log-returns, which is not the spread return. In fact, using the expre¢$7) to price options can lead
to underpricing (as we shall see in the next section), because the rstated@ation of the spread relative
returns can be much higher, due to spread values close to 0. So we awaidetof the term "basket
volatility” or "spread volatility” and derive the basket option price in terms &f lasket moments.

To manage risks during the lifetime of an option, traders monitor changes iptioe @rice caused by
changes in the underlying values or the model parameters, such as volafilitese changes are quantified
by the option’sgreeks(which are the partial derivatives of the option price with respect to thenpeters),
which play a crucial role in hedging the option and managing risks assoasigtedptions portfolio. The
advantage of having a closed formula for the option price is that it also teatle closed formulae for the
greeks, which can be quickly and accurately evaluated.

We can differentiate equations (13)-(16) with respect to the underhgagtarices, time to maturity,
volatilities, correlations and the interest rate, to obtain closed formulae famdpdeltas (), theta @),
vegas () and rho p). There is a subtlety, however, since the formulae for the option price icabe
of the shifted and negative shifted log-normal distribution contain the paeamewhich also implicitly
depends orF;, o;, p andT. So when we differentiate formulae (13)-(16), we must take this depesde
into account.

Although there is no closed formula ferin terms of the model parameters, it is possible to obtain such
closed formulae for the partial derivativesofvith respect toF;, o;, p, T. Recall thatn, s andr were
obtained by the moment matching procedure, which amounts to solving a nerdiystam of equations,
such as (10)-(12) for the shifted log-normal distribution. A similar systambe written down for the patrtial
derivatives of the first three basket momefts, Ms, Mg with respect to the model parameters, and then
solved for the partial derivatives of the parameters s andr. For example, to obtain the option’s deltas,
we differentiate the call price and the first three moments with respect toskemicess;. The derivative
of the call price with respect té; containsdr/0F;, which can be found by solving the following (linear)
eguation system:

1 o s ot /OF; OM;/OF;
2(1 + «) 2ra+ (3 2s(ta + 20) X | Om/OF; | = | OMs/OF; |,
3(r24+21a+B) 3(TPa+218+7) 3s(t?a+ 478+ 37) Js/0F; OMs/OF;

wherea = exp(m + 1/25?), 3 = exp(2m + 2s?) andy = exp(3m + 9/2s%). In the negative shifted
log-normal case, the derivative\l; /O F; changes to-0M; /0F; andOMs/0F; to —0Ms/JF;. The partial
derivativesdr/0o;, 0t /0p andoT /0T are obtained analogously.
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Due to these rather involved computations, the final closed formulae foraieboption’s greeks are
somewhat cumbersome (although easily implementable), and hence atedepdhe Appendix.

In the next section we shall evaluate the model's performance by compapiitg prices obtained by
our method to those obtained by other methods (whenever possible) ard Glno simulations. We shall
also investigate the performance of the delta hedging and analyze thadvedfathe greeks, especially
those related to the volatilities and correlations, i.e. vegas.

To conclude this section, we summarize the algorithm for pricing generébagtions.

1. Given the basket parameters (initial asset prices, volatilities, corredatimd weights), as well as the time
to the option’s maturity and the interest rate, compute the first three momentstefitiinal basket value
according to equations (6), (7) and (8), and the basket skewnesslaw to the formula (9).

2. If the basket skewnesgds positive, the first guess of the approximating distribution is shifted logaabr
if the skewness is negative, it is the negative shifted log-normal distribution

3. Match the moments of the distribution chosen in the step 2 to the basket’'s motoéintsthe parameters
m, sandr.

4. Adjust the choice of the approximating distribution on the basis of the sl&yrand the shift parameter
7 according to the Table 1.

