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The paper uses a behavior-bued approach to tackle the problem of 
cooperation k o m n  dudbuted agenu. It f o c w s  on the use of self- 
organisation and dissipative rrmcturu IO establish emergent hmcaonality. 
Other primplcs such as randomness. the subrumption mhircerarc. and the 
gradient field an also used. Resultc of computational exprimenu arc 
’ presented. 

1. INTRODUCTION 

The paper discussu some antral irrw in the cooperation between disuibuted agcnu 
using lhe following case study: 

The objective is to explore a distant planet. more concretely to collect samples 
of a parricular typ of precious ruck. The location of the ruck .iamplu is unk- 
nown in advance but they arc rypiwlly clustered in cenain spm There i S  a 
vehicle that can drive around on the planet and later reenter the s p x d  (0 g0 

back to ewlh There is no deuiled map of the t e m h  although it h known hat 
the terrain is fuU of obstacles. hills. valleys. etc. 

The c m  study is designed to require autonomy. It is not feasible IO plan a d  steer 
the whole thin3 out of eanh because communication h m  and to the plancc has a 
considerable time delay and may be cut off during ccrWin periodS. Although om 
solution could be that the vehick itself wanders around and COI~CCU the rocks. i t  is 
obvious that a larger tenah could be covered much more quickly if lhere h 1 P U P  
of mobile robou that perform Ihe u t k  of searching and cvrying the rocks 10 the 
vehicle. This would make the soludon also l eu  fault tolennt becaw IOU of one 
robot is not faral. Bnurre the desired ramples arc cltumcd in rrmin rpoo. the 
robou k n e r  cooperate to accomplish Ihe urk This ginr  us the pmblem addressed 
in this papec how can these dicaibuted robou c o o p c  U) find samples ud to any 
rbem to rhe COUCCting VehiCk. If he present CW sNdy seem soomewlul far fetched. 
the cleanup of toxic wute or howho ld  garbage coUection can k viewed U compu- 
able talks. 

Evaluadon criteria 

The following criteria will be used to evaluate different solutioru. These arc criteria 
relevant for AI systems i n  general but they an pardcularly appropriate for mobile 
robou operaang on a distant planer 

1. Robusmeu: The system should be able to recover when a cenain action is not 
comcl ly executed. For example. when a sample is not picked up although the 
inrmct ion was given, this should not lead to funher malfunction 

2. Graceful perfonnance degradation: Lou o f  OM robot should not be faul dlhough 
i t  could give dureased performance. 

3. Flexibility: When conditions in the cnvimnment change. this should not require 
major changes or incapability 10 function. For example. the vehicle could move while 

the robou are searching around. the rock sampler could k exhausted in one location 
requiring a rerouting of resources to explore another location. rhm could suddenly be 
new obstacles on a path between the samples and the vehicle. 
4. Hardware economy: This refers m the complexity of the propmed hardware and 
h e  resour~es (e.g. i n  energy) thsl i s  needed to keep the hardware o p e d o d .  
5. Cognitive economy: This refen IO the amount of internal nprrsencations needed. 
The more complex rhis representation the Iw economical the sysicm will be. 
6. Communiwtive economy: This refen to the amount of infomution that ~ e d s  to 

k exchanged between the subsystem; involved to get rhe urk done (e.g. benus?en the 
robou or between the robots and L e  vehicle). Leu communication is more desirable 
if only kcause all commumcauon r q u m  substantial amounu of equipment and 
processing. 

7. Predicmbiliry. This refers to the amount of replarinty that h u  io k present in the 
environment for the total system to keep funcnomng. Ideally the system should be 
able to cope with unpredicwble riluaoons. 

8. Pnor knowlcdgc. Tlus refers 10 what has to be known m advance to have a suc- 
cessful system. For example. does a map of the amain have to be available! Less 
prior knowledge is more desirable. 

Thm arc a h  some qmndudve criteria concmdng the 0p-r). o f  rhe solution 
For each sample i rhm will be the time needed by a robot to find the sample and 
the time m d e d  by the same robot to carry rhe sample back to the vehicle + T k  
loul dme t(n) needed. to cyrl a set of n samples h therefore q u a l  U): 

6) - z CO + ;pl (1) 
C l r  

Let us assume that d is q u a l  to the distance between the location of  the sample and 
the location of the vehicle. We also assume that the time needed by a robot 10 cover 
one unit of distance is q u a l  to one unit of time. Then the opnmal performance with 
only one robot is given by 

tin) - tad (2) 

When m mbou are available. the optimalicy is given by 

(3) 

Therefore if we have a many robots as samples. we can optimally carry all samples 
in as much time Y it  fakes a single robot IO cany one sample. This p r o w  that paral- 
lelism helps (it we can keep the other design objectives such as fault tolerance, com- 
municative economy. etc. optimal). 

