
Computers & Graphics 26 (2002) 45–55

Synergies between interactive training simulations and digital
storytelling: a component-based framework

Ralf D .orner*, Paul Grimm, Daniel F. Abawi

Fraunhofer AGC, Varrentrappstrasse 40-42, 60486 Frankfurt am Main, Germany

Abstract

A vital requirement for a successful software framework for digital storytelling is that it takes the abilities and

background of the story authors into account. Dedicated tools should support authors in expressing their stories within

this framework at an adequate level and point out an according authoring process for digital stories. The software

framework should provide communication interfaces between technology experts, storytelling experts and application

domain-experts. These requirements are similar to the ones already encountered when setting up a framework for

interactive training applications. We present a concept how component and framework methodologies from software

engineering as well as concepts from artificial intelligence can foster the design of such a software framework. The

software architecture of our proposed framework is discussed as well as the according authoring process and tools. An

implementation of our concept is described and lessons learned during using this framework in the application domain

of emergency training are addressed. Although the framework has been applied for training purposes in particular, it

can be used as a basis for a digital storytelling framework in general. r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Digital storytelling differs in some fundamental

aspects from conventional storytelling. In digital story-

telling, users are more often viewed not only as listeners

but also as people who can interact and shape the story.

Another vital difference is that in digital storytelling

computers and information technology is used as a

medium for storytelling. As a consequence, the story-

teller needs a dedicated software framework that allows

her to describe the story she wants to tell and to present

it to her audience, possibly in an interactive fashion.

This dependency from technological issues is a problem,

since conventional storytellers are seldom experts in

mastering computer technology while computer experts

seldom have the abilities to tell good stories.

Thus, a digital storytelling framework should at least

free the authors from dealing with lower level techno-

logical issues like services concerning network distribu-

tion, communication infrastructure, provision of

interaction mechanisms or animation presentation and

rendering in real-time. Moreover, the framework should

facilitate a seamless transition from story authoring to

story presentation. But this is not enough. A crucial

requirement for a successful digital storytelling software

framework is that it takes the abilities and background

of the story authors into account and supports

‘‘technology non-experts’’ in expressing their stories

within this framework at an adequate level. In order to

meet these requirements, dedicated authoring tools need

to be conceived within the digital storytelling framework

together with an authoring process that supports the

communication between technology experts and story-

telling experts.

In this paper, we want to show how component and

framework methodologies from software engineering as

well as concepts from artificial intelligence can foster the

design of a digital storytelling software framework. We

claim that the usage of these methodologies is not only

*Corresponding author. Fraunhofer Anwendungszentrum

Computergraphik in Chemie und Pharmazie, Varrentrapp-

strasse 40-42, 60486 Frankfurt am Main, Germany. Tel.: +49-

69-97-995-152; fax: +49-69-97-995-199

http://www.agc.fhg.de/.

E-mail address: doerner@agc.fhg.de (R. D .orner).

0097-8493/02/$ - see front matter r 2002 Elsevier Science Ltd. All rights reserved.

PII: S 0 0 9 7 - 8 4 9 3 (0 1) 0 0 1 7 7 - 7

http://www.agc.fhg.de

beneficial for the internal structure of the software and

promises a faster, more reliable and more cost-efficient

implementation of applications that make use of digital

storytelling techniques. But we will show that the

concepts presented in this paper also have implications

for the authoring process and improve the communica-

tion between the different groups of people involved in

digital storytelling. Here, we distinguish not only

between the computer technology group and the story-

telling group with artistic or design background, but we

also distinguish a group of so-called application authors.

This third group is neither expert in storytelling nor

expert in information technology but they have funda-

mental knowledge about the domain the story is about.

Most software systems about digital storytelling have

neglected this third group so far.

We use an implementation of our proposed frame-

work for training teams how to cope with emergency

scenarios. How does this relate to digital storytelling?

One interesting training concept is to use methodologies

from digital storytelling: The trainer describes a scenario

(i.e. description of the location, the objects, and the

participants) and a plot what is going to happen in the

scenario (i.e. the story line). The trainees are engaged in

this scenario, take over several roles and act accordingly,

thereby influencing the outcome of the scenario. While

the trainees are acting, the trainer on the other hand can

modify the plot (e.g. making a scenario more crucial by

introducing malfunctions) and may adapt the scenario

to the performance of the trainees. Thus, we have a

special case of digital storytelling: in this paper we

regard the story as a plot of an emergency scenario, the

storyteller as a trainer, and the listeners as trainees.

