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Abstract

In this paper, we study a method to construct a multivariate counting process with positive dependencies between the event
occurrences. Conditional on a random effect with a positive stable distribution, the univariate counting processes are independent
non-homogeneous Poisson processes with a power intensity function. The applicability of the model is illustrated in three examples:
a horse race model with several dependent channels, a dependent parallel-counter model and an interactive coactivation model.
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1. Introduction

Multivariate counting processes underly many re-
sponse time models in psychology (for overviews, see
Luce, 1986; Smith, 2001; Townsend & Ashby, 1983).
For example, race (or parallel-counter) models, a class
of successful models for choices and response times in
speeded forced choice tasks, are based on such counting
processes (Cousineau, 2004; Luce, 1986; Pike, 1966,
1973; Townsend & Ashby, 1983; Van Zandt, Colonius,
& Proctor, 2000). In race models, discrete events are
generated by several sources (or, alternatively, there are
many channels; both terms are used interchangeably
here) and the number of events originating from the
different sources are tracked by separate counters. The
counter that first reaches a prespecified criterion wins
the race and determines the response. Commonly it is
assumed that the events in one counter arrive indepen-
dently from the events in another counter.

Another example of a response time model based on a
multivariate counting process is the coactivation model
to explain the redundant-targets effect in a detection
task (Miller, 1982). Responses to redundant signals are
typically faster than to non-redundant signals and this
phenomenon can be modeled with a (channel summa-
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tion) coactivation model in which the events from the
different sources (each source corresponding with a
particular target) are pooled and drive a single counter
(Schwarz, 1989; Diederich, 1995); a response follows if
the counter reaches a criterion. Again, it is typically
assumed that the events from the different sources arrive
independently.

In this paper, a multivariate counting process will be
constructed in which the counts are positively cor-
related. Although the multivariate counting process in
itself may be of interest in some applications, it will be
considered mainly here as a useful vehicle to derive
models for cognitive processes. The approach will be
illustrated in this paper for the race and coactivation
models that have been described in the preceding
paragraphs.

For both examples (race and coactivation models), it
is the case that assuming independence between the
several counting processes simplifies the modeling task
greatly. Thus, independence is often taken for granted
for reasons of mathematical tractability, but it is
unlikely that an independence assumption will always
hold in reality. In the context of models for speeded
forced choice, Usher and McClelland (2001) have
recently presented a choice model in which the channels
show lateral inhibition, thereby abolishing the indepen-
dence assumption, and the latter authors motivate this
mechanism by relying on neurophysiological evidence.
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Huber and Cousineau (2004) also called for a race
model with lateral inhibition to explain their results on
short-term priming. Although lateral inhibition corre-
sponds with negative dependency rather than with
positive dependency, the approach presented in this
paper yields positive dependencies, but it may be
considered as a first step toward analytically tractable
and fairly general multivariate counting process with an
arbitrary degree of dependency.

Not only in the context of race models, but also for
coactivation models, there is a need to allow for
dependencies between the incoming events. For exam-
ple, recent neurophysiological research (Giard & Per-
onnet, 1999; Fort, Delpuech, Pernier, & Giard, 2002)
shows that for redundant multisensory signals, inter-
sensory interactions occur relatively early during pro-
cessing and that the results cannot be explained from an
independent coactivation model.

It should be noted that for race models, there is an
additional reason to assume independence, besides
mathematical tractability: The dependency structure
may not be identifiable. The problem is that if in a race
process only the winner and the corresponding response
time are observed, then one can always find an
independence model that fits the data, even if in the
true model the races are correlated. The identifiability
problem has been studied by Cox (1959), Dzhafarov
(1993), Marley and Colonius (1992), Townsend (1976),
and Tsiatis (1975) and it has been an impediment to the
active investigation of counter models with dependency
between the event-generating sources. However, the fact
that there are mathematical problems in identifying the
dependence structure does not imply that the race
processes are truly independent. Moreover, recent
results in the statistical literature show that under some
conditions (see below) dependent race models with
counters containing only a single vacant slot (so-called
horse race models) can be identified (Carrierre, 1995;
Escarela & Carrierre, 2003). When presenting results on
dependent race models, special attention will be given to
this identifiability problem.

The remainder of the paper is organized as follows.
First, we will introduce the non-homogeneous Poisson
process with a power intensity function (power function
NHPP) and some related results. Second, a specific
method to induce dependencies between the first-arrival
waiting time distributions, the copula method, is
discussed. It is then shown how the specific type of
copula method used in this paper can be framed as a
random effects model. Subsequently, this random-
effects approach is used in Section 3 to build a
multivariate counting process in which the univariate
marginal counting processes are conditional power
function NHPPs. Fourth, the methods and techniques
developed in the previous chapters are applied to three
examples. The first example concerns a simple horse race

model between several dependent channels, the second
one deals with a parallel-counter model with two
dependent racing counters and the third one introduces
a coactivation model with dependencies (i.e., an inter-
active coactivation model). The paper is closed with a
general conclusion and discussion.

2. From a non-homogeneous Poisson process ...

Consider a non-homogeneous Poisson process
(NHPP) {N(r),t=>0} with rate or intensity function
a(t) and N(0) = 0. The integrated rate A(¢) is defined as
f(; a(s) ds. It can be shown (Ross, 1996; Smith & Van
Zandt, 2000) that the probability of observing exactly n
events in a time interval of length ¢ starting at time s
equals

Pr(N(s + 1) = N(s) = n)
_ e AL+ AO) (A(s + 1) — A(s))" (1)

n!