2. TWO PARADIGMS 

Work on distributed cooperating agenu suncd in the late seventies (Lenat (1975). 
Steels (1979). Lesser (1979). Smi th (1980). Komfeld and Hewin (1981)). The basic 
auumption was that the agenu were complex entities of the son then proposed for a 
single artificial intelligence. i.e. each agent had substantial internal reasoning powen 
so that they could brild up models of lhe world, relate and updace lhese models with 
~ n s o r s  that interpret the world, and communicate rhrough complex messages for 
example to negotiate a solucon or to exchange panial views of a plm. AU of this 
was firmly wifhin the symbolic AI tradition. More recently, there has been I revival 
of research on disuibuted agenu. pamcularly in logic-bued A I  (see e.g. Konolidgc 
(1982). Rosensckin and Genesereth. 1987). The rcxoning powers of the agents an: 
assumed to be even more pronounced than proposed in  earlier work. Each agent is 
now a smclly rationd agent using a logical description of the world md performing 
log~cal inference to plan iu action and cooperate with olher agenu. 

The logical approach 

Applying rhe logic-based appro& w our case study we would end up with cbe Ibc 

I .  Each robot is quiped with a logical infucnce machine of rhe san d u u i i  
by Genesereth Md W i o n  (1987). It has a representation of the wodd in rhe fam of 
expressions in an extended f o n  o f  prediclu calculus (e.g. this q”ha mDlQ 

lowing propoul: 
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the position with respect to other agenu and the vehicle). The mbot builda up  hi^ 
represenmion propssivcly by xnsing and reasoning. It can plan iu actions by rea- 
soning lopcally about the world and about possible actiom it could ukr It perfom 
temporal and spatial reasoning and har axiomatic reprcsenutions of the pncconditions 
and effecu of an acnon: Thus the mbot M form plans to decide in which direction 
it should move next. whether it should pick up some objecr whether it should go 
back to the site on which it cvlicr found a mck. and so o n  The mbot U capable to 
mmlate these plans into concrete acnon by activating its effecton jnd adapt the plan 
when changes in the world have made it obsolete or when an action did not get exe- 
cuted as planned. 

2. To handle the cooperative part. each robot has additional funcnonalities: It is 
able to engage in a dialog with other agenu or the vehicle. Thic dialog involves 
exchanging something close to logcal formula. It could for example atk another 
agent where it is located or whether it found something and whm. Each agent 
develops not only a model of ioclf and i a  own actions but also of what other agenu 
know and belief. It perfom meta-level reasoning to think about how it should relate 
its own actions to other agenu and when it should engage in communication or in 
cooperation. 

The pdsition taken in lhic paper U that the above scheme is endrcly umalistic for 
the following rezsom: 

1. The technologicd complexity required in each agent is too high. If the agent has 
to be equipped with a logical inference machine, it would need at least several mega- 
bytes of memory and a processor fast enough IO execute the tens of lhousanda of log- 
ical inferences required per second. This implies that the agent has m ':- a com- 
puter around of the size of a powerful workstation. This computer hu to remain 
operationd in difficult circumsmccs (assuming it survives the lrip to the planet). TO 
establish communication between agenu. we would need mormver radio equipmcnL 
componenu that formulate rtquesu to other agenu, and componenu that decode 
rcquesu and formulate answers. The more complex the nature of the messages 
between agenu. the more complicated these componenu will be. 

2. So ku we have no working programs that demonstrate how an agent c m  exmct a 
lomcd descnptlon of the world from currently avalable semon. and worse no such 

program seem to be fonbcoming. Existing vision system ~ g u k  VU( IIIH)WIU of 
computation which would have m be added m the l o g i d  hh'cna machinay. 
Known algorirms do not get much further than (unreliably) e x m d n g  elemenury 
information h m  the image. mpLing some leading vision ruearchen question the 
idea whether a gemd purpose vision system thu CM e x m  a complete symbolic 
description from the image in r u l  time is at all feasible (Ullman 1987). E v a  such 
seemingly simple problem such +1 knowing where each agent U lcated n much 
more difficult than is commonly assumed. 

