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The paper uses a behavior-based approach to tackle the probiem of
cooperaton berween diswibuied agents. It focuses on the use of self-
organisation and dissipative to emergent fu li
Other princi] such as the sub i hi and the
gradient field arc aiso used. Results of computational experiments are
* presented.

1. INTRODUCTION

The paper discusses some central issues in the coop b istri agents
using the followi‘ng case study:
The objective is to explore a distant planet, more concretely to coilect samples
of a particular type of precious rock. The locadon of the rock samples is unk-
nown in advance but they are typically clustered in cerwin spots. There is a
vehicle that can drive around on the planet and later reenter the spacecraft (o go
back to earth. There is no detiled map of the terrain although it is knowa that
the terrain is full of obstacles, hills, valleys, etc.
The case study is designed to require autonomy. It is not feasible to plan and steer
the whole thing out of earth because communicaton from and to the planct has a
considerable time delay and may be cut off during cerain periods. Although one
solution could be that the vehicle itself wanders around and coliects the rocks. it is
obvious that a larger terrain could be covered much more quickly if there is a group
of mobile robots that perform the task of searching and carrying the rocks o the
vehicie. This would make the soluton also less fault tolerant because loss of one
robot is not faaal. the desired ples are d in cerwin spots, the
robots better cooperate to accomplish the task. This gives us the problem addressed
in this paper: how can these distributed robots cooperate © find samples and o carry
them to the coliecting vehicle. If the present case study seems somewhat far fetched,
the cleanup of toxic waste or household garbage collection can be viewed as compar-
able tasks.

Evaluadon criteria

The following criteria will be used to evaluate different solutions. These are criteria
relevant for Al systems in general but they are particularly appropriate for mobile
robots operating on a distant planet.

I. Robustness: The ‘system should be able to recover when a certain action is not
correctly executed. For example, when a sampie is not picked up aithough the
instruction was given, this should not lead to further malfunction.

2. Graceful performance degradation: Loss of one robot should not be fatal although
it could give decreased performance.

3. Flexibility: When condidons in the enviroament change, this shouid not require
major changes or incapability to function. For example, the vehicle could move while
the robots are searching around. the rock samples could be exhausted in one location
requiring a rerouting of resources to explore another location, there could suddenly be
new obstacles on a path between the sampies and the vehicle.

4. Hardware economy: This refers to the ity of the proposed hard and
the resources (e.g. in energy) that is needed to keep the hardware operational.

5. Cognidve economy: This refers to the amount of internal representagons needed.
‘The more plex this rep jon the less I the system will be.

6. Communicative economy: This refers to the amount of information that needs to
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be exchanged berween the subsysiem:; involved to get the task done (e.g. berwzen the

robots or between the robots and the vehicle). Less icaton is more
if only because all i requires sub: ial of equip and
processing.

7. Predicuability. This refers to the amount of regularity that has 10 be presen: in the
envirorument for the total system to keep functioning. Ideaily the sysiem should be
able to cope wilh unpredictable situagons.

8. Prior knowledge. This refers to what has (0 be known in advance to have a suc-
cessful system. For example, does a map of the terrain have (0 be available? Less
prior knowiedge is more desirable.

There are also some quantitatve criteria ing the optimality of the sol
For each sample i there will be the time needed by a robot to find the sample g, and
the time needed by the same robot to carry the sample back to the vehicle t. The

otal time t(n) needed to carry a set of n samples is therefore equal to:
)= Ti®+ T ud 1
-ln s

Let us assume that d is equal to the distance between the location of the sample and
the location of the vehicle. We also assume that the time needed by a robot to cover
one unit of distance is equal to one unit of tme. Then the optimai performance with
only one robot is given by

t(n) = 20d @)

When m cobots are available, the opimality is given by
a
0 =224 ()]

Therefore if we have as many robots as samples. we can optimally carry ail samples
in as much time as it takes a single robot to carry one sample. This proves that paral-
lelism helps (if we can keep the other design objectives such as fault tolerance, com-
municative economy, etc. optimal).

