
Exploiting Protocol Information for Speeding up Runtime Reconfiguration of
Component-Based Systems

Jasminka Matevska-Meyer, Wilhelm Hasselbring, and Ralf H.Reussner
Software Engineering Group, Department of Computing Science

University of Oldenburg, Germany�
matevska-meyer, hasselbring, reussner�@informatik.uni-oldenburg.de

Abstract

To reduce the down-time of software systems and maximise theset of available services during reconfigura-
tion,we propose exploiting component protocol information. This is achieved by knowing the state of a running
system and determining the component dependencies for the time interval from receiving a reconfiguration request
until reconfiguration completion. For this forecast we use the architectural descriptions that specify static depen-
dencies, as well as component protocol information. By considering only component interactions for the time
interval of reconfiguration we can exclude past and future dependencies from our runtime dependency graphs. We
show that such change-request-specific runtime dependencygraphs may be considerably smaller than the corre-
sponding static architecture based dependency graphs; this way, we are speeding up runtime reconfiguration of
component-based systems while maximising the set of available services.

Keywords from CFP dynamic composition of component-based systems, dynamic architectures, system design
for hot-swappable components, addressing variability requirements in component-based solutions

1 Introduction

Runtime reconfiguration plays an important role for providing high availability of software systems. One of
the main issues during runtime reconfiguration is to maintain the consistency of the system. Furthermore, one
is interested in minimising the down-time of the system caused by the reconfiguration. Due to that, techniques
are required which determine the parts of the system to be halted during reconfiguration, and, accordingly, the
parts of the system which can continue execution during reconfiguration. This lowers the down-time of the system
and maximises the set of services available during reconfiguration. This is an essential requirement not only for
mission critical systems, but also for the steadily increasing number of commercial web-applications.

We distinguish between three different types of reconfiguration according to their reconfiguration effort: (1)
functional, (2) non-functional, and (3) structural. All types of reconfiguration can occur on different levels of
granularity (i.e., can concern the entire system or a singlesub-component.) In our approach, we do not distin-
guish between components, connectors and systems, becauseof the possibility to specifying them in the same
manner.Functional reconfigurationsinclude changes to the functionality of a single component as well as of a
particular subsystem, even of the entire system.Non-functional reconfigurationsare concerned with the quality of
service of the system and can affect single components (sub-systems) or the architecture.Structural reconfigura-
tionsconsider both, changing the interface of a single componentand changing dependencies among components
(architectural changes of a system).

Account

Manager

DB
-
Update

Manager

Main DB

Online
Account

Manager

Replica

Mainframe
Banking Component

Online E
-
Banking Component

Banking
System

Customer
 Clock

Provides

Interface

Requires

Interface

Figure 1. Banking system

The major problem to be considered when dealing with reconfiguration of component-based systems is the
existence of dependencies among components. These dependencies should be defined in the static architectural
description of the system (e.g., [MT00]). However, when reconfiguring a system in a concrete runtime state one
usually does not need to consider all of these dependencies.Our idea is to observe a running system during a time
interval from receiving a reconfiguration request until reconfiguration completion, and to determine a minimal
set of affected components for that interval. Knowing the current state of all possibly affected components, and
their future behaviour (by their interaction protocols), we can exclude past dependencies and late future ones.
This allows us to built a runtime dependency graph containing considerably less dependencies than the graph
of the static system architecture. Consequently, there areless actually affected components to be considered for
individual reconfiguration requests. Hence, the set of available services of the system is maximised, while the
overall down-time is reduced.

This paper is organised as follows. First, we present an example describing the problem and our suggested
solution (Section 2), next, we give a formal description of our idea in Section 3. In Section 4, we propose a system
architecture. Related work is discussed in Section 5. Finally, we conclude and indicate further work in Section 6.

2 Motivating Example

To illustrate our approach we chose a simple banking system (Fig. 1). On its top-level, it consists of aMainframe
Component, anOnline E-Banking Component, and aDatabase Update Manager. The mainframe component itself
is assembled from anAccount Managerand theMain Database. The e-banking component consists of anOnline
Account Managerand aReplicaof the database.