5. Logic-based AI faces a set of fundamental problem which have not found ade- 
quate solutions and which would be needed in this application. These problem 
include the frame problem, effecn?e reasoning about dm and space (partidarty Ihc 
combination of the two). coping with the dynamics (and therefore non-monotonicity) 
of the world, and so o n  There n the research problem that logic-based AI hu 
been SNdying for the past few decades. but the fact thal no solution seems within 
reach for non-toy problems indicates serious fundamental difficulties. 

The behavior -bad  approach 

An altcmative IO knowledge is behavior. Behavior is unconscious and without much 
deliberation or volition. It is w c a l  for task involving perception. locomotion 
speech and other skills. Nobody can explain for example how he U able to ppne a 
speech signal. or which muscles he U moving to pick up a suitcare. RofCUiod typ- 
isu when asked CIMO~ immediately give declarative ducriptions of the keybwd 
although they exhibit Ghavior that implies 'knowing' something about tk m g e -  
ment of the keys.' Skilled typing is therefore a clcpr c b ~  where behavior nther than 
knowledge seem to k.aI tk hem of rhe task. AI  w e m h  and engineering SO far 
has sucssed knowledge-based approaches. This is entirrly appropriate for wrk such 
as computer configuration. theorem proving. or legal reasoning. where the problem 
solver is capable to explain how he is solving the problem and what howledge he 
bring to bear. But it is not necessarily the use that all mh related to ins:lligence 
should be solved using knowledge-bared techniques. In any cw this papcr expl0ZS 
the use of behavior instead of knowledge to handle the task proposed in the Cue 
SNdy. 

3. CHARACTERISITCS OF BEHAVIORS 

Thm is no consensus yet on what che distinctive r e a m  arc of a behavior bued 
approach lo AI. In o w  own mseanh we have k e n  exploring the following charac- 
uristia (Steels. 1988) 

I .  ANALOGICAL REPRESENTATIONS 

Lo@cal descnptions of the world M avoided almost endrrly. There is no such thing 
as a cennal fact base that contains a desmpuon of the relevant state of the world in 
t e r m  of a set of facu (or possibly another equally symbolic reprerentation. such as a 
semantic nework or frames). Lutead representarions are exploited that M a lot 

closer to the world iuelf. These represenuaons 4 be c d e d  analopjcal because 
they keep some pan of what they represent implicif in the representation For exam- 
ple. suppose we have to handle rclanons in space. Two representations could be used 

The symbolic repmentation uses facu based on predicates like Cefiu~ or posi- 
rion (.cy). 

The analogical representation uses a grid where the objects occupy positions 
minoring the positions they rake in the world. 

(see Fig I) :  

The main reason for using analogicd represenwuons is that they arc closer to the 
senson and require no (or h much simpler) categonsation of IIIC world before they 
c m  be used. For example a sonar sensor or L c m e n .  CM give us a bimq in which 
objects occw as blobs Occupying a position andogow to the @tion they occupy in 
rcality. A heat sensor gives us immediately an malogid  ud conmuous repmenu- 
non of how warm it is. 

2 ANALOGOUS D Y N M C S  

Udng mainJy analogical repmentations nukes it m longer posribk to use logid 
inference as p l imy,  mechanism for decision making. The fint thing we d l  do is 
dinctly link m+logicd repmentations with prcepdnn and d o n  A very simple 
example of this is a system with a thermometer thu is l i d  m a valve. The higher 
the L%IperaNre the more the valve is closed The thamometer U an uulngical 
repmentation of umperature: the higher r k  ompcMve rhc -hi* &e pcnition of 
the thermometer. There is a dirrn connecdon between the world nd this representa- 
non. There is also a direct connection between the reprrwntadon and rhe action of 
the valve. 

The second thing we could do is CXLCUK vvious operanom over analogical represen- 
utions to transform it and give us more information. One example of this is a ga- 
diem field which is established on an analogical representation of a tanin.  The pro- 
cess of maring the p d i e n t  can be seen as a diffusion opennon starring h m  the 
target and going around obstacles until it reaches the vehicle. The mute followed by 
the vehicle is given by following the highest sradienr lowuda the urger (see Payton 
(1989) for a similar example). 