The paper is organized as follows. Our component-

based concept for a digital storytelling software frame-

work along with a proposal for its software architecture

is described in Section 3. Section 4 discusses the

according authoring process and how the storytelling

looks from the users point of view. Here we will also

present dedicated authoring tools. In the next sections

we will deal with the implementation of our software

framework and the lessons we learned when this

framework was used in a real application scenario by

application authors who want to tell an interactive story

about a fire incident in a subway. Finally, we will

summarize the paper, address unsolved problems and

give an outlook on future work. But let us start in the

next section with a review of the requirements we have

for a digital storytelling software framework.

2. Requirements

What is the purpose of a digital storytelling system?

Looking at the state-of-the-art in digital storytelling

literature [1–6] one can find different answers to this

question. Some see the support of human authors in

writing stories (e.g. generation of plot ideas, planning of

a book project, automated consistency checks in the

story) as the main purpose while some systems want the

computer itself as the storyteller. Others point out, that

digital storytelling systems should provide a framework

where users can interact with each other (like in multi-

users dungeons) and experience an interactive story.

Another possible answer is that digital storytelling

systems transfer and integrate storytelling techniques

in a software application, e.g. in an authoring system for

developing software. In this paper, we want to take a

view of a digital storytelling system that comprises these

alternatives and is even broader.

To illustrate what we mean by this, let us consider an

example. Imagine that the staff of a subway-company

should be trained how to cope with different emergency

scenarios (fire, terrorist attacks, etc.). Software can be

written, where the trainees act together in a simulated

virtual environment (like in a role-play). Non-linear

storytelling techniques can be applied to this training

environment when a security expert who trains the

employees develops stories of possible emergency

scenarios. As it is impractical that all the roles involved

in an emergency (hundreds of passengers, policemen,

fire-fighters) are taken over by trainees, some of the roles

are filled by non-player characters (NPCs). The trainer

would prepare a training session by developing a story

outline for the scenario and the behavior description of

the NPCs. During the training the trainer can intervene

and steer the development of the story by issuing events

or manipulating the NPCs online like a puppeteer.

What observations can we make in this example about

digital storytelling software? We see that there are two

main phases the system has to support: the preparation

of the story and its characters (authoring phase) and the

actual interactive storytelling (presentation phase).

During the authoring phase the storyteller (in our

example the trainer) needs help from different expert

groups. First, she needs support from experts in

information technology as the necessary software needs

to be created. For example, the NPCs need to be

programmed in some way. Second, she needs help from

people with design/artistic or storytelling background.

For example, she needs support for the timing of the

story, for the modeling of the characters, or for the

realization of geometric models and animations. Third,

she needs help from experts of her own domain (in our

example, people who are familiar with the procedures in

a subway-emergency). These application experts can

help her in describing the rules of the world that is

modeled in the story or of typical characters, their

motivations, and their usual behavior. It is unlikely that

the storyteller possesses all the necessary skills and

knowledge (story telling competencies, programming

skills, domain knowledge, pedagogical knowledge), so

R. D .orner et al. / Computers & Graphics 26 (2002) 45–5546

all the experts can be viewed as co-authors of the digital

story. Note, that also all experts have complementary

skills (for example, the expert in storytelling probably

has no in-depth knowledge about emergency procedures

in a subway). Fig. 1 illustrates these relationships.

As a consequence, there is not one single author but

we need to decompose the storytelling task in several

author roles. Each role should have a very limited set of

prerequisites the author has to possess. An individual

authoring tool that makes available the results of the

authoring in a common framework should support each

role. The roles should be organized as a hierarchy where

each author role should be able to rely on the results that

lower level authors provided, i.e. the roles should form

an authoring pyramid (see Fig. 2). This hierarchy should

force an authoring process with an increasing level of

abstraction. Also means for communication between the

different authoring roles should be provided. These are

requirements the digital storytelling software framework

needs to meet.

Note in the above example, that the outcome of the

story is not only determined by the storyteller but also

by the listeners. Also note, that in most digital

storytelling systems the storytelling/artistic/design ex-

perts are identical with the application experts. This is

only possible, if entertaining is the application domain

and the experts have the control over the world model.

This is especially true in a fantasy world where the

listener can only check the world for consistency but not

for realism (unlike in our emergency training example).

3. Component-based concept

In this section we will present our concept for a

component-based framework for digital storytelling.