Transactions processed by the mainframe component are continuously propagated to the database and are persis-
tently stored there. Opposed to that, the additional onlineinterface of the e-banking component for web customer
access works with a replica of the database, because the traditional mainframe database does not properly support
online transactions. The replica stores all daily online transactions and updates the main database only during a
nightly pass.

A consistency problem may occur when the same bank customer initiates, for example, the following two
transactions: at first she transfers the complete balance online and then withdraws at cashpoints. The online system,

2

Account

Manager

OLTP
-
DB

Online
Account

Manager

Banking
System
after Reconfiguration

Customer

Figure 2. Banking system after reconfiguration

which works on a replica, checks whether the first transaction is allowed, but does not immediately propagate the
account changes to the main database. Hence, the second transaction will temporary pass through. After the
nightly update, the first (online) transaction will be refused and the customer may have a financial problem (with
possibly a too late notification, if any). As this situation is not satisfactory, the system shall be changed to work on
a single database.

The static dependency graph of our system, as given by the system architecture, is shown in Figure 3 (a). It
shows that all components have to be halted during this reconfiguration. This means, no services will be available
during merging the main data base and the replica.

Opposed to that approach, we consider the time point and expected duration of the reconfiguration. Therefore,
the system is reconfigured in two separate steps:

1. the main database is replaced by an online transaction processing database during night hours

2. after the nightly update, the database-update manager and the replica are removed. Consecutely, the online
account manager is linked to the main database (Fig. 2).

As we perform the first step outside business hours, so even the conventional account manager does not have to
be halted. Although, there is a static dependency between the conventional account manager component and the
main database, we can neglect this in our runtime dependencygraph (Fig. 3 (b)) for this specific reconfiguration
interval. In addition, also the online account manager doesnot have to be halted, as it is not affected by that
change. Since the second reconfiguration step is done after the nightly update (and will not last until the next one),
we can perform it with only halting the online account manager. Note that during this second reconfiguration step,
the main database is already online-transaction enabled, hence, inserting the records from the replica can be done
at any time (even during business hours). Anyhow, the onlineaccount manager has to be halted while inserting the
records and while changing the connection from the replica to the main database to avoid inconsistent views for
online customers.

3

AM

OAM
 R

UM

MDB

(a)

AM

OAM
 R

UM

MDB
AM

OAM
 R

UM

MDB

(a)

Legend:

AM
 Account
 Manager

MDB
 Main Database

OAM
 Online
Account
Manager

R
 Replica

UM
 DB
-
Update Manager

ODB
 Online
Transaction Processing
DB

AM

OAM
 R

UM

ODB

(b)

AM

OAM
 R

UM

ODB
AM

OAM
 R

UM

ODB

(b)

AM

OAM
 R

UM

ODB

(c)

AM

OAM
 R

UM

ODB
AM

OAM
 R

UM

ODB

(c)

Figure 3. DependencyGraphs: (a) Static dependency graph, (b) First step runtime dependency graph,
(c) Second step runtime dependency graph

3 Formalisation

The basic idea of our approach is to minimise the set of components affected by a runtime component or
architecture change. If a component is changed (or even deleted in case of an architectural change) one has to
ensure the consistency of the overall system. Most commonly, the architectural system description is used for
determining the set of components affected by a change.

Let denote� �� � the set of components directly affected by the change of a component� (i.e.,� �� � contains all
components associated with component� in a direct use-relationship). Since all components,directly or indirectly
affected by a change of� have to be considered, one has to build the transitive closure �� �� � �� �� �� 	 �
 ��
� ��� �� �� 	 � � � . (As the number of components of a system is finite, this series of sets reaches a fixpoint, that is the
transitive closure� �� � �� �
 �� �). In many realistic examples, this set of components affected by an update of� comprises are (nearly) all components of a system. Consequently, when updating a single component one often
has to halt the whole system. Of course, from a pragmatic point of view, one wants to avoid that. Especially, in
technical control systems a permanent operation is desired. A halt of the control software usually implies the halt
of the whole controled system, e.g., the production line, etc.