;. EMERGENT FUNCTIONALTTY 

It is rypical for behavion that the required hncdonolity d m  not get established by 
explicit design but that it emerges ac a side effect of (i) tk intend dynamics andor 
(U) the (dynamical) interaction with the environmenr A typical example of the fint 
phenomenon is a tenrile s r m c ~ r e ,  such as the geodesic domes built by Buclmriruter 
Fuller. in which different S ~ S S ~ S  interact m r e r h  quilibrium and thus a sable 
s ~ c m r e  capable to c"y  weight. It is only when Le hst  component U put in that the 
whole s r m c ~ r e  suddenly obraim iu  functionality (fig 2 from Kcnner. 1976). This 
conuasu with a building consuucted with bncks or concrete in which the capacity to 
cany load comes from the ngdity of the component materials. 
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Fts 1. Tcndc  m c m  UurmMg cmergcnl funcuanrlify h@l b l d  dp& 

h example of the second phenamenon is the fmward "CN of Ecrpin ldDdr of 
worms which are not capable to genenu movemen( 011 tbcir om bm rhm I b q  uc 
put in water wiQ a cuuin dauiry. rhe skin spo119rroraly 1ll0 to an- d 
suetch l d y  leading to f d  m o v a r m  (Oser. etd .  1983). Tbc " e a t  is 
therefore a consquence or the inpnctiw be- m~ b~h.viar ot medimn in 
which the worm is located and the behavior of the skin 

In this paper. we pill u p l a c  specifically hor fmrdaplicy m anage b.rcd 011 

self-organiwtion. Self-orprdwtion is a ochnid urm ban the of complex 
systems ( h g o g n e  (1976). Nicoli and h p g i n c  (1978)). It refen m a i h u n m o n  
in which a s o d l e d  dissipative s r m R u l c  sponurrourly c m q a  out of the m o m  
of the behavior of nuny &menu. A rvpicll example is the iomudon of rorrim in 
fluid flow. Self-orguuwoon is now undentood to be a h"end proceu in biol- 
ogy (pardcularly in evolution. pattem formation. or the immune system). and in phy- 
SICS and chemisny (Babloyanu. 1987). There is no m a n  why it should not be of 
q u a l  relevance to AI. 

To get dissipative smctures which M the product of self-organisation the following 
propemes must be fulfilled: 

I. There must be a basic underlying dynamical system which shows an quili-  
brium behavior. i.e. the system keeps evolving und it reachrr a state of reSL 

The state of rest is stiU dynanuc from the viewpoint of rhe underlying objects 
but there M 'no major macroscopic properder of the spum c h g h g .  For 
example. when two closed containers with different grr preuuru are connected. 
the joint system d l  evolve una mere is equal p n u m  in both conainen. 
although the movement of the molecules responsible for the p u ~  U StiU 
going on. 

2. The dynamical system must be exposed to an outside disturbance. i.e. it must 
be open. In the  CY^ of the water flow, the disturbance is the force causing the 
fluid to flow. In the case of a selecdonist system. the disturbance is environmen- 
tal pressure. 
3. The dissipative smcfure forms irrelf in response to this extemal force. It 
feeds on itself. which implies that the dynamics IS going to be non-linear. and it 
is present Y long Y Y che force is present. This implies that there is not only a 
mechanism that establishes smcture but also one hat breaks it down again. 
Thus the vonices in the Water will k present Y long Y the water keeps flowing 
at a npid me.  When the flow is no longer there. the water will move back to an 
equllibnum state. 

NI of thir is mapped onto the QY m d y  U follows. We wiIl design a ry" of 
inrc-g tuba whose equilibrium behavior cotnisu in exploring the taniD around 
the vehicle. The ptucnce of roek sampler wr~ritum a dit-. The desired 
dissipative S ~ C N R  consis0 of a sparial S ~ C N I C  (i.e. a pa&) formed by the robou 
between Qe sample and the vehicle. 'IU s m c m  should spontaneously emerge 
when mck sample are prc-ssn~ it should mforce itself to maximise performance and 
should disappear when d m p l u  have k e n  collected. 

