Exploiting Protocol Information for Speeding up Runtime Reconfiguration of
Component-Based Systems

Jasminka Matevska-Meyer, Wilhelm Hasselbring, and RaRelussner
Software Engineering Group, Department of Computing S&en
University of Oldenburg, Germany
{matevska-meyer, hasselbring, reus$@informatik.uni-oldenburg.de

Abstract

To reduce the down-time of software systems and maximissethaf available services during reconfigura-
tion,we propose exploiting component protocol inform@tid his is achieved by knowing the state of a running
system and determining the component dependencies famiéiterval from receiving a reconfiguration request
until reconfiguration completion. For this forecast we ulse architectural descriptions that specify static depen-
dencies, as well as component protocol information. By idensig only component interactions for the time
interval of reconfiguration we can exclude past and futuneestelencies from our runtime dependency graphs. We
show that such change-request-specific runtime dependgapis may be considerably smaller than the corre-
sponding static architecture based dependency graphs;whly, we are speeding up runtime reconfiguration of
component-based systems while maximising the set of bieagarvices.

Keywords from CFP dynamic composition of component-based systems, dynamthitectures, system design
for hot-swappable components, addressing variabilityireqnents in component-based solutions

1 Introduction

Runtime reconfiguration plays an important role for prawgdhigh availability of software systems. One of
the main issues during runtime reconfiguration is to maintaé consistency of the system. Furthermore, one
is interested in minimising the down-time of the system eduy the reconfiguration. Due to that, techniques
are required which determine the parts of the system to hechdlring reconfiguration, and, accordingly, the
parts of the system which can continue execution duringnféggaration. This lowers the down-time of the system
and maximises the set of services available during recamfiigm. This is an essential requirement not only for
mission critical systems, but also for the steadily incirgasumber of commercial web-applications.

We distinguish between three different types of reconfitiopmaaccording to their reconfiguration effort: (1)
functional, (2) non-functional, and (3) structural. Allpgs of reconfiguration can occur on different levels of
granularity (i.e., can concern the entire system or a siaglecomponent.) In our approach, we do not distin-
guish between components, connectors and systems, beaafatisepossibility to specifying them in the same
manner. Functional reconfigurationgnclude changes to the functionality of a single componenivall as of a
particular subsystem, even of the entire systBimn-functional reconfigurationare concerned with the quality of
service of the system and can affect single componentsgigstiems) or the architectur8tructural reconfigura-
tionsconsider both, changing the interface of a single compaoaetiichanging dependencies among components
(architectural changes of a system).

Banking System

Mainframe Banking Component

/% Account +_'t£ Main DB
Manager

\ /

O Provides Requires DB - Update
Interface Interface
/ \ Manager
Customer Clock
Online Account .
Replica
Manager

Online E-Banking Component

Figure 1. Banking system

The major problem to be considered when dealing with recardigpn of component-based systems is the
existence of dependencies among components. These dapirsdshould be defined in the static architectural
description of the system (e.g., [MT0O0]). However, wherordiguring a system in a concrete runtime state one
usually does not need to consider all of these depender@igsdea is to observe a running system during a time
interval from receiving a reconfiguration request untilamfiguration completion, and to determine a minimal
set of affected components for that interval. Knowing therent state of all possibly affected components, and
their future behaviour (by their interaction protocols)e wan exclude past dependencies and late future ones.
This allows us to built a runtime dependency graph contgiionsiderably less dependencies than the graph
of the static system architecture. Consequently, theréeageactually affected components to be considered for
individual reconfiguration requests. Hence, the set oflabi services of the system is maximised, while the
overall down-time is reduced.

This paper is organised as follows. First, we present an pkadescribing the problem and our suggested
solution (Section 2), next, we give a formal description of mlea in Section 3. In Section 4, we propose a system
architecture. Related work is discussed in Section 5. Finak conclude and indicate further work in Section 6.

2 Motivating Example

To illustrate our approach we chose a simple banking sydtém {). On its top-level, it consists ofMainframe
ComponentanOnline E-Banking Componerdand aDatabase Update ManageT he mainframe component itself
is assembled from aficcount Manageand theMain Database The e-banking component consists of@nline
Account Manageand aReplicaof the database.