2. TWO PARADIGMS

Work on distributed cooperating agents started in the late sevendes (Lenat (1975),
Steels (1979), Lesser (1979), Smith (1980), Komfeld and Hewitt (1981)). The basic
assumption was that the agents were complex entities of the sort then proposed for a
single arificial intelligence, i.e. each agent had substandal internal reasoning powers
50 that they could build up models of the world, relate and update these models with
sensors that interpret the world, and through p for
exampie to negotawe a soludon or to exchange partial views of a plan. All of this
was fimly within the symbolic Al tradition. More recently, there has been a revival
of research on distributed agents, particularly in logic-based Al (see e.g. Konolidge
(1982), Rosenschein and Genesereth, 1987). The reasoning powers of the agents an:
assumed (o be even more proncunced than proposed in earlier work. Each agent is
now a serictly radonal agent using a logical description of the world and performing
logical inference to plan its action and cooperate with other agents.

The logical approach
Applying the logic-based approach to our case study we would end up with the fol-
lowing proposal:
1. Each robot is equiped with a logical infe hine of the sort
by Genesereth and Nilson (1987). It has a representation of the world in the form of
i inan d form of predi calculus (e.g. this representation records
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the position with respect to other agents and the vehicle). The robot builds up this
representation progressively by sensing and reasoning. It can plan its actons by rea-
soning Iog:cally about the world and about pomble actions it could take. It pexfomu

. CHARACTERISTICS OF BEHAVIORS

There is no consensus yet on what the distinctive fearures are of a behavior based

poral and spatial ing and has axi P ions of the
and effects of an action: Thus the robot can form plans to decide in which direcdon
it should move next, whether it should pick up some object, whether it should go
back to the site on which it earlier found a rock. and so on. The robot is capabie to
ranslate these plans into concrete action by activating its effectors and adapt the plan
when changes in the world have made it obsolete or when an acton did not get exe-
cuted as planned.

2. To handle the cooperative part, each robot has additional functionalides: It is
able to engage in a dialog with other agents or the vehicle. This dialog inyolves
exchanging something close to logical formula. It could for exampie ask another
agent where it is located or whether it found something and where. Each agent
develops not only a mode! of itself and its own actions but also of what other agents
know and belief. It performs meta-level reasoning to think about how it should rejate
its own actions to other agents and when it should engage in communication or in
cooperation.

The pdsition taken in this paper is that the above scheme is endrely unrealistic for
the following reasons:

1. The technological complexity required in each agent is too high. If the agent has
(0 be equipped with a logical inference machine, it would need at least several mega-
bytes of memory and a processor fast enough 10 execute the tens of thousands of log-
ical inferences required per second. This implies that the agent has to arry a com-
puter around of the size of a powerful workstation. This computer has to remain
operational in difficult circumstances (assuming it survives the trip to the planer). To
establish communication between agents, we would need moreover radio equipment,
components that formulate requests o other agents. and components that decode
requests and formulate answers. The more complex the nawre of the messages
between agents, the more complicated these components will be.

2. So far we have no working programs that demonstrate how an agent can extract a
logical description of the worid from currently available sensors. and worse no such
programs seem to be forthcoming. Existing vision systems require vast amounts of
computation which would have to be added to the logical mfen-_we machinery.
Known algoritms do not get much further than ( iably) 1 Y
information from the image, making some leading vision researchers queston the
ldcl whether a general purpose vision system that can extract a complete symbolic
dacnpuon from the image in real time is at all feasible (Ullman, 1987). Even such
ing where each agent is located are much

ingly simple probi such as kr
more difficult than is commonly assumed.