5. Compute the European call basket option price according to the afgteoformula (13)-(16), and the
option’s greeks according to the corresponding formulae given in Agige

4. Simulation study

We apply our approach to a number of hypothetical baskets, choseratsalltipossible approximating
distributions occur. The parameters of the test baskets are given intitee2Zland the European call option
prices on these baskets are given in the Table 3. The sign "-” means ¢haarttesponding method cannot
be applied to a particular basket.

\ | Basket 1| Basket 2| Basket 3| Basket4| Basket5 | Basket6 |
Futures pricer, [100,120] | [150,100] | [110,90] | [200,50] | [95,90,105] | [100,90,95]
\olatility o [0.2,0.3] | [0.3,02] | [0.3,0.2] | [0.1;0.15]| [0.2,0.3,0.25]| [0.25,0.3,0.2]
Weightsa [-1,1] [1,1] | [0.7,0.3] | [-1,1] [1,-0.8,-0.5] | [0.6,0.8,-1]
Correlationp p1,2=0.9 | p12=0.3 | p1,2=0.9 | p12=0.8 | p1,2=p2,3=0.9 | p1,2=p23=0.9
p1,3=0.8 p1,3=0.8
Strike priceX 20 -50 104 -140 -30 35
Skewnessg n>0 n<0 n>0 n<0 n<0 n>0
Location parameter T<0 T<0 T>0 T>0 T<0 T<0

Table 2: Basket parameters

Baskets 1,2 and 4 are spreads. Basket 3 is a "regular” basket, toumsittwo assets with positive
weights, so for this basket our approach reduces to the Wakeman methsicets 5 and 6 consist of three
assets, some with negative portfolio weights. For these general basketsgtimo closed form approach,
apart from the one presented here, so we can only compare thepmodésy option prices to the Monte
Carlo simulations.

We chose high correlations between the assets to imitate realistic commodity basleztsthe assets in
the basket are closely related. The assets’ volatilities are also quite hig®¥2l) again to reflect volatility
levels typical for commodities. The options on baskets 1, 2, 5 and 6 ardy(naathe-money and 3 and 4
are out-of-the-money. The approximating distributions are chosen oratiiedf the basket skewnegand
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Method | Basket1| Basket2 | Basket3| Basket4 | Basket5 | Basket 6|

Our approach 7.751 16.910 10.844 1.958 7.759 9.026
(shifted) | (neg.shifted)| (regular)| (neg.regular)| (neg.shifted)| (shifted)
Bachelier 8.052 17.237 - 2.121 - -
Kirk 7.734 16.678 - 1.507 - -
Monte Carlo | 7.744 16.757 10.821 1.966 7.730 9.022
(0.014) (0.023) (0.018) (0.005) (0.01) (0.015)

Table 3: Call option prices

the estimated shift, and are reported in the Table 3.

The Monte Carlo simulation is repeated 1000 times for each basket, to obtain &éims Bred standard
errors of call prices (which are given in parenthesis in the last roweoTéble 3).

Call prices obtained by our approach are remarkably close to those attairthe Monte Carlo simula-
tions, and in all cases but one (Basket 2) are within the 95% Monte Carf@leace bounds. This is not an
inherent feature of the negative shifted log-normal approximation: ®Btsket 5 the same approximating
distribution was chosen and the call price is close to the Monte Carlo resulée that our call prices in
all cases are greater than those obtained by the Kirk method, and lowehthprices resulting from the
Bachelier method. Recall that the Kirk method uses the spread volatility givéti7hto price options, and
hence, leads to too low option prices, as discussed in the previous sadtiwBachelier method performs
poorly and significantly overestimates the call prices. The Kirk method pesfbetter, but is inapplicable
to Baskets 5 and 6, whereas our method provides a very close approxinatioe call price. Moreover,
for Basket 4, our price is much closer to the Monte Carlo result than thaingl by the Kirk method. In
this case (skewness of basket is negative, and the estimatesgiositive) the Kirk method significantly
underestimates the call price.