Transactions processed by the mainframe component aiewounsly propagated to the database and are persis-
tently stored there. Opposed to that, the additional orifitexface of the e-banking component for web customer
access works with a replica of the database, because tli@gmatimainframe database does not properly support
online transactions. The replica stores all daily onlirmsactions and updates the main database only during a
nightly pass.

A consistency problem may occur when the same bank custamii@tes, for example, the following two
transactions: atfirst she transfers the complete balaritee@nd then withdraws at cashpoints. The online system,

2

Banking System after Reconfiguration

Account
Manager
Online Account
Manager

Figure 2. Banking system after reconfiguration

OLTP- DB

Customer

which works on a replica, checks whether the first transadti@llowed, but does not immediately propagate the
account changes to the main database. Hence, the secoadctian will temporary pass through. After the
nightly update, the first (online) transaction will be refdsand the customer may have a financial problem (with
possibly a too late natification, if any). As this situati@miot satisfactory, the system shall be changed to work on
a single database.

The static dependency graph of our system, as given by thensyarchitecture, is shown in Figure 3 (a). It
shows that all components have to be halted during this fggoation. This means, no services will be available
during merging the main data base and the replica.

Opposed to that approach, we consider the time point andcegduration of the reconfiguration. Therefore,
the system is reconfigured in two separate steps:

1. the main database is replaced by an online transactiamegsing database during night hours

2. after the nightly update, the database-update manadehameplica are removed. Consecutely, the online
account manager is linked to the main database (Fig. 2).

As we perform the first step outside business hours, so eeerothventional account manager does not have to
be halted. Although, there is a static dependency betwaeendhventional account manager component and the
main database, we can neglect this in our runtime dependgaph (Fig. 3 (b)) for this specific reconfiguration
interval. In addition, also the online account manager dumshave to be halted, as it is not affected by that
change. Since the second reconfiguration step is done ladteightly update (and will not last until the next one),
we can perform it with only halting the online account mamat®te that during this second reconfiguration step,
the main database is already online-transaction enabdertehinserting the records from the replica can be done
at any time (even during business hours). Anyhow, the omléo®unt manager has to be halted while inserting the
records and while changing the connection from the reptiché main database to avoid inconsistent views for
online customers.

©

(a) (b)

Legend:
@ OoDB
AM Account Manager
MDB Main Database
OAM Online Account Manager
R Replica
@ ° um DB-Update Manager
OoDB Online Transaction Processing DB

©

Figure 3. DependencyGraphs: (a) Static dependency graph, (b) First step runtime dependency graph,
(c) Second step runtime dependency graph

3 Formalisation

The basic idea of our approach is to minimise the set of compmisnaffected by a runtime component or
architecture change. If a component is changed (or everedeie case of an architectural change) one has to
ensure the consistency of the overall system. Most commdméyarchitectural system description is used for
determining the set of components affected by a change.

Let denoteu(z) the set of components directly affected by the change of gpooentz (i.e., u(x) contains all
components associated with componeirt a direct use-relationship). Since all componedigctly or indirectly
affected by a change of have to be considered, one has to build the transitive @astir= u(u(z)),u? :=
u(u?(x)),- - - . (As the number of components of a system is finite, this safisets reaches a fixpoint, that is the
transitive closurd/(z) := u®(z)). In many realistic examples, this set of components affebly an update of
x comprises are (nearly) all components of a system. Conadlguehen updating a single component one often
has to halt the whole system. Of course, from a pragmatict pbimiew, one wants to avoid that. Especially, in
technical control systems a permanent operation is desitdalt of the control software usually implies the halt
of the whole controled system, e.g., the production line, et

Our approach minimises this set of affected components hgidering not only the architectural description
of a system with its static dependencies but also (a) commienteraction protocols (i.e., specifications of the dy-
namic behaviour), (b) timing behaviour of tasks and theiiquiicity (as the nightly batch update in our example),
(c) information on the current state of the system (as gimghe tuple of the states of each single component and
connection), and (d) the expected duration of the updatpatticular, we make use of the componemésjuires
protocols i.e., the sequences of method calls to external serviceddafote the requires protocol of a component
x asR;. As we use a finite state machine (tieguires automatorfor specifying the requires protocol, the requires
automaton and the requires protocol (i.e., the languagergtd by the requires automaton) are identified.