Therefore we will explain what components and frame-

works are and why they are appropriate for a digital

storytelling system. We will show how behavior descrip-

tions can be realized by the usage of agent methodol-

ogies. Finally, we will propose a system architecture.

3.1. Components and frameworks

In the last section we have motivated that we need to

implement an authoring pyramid. Components show us

a solution how this can be accomplished since generally

we have a division of work associated with the usage of

components: authors who build components and

authors who use components. With a component, we

mean a software component in the sense of the

component theory [7]. A component is a building block

of a software system with an explicitly defined interface

designed for reusability. Reusing a component means to

choose it from a given component library, adapt and

customize it and insert it into a skeleton application. The

skeleton application gives a pattern for arranging the

components and consequently the author does not need

to take care how they are expected to cooperate. In

framework theory, this is called inversion of control, as

the provided framework (and not the author) is in

build/
extend/
m odify

request

design/
adviseStorytelling/Artistic/

Design Experts

Application
Experts

Technology
Experts

Storyteller
(Trainer)

request

provide

descriptions

request

Listener 1
(Student)

Listener n
(Student)

interact
interact

Authoring Phase Presentation Phase

Fig. 1. Digital storytelling process.

Technology Authors

Application
Authors

Design /
Storytelling

Authors

Storyteller

Abstraction

R equired
Technical

Skills

Co mplexity of Technical Tasks

Fig. 2. Authoring pyramid for digital storytelling.

R. D .orner et al. / Computers & Graphics 26 (2002) 45–55 47

charge of invoking and integrating the components’

functionalities. Using object-oriented application frame-

works [8] means that we have a generic skeleton

application that can be filled with application-specific

components by using dedicated authoring tools. As a

result of this process it is possible to separate authors

(esp. technical experts), who create the components, and

authors (esp. application authors), who fill in the

skeleton application. Since a skeleton application offers

specific interfaces where a component can be plugged in

automatically this insertion requires no programming

skills and therefore it is possible to use even for non-

technicians.

3.2. Component-based 3D computer graphic

For the concept of our system it is important to

integrate 3D graphics and behavior descriptions for the

story (so-called story behavior) in components. In the

last years some papers addressed the topic how 3D

computer graphics can be used in component-based

systems. The motivation of the authors for their work

was different and therefore their perspective was not

uniform. Zeleznik et al. introduced the idea of an

encapsulation of geometry and behavior in so-called 3D

Widgets for the usage in 3D user interfaces [9]. As

examples a virtual sphere, a cone tree and other

interaction components were presented. [10] extend this

concept of 3DWidgets with regard to the inner structure

of the 3D components. The authors introduced two

kinds of directed acyclic graphs named geometry graph

and behavior graph. A high level interface, which hides

details of the implementation, is used to fulfill operation

on the given graphs. So-called ports are used to connect

3D Widgets. A visual language for 3D Widgets allows

an interactive construction of 3D applications. Our

work is oriented on the work presented in [11]. This

concept encapsulates geometry in 3D components in a

way, that runtime and authoring framework use the

same 3D components. More about component-based

3D graphics can be found in [12,13].

3.3. Story behavior

How can story behavior be divided into components?

A possible solution is the usage of agent technology,

since agents are per definition autonomous entities and

fit well with component-based approaches. The term

‘‘agent’’ emerged in the 1970s and was since used for a

variety of different systems and concepts. There is no

exact definition for an agent, however there is some

common ground for all such system [14,15]. The main

features are:

* Autonomy: The agent is autonomous, i.e. the agent is

not a tool waiting for commands but it is responsible

for its own task, its state and its actions. This is an

ability that is innate in all real world objects. Even a

simple door has ‘‘control’’ of its state, it may comply

with your attempt to open it, or it may be locked or

stuck etc.
* Reactivity: The agent monitors the world it is in and

acts as a reaction to changes in the world. The door

mentioned above is typically reactive, i.e. someone

pulls the handle, and the door opens.
* Proactivity: Even if there are no changes in the

outside world, the agent may decide to take action.

Proactivity is usually associated with living real

world beings but even a non-living object can ‘‘act’’

according to some inner state without an immediate

outside stimulus.
* Reasoning: Before the agent can take an action it has

to decide to do so. This decision is part of the

reasoning process in an agent. The reasoning may

depend on built in knowledge, recollection or even

experience. Learning might be an important aspect in

the reasoning part of an agent [16].
* Communication: If communication is broadly de-

fined, every interaction with the world can be

interpreted as communication. Verbal or textual

communication is especially important, either be-

tween agents or between an agent and a human user

of the system.
* Personality: Personality is the difference between an

agent and a stereotypical, linear system. This feature

is important when the agent shall represent a human

being. Individual behavior can make an agent

believable rather than stereotypical.