4. STEP 1: THE IMORTZuYCE OF RANDOMNESS 

Before we can build this system we have to get the basic behavion of the agents 
implemented. Some solunons, which may seem obvious at hnf have to be rejected if 
we want IO maximise the design criuria staud in the be@nning, For example. a com- 
plete map of the terrain and bowledge where a robot or the vehicle are located on 
this map. or a compleu vlsion system that is telling U what k3nd of object a robot 
has in front of it and what rhe exact boundaries are of thb o b j m  are luxuriu that 
will not be assumed to be present. 

Instead we stan from the following simple behaviors: 

Movement behavior 

I. Choose randomly a direction IO move. 

2 .  Move in rhm direcnon 

Handling behavror 
I .  If I sense a sample and am nor canying one. I pick ir up. 

2. If I sense rhe vehicle-plarfom and om carrying a s n p l e .  I drop it. 

The handling behavior establishes a dkect connection between sen so^ and effecton 
and runs parallel with the movement behavior. There is no sophisticated conml soa- 
Iegy or intemal reaming of any son To handle obstacles. an additional behavior is 
added 

Obstacle avoidance 
I f  I sense an obrracle in fmnr. I make o random rum 

The moving behavior and the obstacle avoidance behavior are coupled using a sub- 
sumption architecture (Brooks. 1987). i.e. when there is an o k m l e .  obstacle 
avoidance behavior ovemdes random movement (17s 3). 

Will this solution solve the problem? Yes and no. The robou clearly perform a M- 

dam walk or B ~ W N ~  movement. Hence they wl l  accidenully stumble into the 
samples md later on find tack h e  vehicle. The following is a classical theorem from 
probability theory: 

T h e  random walk theorem: Srom'ng from any P O ~ N  in a random walk res- 
rricred IO a hire space. we con reach any orher poim any number of rimes. 
(Chung. 1974). 

It follows f" this theorem that the robots will find the rock and they will find back 
the vehicle. The only problem is that it may rake a very large amount of time. 
Nevenheless this soluoon has some of the features that we wanc 

1. There is robustness. If a sample sensor malfunctions temporanly no harm is done. 
If the pick up acuon did not get executed properly, the sample sensor wdI still be on 
and the robot will pick it up apm.  If the vehicle-pladon sensor malfunctions. the 
robot will wander around und it srumbles again on the platform. If the sample is 
accidentally dropped it WIU be picked up again or possibly found by another robot 
which will then c a r y  it to the vehicle. 

2. There is flexibility because changes in che vehxle. che rock samples or sudden 
obstacles can all be handled. 
3. There is esueme cogr ive  and communicauve economy. and no prior world 
knowledge is required. 

4. Most imporwnrly. parallelism can be exploited without additional overhead. 

To understand how parallelism helps. it is useful to go back to equation (1): 

Clearly when the number of robots increues. the probability that one of them will 
reach a pamcular point in the space inneues  v well. So. if the number O f  robots 
increves to a (possibly very large) number >I. we may evolve towaxdc the theorcod 
OPQllrm for rbe needed explodon time: 

b,, z U0 - (3 
CIA 

However no improvement with parallelism cm be expected for the conuponding 
carrying h e  t. because e u h  robot cYrying a sample must find iu own way but 
'Ihic pu0 an imponant Limit on this solution It shows that to opdmire the mtll rime 
we necessarily need more mechanism. It is not enough to just multiply the number of 
r0bOK. 

To test these theoreocal iruighu. a number of exprimenu were conducted m smdy 
the relation between the number of mbou and the overall time needed to solve the 
tatk These experiments were implemented in m actor-bud compkx dynawia 
language RDL (Steels. 1989)'. The interface IO the sysum is s h o w  in fig 4. Thcrr 
are different windows each displaying one aspect of rhe simulanon One window 
called ROBOT shows the positions of the different robou. The sin of rhe sqqw 
indicates how many robou there are in that Iceation. A second window erocd 
CARRYING-SAMPLE s b w s  rhe positions of the mbou anying umpla. OQa 
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windows show the remauung rock samples. and the collected samples already at the 
vehicle. 

The number of smples n is equal to 100. S t m n g  with 8 agenu. parallelism was 
msed by a factor of 2 up io 256 agenu. The results of the expenmenu arc displayed 
in fig J. The x-ais  represents ~d‘. The y-;UIS g v c s  the avenge ome for 50 experi- 

30000 r 

15000 ;.. \ 2 5 0 0 0  

20000 

0; 
1 2 3 4 5 6  

The results arc betrrr understood when the average focal dme necded r(n) is decom- 
posed into t. and I+, as in fig 6. AS predicted. I. demases but I. remains C O N ( M t  at 
about 78M) which is the average time for a robot to find back the way to the vehicle. 