Next, we investigate the performance of our method on the basis of delggngethe option. We
generate price paths of the basket assets from the time of writing the optibmaturity, and on each
hypothetical day we calculate the option’s deltas with respect to each a8sethen re-adjust daily the
hedging portfolio according to the deltas. We define the hedge error aiffderence between the option
price and the discounted hedge cost (i.e. the cost of maintaining the ddtachportfolio). If the hedging
scheme works perfectly, the hedge cost would be exactly equal to threticaboption price and the hedge
error would be zero. In practice it is not zero due to the model errodiswiete (e.g. daily) hedging. We
expect the hedge error and its standard deviation to decrease whesdtfeeihterval decreases, i.e. when
hedging is done more frequently.

We investigate the delta-hedging performance of our approach on thepkxaf two baskets, one a
spread with the parametefy = [100,110], o = [0.1,0.15], a = [-1,1], p = 0.9, X = 10, and the
other one a general basket with parameféys= [95, 90, 105], ¢ = [0.2,0.3,0.25], a = [1,—0.8, —0.5],
p12 = p2,3 = 0.9, p13 = 0.8, X = —30. For both examples the interest rate is 3% per annum and the time
to maturity is one year. For each basket 1000 price paths were genanatéiae hedge errors computed for
each price path.

In Figures 12 and 13 we plot the ratio of the hedge error standard deviatithe call price vs. the
hedge interval. Both figures show that this ratio (and so, the standaetidevof the hedge error) decreases
together with the hedge interval, as we expect. This is also the case for tmehmdge error. For both
examples, the mean hedge error is around 5% for daily hedging.

For multi-asset derivatives, the analysis of vegas with respect to thedodl volatilities and particu-
larly the inter-asset correlations becomes essential. A typical behavibe @orrelation vega is shown in
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Figure 12: Hedge error vs. hedge inter- Figure 13: Hedge error vs. hedge interval.
val. The basket parameters dig=[100,110], The basket parameters afg=[95,90,105],
0=[0.1,0.15],a=[-1,1], p=0.9, X =10. 0=[0.2,0.3,0.25], a=[1,-0.8,-0.5], p12 =

p2,3=0.9,p1,3=0.8, X=-30.

Figures 14-16. The underlying value is a spread with the paramggers [100,110], a = [-1,1], 0 =
[0.1,0.15], » = 0.03, T' = 1. The terminal basket distribution is approximated by the shifted log-normal.
In this example, the correlation vega is negative, i.e. increasing correlatida to decreasing option price.

0 4 "1 08 08 04 02 0 02 04 06 08 1 o s 0 5 10 15 2 25 3 B &0
ke price

Figure 14: Correlation vega vs. Figure 15: Correlation vega vs. Figure 16: Correlation vega vs.
correlations and strike prices. correlations for different strike strike prices for different corre-
prices lations

A characteristic feature of the Black-Scholes model is that the vega (i.esetistivity of the option
price with respect to the underlying asset’s volatility) is always positive, fte. option price can only
increase if the volatility increases. This is not the case for basket apddspptions. All vegas (i.e. with
respect to volatilities and correlations) can be positive as well as negdihe first two plots in Figure
17 show the volatility vegas for the spread option characterizefiyby- [100,110], a = [-1,1], p =
0.8, r =0.03, T =1, X = 10, versus various volatility levels. Note that there are regions of volatilities
where one or both volatility vegas are negative. These regimes are dlde inghe right plot of Figure 17
(where we plot the spread call price vs. the volatililgsandos) and in Figure 18, showing slices of the
surface plots. ¢From these plots it is clear that the call price does regszeily increase with increasing
individual volatilities. This does not contradict the Black-Scholes theiarguch regions, increase in one of
the volatilities leads to a lower "variability” of the spread, which ultimately driveail the spread option
price.
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Figure 17: Volatility vegas for different volatilities; andos, and call price vso; andos.
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Figure 18: Volatility vega and call price far; = 0.3 (left) andoy = 0.2 (right).