In our storytelling system, agents can be used to

specify the behavior of the characters, which are

believable, autonomous and who interact proactive with

a user. Agents can be realized based on a rule engine.

Each rule consists of a condition part and an action part

that is executed when the condition is met. The action

part can be realized by rulesets or by action libraries that

provide pre-defined actions. A rule-based behavior

description is achieved simply by forming the union of

single rulesets. This allows us to extract parts of the

behavior description and reuse it in other components.

We distinguish agents that model the behavior of

different entities in the story (like the characters) from

the specific agent, which models the story outline itself,

the so-called scenario agent.

A special benefit of using agents is that there exist

models for planning behavior, goal-oriented behavior,

as well as team behavior, available in the literature on

artificial intelligence [17]. In our implementation of the

basic system, for example, we provide features from the

shared mental model theory [18] in order to define

cooperation behavior. Note that for authoring purposes,

it is possible to conceive an intelligent assistant using

these kinds of behavior components.

R. D .orner et al. / Computers & Graphics 26 (2002) 45–5548

3.4. System architecture

In this section, we will present the architecture of our

component-based framework for digital storytelling (see

Fig. 3). Backbone of our system is a communication

platform, which is implemented as a bus and which can

be distributed over the Internet. Storyteller and listener

as well as all parts of the system are connected by the

usage of a communication component. We use an event-

based communication layer, which is used to distribute

all events and which is used for synchronization. To

allow the usage of agents from different authors (who

may use different ontologies) we define for all entities a

set of passive and active vocabulary. In this model,

communication between two entities of a story requires

that the intersection of the active vocabulary of the

sender and the passive vocabulary of the receiver is not

empty. Since the vocabularies are explicitly defined it is

possible to define mappings between different vocabu-

lary entries.

4. Storytelling and authoring process

The authoring process is depicted in Fig. 4. It starts

with the creation of underlying frameworks that can

support the next production step. In our case the story

editor and customization editors are created. Besides,

the skeleton of 3D components is made and major

subcomponents (like the agent part or the meta-part of

the 3D component) are integrated so that we have an

‘‘empty’’ 3D component available. With this it is

possible to model geometry and author the behavior

bases (e.g. providing atomic animations). It is also

possible to implement action libraries. These bases can

be developed in parallel for application behavior and

low-level behavior as they have a well-defined interface.

The next step in the production process is to provide 3D

components that match entities in the real world. This is

done by filling the empty 3D components with geometry

and low-level behavior as well as providing rules for

application level behavior. Besides, it is possible to

modify existing 3D components. Having a set of 3D

components available the authoring of a story can start.

This is done in iterations by putting 3D components in

the story editor, customize their appearance and

behavior (e.g. by writing new rules or introduce existing

rulesets out of a library) and defining links between

agents (like property-to-property connections or sending

messages). If this step is finished the story is compiled

for the presentation phase.

The production process is characterized by concur-

rency and the division of the tasks of the author in

several author roles. As the components used form a

hierarchy the author roles can be organized in the form

of an authoring pyramid as it was demanded. Examples

Storyteller

Communication P latform
(Computer Network, Telephone)

Linking
Component

Communication
Component

Communication
Component

Communication
Component

Communication
Component

Communication
Component

Communication
Component

Communication
Component

Storyteller
Interface

. . .

. . .

Listener

Linking
Component

Virtual R eality
Component

User Interface User Interface

Intelligent
Agent

Intelligent
Agent

Scenario
Agent

Simulator
Linker

Application
Simulator

Listener
Telephone,

Fax, etc.
Telephone,

Fax, etc.

Virtual Reality
Component

Fig. 3. Architecture of a component-based framework for digital storytelling.

R. D .orner et al. / Computers & Graphics 26 (2002) 45–55 49

for authoring roles are authors for geometric modeling,

authors for behavior components, authors for authoring

frameworks, authors for combining 3D frameworks or

authors for modifying existing applications.