3. Logic-based Al faces a set of fundamental problems which have not found ade-
quate solutions and which would be needed in this applicaton. These problems
include the frame problem, effective reasoning about ime and space (particularty the
combination of the two), coping with the dynamics (and therefore non-monotoniciry)
of the world, and so on. These are the research problems that logic-based Al has
been studying for the past few decades, but the fact that no soluuon seems within
reach for non-toy probi indi serious fund I di

The behavior-based approach

An alternative 10 knowledge is behavior. Behavior is unconscious and without much
deliberadon or volition. It is typical for tasks involving perception, locomotion,
speech and other skills. Nobody can explain for example how he is able to parse a
speech signal, or which musclas he is moving to pick up a suitcase. Professional typ-
ists when asked cannot i give declarative d of the keyboard
although they exhibit behavior that implies 'knowing’ something about the arrange-
ment of the keys.! Skilled typing is therefore a clear case where behavior rather than
knowledge seems to be.at the heart of the twsk. Al research and engineering so far
has swessed knowlédge-based approaches. This is entirely appropriate for wsks such
as computer configuraton, theorem proving, or legal reasoning, where the problem
solver is capable 1o explain how he is solving the problem and what knowledge he
brings to bear. But it is not necessarily the case that all tasks related to inm:iligence
should be soived using knowledge-based techniques. [n any case this paper explores
the use of behavior instead of knowledge o handle the task proposed in the case
study.

i atel

! You can try this yourself (if you can rype ‘blindly'): What lenter is under your right hand index
finger on the middle dar?

pp h 1o Al. In our own research we have been exploring the following charac-
teristics (Steels, 19838)

1. ANALOGICAL REPRESENTATIONS

Logical descriptions of the worid are avoided aimost endrely. There is no such thing
as a cenwal fact base that contains a description of the relevant state of the world in
terms of a set of facts (or possibly another equaily symbolic representation, such as a
semantc network or frames). Instead representatons are exploited that are a lot
closer to the world itself. These representatons will be called analogical because
they keep some part of what they represent implicit in the representation. For exam-
ple. suppose we have to handle relations in space. Two representations could be used
(see Fig 1):

o The symbolic representation uses facts based on predicates like lefr-of, or posi-

tion (x,y).

o The analogical representation uses a grid where the objects occupy positions

mirroring the positions they take in the world.

lefi-of {object-1, object-2}
square (object-1)
round (object-2)

Fig 1. 2 Symbolic jon. b. d I rep

The main reason for using analogical representations is that they are closer to the
sensors and require no (of 2 much simpler) categorisaton of the world before they
can be used. For example a sonar sensor or a camera. can give us a bitmap in which
objects occur as blobs pying a positi gous (o the posu:on they occupy in
reality. A heat sensor gives us i diately an logical and pi

toa of how wamm it is.

2. ANALOGOUS DYNAMICS

Using mainly analogical representations makes it no longer possibie 0 use logical
inference as primary mechanism for decision making. The first thing we will do is
direcdy link analogical with percep and action. A very simple
example of this is a sysxem with a thermometer that is linked to a valve. The higher
the wemperature the more the valve is closed. The thermometer is an analogical
representation of (emperature: the higher the wmperature the -higher the posidon of
the thermometer. There is a direct connection between the world and this representa-

ton, There is also a direct ion be the rep and the action of
the vaive.
The second thing we could do is execute various op over analogical rep

tatons to ransform it and give us more informaton. One example ol’ this is a gra-
dient field which is ished on an analogi P of a terrain. The pro-
cess of creating the gradient can be seen as a diffusion operation starting from the
target and going around obstacles until it reaches the vehicle. The route followed by
the vehicle is given by following the highest gradient towards the target. (see Payton
(1989) for a similar example).

3. EMERGENT FUNCTIONALITY

It is typical for behaviors that the required functionality does not get established by
explicit design but that it emerges as a side effect of (i) the internal dynamics and/or
(u) the (dynamical) i ion with the envi A typical of the first

is a tensile such as the g domes built by Buckminster
Fuller, in which different swesses interact to reach equilibrium and thus a sable
structure capable to carry weight. It is only when the last component is put in that the
whole structure suddenly obtains its functionality (fig 2 from Kenner, 1976). This
conerasts with a building constructed with bricks or concrete in which the capacity to
carry load comes from the rigidity of the component materials.
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Fig 2. Tensile saucture illusoadng emergent functionality through internal dynamics.