5. STEP 2: THE GRADIENT FIELD 

A gradient field i s  a field emanatmg from a c e m  point and diminishing in smngrh 
as che dismcc (0 rhe point incrcwzs. Gradienr fields arc exmmely common in 
nature. They play a key role for example in the formarion of  SUUCNICS such as shells. 
planu. and neural networks (Meinhardt and Gicrer. 1982). Phydcd phenomena such 
as magnensm. ndianon. or diffusion arc al l  instances of mechanisms chnr establish a 
gradient field. 

A gradient field will be used here to solve the following problems: 

I .  We have seen rhat c is not opomised thmugh pardlelism. The padient field 
must solve this problem. I t  must be a p i d e  to the robots how to get back to the 
vehicle. 

1. We also want the robots to keep moving within a bounded area around fhe 
vehicle. This wi l l  increase the probability that Ihey will find the smples that 
arc% When l e  vehicle moves forwad. h e  mbou should move dong with it 

A @adient field is u a b l l i r k d  rhrough a diffusion plweu. Let p =a+ be a position 
in a dismnsed spatial reprewnmnon. and n(p) the von Neumann neighbourhood of  p 
= a.jx 

o(p!-ip’ I p’ I .i+k.jt.p-I 5 k 51.-1 5 q 51. p’ . PI  (3 

Let  g ( ~ p ) .  a non-negative integer. represent the gradient at a time I in a position p. 
The diffuunon processes used in the experiments is defined using the following 
difference equation: 

Boundaries are assumed to be dissipaove. An additional rule helps further in  the 
decay process: 

dW1.P) = 0 if Z(b.P)sa ( 9 )  

Note some imponant consequences of h i s  diffusion process: 

I .  There is a decay, consequently continuous supply of  g is needed. 

2. The extent of che field depends on che amounr of g originally avadable. llis 
implies *at we CM enenecr the system to specify how far robou may wander 
away from che vehicle by inncasing g. 

A physical way to implement g i s  by the emission o f  a sound wave from rhe vehicle. 
Increasing 3 then meam increasing the sound Each robot must have a sensor 
that CM detect the sound and determine rhe direction when it came from. If the vehii- 

cle. which i s  responsible for ermtmg g, moves. the fieid will move along. 

Let us now nun to the behaviors [hat use the principle of  the gradient field 

The robot CM be in  two modes: 

Exploration: In h i s  mode the robot moves away from the sound source. i.e. it 

follows h e  lower gradient. 

Re”: The robot moves back to the sound source. i.e. i t  follows the higher 
gradient. 

J .h a ~ i m m i r e .  rtuch YU dul r e n 6 d  in compuvmond expcnmenrs. b hat tbc mixa puc hem- 
Y1”eI m u k n  on me gound a3 h e y  ut explonn* *e M yaund Ihe “ChIClC. Them llm m a  ”& 
io be a p m c u  d collmmg Ihc m k m  iurulu lo h s  mehrruwn h a t  we mll divvu in s m o n  6. 

These moder dncnnine [WO additional moving behaviors: 

Return movement 

If I am in r e m  madc I chose rhe direcrion of highen 8rodient. 

Explore movement 

If1 am in uplorarion mode I chose rk direcrion wirh rhe lowen gradient. 

The following behavior regulates which mode the robot will be in: 

,Mode determination 

I .  If I am in erplomrion d e  and I sense no lower concenrrorion rhan rhc con- 
cemarion in the cell on which I am bcored. I pur myself in remm mode. 

2. If I am in return mode ond I am ar rhe vehicle-plalfom I pw myself in 
explomrion mode. 

3. I f  I am holding a sample. I am in rerum mode. 

These behaviors are coupled using a subsumption architururc to the other moving 
behaviors as in fig 7: 
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Fig 1 illusmtes what happenr when then are no rock samples. On the left we show 
an additional window nlled S O W  that implemenu g. Next to it there are a SeneS 
of successive snapshou showing h e  dismbudon of the robou. 