For instance, let us take the point of view of an author

who wants to describe the application behavior of a 3D

component describing a train driver. Other authors with

more knowledge in agent specifications, 3D animation

and programming have written components that this

author may use. On the one hand there is a library of

actions, e.g. actions like ‘‘moving from one place to an

other’’ or ‘‘telephoning’’. The author does not have to

take care about implementation details, for example

how the telephone is actually addressed or how a

movement behavior is animated. The actions may have

side effects like altering the status of goals pursued.

Using these pre-defined actions an author writes rules

that describe which action the train driver component

takes when certain conditions are met. Beside the

actions, the author is provided with rulesets and

behavior patterns that he can add to the rules he writes.

Or the author can modify existing rulesets by substitut-

ing actions. For example, a ruleset may describe the

behavior of trying to reach someone via telephone. To

support the author, tools are provided that allow him to

browse the provided components, write the rules,

organize behavior descriptions at different level of

abstraction and view the results of his authoring efforts

as the train driver component can be directly executed in

the story-editing environment. The storyteller may

choose the train driver component as a whole, integrate

it in a story and modify it with a customize editor.

Instead of examining the rules of the train driver

component in order to find out about its behavior, the

storyteller can be provided with small scenes that were

written by the component author and characterize the

component’s behavior. This is an example, how com-

munication between different authors (here: the story-

teller and a component author, i.e. an application

expert) can be designed at an adequate level.

Another example for the segmentation of a behavior-

specification between two authors and its formalization

is given in Fig. 5.

Author A describes a behavior at a high level, she just

specifies that the agent should be inattentive under some

circumstances. The tool which is used for this authoring

could range from a simple text editor up to a graphical

front-end (see Fig. 6). For the result of this authoring

step, the if-then-clause in Fig. 5 is predictive enough.

The concrete characterization of the behavior

‘‘be inattentive()’’ could be provided by author B, who

has to work out the formal specification on the abstract

level of author A into a formal specification of the single

tasks, which are necessary to implement the behavior.

Author B has the possibility to choose between three

alternatives to describe the behavior. Alternative 1 could

Story
Compilation

Linkage of
external
Simulators

Application
Framework

Story
Authoring

Authoring Tool

3D Runtime
Framework

3D Authoring
Framework

Customization
Editors

Creation of Communication Infrastructure

Story
Presentation

Empty 3D
Component

Agent
part Skeleton 3D

Component

Animation
Library

Geometry

Animation
Agent

Behavior
Part

Interference

Fig. 4. Authoring process.

R. D .orner et al. / Computers & Graphics 26 (2002) 45–5550

be, that the inattention is a state of the character, which

influences her activities and their impact. The different

state could result in a higher probability for the

incidence of specific events (i.e. the state of being

inattentive increases the probability, that a traindriver

provokes an accident). Alternative 2 occurs, when the

appearance of inattention results in an action, which

itself could be composed by a set of sub-actions. In

comparison to alternative 1, an action could include a

change of a state but particularly it has the possibility to

realize actively the execution of tasks. In alternative 3,

author B could define a ruleset, which should be

processed. Within the scope of a ruleset authors are

able to describe actions which should be performed

under specific conditions.

To support an author in the production process our

digital storytelling system has to provide several editors:

* A behavior editor to specify the agent behavior. Our

system supports the non-technical experts with a

visual behavior editor where an author can specify

behavior as well as reuse it (see Fig. 6).
* A VR editor for modeling the virtual reality as well as

its geometries and animations. In most cases this

editor is a professional modeling tool like Maya or

3D Studio Max.
* A GUI editor to define the user interface. Filling the

skeleton application with components is done with

this editor. Therefore the editor provides support for

selection, customization and insertion of compo-

nents.

Fig. 6. Behavior editor to specify the agent behavior.

if (...) be_inattentive(Author A

Author B

C hange
Sta te

Action(s) R uleset

f (...) be_i t tive();

be_inattentive();

Fig. 5. Segmentation of a behavior between authors.

R. D .orner et al. / Computers & Graphics 26 (2002) 45–55 51

* A story editor to arrange specified components and

agents to a story. The author has to describe, which

roles exist and how they are filled. This tool allows

the specification of a storybook as well as alternatives

to it (see Fig. 7).
* A component browser, which allows managing and

administrating component.
* An interference editor, that enables the storyteller to

interfere with the story telling process.