An example of the second phenomenon is the forward movement of cermin kinds of
worms which are not capabie to generate movement on their own, but when they are
put in water with 3 ceruain density, the skin spontaneously starts to contract and
swretch locaily leading to forward movement (Oster, etal. 1983). The movement is
a of the i the of the medium in

which the worm is located and the behavior of the skin.

lnlmspaper wmﬂuplaemﬁmﬂthhmuﬁqmmlﬁdm
self-organi Self. jon is a technical term from the theory of complex
systems (Prigogine (1976), Nicolis and Prigogine (1978)). It refers 10 a phenomenon

in which a so-called dissipative P y ges out of the i

of the behavior of many A typical ple is the fe of vortices in
fuid Aow. Seif-organisation is now und d to be 2 process in biof-
ogy (pardi y in fution, pattern fc or the immune system), and in phy-

sics and chemiswy (Babloyantz, 1987). There is no reason why it should not be of
equal relevance to Al

To get dissipative structures which are the product of seif-organisation the following

properties must be fulfilled:
1. There must be a basic underlying dynamical system which shows an equili-
brium behavior, i.e. the system keeps evolving undl it reaches a state of rest
The sute of rest is sall dynamic from the viewpoint of the underlying objects
but there are ‘no major macroscopic properties of the system changing. For
example, when two closed containers with different gas pressures are connected,
the joint system will evolve until there is equal pressure in bath containers,
aithough the movement of the molecul ponsible for the p is still
going on.

2. The dynamical system must be exposed to an outside disturbance, i.e. it must
be open. In the case of the water flow, the disturbance is the force causing the

Handling behavior
1. If I sense a sample and am not carrying one. [ pick it up.
2. If [ sense the vehicle-plasform and am carrying a sample. I drop it.

The handling behavi blishes a direct between sensors and effectors
and runs parallel with the movement behavior. There is no sophisticated conuol stra-
tegy or internal reasoning of any sort To handle obstacles, an additional behavior is
added:

Obstacle avoidance
If I sense an obstacle in front, | make a random turn.

The moving behavior and the obstacle avoidance behavior are coupled using a sub-
sumption architecture (Brooks, 1987), i.e. when there is an obsiacle, obstacle
e behavior i random (fig 3).

rapdom behavior

obstacle avoidance

Fig3. i i B level layers take over top-L

Will this solution solve the problem? Yes and no. The robots clearly perform a ran-
dom walk or Brownian movement. Hence they will accidentally stumble into. the
sampies and later on find back the vehicle. The following is a classical theorem from
probability theory:
The random walk theorem: Starting from any point in a random walk res-
tricted to a finite space. we can reach any other point any number of times.
(Chung, 1974).

Tt foiows from this theorem that the robots will find the rock and they will find back
the vehicle, The only problem is that it may take a very large amount of time.
Nevertheless this soludon has some of the features that we want

1. There is robustness. If a sample sensor malfunctions temporarily no harm is done.
If the pick up action did not get executed properly, the sample sensor will sill be on
and the robot will pick it up again. If the vehicle-piadorm sensor malfunctions, the

bom vnll wander around until it stumbles again on the pladorm. If the sample is

fluid to flow. In the case of a selectionist system, the disturbance is envi

tal pressure,

3. The dissipative sgucture forms itself in response to this external force. It

feeds on itself, which implies that the dynamics is going to be non-linear, and it

is present as long as as the force is present. This implies that there is not only a
h that i but also one that breaks it down again.

Thus the vortices in the water will Be present as long as the water keeps flowing

at a rapid rate. When the flow is no longer there. the water will move back to an

equilibrium state.

All of this is mapped onto the case smdy as follows. We will design a system of
interacting robots whose equilibrium behavior cormsu in exploring the terrain around
the vehicle. The p of rock pl a disturb The desired
dissipative structure consists of a spatial saucture (i.c. a path) formed by the robots
between the samples and the vehicle. This swucture should spontaneously emerge
when rock samples are present, it should enforce itself to maximise performance and
should disappear when all samples have been collected.