Our example shows that the $é&¢x) can be considerably reduced, if it is computed taking thealfectors (a)
to (d) into account.

In our approach, the sei, r(x) is defined as the set of components using componéntthe system state
s = (s1,-+-,s,) and for the duratior¥” (e.g., the next 200 seconds). (The state a tuple consisting of the
satess; of basic components and connectors. tetlenote the number of components and connectors. For our
purposes, we do not differentiate between components amectors here, but assume thatlenotes the state of
componentz; for0 <i <n < m.)
In the following a more formal sketch of the computation af #etu () is given to demonstrate its feasibil-
ity:
1. For each componen; we use its requires protocdt,, for computing the languaggs, (R,;). Ls,(R) is
defined as the language generated by the autonfwwith the start state. (Hence, we use the automaton
R which is identical taR in any respect but possibly with a different start state. STy, (R) = L(R)).

2. Now we make use of knowing the timing behaviour. We assumbave a function mapping transitions
and states to the positive real numbers, denoting for eath stainsition the time used to change the states
and for each state;, 7(s;) gives the time lasted in that state before doing a subsedpaersition. (By that
transition the state may be changed or not.)

3. With 7 one can annotate each symhglof each wordw := wyg - --w; € Lg; (R) with the time it takes for
the automaton to read it. Starting with O from the start statethen haver = ww!'...w}' with ; € R
andt; < tj,i < j. The setl, r(z) contains for each word € L, (R) the maximal prefixp,, which can
be accepted in tim&. Maximal prefix means that within timi€ the processing of the last charactempgf
has started. Formally,, := wgw? wfc’“w,tc’i:f with ¢t < T andtx1 > T (andk + 1 < [). Informally,
the setL, r(x) contains all call sequences the componetis expected to perform for invoking external
methods being in statewithin the timeT according to its requires protocol. Having these call seges
one also knows the components of the methods invoked twthin time 7". This set of components is
the result of a projectioldl projecting sequences of external method calls to the commqsmproviding
these methods. Technically, this mapping is given by theitctural description of the system with its
connections between components.

4. Finally, we can compute the sefr(z) of all components using in system state and for the timerl” by
checking for each component (besidesr itself) whetherr € II(Ls, r(x;)). We then yieldu, r(x) as the
Set{l‘i|.’£ € H(LSUT(J)Z))}

Based on the set, 7(z) we compute its transitive closu@; r(z). (Note that therefore we do not have
to recompute any of the sets r(z;) of any componentz;.) For the sake of brevity, we omit the formal
specification of the timing behaviour and illustrate our timos with the informal specification of the exam-
ple as given in Section 2. (However, such interaction andntinbehaviour can be specified for example in
annotated Message-Sequence-Charts as used in Real-Tirhe[DdA99].) From that we see thdf, r(x) is
considerably smaller thatV(z). For the first reconfiguration step we yield +(Main DB) = {Main DB}
and for the second step we halig 1-(DB-Update Manager = {DB-Update Managefr andU,» r(Replicg =
{Replica Online Account Managér That is considerably less than performing all configuratiin one step
(what would be most likely the case with having only statipeledency information and not considering the be-
havioural specification of the components). Consideriryg the static information, an update of the main database
and a deletion of the replica would have affected all comptseas any component uses the main database or the
replica.

4 Proposed System Architecture

We name our systerReconfiguration Manageffig. 4). It is activated omeconfiguration requestslt con-
sists of the following four top-level components [MMHO3Reconfiguration AnalyseiDependency Managger
Consistency ManageandReconfigurator

The reconfiguration analyser takesegonfiguration requestinalyses and classifies the requested change ac-
cording to the reconfiguration types: functional, non-tiomal or structural. Also the components (including

5

User Architecture
Reconfiguration : H Change Requests
Eh Reconfiguration |
Analyser l
Dependency
Reconfiguration Component Manager
Abort Change Requests |
Consistency Reconfiguration License
[Manager Rollback Request v
A
Reconfiguration Reconfiguration /Rollback Reconflgurator
Confirm Report I