Our approach minimises this set of affected components by considering not only the architectural description
of a system with its static dependencies but also (a) component interaction protocols (i.e., specifications of the dy-
namic behaviour), (b) timing behaviour of tasks and their periodicity (as the nightly batch update in our example),
(c) information on the current state of the system (as given in the tuple of the states of each single component and
connection), and (d) the expected duration of the update. Inparticular, we make use of the components’requires
protocols, i.e., the sequences of method calls to external services. We denote the requires protocol of a component� as�� . As we use a finite state machine (therequires automaton) for specifying the requires protocol, the requires
automaton and the requires protocol (i.e., the language generated by the requires automaton) are identified.

Our example shows that the set� �� � can be considerably reduced, if it is computed taking the above factors (a)
to (d) into account.

4

In our approach, the set�� �� �� � is defined as the set of components using component� in the system state� � �� � 	 � � � 	 �� � and for the duration� (e.g., the next 200 seconds). (The state� is a tuple consisting of the
sates�� of basic components and connectors. Let� denote the number of components and connectors. For our
purposes, we do not differentiate between components and connectors here, but assume that�� denotes the state of
component�� for � � � � � � � .)

In the following a more formal sketch of the computation of the set� ��� �� � is given to demonstrate its feasibil-
ity:

1. For each component�� we use its requires protocol��� for computing the language��� ���� �. ��� �� � is
defined as the language generated by the automaton� with the start state�. (Hence, we use the automaton � which is identical to� in any respect but possibly with a different start state. Thus,��� �� � � � � � �).

2. Now we make use of knowing the timing behaviour. We assume we have a function! mapping transitions
and states to the positive real numbers, denoting for each state transition the time used to change the states
and for each state��, ! ��� � gives the time lasted in that state before doing a subsequenttransition. (By that
transition the state may be changed or not.)

3. With ! one can annotate each symbol"� of each word" �� "# � � � " $ % ��� �� � with the time it takes for
the automaton to read it. Starting with 0 from the start state, we then have" � " ##" &'� (((" &)$ with *� % +
and*� � *, 	 � � - . The set���� �� � contains for each word" % ��� �� � the maximal prefix. / which can
be accepted in time� . Maximal prefix means that within time� the processing of the last character of. /
has started. Formally:. / �� " ##" &'� � � � " &01 " &02 '13 � with *1 � � and*13 � 4 � (and5 6 7 � 8). Informally,
the set���� �� � contains all call sequences the component� is expected to perform for invoking external
methods being in state� within the time� according to its requires protocol. Having these call sequences
one also knows the components of the methods invoked by� within time � . This set of components is
the result of a projection9 projecting sequences of external method calls to the components providing
these methods. Technically, this mapping is given by the architectural description of the system with its
connections between components.

4. Finally, we can compute the set�� �� �� � of all components using� in system state� and for the time� by
checking for each component�� (besides� itself) whether� % 9 ���� �� ��� ��. We then yield� ��� �� � as the
set

��� :� % 9 �� �� �� �� � ���.
Based on the set� ��� �� � we compute its transitive closure���� �� �. (Note that therefore we do not have

to recompute any of the sets� ��� �� � � of any component��.) For the sake of brevity, we omit the formal
specification of the timing behaviour and illustrate our postion with the informal specification of the exam-
ple as given in Section 2. (However, such interaction and timing behaviour can be specified for example in
annotated Message-Sequence-Charts as used in Real-Time UML [Dou99].) From that we see that���� �� � is
considerably smaller than� �� �. For the first reconfiguration step we yield���� �Main DB� � �

Main DB�
and for the second step we have��; �� �DB-Update Manager� � �

DB-Update Manager� and ��;; �� �Replica� ��
Replica	Online Account Manager�. That is considerably less than performing all configurations in one step

(what would be most likely the case with having only static dependency information and not considering the be-
havioural specification of the components). Considering only the static information, an update of the main database
and a deletion of the replica would have affected all components, as any component uses the main database or the
replica.

4 Proposed System Architecture

We name our systemReconfiguration Manager(Fig. 4). It is activated onreconfiguration requests. It con-
sists of the following four top-level components [MMH03]:Reconfiguration Analyser, Dependency Manager,
Consistency ManagerandReconfigurator.