There is clearly a pulsating wave of robots c m n g  out of rhe vehicle nnril h e y  reach 
the boundaries of the SOUND difhued from the vehicle located in the middle of the 
space and returning back 10 Ihe vehicle. The robou clearly explore systematically the 
area around the vehicle. When Ihe vehicle moves the SOUND area will also move 
and the roborr will be amacted to rhe new location of the vehicle. Given that the 
movement is not ma fast none of them 4 1  be losr If one of them is lost it will fall 
back on random behavior. 

When a rock sample is discovered. it will efficiently be brought back m the vehicle 
guided by the gradient field 

30000 - 

5 0 0 0 .  

0 -  
1 

the vehicle. 

RI IO. tkcanpas~tioo d rvenec m e  nlb prdicni fields. 

6. STEP 3: SELF-ORGANISATION 

We arc now ready to focus on how the prinnple of xlf-organisation could be 
applied. Specifically we want to optimix the R s t  term t. by establishing coopnave  
behavior beween the distributed agnu. When OM robot has discovered rhe WIIPlcS. 
it should communicate iu finding to othehen and efficiently establish a path betwen 
the sample location and the vehicle. The means of communication beween the robou 
will he a ail composed of 'crumbs'. The crumbs should be easily detecubk by a 
robocensor. Each robot has a cenzun supply of these crumbs and is capable to put 
them down and pick rhem up. 

Tne following behavion are added to the reixnoue of  the mobile mbou to m t e  this 
all happen: 

Crumb handling 
I. If I c a v  a smnple. I drop 2 crumbs. 

2. If1 C W  M Jmnple ad munbr me &remed. I pick up ON crumb. 

(1) 4 1  establish the p& (2) will brmk it d o m  again Note (hat rhc spe+d of break- 
down k leu than h e  s w d  of buildup. although it d w  not d y  matter how much. 
we b o  need a new movement behavior: 

Path attnctlon 

If I am MI c m u g  a JMlple and I sense &S. I move rOv0rd.r rhe highen 
concemrarion of cruds. 

This behavior is in rewed with h e  ofher movement behaviors using the subumption 
architecture (fig 11). 

I l 

nIldam m0IC"l 

I" raaemni 

e x P l 0 n b  movcnKnl 

P* - 
obsc8clc .*o,dnce 

The following cxpelimenu confirm this. Fig 9 represents a g m  the evolution in (aver- 
age) absolute time with parallelism inmasmg from 8 U) 256 by a factor of I The 
time needed Nn) drops from about ZSOOO IO about 5OQ. Fig IO gives the decomposi- 
tion in t. and L We see h t  h e  second term in the compumon c has dropped 
dnmancally to be consmt and equal to h e  distance between he sample locrdon and 

Fig 12 contains a few snapshou of a simulation in pmgms. Fig 12 L is laken when 
one robot has discovered the samples which are located in the banom nghc Conre- 
quently there is a small square in the CARRYING-SAMPLE window i t  Bat position. 
The robou ire scattered around randomly in the 11w to be explored around L e  vehi- 
cle. 

Fig 12 b. illusuater the formation of a path. A second robol has now dLcoYered the 
sample and the first one has arrived back at the vehicle (given a first mull square in 
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the COLLECTED-SAMPLES window). Note that crumbs have been put down by the 
first robot and hat there is already a grouping o f  the robon because of  amct ion to 
the crumbs path. 

In fig I 2  c. we sec several o f  these robots coming back with samples to the vehicle 
and the ret of collecud Samples has already increased. Notice however that the 
m m b s  oath hxs been broken down considerably because more robon without 
robou. 

sampla M walking dong the path U)  ~JIC sampla (and thur teaking down b e  spm- 
p l a )  than them am m h  retuning with u m p l u  a d  thuc reumblishing the path. 

Fig 12 d. shows rhu the crumb path h u  been r runbluhed again by renuning 
mbou. We also see that mbou now maximally mpemte m b e  task There is only 
one robot that is not on the path. 

h fig 12 e. the samplu are exhausted and che path is being bmken down again 
R o b o ~  M h d y  xanered around in search of new samples. In fig It f. the sys- 
tem Rat reolmed IO the orignal qui l ibnum behavior. 