4. STEP 1: THE IMPORTANCE OF RANDOMNESS

Before we can build this system we have to get the basic behaviors of the agents
impiemented. Some solutons, which may seem obvious at first, have to be rejected if
we want to maximise the design criteria stated in the beginning. For example, a com-
plete map of the terrain and knowliedge where a robot or the vehicle are located on
this map, or a complete vision system that is telling us what kind of object a robot
has in front of it and what the exact boundaries are of this object, are luxuries that
will not be assumed to be present.

Instead we start from the following simple behaviors:

Movement behavior
1. Choose randomly a direction to move.

2. Move in that direction

ly dropped it will be picked up again or possibly found by another robot
which will then carry it to the vehicle.

2. There is fexibility because changes in the vehicle. the rock samples or sudden
obstacles can all be handled.

3. There is exmeme cogniive and communjcative economy, and no prior world
knowledge is required.

4. Most importandly, lism can be exploited without

To understand how parallelism helps. it is useful to go back to equation (1):

) = T o)+ T (G
aia nia

Clearly when the number of robots increases, the probability that one of them will
reach a particular point in the space increases as well. So, if the number of robots
increases to a (possibly very large) number M. we may evoive towards the theoretcal
optimum for the needed exploration time:

limy_y T () = od (O]
a

However no improvement with parailelism can be exp for the pondil
carrying time ¢, because each robot carrying a sample must find its own way back.
This puts an important limit on this solution. It shows that to optimise the total time
we necessarily need more mechanism. It is not enough to just multiply the number of
robots.

To test these theoredcal insights, a number of experiments were conducted to study
the reladon between the number of robots and the overall time needed to solve the
task. These experi were i in an actor-based complex dynamics
language ROL (Steels, 1989)2. The interface to the system is shown in fig 4. There
are different windows each dispiaying one aspect of the simulaton. One window
called ROBOT shows the positons of the different robots. The size of the square
indicates how many robots there are in that location. A second window called
CARRYING-SAMPLE shows the positions of the robots carrying samples. Other
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windows show the remaimung rock samples. and the collected samples already at the
vehicle.

R |

5. STEP 2: THE GRADIENT FIELD

A gradient fieid is a field emanating from a cerain point and diminishing in strength
as the distance o the poinc increases. Gradient fields are extremely common in

Fig 4. Soapshot of simulation environment.

The number of samples n is equal to 100. Starting with 8 agents, parailelism was
raised by a factor of 2 up to 256 agents. The results of the experiments are displayed
in fig 5. The x-axis represents 4x2*. The y-axis gives the average ume for 50 experi-

? Development of this language is panly sponsored by ESPRIT project P440.
ments. 8 agents require close to 30.000 tme steps which decreases to about 8000
tme sweps for 256 agens. As expecied we see a steady but limitng increase in the
overall efficiency as parallelism increases.

Joooo
25000
20000
15000
10000

5000

Fig 3. Relation between paralletism and efficiency.

The resuits are better understood when the average towl tme needed (n) is decom-
posed intw ¢, and v, as in fig 6. As predicted, t, decreases but ¢ remains constant at
about 7800 which is the average time for a robot to find back the way to the vehicle.