Let the random variable 7' denote the waiting time until
the first event. The probability of observing a waiting
time longer than ¢ until the first event is equal to

Pr(T)>1) = Pr(N (1) = 0) = =4, (2)
Eq. (2) is the survivor function of the first-arrival
waiting time Sz, (). In general, the survivor function

of the waiting time until the nth event, denoted by the
random variable T, is as follows:

St,(t) =Pr(T,>1t) = Pr(N(1)<n)
_ Z eA<’]>_;4<r> ! _ L AW)

~ I'(n) (3)

where I'(n,x) = fxw W' le " du is the (complementary)
incomplete gamma function. The equation on the right
follows from using the expression for the finite sum

Z;’;Ol;—,j:e‘;((s)‘) (Prudnikov, Brychkov, & Marichev,
1986). In a NHPP, the density function of the waiting
time until the nth arrival reads as
dSz, (1)  A(0)" ' A'(1)e A0

an([)* dl - (7’1—1)' . (4)
Eq. (4) can be found from Eq. (3) by directly differ-
entiating the terms of the finite sum or by applying
Leibnitz’s rule for differentiating an integral to the
complementary incomplete gamma function (Spiegel,
1983). The density of the waiting time for the nth event
is called a non-homogeneous or time-varying gamma
distribution (Smith & Van Zandt, 2000).

If the event rate a(?) is a power function of the form
Jy0~" (and thus A4(¢) = A#"), then Eq. (2) is the survivor
function of a (two-parameter) Weibull distribution:

Sr () = e
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The counting process reduces to a homogeneous Poisson
process if y =1 and in that case Eq. (1) simplifies to a
Poisson probability distribution with mean i¢. For a
homogeneous Poisson process, 77, the waiting time until
the first event, but also subsequent interarrival waiting
times, are exponentially distributed with mean }
Consequently, the waiting time until the nth event
(see Eq. (4)) is gamma distributed with parameters n and
A. In the remainder of the paper, we will deal with the
more general case y#1. In Appendix A, it is indicated
how to simulate random variates from a power function
NHPP.

In most applications, the use of the Weibull distribu-
tion is justified on asymptotical grounds because it is the
limiting distribution of the minimum of a large number
of parallel racing processes (for the latter approach, see
Colonius, 1995; Cousineau, Goodman, & Shiffrin, 2002;
Gumbel, 1958). The distributions of the racing processes
should satisfy some conditions to guarantee convergence
to the Weibull distribution (see Cousineau et al., 2002).
Contrary to this asymptotic justification, a power
function NHPP provides a finite-sample justification of
the common two-parameter Weibull distribution be-
cause the latter can be derived as the first-arrival waiting
time distribution from such an NHPP counting process.
As a consequence, the shape of the Weibull distribution
(determined by the parameter y) is related to the rate of
increase of the intensity function of the underlying
counting process.

The model presented so far is a univariate counting
process: There is only a single type of events and an
associated event rate. To arrive at a multivariate
counting process, more than one event-generating
source has to be introduced (or, equivalently, more
than one channel). Suppose that each source i (i =
1, ..., 1) generates events according to a power intensity
function a;) (1) = Ay 70! In such a case, there are I
different event types and each arriving event carries its
own label corresponding to the source by which it has
been generated. It will be assumed that all rate functions
are proportional to each other, such that y;) = -+ =
7a)y =7- For the time being, the [ processes are
considered to be independent.

Several useful properties can be derived from the
independent multivariate counting process defined
above. For example, starting from the I counting
processes {N(;(t),1=0}, we can define a new counting
process {N(¢),7>0} that is the superposition of the I
individual counting processes: N(t) = N(j)(1) + --- +
N (t). Concerning this new counting process, the
following proposition can be proven.

Proposition 1. The counting process {N(t),t=0} defined
as the superposition of I independent power function
NHPPs {N;(t),t=0}, with rate functions a(t) =
)L(,)yﬂ’l, is again a power function Poisson process, and

its rate function is the sum of the separate intensity
Sfunctions, a(t) = Z;a@(t) = (Aay+ - + Au))yﬁfl_

Proof. This proposition is proven easily using the
Laplace transform for a power function NHPP and
the independence of the I processes. [J

Because the new process N(f) is again a power
function NHPP, the waiting time until the first
arriving event (irrespective of the label it is carrying) is
Weibull distributed with parameters 4(jy + -+ + 4(;) and
y. The same result is obtained from the fact that the
minimum of / Weibull distributed random variables
with an equal power parameter y but possibly a different
Ay 1s also Weibull distributed with parameters A(j) +
-+ + Ay and y; this is the so-called min-stable property
of the Weibull distribution. In addition, if we do not
ignore the labels of the arriving events, we can find an
expression for the probabilities that a particular source i
generated the first arriving event, as is done in
Proposition 2.

Proposition 2. Given [ independent power function
NHPPs {N(t),t=0}, the probability that source i has

M@
T The

waiting time for this first event is Weibull distributed with
parameters Ay + -+ + Ay and y.

generated the first arriving event equals

Proof. First, we verify the probability formula, making
use of the fact that the [/ Poisson processes are
independent:

Pr(event of type i arrives first)
= Pr(Tio) <T(;),J #1)

5e] 1 5s)
- / le(i)([i) H(/ le(j)(tj) dlf/‘) dt;
0 j#i i

= /0 i(i)yl}Y7leXp(—i([)Z;)

- )

where Ty; and #; denote the random variable and
its realization, respectively, of the first-arrival waiting
time for process i. Next, we derive the distribution
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for the minimum of the [ first-arrival waiting times.
If T = min;(T,(;), then the survivor function of T
equals

Pr(T >t) = Pr(min;(T);) > 1)
PT(T1(1)>Z, ceey T1(1)>Z)

This survivor function is called the owverall survivor
function and it is equal to the Weibull distribution given
in the proposition. [

The model from Proposition 2 is a horse race model
with 7 several independent channels. Stated otherwise,
there are I counters performing a race and each counter
has only a single free slot so that the first incoming event
determines the response. A special property of this horse
race model is that the label and time of the first-arrival
are independent.