All these editors have to be adapted for the individual

authoring role. Thus, tools for authors with artistic

background use metaphors from their domain, for

example ‘‘stage’’, ‘‘storyboard’’, ‘‘directing’’. In contrast

to this, tools for the application experts use metaphors

from the application domain, e.g. in our application

example metaphors like ‘‘emergency plan’’, ‘‘schedule’’,

‘‘signal’’ would be appropriate.

5. Implementation

Our concept was implemented in the context of the

ETOILE (Environment for Team, Organizational and

Individual Learning in Emergencies) project (cf. Fig. 8),

partly funded by the European Commission. The

realization of the framework and the behavior editors

as well as the implementation of the other tools, which

were described according to the concepts above, were

done with the object-oriented programming language

Java and its component-model named JavaBeans [19].

To use Beans they have to be connected or used in

conjunction with a framework. The framework makes

the beans executable by accessing the meta-informations

of the beans. This brings an explorative testing and

evaluation of beans forward. The component-model of

Java was enhanced by the use of so-called 3D-Beans

[11]. These are regular Java components, which have in

addition to their behavior a 3D-geometry, on the basis

of the Java3D-API.

For the distribution of the application to a number of

computers, the Remote Method Invocation (RMI) was

used. RMI makes it possible, to distribute messages

synchronized between different computers. To realize

the communications between different components, we

used the communication-bus Infobus [20]. The Java

based agent system and rule engine we used, is Blaze

Advisor [21] from HNC Software. In our developed

system ETOILE, we were able to build scenes, which

contains up to 25 different agents. The bigger part of the

agents was developed by end-users (employees of a

Spanish power company, respectively, a Spanish sub-

way-company), whereby the agents had between 150 and

300 rules each. Further on our scenarios had around

35,000–50,000 polygons. If we combine these values

about performance, we have to put out, that all our

scenarios were capable to be executed on a standard PC

(i.e. requirements like Intel Pentium IV, 256 MB

memory, nVidia GeForce III graphics card or an

equivalent computer).

Fig. 7. Insertion of a 3D-Beans within the story editor.

R. D .orner et al. / Computers & Graphics 26 (2002) 45–5552

6. Lessons learned

In the ETOILE project were different person groups

of end-users, who utilize the application, which was

developed according to the above-mentioned concepts,

to build training scenarios.

First of all, there were the authors with a consolidated

knowledge in information technology. However is was

not their task to develop the tools, but to build

application-specific components, like the geometrical

structure of a subway, behavior elements of a subway-

engine driver or elements of scenario-sequence. The

challenge for this group of authors was, that they had an

empty skeleton-application with no existing components

in it. Even they understood the underlying concepts

quickly. However, users experienced difficulties that we

constitute in the mightiness of the system. Within the

scope of creating simple behavior elements for the agents

were difficulties because of the lack of support tools. We

found out, that tools for consistency checks, structuring

and validating would be helpful.

The components that were produced by the first

group, were used by another group to describe a

concrete story (scenario). Contrary to the experiences

of the first group, the second group lamented the

absence of flexibility of the components and the

restricted possibility to change a training session during

the storytelling (training). Again, some components had

a too extensive and deterministic functionality, which

were better divided in separate elements. In this context

it is obvious, that it is difficult to find an optimal

granularity for the components. Our component-based

approach makes high demands on the authors of the

components.

To master the situation between the two extremes of

the functionality of the resulting components, it is useful

to establish an iterative process during the development

of components. Through the advantage of the exchan-

geability of existing components over different applica-

tion fields this loss wanes increasingly with the number

of developed components. In our ETOILE

project, authors of a nuclear power plant were able to

use components from the subway-company (i.e. compo-

nents that specify a fire in a subway-tunnel could also

describe a overheating in the power plant). The

exchange of components was straightforward, because

of the well-defined interfaces between components and

framework.

Another experience was, that the possibility of

reviewing the story (scenario) was frequently used by

the authors. This is constituted in the matter of fact, that

an author just describes the initial state of a story,

instead of predefining the whole sequence. A forecast,

how a presentation looks, is in the ETOILE system only

possible by simulating the sequence. Thereby we note a

change of how the authors use the system. While in the

beginning the scenarios were created with time-based

constraints (i.e. 15 s after action 1 action 2 happens) or

orientation on milestones, authors with increased

experience changed to an event-based description of

actions (i.e. action 2 happens after action 1 under

condition x). In our opinion this behavior correlates in

the scale authors are using the simulation of scenarios.

By iterative simulation scenarios the authors detect

incomplete, inconsistent or wrong behavior of their

agents [4].