16000
14000
12000
10000
8000
6000
4000
2000
0

ole

¥

1 2 3 4 5 6

Fig 6. Decomposed parallelism retation.

nacure. They play a key role for ple in the f ion of such as shells,
e - T plants. and neural networks (Meinhardt and Gierer, 1982). Physical phenomena such
< N as mag radiation, or diffusion are all i of hani that lish a
; ) - gradient field.
- M A gradient fiefd will be used here (o solve the following problems:
: " . 1. We have seen that ¢ is not opamised through paraflelism. The gradient field
- . . Jl i must solve this problem. [t must be a guide to the robots how to get back to the
‘ b8 I I FIRE=SRPC ﬂg -SRAPL vehicle.
J 2. We also want the robots to keep moving within a bounded area around the
vehicle. This will increase the probability that they will find the samples in that

area. When the vehicle moves forward, the robots should move along with it

A gradient field is esmblished through a diffusion process. Let p =<i.j> be 2 position
in a di d spatial and n(p) the von Neumann neighbourhood of p
=d,j>:

P

olp=(p’ | p’ = drkjrqr—1 Sk SL-1 Sq S, p =p] ™

Let g (Lp). a non-negative integer, represent the gradient at a Gme t in a position p.
The diffusion processes used in the experiments is defined using the following
difference equation:

sthtlaj) = ¥ ‘(;:m—)- &)
-y
Boundaries are d to be dissip . An addigonal rule helps further in the
decay process:
s(t+1.p) = 0 if g(y.p)S? [&)]

Note some imporant consequences of this diffusion process:
1. There is a decay, consequenty continuous supply of g is needed.
2. The extent of the field depends on the amount of g originally available. This
implies that we can engineer the system to specify how far robots may wander
away from the vehicle by increasing g.

A physical way to implement g is by the emission of a sound wave from the vehicle.
Increasing g then means increasing the sound level.? Each robot must have a sensor
that can detect the sound and determine the direction where it came from. If the vehi-
cle. which is responsible for emitting g, moves, the fieid will move along.

Let us now tumn to the behaviors that use the principle of the gradient field.

The robot can be in two modes:
¢ Exploration: In this mode the robot moves away from the sound source, i.e. it
follows the lower gradient.
o Retum: The robot moves back (o the sound source, i.e. it foliows the higher
gradient.

3 An altemative, which was aiso verified in compuaconal experiments, is that the robots put them-
selves markers on the ground as they arc exploring the area around the vehicle. There also thea necds
10 be 3 process of collecting the markers similar 10 the mechanism that we will discuss in section 6.

These modes determine two additional moving behaviors:

Return movement
If I am in recurn mode | chose the direcrion of highest gradient.

Explore movement
If I am in exploration mode ! chose the direction with the lowest gradient.

The following behavior regulates which mode the robot will be in:

Mode determination
1. If [ am in exploration mode and | sense no lower concentration than the con-
centrarion in the cell on which [ am located, | put myself in rerurn mode.
2. If I am in rerurn mode and | am at the vehicle-platform I put myself in
exploration mode.

3. If I am holding a sample, | am in rerurn mode.

These behaviors are coupled using a subsumption architecture to the other moving
behaviors as in fig 7:
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random movement

retum movement

cxploration movement

obsucle avoidance

Fig 7. Subsumption relation between moving behaviors.

Fig 7 illustrates what happens when there are no rock samples. On the left we show
an additional window called SOUND that implements g. Next to it there are a series
of successive snapshots showing the distribution of the robots.

THT

I

1
11
Pt

Fig 8. Exploradon around the vehicle in waves.

There is clearly a pulsating wave of robots coming out of the vehicle untl they reach
the boundaries of the SOUND diffused from the vehicle located in the middle of the
space and returning back to the vehicle. The robots ciearly explore systematically the
area around the vehicle. When the vehicle moves the SOUND area will also move
and the robots will be amracted to the new location of the vehicle. Given that the
movement is not too fast none of them will be lost. If one of them is lost it will fall
back on random behavior.

When a rock sample is discovered, it will efficienty be brought back to the vehicle
guided by the gradient field.

30000
25000
20000
15000
10000

5000

Fig 9. Absolute times with gradient fields.

The following experiments confirm this. Fig 9 represents again the ¢volution in (aver-
age) absolute time with parallelism increasing from 8 to 256 by a factor of 2. The
time needed t(n) drops from about 25000 to about 500. Fig 10 gives the decomposi-
ton in ¢, and t. We see that the second term in the computation ¢ has dropped
dramaticaily to be constant and equal to the di b the sample I and

|FTFIFYF

the vehicle.