5. Conclusions and futurework

We have introduced a new approach for pricing and hedging genaskéband spread options. Our ap-
proach is based on approximating the basket distribution by a "family” ohlmgral distributions: regular,
shifted, negative or negative shifted log-normal. Such a log-normabajpation means that the widely
used tools of option pricing such as the Black-Scholes formula are regaplicable. Our method leads
to a closed-form solution for the European option price and option'skgréecan be easily understood
and implemented by market practitioners. Moreover, using our closed farfimuthe option price, inter-
commaodity correlations can be implied from the market prices of spread ahkdtaptions. To our knowl-
edge, ours is the only existing analytic approach to general basket sptiypical derivatives in many
commodity markets. Numerical simulations have shown that the option prices edbtaynour method
approximate the prices resulting from Monte Carlo simulations remarkably well ttze delta-hedging
performance of our method is also very good.

Here we considered baskets of futures or forward contracts. @uoagh can be easily extended to bas-
kets of physical commodities, by specifying the dynamics of spot commoditgspuder the risk-adjusted
probability measure. This, however, requires specification of the péeesrsmich as the convenience yield
and the market price of commodity risk, which have to be calibrated from mdaka. The extension of our
method to physical commodity baskets will be reported shortly.

An important feature of energy markets is that most delivery contractprazed on the basis of an
average price over a certain period. Hence, most energy dersvdtil@ basket and spread options) are
Asian-style. So Asian basket options (that is, an Asian option on a baskstets) need to be considered
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as well. Extension of our approach for valuation and hedging of Asiaketaption is a topic of future
research.
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Appendix
The closed form expressions for the greeks are given by:
Using the regular log-normal approximation (Wakeman method)

OM B\%
LN(dy) + Xn(ds)

A; :886 =exp (—rT)

Fi OF; OF;
oV
e = g—% = —rc+exp(— rT)Xn(dg)aT
; oV
Vig =He = eXP(—TT)Xn(dQ)an
. av- ..
Vi = 3/(1,3' = exp (—rT)Xn(dg)apij, i F
p = % =-Tc
1 OMs oM,
where ¥ = M — M.
OF; MM,V | OF, 2 OF,
90 2M,V " o
1 OM-
k1% _ 2 . .
Opij 2M2V.8pi,j, ? 7é J

9T T M,V 9T
Using the shifted log-normal approximation

oM,

A, = aa}% = exp (—r7) [ N(di) + (X —7)n (d2)§; (N(dQ) B N(dl)) ggj

OF;
0 =g =-retoxp(r >[< Pn(da) G + (N(d) ~ N(a) 57
0ii =2 =expl [ V (N (da) — N(dl))g;]
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Using the negative regular log-normal approximation

OM- oV
L Oc _ Lari_ _ _
A; 5 exp (—rT) oF, N(—dy) — Xn( d2)8Fi
oV
dc
© =4 =-rc—exp (—rT)Xn(—dg)W
oV
dc
Vg = 5o = —exp(—rT)Xn(dz)ao_i
oV
o Oc _ _
197,,] — Opi; eXp( TT)XTL( dz)api,j
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o 2 1
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or M,V OT
Using the negative shifted log-normal approximation
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Note that:
8M1 6M1 6M1 8M1
= 07 a0 = 07 . 07 o — @
da Ipi,; orT OF;
N
OM.
8Fj = 2a ]2; a; F5(0) exp (pi ;oio;T)
OM.
60’1'2 = 2a;F( Z a; F} 0)pi ,joi 1 exp (pi _]O-ZO-JT)
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8p'2‘ = QCLZ‘ajFZ'(O)Fj(O)O'inTeXp (pi’jO'iO'jT),Z 7& Vi
Z7]
N N
OM.
6—7,2 = ZZ )ngUzU] exXp (pZ]UZGJT)
j=1i=1
oM al
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7 =1
OM3
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¢ k=1 j=1
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EverywhereN (-) denotes the cumulative distribution function and) the density of the standard nor-
mal distribution.