The usefulness of a Poisson process with a power
intensity function can be questioned. The power
intensity function is adopted here mainly because
it is more general than its more commonly used special
case, the constant intensity function leading to the
regular homogeneous Poisson process. An addi-
tional advantage of the power intensity function is
that it has a straightforward relation to the common
Weibull distribution. However, the results presented in
this paper can be generalized easily to a more general
NHPP in which the integrated intensity functions are of
the following form: A (t) = Ah(t), where h(t) is a
known standard integrated intensity function. All
previously presented and subsequent results still
hold if in the equations # and y£~! are replaced by
h(t) and H'(f), respectively. Because there are no
restrictions for A(z), it can be any function. An
interesting specification for /A(f) is a non-mono-
tonic intensity function for which there is a baseline
intensity that increases and then returns again to
baseline. Such a function may be used to match the
time-varying intensity typically inferred from neural
spike train data (see e.g., Ritov, Raz, & Bergman,
2002; Sanger, 2002). It should be noted however
that when ¢ is replaced by A(z), the first-arrival
waiting time is not necessarily Weibull distributed
anymore.

In the rest of the paper, we will relax the assumption
of independence among the I counting processes. In
order to arrive at a plausible model for dependencies
among the several counting processes, we will make a
detour via copulas which are discussed in the next
section.

3. ... to copulas ...

In this section, we will construct a joint distribution
for the /-dependent first-arrival waiting times 7'y (i =
1, ..., I) such that each univariate marginal distribution
of a first-arrival waiting time Tj(; is still Weibull
distributed with parameters A;y and 7. To achieve this
goal, we use copulas (Genest and MacKay, 1986; Joe,
1997). As suggested already by its name, a copula is a
function that ““couples” several univariate survivor
functions to form a multivariate survivor function.
Thus, the joint survivor function of Ty, ..., Ty,
denoted as ST|<1)~~~~»T|<1>(11’ ..., 11), is defined on the basis
of the separate univariate marginal survivor functions
Sty (4i)’s and some copula function C as follows:

(1)-,.“-,7"1(1)(117 ---atl) = C<ST1(|)(ZI)7 ~--7ST](1)(II))7 (6)

where the copula function has to satisfy certain
requirements (see Definition 1). The copula function C
captures the dependency between the I random vari-
ables. A copula is a convenient way of modeling
dependencies between random variables because it
separates the marginal and the association part of the
multivariate distribution. Choosing a different copula
function will lead to a different joint survivor function.
However, for a given joint survivor function (with
continuous margins), one can always find a unique
copula representation; this is known as Sklar’s theorem
(Jouini & Clemen, 1996).

In this paper, the arguments of the copula function
are survivor functions and a multivariate survivor
function follows. However, the copula is actually a
multivariate cumulative distribution function (CDF) and
Definition 1 contains a formal definition of the copula
function.

Definition 1. An /-dimensional copula C is a multi-
variate CDF with support of the /-dimensional hyper-
cube [0, 1]1 . The univariate marginal CDFs of the copula
are uniform on [0, 1].

Because of its definition as a multivariate CDF, the
copula has all properties of a usual multivariate CDF.
Thus, it has to hold that C(uy, ..., u;—1,0, 441, ..., u;) =
0 (with 0<u;<1). Moreover, since the univariate
marginal CDFs are uniform on [0, 1], it is the case that
c(l, ..., Lu, 1, ..., 1) =u.

We will now show how a multivariate survivor
function can be constructed given / univariate marginal
survivor functions S, (#;) and given a copula C.

Proposition 3. The function C(St,, (1), ..., St (11)) is
a multivariate survivor function for the random variables
Ty, ..., Ty provided STl(i) (t;) has a unique inverse (i =
L,....I).
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Proof. If T); is a random variable with survivor
function St, , (#), then it holds that U; = St , (T1() is
uniformly distributed on [0, 1] (this is the probability
integral transform) and u; = STI(’.)(t,-) is a realization
from this uniform distribution. Because the copula is a
multivariate CDF, it can be written as

C(u17 ...,ul) = PI’(U1<H1, ey U1<u1)

with U; uniformly distributed on [0, 1]. Then, it can be
seen that

C(St,,(11), - STI(”(II))

S UI<Sy, (1)
Sz, (U =11)

T1 >11,...,T1(,>>t1)

= S1y0)0ee Ty (115 -5 1),

where the inequality signs are reversed when going from
the first to the second line because S+ 1_ is a monotonic
decreasing function. [

A simple example of a copula function is the
independence copula: C(uy, ...,ur) = Hle u;. If the
independence copula is applied to univariate marginal
survivor functions, one obtains a multivariate survivor
function with independence between components. In
this paper we deal with the following  copula:
Cluy,...,ur) =e™ and s=S1 (—log(u;)), with
0<oc<1. This copula is called the Gumbel Hougaard
copula (Gumbel, 1961; Hougaard, 1986a, b). It can be
derived that C(uy,...,us) = ¢(30_ ¢ "(w;)), with

Bls) = ¢ and ¢! (u) = (~log(u))~

The joint survivor function defined through the
Gumbel-Hougaard copula with / univariate marginal
Weibull survivor functions as arguments gives a multi-
variate Weibull distribution:

STy Tyy (115 o5 1)

= ¢(d~" (St (1) + -+ + 67 (S1y,, (1))

17 DA
exp{<}e%‘1)t°f+ . +)LE‘I>17) }
(0<a<l). (7)

The condition 0<a<1 has to be imposed in order to
obtain a proper multivariate probability density.

The parameter o captures the dependency between the
I random variables. If o = 1, the independence copula
follows as a special case of the Gumbel-Hougaard
copula because then the joint survivor function simpli-
fies to a product of the I univariate marginal Weibull
survivor functions. On the other hand, if o — 0, the joint
survivor function becomes exp{—max;(4; t’{m)} =
mln,(STI(l (t1))), which corresponds to the complete
positive dependence case. Thus, the multivariate Weibull

model constructed through the Gumbel-Hougaard
copula is restricted to have positive dependence between
the random variables.

Let us assume for the moment that the function
¢(s) = e can be considered as a Laplace transform of
some unknown probability density g(0), that is ¢(s) =
E(e7®) = [;" e"dG(0). In that case, the Gumbel-
Hougaard copula we use can be rewritten as follows (see
Marshall & Olkin, 1988; Oakes, 1989):

T
= /OOC exp{—@(Z I(Srl(i>(li))> } dG(0)
R

w 1
_ /0 [T wr,, (1) dG(o) (8)
i=1

—

with - Wr,, (1) a Weibull survivor function with
1

parameters 0/1%.) and .. Note that this implies that 0

has to be positive and thus that G(0) must be CDF of a
positive random variable.