14000
12000
10000
8000
6000
4000
2000 .

Fig 10. Decomposition of average time with gradient fields.

6. STEP 3: SELF-ORGANISATION

We are now ready to focus on how the principle of seif-organisatdon could be
apphed. Sp fly we want to the first term ¢, by establishing cooperative
behavior berween the distributed agents. When one robot has discovered the samples,
it should communicate its finding to others and efficiently establish a path between
the sample location and the vehicle. The means of communication between the robots
will be a trail composed of ‘crumbs’. The crumbs should be easily detectable by a
robotensor. Each robot has a cenain supply of these crumbs and is capable to put
them down and pick them up.

The following behaviors are added to the repertoire of the mobile robots to make this
all happen:

Crumb handling

1. If I carry a sample, [ drop 2 crumbs.

2. If I carry no sample and crumbs are detected, I pick up one crumb.
(1) will establish the path. (2) will break it down again. Note that the speed of break-
down is less than the speed of buildup, although it does not really matter how much.
We also need a new movement behavior:
Path attraction

If I am not carrying a sample and [ sense crumbs, [ move towards the highest
concentration of crumbs.

This behavior is integrated with the other movement behaviors using the subsumption
architecrure (fig 11).

random movemeat

retum movement
explorutios movement

path awraction

obsucle avoidance

Fig 11. Subsumption relation between moving behaviors.

Fig 12 a few of a simuladon in progr Fig 12 a. is taken when
one robot has discovered the samples which are located in the bottom right. Conse-
quently there is 2 small square in the CARR YING-SAMPLE window at that position.
The robots :re scattered around randomly in the area to be explored around the vehi-
cle.

Fig 12 b. illustrates the formation of a path. A second robot has now discovered the
sample and the first one has arrived back at the vehicle (given a first smali square in
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the COLLECTED-SAMPLES window). Note that crumbs have been put down by the
first robot and that there is already a grouping of the robots because of atraction to
the crumbs path.

In fig 12 c. we see several of these robots coming back with samples (o the vehicle
and the set of collecied samples has aiready increased. Notice however that the
crumbs oath has been broken down considerably because more robots without
robots.

samples are walking along the path to the samples (and thus breaking down the sam-
ples) than there are robots returning with samples and thus reestablishing the path.

Fig 12 d. shows that the crumbs path has been again by ing
robots. We also see that robots now maximally cooperate in the task. There is only
one robot that is not on the path.

In fig 12 e. the samples are exhausted and the path is being broken down again.
Robots are already scattered around in search of new samples. In fig 12 f. the sys-
tem Has recurned (o the original equilibrium bebavior.

2500

2000

1500

1000

500

[T IT T
f- j |
- - Fig 13. Total time with dissipative structure in piace.
B Further inspection reveals that most of the remaining non-productive time is speat in
1 e the initial phase when the first sample needs to be found. Once the sample is found.
NN - = ST !==$ an efficient path is established fairly quickly even with a small group of robots. To
1 ] illustrate this better fig 14 shows the exploration tme ¢ needed for each sample in
= 1 L one experiment with |6 robots. The x-axis represents the discovery order of a sam-
e = /aCT : pie. The y-axis represents the time needed to discover a particular sample. Starting
T 11z LW i from roughly the 17th sample, the time is equal to the distance between the vehicle
11 T and the sampie (except for sample 26 and 27 which were discovered by robots with a
o e Em‘ﬁ!'ﬁ":& longer disccvery path). The inital search phase can only be made smailer when more
3 == oL
% D robots are availabie 1o scan the area around the vehicle.
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o = - Fig 14. Time needed to discovet each sample.
o — This experiment illustrates particularly how functionality can be made to emerge:
o —: 1. The suengthening of a path is not programmed in but is due to the non-linear
1 IL i of the b : Robots not carrying samples are anracted by the
{ ]l, - path which increases the chances that they will arrive at a sample and on retumn
PSR |15l By contribute to the establishment of the path.