The reconfiguration analyser takes areconfiguration request, analyses and classifies the requested change ac-
cording to the reconfiguration types: functional, non-functional or structural. Also the components (including

5

Reconfiguration

Analyser

Reconfigurator

Dependency

Manager

Consistency

Manager

User

Reconfiguration

Request

Architecture

Change
Requests

Component

Change
Requests

Reconfiguration License

Reconfiguration
 /Rollback

Report

Reconfiguration

Confirm

Rollback
 Request

Reconfiguration

Abort

Figure 4. Reconfiguration Manager

connections) directly concerned with thatchange requestare identified. The dependency manager monitors the
run-time dependencies among components, determines a minimal set of change-affected components (as described
in Section 3) and sends achange requestfor each involved component to the reconfigurator. The reconfigurator
realises the reconfiguration as a dependent change transaction [KM90]. It starts a transaction, transfers the affected
components (and only these) into ablockedstate, isolates an affected subsystem, applies the changes, and sends
aconsistency-check-requestto the consistency manager. The consistency manager then checks the consistency of
the changed system by monitoring the change transaction. This is necessary, since the set of affected component
computed by the dependency manager is only valid for a duration � the change requestis expected to operate
(cf. Section 3). If the transaction violates this time limit, the consistency manager detects this failure and initiates
a rollback. If the time limit is not exceeded the transaction is committed. After therollback or thecommit, all
blockedcomponents are transferred back into arunningstate.

This paper focuses on the dependency manager.

5 Related Work

Runtime reconfiguration is a very active research area in various disciplines of computer science.

Distributed systems [CS02], [PBJ98], [Kni99], [KC00] work on dynamic componentupdates. Even if contrac-
tually defined components with behaviour-specifying interfaces are considered (e.g., [PV02]), the runtime
state and the interaction protocols are not used for restricting the dependency graphs.

Architecture-based reconfiguration In [OMT98], [OT98], the runtime reconfiguration is treated as the replace-
ment of single components at the time and at architectural level, but no component dependencies are ad-
dressed. Structural changes are performed by altering connector bindings.

Software configuration managementfocuses on reconfiguration (e.g. [Lar01]) where dependencygraphs are
used to determine the dependencies among different versions of components, but neither architectural nor
runtime aspects are considered,

Reconfiguration as an extension of the deployment process[RAC
3

02], [CS02], but without considering ar-
chitectural changes of the system and without checking its consistency at runtime.

6

Our approach combines the disciplines software architecture, software configuration management and compo-
nent deployment (as on principle discussed in [vdH99]) by considering contractually-defined and contractually-
used software components [RS02], [Szy98], as well as functional and non-functional changes. Furthermore,
architectural and version reconfiguration of a component-based system is allowed. We concentrate on runtime re-
configuration, considering the time as an additional factor, with the explicit goal of reducing the system down-time
by minimising the set of affected components.

6 Summary and further work

Runtime reconfiguration of component based systems allowing changes of the dependencies among components
is discussed. We observe a running system at a particular time interval from receiving a reconfiguration request
until reconfiguration completion. We assume the availability of a static system description (e.g., static dependency
graph, component specification) and specified or derived component protocol information. Knowing the current
state of all possibly affected components, we can exclude past dependencies and late future ones. This technique
is used to create a runtime dependency graph matching the particular reconfiguration request. In our example
we show that this change-request-specific runtime dependency graph can be considerably smaller than the static
architecture based dependency graph.

Although, our approach requires more information than a mere analysis of an ADL system specification, we
can draw on previous work in component interaction protocolspecification and the automated derivation of these
specifications from design documents (such as Message Sequence Charts) [Wyd01] or source-code [Hun01].

We present a high-level architecture of a Reconfiguration Manager. For one of its subcomponents, the Depen-
dency Manager, we present a formal model for computing a minimal set of components being affected by a the
change of a component. Of course, the other components of thesystem also have a considerable complexity, not
presented in this paper.

Future work includes the evaluation of the presented approach by means of larger case studies as well as by
comparison with other approaches. Besides that, further research is required for the proposed reconfiguration
manager (e.g., investigating the possibilities to extend the deployment process). As the possibility of runtime
reconfiguration is increasingly perceived as a benefit of component-based software (of such different areas as em-
bedded consumer electronics, technical control systems and enterprise computing) we expect considerable benefits
from minimising system down-time as well as increasing service availability during system reconfiguration.