From Eq. (8), one can derive that if ¢(s) is indeed the
Laplace transform of g(0), then the dependency
structure imposed on the random variables Ty (i =
1, ...,I) through the copula can actually be understood
in terms of a random effect with density ¢(6).
Conditionally on the random effect 6, the I Weibull
random variables are independent; this is known as the
conditional independence assumption. The random
effect 0 is also called a frailty (Oakes, 1989), a term
used in failure time analysis because if the first-arriving
event represents a failure, 6 can be conceived of as a
latent predisposition to fail. The random effect or frailty
is an unobserved component of the intensity function
which is assumed to be drawn randomly from a
population distribution. The fact that the same un-
observed component is shared by the intensity functions
of the several counting process induces the dependency.

We have assumed up until now that there exists a g(0)
which has ¢(s) = ™" as its Laplace transform, but is
this true? It turns out that ¢(s) = e is the Laplace
transform of a positive stable density (Feller, 1971,
p. 165):

DY
Pkat 1) (’“]‘j D sin(okn)

0 =1 5, ©
if a<l,

if a=1,

1)k+1 0705/671




70 F. Tuerlinckx | Journal of Mathematical Psychology 48 (2004) 65-79

0.6

9(8)

0.4

0.2

Fig. 1. The density function for a positive stable distribution with o = 0.5.

where dy; is the Kronecker delta taking a value of 1 if
0 =1 and zero otherwise. A positive stable density is
defined only for positive values of 6, and is characterized
by a positive skewness, very heavy tails and the fact that
only moments E(O7) for g<o exist (see Fig. 1 for an
example). Because of the restriction we have placed on
o, the distribution has no mean or variance. The infinite
sum in Eq. (9) converges fast for large values of 0, but it
may be slow for values of 0 close to zero. Appendix B
contains some additional information on the positive
stable density and in Appendix C a simple algorithm is
described for generating random variates from a positive
stable distribution.

4. ... to a conditional non-homogeneous Poisson process

In the previous section, we have explained how a
multivariate first-arrival waiting times distribution can
be constructed from the univariate marginal waiting
time distributions, which were all Weibull distributions,
and from a specific dependency structure, called the
Gumbel-Hougaard copula. Because the function ¢(s) =
e is the Laplace transform of a known probability
distribution, the multivariate Weibull model could be
casted as a random-effects model. In a next step, we will
make use of this random-effects interpretation to induce
dependencies between several Poisson processes.
Because a Weibull process is the first-arrival waiting
time distribution in a power function NHPP, we also
have the possibility to construct, conditionally on the
frailty, several independent power function NHPPs.

After integrating out the random effect, the several
NHPPs become dependent, and this leads to a multi-
variate counting process. The counting process is
referred to as a multivariate conditional power function
NHPP.

From Eq. (8), conditional on the frailty 6, we know
that in the multivariate Weibull distribution, the first-
arrival waiting times are independently Weibull dis-
tributed. We also know that the Weibull distribution
follows from a Poisson model with a power intensity
function. Therefore, let us consider a Poisson process

Ly
with integrated intensity function A (7) = 04 1x. For

this Poisson process, the first-arrival times are Weibull
1

distributed with parameters 0)&2‘0 and L. Conditional on

the frailty, the probability of having observed n events of

type i at time ¢ equals (see Eq. (1))

Pr(N;(t) = n|0)

1 y 1 7 n

n!

Marginally the first-arrival waiting times are still
Weibull distributed (because of the definition of the
copula), but the marginal counting process is not a
Poisson process anymore (therefore, it is called a
conditional Poisson process), unless in the trivial case
that o = 1. This can be seen by deriving the marginal
probability (i.e., with 0 integrated out) for the event
N(i)(t) =n.
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Proposition 4. For a multivariate conditional power
function NHPP as defined by Eq. (10) and 0 having a
positive stable distribution with parameter o, the marginal
probability Pr(N;(t) = n) equals

Pr(N)(1) = n)

Proof. To obtain the marginal probability, we have to
integrate Pr(N(t) =n|0) over the positive stable
distribution of 0 with parameter o:

Pe(N (1) =) = [ Pr(Niy(o) = nl0)g(0) do

(’%”) 2
n! 0

Y

1
X exp (—O)V?‘i) ZE> g(0) do.

An explicit solution to the integral can be obtained
by using a special theorem on Laplace transforms
(Spiegel, 1983). If the Laplace transform of ¢(0) is
¢(s), then the Laplace transform of 0"g(0) equals
(—1)”d df,,f) Applying this theorem in our case gives the
desired result. [

It is easy to see that the probability of observing no
event until time ¢ equals e “®", which was already
apparent from the fact that the marginal first-arrival
times are Weibull distributed. One can check that the
marginal probabilities of observing one or more events
do not equal anymore the probabilities that follow from
an NHPP.

The unconditional joint probability is derived in
Proposition 5.

Proposition 5. For a multivariate conditional power
function NHPP as defined by Eq. (10) and 0 having a
positive stable distribution with parameter o, the uncondi-
tional joint probability Pr(Nq)(t) = ni, ..., N (t;) =
ni, ..., Npy(tr) = np) (with Zleni = n) is as follows:

DA
! </l%i)t(z¥> d"e="
[ A [ K

17
ds" v
5= Zl 1401

Proof. The proof is analogous to the derivation of the
marginal probability with the only difference being that
the conditional joint probability is considered as the

starting point:

PI’(N(])(Z]) :I’ll7

—HPr

In the previous and in subsequent equations, the nth
derivative of ¢(s) = e~*" has to be calculated. This can
be done easily using the recurrence relation given in
Proposition 6.

,N(,’)(f‘) = n;, ...,N(])(Z]) = n1\0)

=n|0). O

Proposition 6. [ we deﬁne the nth derivative of e™" to be

D, = ‘lndsns and Dy = e, then the following holds:

where (o« — 1) (a—(n=1)+i)=1fori=n—1.