Figure 4. Reconfiguration Manager

connections) directly concerned with thektange requesare identified. The dependency manager monitors the
run-time dependencies among components, determines matisét of change-affected components (as described
in Section 3) and sendsdiange requedior each involved component to the reconfigurator. The riigorator
realises the reconfiguration as a dependent change tremmspt190]. It starts a transaction, transfers the affected
components (and only these) intdkbckedstate, isolates an affected subsystem, applies the chamggsends
aconsistency-check-requdstthe consistency manager. The consistency manager teekRsthe consistency of
the changed system by monitoring the change transactios.ighecessary, since the set of affected component
computed by the dependency manager is only valid for a durdtithe change requesis expected to operate
(cf. Section 3). If the transaction violates this time lintite consistency manager detects this failure and irstiate
arollback. If the time limit is not exceeded the transaction is comaiitt After therollback or the commit all
blockedcomponents are transferred back intaaning state.

This paper focuses on the dependency manager.

5 Related Work

Runtime reconfiguration is a very active research area inwsudisciplines of computer science.

Distributed systems [CS02], [PBJ98], [Kni99], [KC00] work on dynamic componargdates. Even if contrac-
tually defined components with behaviour-specifying ifstees are considered (e.g., [PV02]), the runtime
state and the interaction protocols are not used for réstyithe dependency graphs.

Architecture-based reconfiguration In [OMT98], [OT98], the runtime reconfiguration is treatesithe replace-
ment of single components at the time and at architectuval,lbut no component dependencies are ad-
dressed. Structural changes are performed by alteringectombindings.

Software configuration managementfocuses on reconfiguration (e.g. [LarO1]) where dependegmaphs are
used to determine the dependencies among different versfocomponents, but neither architectural nor
runtime aspects are considered,

Reconfiguration as an extension of the deployment proce§RACT02], [CS02], but without considering ar-
chitectural changes of the system and without checkingitsistency at runtime.

Our approach combines the disciplines software architectoftware configuration management and compo-
nent deployment (as on principle discussed in [vdH99]) bys@tering contractually-defined and contractually-
used software components [RS02], [Szy98], as well as fonatiand non-functional changes. Furthermore,
architectural and version reconfiguration of a componasetd system is allowed. We concentrate on runtime re-
configuration, considering the time as an additional faetith the explicit goal of reducing the system down-time
by minimising the set of affected components.

6 Summary and further work

Runtime reconfiguration of component based systems altpahianges of the dependencies among components
is discussed. We observe a running system at a particularititarval from receiving a reconfiguration request
until reconfiguration completion. We assume the availghdf a static system description (e.g., static dependency
graph, component specification) and specified or derivedpooent protocol information. Knowing the current
state of all possibly affected components, we can excludedependencies and late future ones. This technique
is used to create a runtime dependency graph matching ttieybar reconfiguration request. In our example
we show that this change-request-specific runtime depegdgaph can be considerably smaller than the static
architecture based dependency graph.

Although, our approach requires more information than aenaalysis of an ADL system specification, we
can draw on previous work in component interaction protspecification and the automated derivation of these
specifications from design documents (such as Message 8aGharts) [Wyd01] or source-code [HunO1].

We present a high-level architecture of a Reconfiguratiomadar. For one of its subcomponents, the Depen-
dency Manager, we present a formal model for computing amahset of components being affected by a the
change of a component. Of course, the other components gf/gtem also have a considerable complexity, not
presented in this paper.

Future work includes the evaluation of the presented apprbg means of larger case studies as well as by
comparison with other approaches. Besides that, furtrezareh is required for the proposed reconfiguration
manager (e.g., investigating the possibilities to extdra deployment process). As the possibility of runtime
reconfiguration is increasingly perceived as a benefit ofpmment-based software (of such different areas as em-
bedded consumer electronics, technical control systehemterprise computing) we expect considerable benefits
from minimising system down-time as well as increasing iseravailability during system reconfiguration.

References

[CS02] Xuejun Chen and Martin Simons. A component frameviorklynamic reconfiguration of distributed
systems. In Judith Bishop, editdProceedings of IFIP/ACM Working Conference on Component
Deploymentpages 82-96, Berlin, Germany, June 2002. Springer-V&tatin Heidelberg.