Fig (2. Different snapshoes of simulstios in progress.

The experimental data confirm that almost optimal performance is reached after a few
time steps. Fig 13 contains again the average times t(n) needed by an increasing
number of robots (going from 8 to 256). We go from about 2500 timesteps which is

a drastic red from 30000 p

to slighty under 1000 time steps with 256

2. The breakdown of the path ajso follows from the interacton berween the
environment and the robots, When there are no more samples, this will lead o
less crumbs being put down, and because there is a depletion process the path
will eventally disappear.

3. Also the fact that robots follyw the path towards the vehicle and not away
from it is. surprisingly. not programmed in but follows from the fact that on
average more crumbs will be Jocated nearer 10 the rock samples. Most robots by
the way st on the path from the vehicle to which they reurn due to the pul-
sating in/out movement.
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7. CONCLUSIONS

The solution we arived at scores high on the various evaliadon criteria proposed
the beginning of this paper:
1. The soluton is robust because the improper execution of an action is not fatz
to the whole system.
2. The saludon is fauit tolerant, because loss of a robot is not fatal either
although loss of the vehicle would of course be fatal. If there are fewer robot:
this will lead 10 a graceful performance degradadon, but even with two robot
{or one) the tota) system stll remains operational.
3. The solution is flexible. Environmental changes have lirde impact Any kinc
of object can be on the way berween the robot and the vehicle.
4. There is exreme cognitive economy. The intemnal representation consists onl®
of the state of the robot (exploration mode or return mode), There are no com
plex representations of time ar space. no explicit representations of action, nc
representation of where the other robots are or where the vehicle is.
5. There is extreme communicarive economy. The robots use the world to com-
municate among themselves: They leave markers behind in the world. Never is
there any point to point communication. There are no complex messages to for-
mulate or decode.
6. The environment does not have to be very predictable. For example, things
would work equally well when there are two or more sources of rock samples.

Konolidge, K. (1982) A first-order formalizadon of knowledge and action for a
multi-agent planning system. Machine intelligence 10. Eilis Horwood. Chichester.

Kornfeld, W, and C. Hewitt (1981) The Scientfic Community Metaphor. [EEE Tran-
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Wiley-Interscience, New York.

Oster, G.F.,, I.D. Murray, and A.K.Harris (1983) Mechanical Aspects of Mesenchy-
mal morphogenesis. Jounal Empryol. exp. Morph. 78, 83-125.

Payton, D. (1989) Internalized Plans: a ion for action Hughes Al
Center, Calabasas, Ca.
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Rosenschein, S. and M. G (1987) C icaton and Coop Among
Logic-Based Agents. In Proceedings of the 6th Conf on Comp and Com-
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7. Finally no prior knowledge in the form of terrain maps or other i
is needed.

The robo's themselves are definitely consguctable using current technology. They do
not require very sophisticated sensors or effe The ption archi-
tecture has been well tested now in a number of applications. The solution satisfies
also the quantitative criteria. We have moved from a very inefficient solution involv-
ing randora search to an efficient cooperadon between the robols as soon as a sample
has been found.

The real importance of this paper is however not in the adequacy of the found solu-
don but in the underlying principles. These principles can be summed up as follows:
We have a aumber of dynamical mechanisms at our disposal: (partially) random
movement, a gradient fieid, 2 dissipative suucwre. Each of these mechanisms is
dynamical in the sense that it depends on the linear i with the environ-
ment. Strucrures grow dynamically and decay again. Although gradient fields have
been used in other work, this is the first paper experimentally ilustrating the use of
dissipative structures. The idea was aiready proposed in Steels (1987) which contains
suggestions on other applicadons.

The relation to ant societies is obvious but not as swaightforward as one may think.
Many ant societies use individual recruiting (one ant fetches anather oae), and if they
do mass recruiting they are typically much less effective (30 % or cven S5 %) than the
robot ecology proposed in this paper (Deneubourg, eral. 1985).
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