Proof. We will give a proof by induction. For n =1,
D) = —as”'e™”" = —as* "' Dy, which proves the propo-
sition for this case. Now suppose the proposition holds
for n and we want to find D, ;:

an n—1 n—1
Dy = ds :_“Z< ; )
X (a—1)(a—(m—1)+1)
X [(OC —n+ l.)S“_n-H_lDl‘ + Sm_n+iDi+1]

n—1

_ —aZ(n ) (= 1) (o — (1 — 1) +1)

i=0
(e —(n—1)+i)s* ’””DH

(e —(n—1)+i—1)s* " 1p,

.. (o{ — n)s‘xf(n*’l)DO

)+

x(=1)(a—n+i)s* "D, —as* D,
(n+1)—1 1
. ( V- )
i=0
X (o0 —1) (o = ((n + 1) = 1) +i)s* D+ p,,
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where we have made use of the equality (”jl) + ('Z:ll) =
(1) for binomial coefficients (Abramowitz & Stegun,
1974, p. 822). This proves the proposition. [

Because of this closed-form expression for the nth
derivative, all computations concerning the multivariate
counting process are relatively simple to carry out and
there is no need to rely on approximation techniques
such as numerical integration. Simulations from the
multivariate conditional power function NHPP can be
obtained by drawing first  from a positive stable density
(see Appendix C) and then simulating several indepen-
dent power function NHPPs (see Appendix A) with the
appropriate intensity function.

5. Three applications

In this section, we will illustrate the applicability of
the multivariate counting process with positive depen-
dencies in three examples. The first example is an
extension of the independent horse race model from
Proposition 2. In the second application, we allow for
dependencies in the two-counter model of Smith and
Van Zandt (2000). Third, we present a channel
summation coactivation model (Diederich, 1995;
Schwarz, 1989) with positive dependencies.

In all three examples, we construct a model for the
decision time (and choice probabilities, if relevant)
based upon the multivariate counting process. However,
besides the decision time, it is commonly assumed (Luce,
1986) that the observed response time consists further-
more of a residual time component, which represents all
nondecision processes (e.g., the time needed for encod-
ing the stimulus and planning and executing the
response). The residual response time is not considered
explicitly in this paper, but the model equations need
only a minor change in order to include a single residual
time parameter (i.e., by replacing all occurrences of ¢ by
t — Ter, where T, is the residual time component).

5.1. Application 1: a horse race between multiple
dependent channels

Consider a horse race performed between I channels
with positive dependency so that the first-arrival times
follow a multivariate Weibull distribution. To derive the
distribution of first-arrival waiting times and the choice
probabilities, we could use the general result of Marley
(1989), because his result also encompasses the multi-
variate Weibull distributions as a special case. However,
here we present an alternative way of deriving the
waiting time distribution and choice probability by
first conditioning on the frailty 6 and then integrating
over g(6).

Conditional on 6, we are in the case of I independent
Poisson processes and we may use the results from
Proposition 2. Thus, conditional on 0, the waiting time

until the first arrival is Weibull distributed with

1
parameters Q(Zf:li%i)) and I Integrating over the

distribution of 0 gives the overall survivor function

o0 I 1 9
Sp(t) = /0 exp{—@(z zgi)>za}dc(e)

i=1

I 1\*
:exp{—(zl: i‘(’-i)> zv}, (11)

which is again the survivor function of a Weibull
distribution. In the derivation, we have applied the
definition of the Laplace transform of a positive stable
distribution. Thus, it has been shown that the multi-
variate Weibull distribution constructed with the
Gumbel-Hougaard copula is min-stable because the
minimum of several (dependent) Weibull distributions is
still Weibull distributed. The choice probability can be
found using the same logic. Conditional on 6, the choice
probability can be derived from Eq. (5):

- 0%
Pr(Wl(i><W1(j),]7él) = 1 T
045 + - + 047
1
A%
- (12)

1
GORIER )

making use of the random variables W appearing in
Eq. (8). Because the conditional choice probability is
independent of 0, Eq. (12) is also the marginal prob-
ability.

As can be seen from Egs. (11) and (12), the choice
probability and choice time are independent, despite the
dependence among the race processes. This follows also
from the general result proven by Kochar and Proschan
(1991) that the choice probability and the first-arrival
time in a dependent channel model are independent if
and only if the hazard rates' of the individual first-
arrival time distributions are proportional. In our
model, the hazard rate of the marginal distribution of
the ith first-arrival times is equal to y/l(,-)t“/*l and
consequently the 7 hazard rates are clearly proportional
to each other.

To illustrate the effect of the dependency parameter,
let Z(n = max;(4;)) and suppose this maximum is
unique  (Agn) >4y, i#m). From Eq.(11) it can be
deduced that if «—0, the survivor function of the
response time converges to exp{—max;(1;)f'} =
exp(—Amt’). This implies that the overall survivor
function converges to the first-arrival waiting time

'The hazard rate b(7) is defined as —%, where S7(¢) is the
survivor function (Luce, 1986). Hence for a Weibull distribution, the
hazard rate is equal to the intensity rate of the associated power
function NHPP.
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survivor function of the source with the largest intensity
function (i.e., the fastest process). Moreover, if « — 0, the
probability of choosing the response option with the
largest A goes to one. Then it can be deduced from
Eq. (12) that

lim P N, i
lim t(Wiom < Wiy, i#m)

T (m)
= lim 7 T
S
1
= 11m I 1 1 = 17
=0 N\ do\ 2 \x
(' (e ()
(m) (m) (m)

because ;((—"))Sl, with equality if i = m. In the case of

perfect dependency, it is the source with the largest
rate function that determines the response. Stated
otherwise, positive dependency among the counters
suppresses the randomness in the choice response,
but not in the response times. If o =1, the inde-
pendent horse race model presented in Proposition 2
follows. In the case the maximum 4., equals one or
more other A parameters, the limiting probability
becomes k%w where k stands for the number of A’s
equal to Ay)-

As mentioned before, an important issue in dependent
race models is the identifiability of the model. A very
important distinction in this respect is the one between
parameter identifiability and process identifiability.
From Egs. (11) and (12), it can be deduced that all
parameters (the /()’s and o) are identified (i.e., different
values for the parameters lead to a different joint
probability function); hence, there is parameter identi-
fication and it is possible to estimate all parameters
uniquely from the data.