[Dou99] Bruce Powel Douglasfeal-Time UML Addison Wesley, second edition, 1999.

[Hun01] Gunnar Hunzelmann. Generierung von Protokolflimfation fir Softwarekomponentenschnittstellen
aus annotiertem Java-Code. Diplomarbeit, Fakultatrformatik, Universitat Karlsruhe (TH), Ger-
many, April 2001. Generating Protocol Information for $aite Component Interfaces from Java
Code.

[KCO0OQ] Fabio Kon and Roy H. Campbell. Dependence managemeaamponent-based distributed systems.
IEEE Concurrency8(1):26—36, January 2000.

[KM90] Jeff Kramer and Jeff Magee. The evolving philosogheroblem: Dynamic change management.
IEEE Transactions on Software Engineeriig(11):1293-1306, November 1990.

[Kni99] G. Kniesel. Type-safe delegation for run-time campnt adaptation. In Rachid Guerraoui, editor,
Proceedings of ECOOP’'9®ages 351-366. Springer, June 1999.

[Lar01]

Magnus Larsson.Applying Configuration Management Techniques to CompelBaséd Systems
PhD thesis, Uppsala University, Sweden, December 2001.

[MMHO3] Jasminka Matevska-Meyer and Wilhelm Hasselbrifiabling reconfiguration of component-based

[MTOO]

[OMT98]

[OT98]

[PBJOS]

[PV02]

[RACT02]

[RS02]

[Szy98]

[vdH99]

[Wyd01]

systems at runtime. In J. van Gurp and J. Bosch, edi®rsceedings of Workshop on Software
Variability Managementpages 123-125, Groningen, The Netherlands, February. 200@ersity of
Groningen.

Nenad Medvidovic and Richard N. Taylor. A classificat and comparison framework for software
architecture description languageEEE Transactions on Software Engineerji2$(1):70-93, 2000.

Peyman Oreizy, Nenad Medvidovic, and Richard N.l®ay Architecture-based runtime software
evolution. InProceedings of the International Conference on Softwamgikgrering 1998 (ICSE’'98)
pages 177-186, April 1998.

Peyman Oreizy and Richard N. Taylor. On the role otwafe architectures in runtime system re-
configuration. InProceedings of the International Conference on Configwdtiktributed Systems 4
Annapolis, Maryland, May 1998.

F. Plasil, D. Balek, and R. Janecek. SOFA/DCUP: Aeckure for component trading and dynamic
updating. InProceedings of International Conference on Configurablstibuted Systemgpages
35-42. IEEE CS Press, March 1998.

F. Plasil and S. Visnovsky. Behavior protocols foftaare components.IEEE Transactions on
Software Engineering28(11):1056-1076, November 2002.

Matthew J. Rutherford, Kenneth Anderson, Antonio Caiga, Dennis Heimbigner, and Alexander L.
Wolf. Reconfiguration in the Enterprise JavaBean compomadel. In Judith Bishop, editoBro-
ceedings of IFIP/ACM Working Conference on Component Depémt pages 67-81, Berlin, Ger-
many, June 2002. Springer-Verlag Berlin Heidelberg.

Ralf H. Reussner and Heinz W. Schmidt. Using Paratiseté Contracts to Predict Properties of Com-
ponent Based Software Architectures. In lvica Crnkoviég &arsson, and Judith Stafford, editors,
Workshop On Component-Based Software Engineering (ircesgm with 9th IEEE Conference and
Workshops on Engineering of Computer-Based Systems), Bwatlen, 20Q22pril 2002.

Clemens SzyperskiComponent Software: Beyond Object-Oriented ProgrammigM Press and
Addison-Wesley, New York, NY, 1998.

André van der Hoek. Configurable software architez in support of configuration management and
software deployment. IRroceedings of the 1999 International Conference on Soft\Eagineering
(ICSE'99) pages 732—-733, New York, May 1999. Association for Conmgukilachinery.

Bart WydaegheComponent Composition Based on Composition Patterns andeJScenariasDis-
sertation, Department of Computer Science, Vrije UnititsBrussel, Belgium, 2001.