The experimental data conlirm that almost optimal prform~ce is reached aha a few 
time steps. Fig 13 contains again rhe average times t(n) needed by an inmating 
numkr  of robom (going from 8 to 256). We go hum .bout 2500 timuteps which is 
a h t i c  rrduction from 3oooO rimesteps to slightly under IO00 time steps with 256 

s o o t  

0- 
1 2 3 4 5 

Funher inspection reveals that most o f  the remaining non-productive time is spent in 
rhe initial phate when the first sample needs to be found Once the sample is found. 
an efficient path is established fairly quickly even with a small goup ol  robots. To 
illustrate this better fig 14 shows the exploration time c needed for each sample in 
one experiment WIB 16 mbou. The x-axis represents the discovery order of  a sam- 
ple. The y-axis reprcsenu Ihe time needed to discover a particular sample. Slarring 
from roughly the 17th rampic. the time is q u a l  to the distance between the vehicle 
and Ihe sample (except for sample 26 and 27 which were discovered by robots with a 
longer disccvery path). The initial search phase can only be made smaller when more 

mboa ue i v d a b k  to scan Ibe 8ma around the vehiclr 

This experiment illustrates particularly how functionality can be made to emerge: 

I. The ruen@kning of a path is not programmed in but i s  due to he non-linear 
interaction of the behaviors: Robots not cvrying samples are amcted by rhc 
path which incrmses the chances that they will amve at a sample and on rerum 
conuibuu to tk eslablishment of the path. 

2. The Iireakdown of rhe path also follows h m  the interacdon between the 
environment and the robou. When there M no more samples. this will lead to 
less crumb being pur down, and beczuse there is a depiction pmccss the path 
w i l l  eventually disappear. 

3. Also the fact that mbon fol:,>w the path towards the vehicle and not away 
from it is. surprisingly. not progamned in but follows hom the fact that On 

avcrage more crumbs will be located m r  to the mck smples. Most rob6 by 
the way rwn on the parh f" the vehicle to whch they remm due to the pul- 
sating idout movement. 
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1. CONCLUSIONS 

The solution we anived at scores high on he variolu evaluation criteria proposed 
the beginning of h i s  paper. 

1. The solution is robust because the improper execution of an action is not f a t  
to the whole system. 

2. The solution is fault tolemx. because lass of a robot is not fayl either 
although loss of the whcle  would of come be fatal. If thuc are fewer robots 
lhis Uill lead (0 a graccfnl performance degradation, but even with W O  robot 
(or one) the total system roll remains opencional. 

3. The solution is flexible. Environmental changes have link impact Any kin< 
of object can be on the way beween the robot and the vehicle. 
4. T h e  is cxmme coyitwe economy. The internal representation comisu onl: 
of the sutc of Be robot (exploraoon mode or reNrn mode). There are no cam 
plex representations of nme or space. no expliclt representations of acrion. nr 
representation of where the other robou are or where fhe vehicle is. 
5.  There is exwme communicarive economy. The robou use the world to com- 
municate among hemelvu:  They leave markers behind in the world. Never IS 

there any point to pbint communication. There are no complex musages to for- 
mulate or decode. 
6. The environment d w  not have to be very pndictable. For'example. thing 
would work equally well when there are two or more sources of rock samples. 

7. Finally no prior knowledge in the form of terrain maps or olher information 
is needed. 

, 

The robs themselves are definitely commctable using current technology. They do 
not requuc very sophisticated sensors or effectors. Thc auumed subsumption archi- 
tecture has been well tested now in a number of applications. The solution satisfies 
also the quanttouve cntcria We have moved f" a very inefficient solution involv- 
ing randori search to an efficient coopnoon beween the robots as smn as a sample 
has k e n  found. 

The red impohvlce of lhis paper is however not in the adequacy of the found solu- 
non but in the underlying princtples. These pnnnples can be summed up Y follows: 
We have a number of dynamical ntechanisms a1 our disposal: (panidly) random 
movement. a gradient field. a dissipative smcture. Each of these mechanisms is 
dynamical in the sense that t t  depends on the non-lineu interactions with the envuon- 
menr. Swcmres grow dynamically and decay agmn. Although gradient fields have 
k e n  u x d  in other work. this IS the first paper cspenmenwlly illustrating the use of 
dissipative smcm~* The idea w already propmcd in St&L (1983 which confabs 
~ g s u t i o ~  on orher applicadom 

The relation ro ant societiu is obviom but not as smightfonvard U one may thinlc 
Many ant societies w individual recruiting (one ant fetches a m h r  one). and if they 
do mass mruidng they are typically much l u t  effective (30 % or even 5 %) Ihan fhc 
robot ecology proposed in this paper (Dencuburg. ctal. 1989. 
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