However, is there also identification on the level of the
process? If there is process identification, the parameter
o can be seen as a quantification of the amount of
dependency between the I processes. Process identifica-
tion is only possible if a single multivariate survivor
function, as the one in Eq. (7), leads to the derived
overall survivor function and the response probabilities.
A counterexample to this conjecture is easily found by
defining a horse race model with / independent channels

1 1
and with )'?i)<z/{:l;“%j))a_lﬂ as the integrated rate
function for channel i. One can show that such a model
leads to exactly the same predictions for the distribution
of the choice response time and choice probabilities as
our dependent horse race model but without assuming
dependence among the I processes. However, the
underlying multivariate survivor function for this
independence model is equal to S*TI(W_”TI(” (t1,....,t1) =

1 1 o—1
1L, exp ('%) (Zj{_liz‘ j)> t") =TI, S’}I(i) and there-

fore differs from the one in Eq. (7), while giving rise to
the same predictions. Thus it seems that there is no
process identification because o can also be thought of
as a parameter that increases the flexibility of the model
without having an interpretation in terms of dependency
(as is the case in the independence model).

In order to decide between the dependence and
independence model, we need to look for predictions
on which the models diverge. Suppose the I single-slot
counters correspond to I objects in a choice set. When
the effects of removing an object from the choice set are
studied (without loss of generality, object I is assumed
to be removed), different predictions follow under the
two models. For the dependency model, removing
object (or channel) I leads to the following overall
survivor function:

-1 1 \*
S :exp{—< /%) f/}, (13)
i=1

where the superscript (—I) indicates the removal of
object 1. However, the independence model (in addition
superscripted with an asterisk) leads to the following
overall survivor function:

-1 1 1o\ !
S5D(1) = exp _<Z %> <Z Ag_}.)> 7y (14)

i=1

It can be seen that the overall survivor functions differ
under the two models when an object is removed. (The
choice probabilities are the same under both models.)
The differential prediction with respect to the response
time can be used to distinguish between the dependence
and the mimicking independence model.

More generally, for the horse race model based upon
a copula approach, there is also a formal identification
result. It has been shown by Carriérre (1995) (see also
Escarela & Carrierre, 2003) that for a horse race model
with channel dependencies induced by a copula and
prespecified marginal distributions (Weibull distribu-
tions), the model is identified.

5.2. Application 2: a parallel-counter model with
dependencies

A popular race model is the Poisson parallel-counter
model in which it is assumed that the events driving the
counters are generated by two independent Poisson
processes (Townsend & Ashby, 1983). The simplest
model follows by assuming a time-homogeneous Pois-
son process (with a constant rate), so that the waiting
times until a counter reaches its critical count are
gamma distributed. The choice and response time are
then determined by a race between two independent
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gamma-distributed random variables. An extension of
this model has been proposed recently by Smith and
Van Zandt (2000) who allow the rate of the two Poisson
processes to be non-homogeneous or time-varying.
However, in the model of Smith and Van Zandt
(2000), it is still assumed that the two counters are filled
by independently arriving events.

The second application of multivariate counting
process is at the same time both an extension and a
simplification of the first example. On the one hand, we
simplify the model by assuming only two (I =2)
counters. On the other hand, the model is extended by
allowing for more than one vacant slot in the two
counters. The two counters are denoted as 4 and B, and
they have n, and npg vacant slots, respectively. Each
counter is associated with a different response (R, and
Rp). As before, the counter that reaches first its criterion
determines the response. The random variables T4 and
Ty stand for the nyth and npth arrival times, respec-
tively. If the counters are independent, the model of
Smith and Van Zandt (2000) is obtained.

Suppose now that the two counting processes that fill
up the counters are dependent in the way described in
this paper. Much of the theory developed by Smith and
Van Zandt (2000) can be extended fairly easily to this
dependency case. Conditional on the frailty 6, the joint
density for the response time and the choice response
R, denoted as f4(¢]0), equals (abusing the probability
notation somewhat):

Sa(1|0) =Pr(T4 = 1, Tp>1/0)

=/1,,(110)S1,,(1]0)
N 1y
(mgg za) 07 i 'exp (—6)&;’;1 za)
- (nA — 1)!
1y J
np—1 (0;\.%[‘1) 1 y
X ————exp 0/1“15)
_;0 J! ( ?

Integrating over the distribution of 6 then gives the joint
density of responding R, and the response time:

4 yny

4 24 Loy
*;u o {o ng—1 o
oA Apta

Ja(t) =

(nA - 1)' =0 ]'
o L1,

X / 0"A+~'exp(—0[zg+xj§] z£>g(9) d0
0

Y, P4
T,
(nA — 1)'

]'/LBZ‘OC e

<42 (=D | dsat

1 1\ y )
5= (zj +i°§> o
(15)

where we have applied the special theorem on Laplace
transforms used in the proof of Proposition 4 to derive
the final expression. The derivation for f3(¢) is analogue.
Once f4(t) and fz(¢r) are known, the density of the
marginal response time 7 =min(7,, Tp) can be ob-
tained as f'(¢) = f4(¢) + f5(2).

The response probabilities Pr(4) and Pr(B) follow
from integrating f,4(¢) and fp(¢), respectively, over t.
However, we can make use of a simpler result proven by
Smith and Van Zandt (2000) for the case of propor-
tional rate functions. Conditional on the frailty 0, the
rate functions of the two Poisson processes driving the
counters are indeed proportional. Following Smith and
Van Zandt (2000), we may say that the probability

of response R4 only depends on the proportionality
1 1

coefficients 02% and 0% (still conditional on the
frailty 0):

nB—l _]
Pr(4]6) = (”“.f )

=0 J
1 ny 1 J
02 0%
X A B

1

1 1 1 1
0% + 0% )\ 057 + 07

nBl(”A +J= 1>
= J

1 ny 1 J
00 o
A4 A%
1 1 1 1
o Q0 o o
2%+ 2% 2%+ 2%

Because 6 cancels from the latter probability formula,
the integration over the distribution of 6 is not necessary
anymore. The mean response times under this model are
also easy to calculate because also there 0 cancels from
the equations. Thus, the formulas obtained under a
model with dependencies between the counters are very
similar to the formulas presented by Smith and Van
Zandt (2000).