References

[CS02] Xuejun Chen and Martin Simons. A component frameworkfor dynamic reconfiguration of distributed
systems. In Judith Bishop, editor,Proceedings of IFIP/ACM Working Conference on Component
Deployment, pages 82–96, Berlin, Germany, June 2002. Springer-VerlagBerlin Heidelberg.

[Dou99] Bruce Powel Douglass.Real-Time UML. Addison Wesley, second edition, 1999.

[Hun01] Gunnar Hunzelmann. Generierung von Protokollinformation für Softwarekomponentenschnittstellen
aus annotiertem Java-Code. Diplomarbeit, Fakultät für Informatik, Universität Karlsruhe (TH), Ger-
many, April 2001. Generating Protocol Information for Software Component Interfaces from Java
Code.

[KC00] Fabio Kon and Roy H. Campbell. Dependence managementin component-based distributed systems.
IEEE Concurrency, 8(1):26–36, January 2000.

[KM90] Jeff Kramer and Jeff Magee. The evolving philosophers problem: Dynamic change management.
IEEE Transactions on Software Engineering, 16(11):1293–1306, November 1990.

[Kni99] G. Kniesel. Type-safe delegation for run-time component adaptation. In Rachid Guerraoui, editor,
Proceedings of ECOOP’99, pages 351–366. Springer, June 1999.

7

[Lar01] Magnus Larsson.Applying Configuration Management Techniques to Component-Based Systems.
PhD thesis, Uppsala University, Sweden, December 2001.

[MMH03] Jasminka Matevska-Meyer and Wilhelm Hasselbring.Enabling reconfiguration of component-based
systems at runtime. In J. van Gurp and J. Bosch, editors,Proceedings of Workshop on Software
Variability Management, pages 123–125, Groningen, The Netherlands, February 2003. University of
Groningen.

[MT00] Nenad Medvidovic and Richard N. Taylor. A classification and comparison framework for software
architecture description languages.IEEE Transactions on Software Engineering, 26(1):70–93, 2000.

[OMT98] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-based runtime software
evolution. InProceedings of the International Conference on Software Engineering 1998 (ICSE’98),
pages 177–186, April 1998.

[OT98] Peyman Oreizy and Richard N. Taylor. On the role of software architectures in runtime system re-
configuration. InProceedings of the International Conference on Configurable Distributed Systems 4,
Annapolis, Maryland, May 1998.

[PBJ98] F. Plasil, D. Balek, and R. Janecek. SOFA/DCUP: Architecture for component trading and dynamic
updating. InProceedings of International Conference on Configurable Distributed Systems, pages
35–42. IEEE CS Press, March 1998.

[PV02] F. Plasil and S. Visnovsky. Behavior protocols for software components.IEEE Transactions on
Software Engineering, 28(11):1056–1076, November 2002.

[RAC
3

02] Matthew J. Rutherford, Kenneth Anderson, Antonio Carzaniga, Dennis Heimbigner, and Alexander L.
Wolf. Reconfiguration in the Enterprise JavaBean componentmodel. In Judith Bishop, editor,Pro-
ceedings of IFIP/ACM Working Conference on Component Deployment, pages 67–81, Berlin, Ger-
many, June 2002. Springer-Verlag Berlin Heidelberg.

[RS02] Ralf H. Reussner and Heinz W. Schmidt. Using Parameterised Contracts to Predict Properties of Com-
ponent Based Software Architectures. In Ivica Crnkovic, Stig Larsson, and Judith Stafford, editors,
Workshop On Component-Based Software Engineering (in association with 9th IEEE Conference and
Workshops on Engineering of Computer-Based Systems), Lund, Sweden, 2002, April 2002.

[Szy98] Clemens Szyperski.Component Software: Beyond Object-Oriented Programming. ACM Press and
Addison-Wesley, New York, NY, 1998.

[vdH99] André van der Hoek. Configurable software architecture in support of configuration management and
software deployment. InProceedings of the 1999 International Conference on Software Engineering
(ICSE’99), pages 732–733, New York, May 1999. Association for Computing Machinery.

[Wyd01] Bart Wydaeghe.Component Composition Based on Composition Patterns and Usage Scenarios. Dis-
sertation, Department of Computer Science, Vrije Universitiet Brussel, Belgium, 2001.

8