In ETOILE there is the special application that

the listeners of a story (the learners) are involved

in their flow. Since in an ETOILE scenario roles

are only defined, without determining in the run-up if

the role is taken over from an agent or a human, it

is possible for a storyteller (trainer) to simulate a

Fig. 8. Snapshots of an ETOILE scenario.

R. D .orner et al. / Computers & Graphics 26 (2002) 45–55 53

whole training as all roles are engaged by agents. In

our opinion it is meaningful to support the simulation

further, e.g. by a check of the time parameter (i.e. fast

motion tools) and by the introduction of several levels

of detail, which enables a sketching, which can be

refined later gradually. A further support by tools

could consist by the observation of a certain behavior

during the simulation and the direct referring to

the appropriate behavior in order to enable an

efficient manipulation of agents. Depending upon the

function the author needs suitable visualizations and

interaction possibilities, in order to be able to produce

a scenario. Therefore the author’s view of the scenario

should be situation-dependent. Thus for the setting

up of the virtual environment other metaphors are

needed than during the structuring of behaviors

of objects or setting up the relations between the

objects. For example the metaphor of the flow diagrams

can be used for emergency situations. Besides a

visualization of further characteristics, like relations

structures, motivations of the characters, emotions of

the characters or the dramaturgy-oriented view can be

helpful for the author.

As an important characteristic of intelligent agents

in digital storytelling systems the believability of

the characters was called. Believability is thereby

a necessary requisition for the dramaturgy of a

story, without influencing it however. By adding

dramaturgy-oriented special rules to an agent at first

sight the reliability may reduce, but the possibilities of

the author to influence the dramaturgy however

improved.

The direct access of the trainer felt at run-time as

too restrictively, because every direct behavior pattern of

the agents had to be switched individually. Remedy

creates here a bundling and a grouping of the instruction

into an abstract hierarchy. This should be clarified

by the example of a subway-engine driver. A subway-

engine driver could have different malpractices, which

can be released by the trainer, as for instance ‘‘disregard

the next signal!’’ or ‘‘ignore further messages!’’. These

concrete malpractices can be summarized under

a abstract instruction like ‘‘be inattentive!’’. In this

way the trainer can release easily an abundance of single

actions, without having to call everyone explicitly.

Although it was shown that agents could be exchanged

and reused quite simply between different scenarios,

the necessity is clear to manage agents, scenarios

and characters effectively. For this purpose agents

etc. can be equipped with meta-informations. This

makes it possible in an effective way, to give a rough

course of action for scenarios, and special abilities,

weaknesses etc. for agents or roles. With a database,

which operates on these meta-informations, a

large number of combinations and designs can be

administered.

7. Summary and future work

We described a concept for a component-based

framework that is used for an interactive training

simulation, but may also be used for digital storytelling

in general. We pointed out that the claim for a

component-based framework is not only advantageous

for the internal structure, but rather it brings benefit for

the application field of digital storytelling.

Through the spreading of incidental task while the

authoring process, we provide a classification corre-

sponding to the abilities and background of story

authors, domain-experts as well as technology experts.

Because of the importance of the communication

between experts of the same, respectively, of different

authoring groups, we described what kind of commu-

nication is necessary and which interfaces are essential.

In progression of the ETOILE project we had the

opportunity to evaluate our concept.

While the acceptance of our concept was satisfying

on the whole, there are still issues to be improved

and some additional tools could be conceived that

would foster the authoring process (e.g. an assistant

tool). Right now the user-interfaces of our system

could distinguish more far reaching between the

membership of a user to the different groups of

experts or authors that we mentioned. Through an

adapted user-interface, which matches the terminology

of the specific user more sophisticated, the habituation

to the system could be reduced. By offering a more

intuitive system, the dissemination of such digital

storytelling frameworks would be higher. While in our

concept the focal point is the authoring of the behavior

of single characters, which are part of the story, we

neglected so far to give an automated approach, how to

determine a specific dramaturgy for the story. Within

the scope of our concept, the final sequence and

therefore also the dramaturgy of the story was

dependent of some random elements. For future work,

a tool to guarantee a specific progression (or a

progression within specified ranges) for dramaturgy

would be useful.

References

[1] Davenport G. Seeking dynamic: adaptive story environ-

ments visions and views. IEEE Multimedia 1994;1(3):9–13.

[2] Mateas M, Stern A. Towards integrating plot and character

for interactive drama. http://home.netcom.com/Bapstern/

interactivestory.net/papers/MateasSternAAAIFS00.pdf.