To illustrate the effect of the dependency parameter «,
we plotted three conditional response time densities in
Fig. 2. Decreasing o (i.e., increasing the positive
dependency between the two counting processes) shifts
the conditional response time density to the left side of
the time axis. Moreover, a higher positive dependency
counteracts the tendency of the response time densities
to become more normal-shaped if the number of vacant
slots increases. If o« — 0, the probability that the process
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Fig. 2. Three response time densities conditional on responding with option 4 with common parameters 14 = 45, Ag = 12, n4 = 10 and ng = 4. The
dependency parameter varies from « = 1 (solid line) to o = 0.5 (dashed line) to o = 0.25 (dotted line).

with the largest rate function wins the race goes to 1
(unless both rate functions are equal, in which case the
dependency parameter has no influence).

The process identification issue discussed in the
previous application is also relevant for this example
(again, there is no problem on the level of the
parameters). As before, we can find an indepen-
dence model that leads to the same choice proba-
bilities and response times as the dependency model.
Let wus construct a joint survivor function as
follows: p(tastg) = ([T fa(2) d2) ([, fa(z) dz) =
S, (t4)ST, 13/3 The 1ndepenéence model with under-
lying Jomt survivor function ST, TB(tA,tB) renders
exactly the same predictions as the dependency
model.

Unfortunately, we cannot rely anymore on a math-
ematical identification result as in the first application.
However, a serious weakness of the proposed indepen-
dence model is that there is no connection with a
realistic underlying counting process. Consequently,
the model will have problems in explaining effects of
experimental manipulations in a simple way. Assume for
example an experiment with two different conditions:
one condition with an emphasis on speed and the other
with an emphasis on accuracy. Under the dependency
model, it is expected that the participants in the
accuracy condition raise the number of vacant slots
in the counters (ny and ng) producing a certain change

in the response time distribution and choice proba-
bility. The independence model constructed to mimic
the dependency model does not have such an appealing
mechanism to explain the observed differences
between speed and accuracy conditions because
there is no straightforward interpretation of the
parameters. The parsimony in explaining results
from experimental manipulations may be used to
provide evidence to discriminate between the two
models.

5.3. Application 3: a coactivation model

Schwarz (1989) and Diederich (1995) proposed a
coactivation model based on the superposition of
independent homogeneous Poisson processes (also
called channel summation) to explain the redundant-
targets effect and possible violations of the race model
inequality (Miller, 1982). In this last example, an
extension of the work of Schwarz (1989) and Diederich
(1995) is presented by allowing positive dependence
between the summed counting processes (and in
addition, we also consider non-homogeneous Poisson
processes). Only the double-signal case without stimulus
onset asynchrony (SOA equals zero) is discussed.
Generalizations to more than two redundant signals
and SOAs differing from zero are relatively straight-
forward.
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Assume that a stimulus on redundant trials is
presented in two modalities (e.g., visual and auditive)
and the task of the participant is to emit a response as
fast as possible when the stimulus is detected. Suppose
the participant waits for ¢ counts before making a
decision. Both modalities drive two correlated channels
(A4 and B) and the events in these channels are summed.
Thus, associated with each channel are two counting
processes {N,(f),t=0} and {Np(¢),z>0} and the
superposition of these two counting processes is defined
as {N(t) = N4(t) + Np(2),t=>0}. Conditional on the
frailty 0, the intensity functions in the two separate

1,
channels are 0% fx and 9/1“ tu Applying Proposition 1

shows that, condltlonal on 0, the channel summation
process is again a power function NHPP, but now with

L1y
intensity function 0 (lf; + /15;3) fx

The (unconditional) survivor function of the decision
time 7T, (the waiting time until the cth event) can be
found by using the following equalities Pr(7,.>1¢) =
Pr(N(r)<c) = Y°_\Pr(N(1) = n). The probability of

observing exactly n events is already derived in
Proposition 4 for a slightly different intensity function.

2

I A
Considering now 0(&‘24—%) fo as the conditional

intensity function and integrating over the positive
stable density of 6 leads to the following survivor

function of T,:
L1y 4]"
(o)
e
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|
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ds"

1 1Ny
— | o0 )
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If « =1, the equation simplifies to the one derived in
Schwarz (1989). All parameters can be identified uniquely
and there are no identifiability problems concerning the
dependency character of the underlying process.

6. Conclusion

The derivation of a multivariate counting process
with positive dependencies that could be used as a tool
to construct realistic mathematical models for cognitive
processes was the main goal of this paper. The starting
point of the derivation is the relation between the
Weibull distribution and the power function NHPP.
First, it has been shown that a multivariate Weibull
distribution can be constructed using the technique of
copulas and that the multivariate Weibull distribution
can also be seen as a random-effects model. Next, we

have used this random-effects perspective to create
positive dependencies between several power function
NHPPs leading to a multivariate counting process.
Conditional on the random effect, the individual
counting processes are power function NHPPs.

It is shown how the multivariate counting process can
be applied to allow for more modeling flexibility in three
different counter models: a simple horse race model, a
more elaborate parallel-counter model for speeded
forced choice tasks and an interactive coactivation
model to explain the redundant-targets effect. Because
of the tractability of the multivariate counting process, it
is relatively easy to find closed-form expressions for the
crucial probability densities in the models.

Currently, the important limitation to our approach is
that the dependency among the several counting
processes is restricted to be positive. Especially for
applications where two or more counters are involved in
a race, negative dependency would be a useful extension
of the independence model. Building a model with
negative dependency may also be able to bridge the gap
between the two families of sequential sampling models:
race models and random walk models. In random walk
models, the two counters corresponding to the responses
have a perfect negative correlation: Increasing the
amount of evidence in one counter with a unit leads to
a decrease of a unit in the other counter.

A first possible way to allow for negative dependen-
cies is by not using only survivor functions in the copula
but also distribution functions, as suggested by Marshall
and Olkin (1988). But, such a construction may lead to
very complicated equations. A second method to induce
negative associations is by using another copula as the
starting point to construct the counting process.
However, using other copulas may not lead to equally
simple computations as we have obtained for the
Gumbel-Hougaard copula, at least not when combined
with the Weibull distribution. One could almost say that
the Gumbel-Hougaard copula is in a way “‘conjugate”
to first-arrival waiting time distributions that can be
derived from several non-homogeneous Poisson pro-
cesses with proportional intensity functions, with the
Weibull distribution as a prominent example. Extending
the copula and frailty approach to overcome the positive
dependency restriction and wusing other kinds of
distributions will be the topic of future research.

Special care has to be given to the identifiability of the
dependency structure in dependent race models that are
derived from the multivariate counting processes
(the first two examples). It is important to note here
that the identifiability issue does not concern the
multivariate counting process itself because if the
process were fully observed, there would be no problems
with the identification of the process. Moreover, the
third example in this paper, the interactive coactivation
model, is also free of identification problems. For the
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identifiability problems in the race models, recent results
in the statistical literature show that under some
conditions, dependent race models with counters con-
taining only a single vacant slot (i.e., horse-race models)
are identified (Abbring & van den Berg, 2003; Carrierre,
1995; Escarela & Carrierre, 2003). Some of these results
are directly transferable to our model (see the first
example where the marginal distributions can be used to
identify the model), but unfortunately many of these
latter results are not directly relevant for the quite
general models considered here (especially not when
there are multiple free slots in the counters). However,
as has been outlined in the second example, the
identification debate can be resolved to some degree
by an appropriate setup of the design of the study. The
observation that a manipulation of a factor in
the research design leads to an expected change in the
parameters of the model, adds to the corroboration of
the model. An example of this logic is given in the
Application section where the parallel-counter model
with dependencies is discussed.
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Appendix A. Simulating a power function NHPP

Simulating the arrival times for n consecutive events
in a power function NHPP is straightforward. Let
A(t) = Af' be the integrated rate function. The time of
occurrence for the first event is simulated by drawing a
realization from a Weibull distribution (using the
probability integral transform technique). For the subse-
quent waiting times, suppose the previous event occur-
red at time ¢ and we want to simulate the arrival time of
the next event. The probability that we have to wait
more than s time units until the next arrival is equal to

Pr(N(t+5) — N(1) = 0) = ¢ (Al+s)=40)
— o Mlts) =)
By drawing a realization u for a random variable U

distributed uniform on [0,1] and using the inverse

survivor function, the arrival time of the next event is
1
t+s=(—1nu)r.

Appendix B. The positive stable density

Finding the positive stable density from its Laplace
transform is a difficult mathematical problem.

Moreover, it is the characteristic function, and not the
Laplace transform, that provides the best starting point
for deriving the probability density (see Feller, 1971, p.
548, for a derivation of the positive stable density from
the characteristic equation).

There exists another form for the probability density
of a positive stable random variable (Hougaard, 2000,
Appendix A.3.3), which may lead to simplified calcula-
tions.

Proposition 7. For o<1, the probability density from
Eq. (9) can be written in the following form:

g(0) = i ﬂ (A.1)
= K (—ko)’
where the function —— = 0 for ko an integer (Abramo-

(—ka) —
witz & Stegun, 1974, p. 255).

Proof. Proving this result, we rely on two basic proper-
ties of the gamma function: the recursive identity, I'(1 +
x) = xI'(x), and the reflection property, I'(x)I'(—x) =

Tsm(w- Applying first the recursive identity to I'(ko +

1), then the reflection property, and finally inserting the
result in Eq. (9) gives the desired result for a<1. [

As said above, it is difficult to find the probability
density function of a positive stable random variable
from its Laplace transform, but it can be shown that e~
is indeed the Laplace transform of Eq. (9) or (A.1).

Proposition 8. The Laplace transform of the positive
stable density g(0) given by Eq. (A.1) is e,

Proof. For the case o = 1, the proof is trivial. For the
case o<1, we will make use of the following integral
identity (Feller, 1971, Eq.(7.9), p. 427), which is
repeated here without proof:
0 —s0
/ l—e dy:SyF(l—y)
0 Y

0y+l
= —5T(-y)

compute the

(y>0).

Next we can following integral

transform:

| 0= exp-sog0) ao

B e 0 (_l)k()fockfl
_/0 (1 —exp(—s0)) Z 7k!F(—kcx) do

k=1

G0 e
_; k!F(—koc)/o (1 — exp(—50))0 d0

_i (_l)k (_1) kacl—v(_k )
T K (k) *

(using the integral identity)
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=" +1. (A.2)

Now, the left-hand side of Eq. (A.2) can also be written
as

| 0= exp-soa(o) ao
_ /OO 4(0) do — /L exp(—s0)g(0) do.
0 0

Because the density integrates to one, it cancels against
the one on the right-hand side. Multiplying both sides
then with —1 proves the proposition. [

Appendix C. Simulating positive stable random variates

An algorithm to simulate from a positive stable
density is described by Chambers, Mallows, and Stuck
(1976). First draw a value y from a uniform distribution
on [0, 7] and next a value w from a standard exponential
distribution (with Y and w independent). Then the
quantity
) _sin((1 — o)) T sin(oap)

sin(lp)éwu

is a draw from a positive stable distribution with
parameter o. For o =0.5, the probability density
function is displayed in Fig. 1. Note the positive
skewness and especially the heavy tails of the distribu-
tion: The mass of the graphed part of the density
function is about 0.75, thus Pr(©>5)~0.25. A sample
of 100000 drawings was simulated. The estimated
probability of observing a value larger than 100 is still
about 5% and the maximum value in the sample is
5.9442 x 108.
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