[3] Murray JH. Hamlet on the holodeck: the future of

narrative in cyberspace. Cambridge, MA: MIT Press,

1997.

[4] Steiner KE, Moher TG. Graphic StoryWriter: an inter-

active environment for emergent storytelling. In: Con-

R. D .orner et al. / Computers & Graphics 26 (2002) 45–5554

http://www.agc.fhg.de
http://www.agc.fhg.de

ference Proceedings on Human Factors in Computing

Systems, Monterey, CA, 1992. p. 357–364.

[5] Trappl R, Petta P. Creating personalities for synthetic

actors: towards autonomous personality agents. Berlin:

Springer, 1997.

[6] Umaschi M, Cassell J. Storytelling systems: constructing

the innerface of the interface. In: Proceedings of the

Second International Conference on Cognitive Technol-

ogy. Los Alamitos, CA: IEEE Computer Society, 1997. p.

98–108.

[7] Sametinger J. Software engineering with reusable compo-

nents. Berlin: Springer, 1997.

[8] Fayad ME, Schmidt D, Johnson R. Building application

frameworks: object-oriented foundations of framework

design. New York: Wiley, 1999.

[9] Conner DB, Snibbe SS, Herndon KP, Robbins DC,

Zeleznik RC, van Dam A. Three-dimensional widgets.

In: Computer Graphics Symposium for Interactive 3D

Graphics, vol. 25(2). New York: ACM Press, 1992. p.

183–188.

[10] D .ollner J, Hinrichs K. Interactive, animated 3D widgets.

In: Proceedings of the 1998 IEEE International Conference

of Computer Graphics International (CGI), Hanover,

Germany, 1998. p. 278–286.

[11] D .orner R, Grimm P. Three-dimensional beansFcreating

web content using 3D components in an 3D authoring

environment. In: Proceedings of the Web3D-VRML 2000,

Fifth Symposium on Virtual Reality Modeling Language,

Monterey, CA, 2000. p. 69–74.

[12] Sch .onhage B, van Ballegooij A, Eliens A. 3D gadgets

for business process visualization. In: Proceedings

of Web3DFVRML 2000. Monterey, USA, 2000. p.

131–138.

[13] Miller T, Zeleznik R. The design of 3D Haptic widgets. In:

1999 Symposium on Interactive 3D Graphics, Atlanta,

GAUSA. New York: ACM Press.

[14] Wooldridge M, Jennings NR, editors. Agent theories,

architectures, languages: a survey. In: Intelligent agents,

lecture notes in artificial intelligence research, vol. 7. Los

Altos, CA: Morgan Kaufmann Publishers, 1997.

p. 83–124.

[15] Wooldridge M, Jennings NR. Pitfalls of agent-oriented

development. In: Proceedings of the Second International

Conference on Autonomous Agents, Minneapolis, MN,

1998. p. 385–391.

[16] Fung J, Tu X, Terzopoulos D. Cognitive modelling:

knowledge, reasoning and planning for intelligent char-

acters. In: Proceedings of SIGGRAPH, Los Angeles, CA,

1999.

[17] Tambe M. Towards flexible teamwork. Journal of

Artificial Intelligence Research 1998;7:83–124.

[18] Leitch RR, Sime JA. A specification methodology for

intelligent training systems. In: Proceedings of Sixth

International PEG Conference on Knowledge Based

Environments for Teaching and Learning (PEG’91).

Rapallo, 1991. p. 331–342.

[19] Java Homepage of Sun Microsystems Inc. http://java.-

sun.com.

[20] Infobus Homepage of Sun Microsystems Inc. http://

java.sun.com/products/javabeans/infobus/

[21] Blaze Advisor Homepage, HNC Inc. http://www.blaze-

soft.com

R. D .orner et al. / Computers & Graphics 26 (2002) 45–55 55

http://java.sun.com
http://java.sun.com
http://java.sun.com/products/javabeans/infobus.3d
http://java.sun.com/products/javabeans/infobus.3d
http://www.blazesoft.com
http://www.blazesoft.com

	Synergies between interactive training simulations and digital storytelling: a component-based framework
	Introduction
	Requirements
	Component-based concept
	Components and frameworks
	Component-based 3D computer graphic
	Story behavior
	System architecture

	Storytelling and authoring process
	Implementation
	Lessons learned
	Summary and future work
	References

