
A Smart Card Login Module for Java

Authentication and Authorization Service

[Published in Gemplus Developer Conference, Montpellier, France,
June 20–21, 2000.]

Laurent Gauteron and Pierre Girard

Gemplus, Product Security Group,

B.P. 100, 13881 Gémenos Cedex, France

{laurent.gauteron, pierre.girard}@gemplus.com

1 Introduction

The latest Java security package JAAS gives developers a way to control the
behaviour of an applet and its access to the local resources on a per-user basis
in addition to the classical per-origin and per-signer basis. This authorisation
service is supported by an authentication component which decides who is the
current user of the Java Virtual Machine.

Smart cards have been widely recognized as a efficient way to greatly improve
the security of a user authentication process. In particular, it is far better than a
classical password scheme. Password schemes are quite simple, but face so-called
dictionaries attacks. Even if the research space is huge (like if the password is
alphanumeric and 8 characters long), an attacker can limit its exhaustive search
to a limited list of passwords (its dictionary) that have a good probability to
be chosen by the average user. The dictionary of likely password include all
the English (or local language) words along with popular first names, date of
birth, and so on. Practical experience show that it extremely difficult to instruct
the users to chose good password. It has also been proven that giving random
password to the users is a bad idea because they are difficult to remember and,
most often, they are finally written on a note sticked under the user’s keyboard,
if not on the screen. In addition, passwords are sensitive to other attacks such
as replay or eavedropping.

Fortunately, the JAAS designers have carefully disconnected the authenti-
cation task from others part of the package: this task is performed by a login
module and custom ones can be added when needed. This is the classical concept
of Pluggable Authentication Module (PAM).

In this paper we describe an implementation of a JAAS login module which
provides a strong authentication of users by smart cards. We also detail the
environment needed to manage the users base.

The paper is organized as follows: we first recall the basics on Java secu-
rity and the JAAS features. In a second step we introduce the architecture of
our solution which is detailed later on in two parts: one dealing with the login



2 Laurent Gauteron and Pierre Girard

module, and the other dealing with the user management. Finally we present an
application using JAAS that we have implemented to challenge our smart card
authentication solution.

2 Java Security and JAAS

On the Java platform, security is managed at the class level. Each loaded class is
accepted only if it is verified successfully by the bytecode verifier. The origin of
the class (i.e. its IP address) is identified and if the code appears to be signed, the
signature is verified. The next step is to associate to the class a set of permissions
that is determined from the security policy associated with the JVM. When a
sensitive call is performed by one method belonging to the class, the access
controller compares the actual class permissions with the requested permission.
If the resource can be accessed by the class, the check simply returns, if not it
throws a security exception.

This (oversimplified) summary of security verifications in Java shows that the
security policy is code-centric, that is the permissions are granted according to
code properties (signature and origin). The main reason for that is the primary
purpose of Java security: defense of local resources against hostile mobile code
coming from outside.

This approach is perfect for applications such as web browsers with embedded
JVM. However, when it comes to classical multi-user security, this approach is
no longer appropriate. In this case, the aim is to grant different rights to the
same class depending on which user is currently using the class. JAAS adds this
second approach and authorizes to write code-centric and user-centric security
policies.

To benefit from extra privileges granted to a class for a given user, this user
should authenticate himself to the JVM through a login module. The module to
use can differ from application to application. The JVM use a configuration file
to select the correct identification module in a given context. More than one login
module can be used, in this case, the user need to be successfully authenticated
by all login modules.

The login phase itself tries to authenticate a user represented by an object
of class Subject. Once authenticated, an action can be performed using the ad-
ditional rights granted to a user by using the static method doAs of Subject
class. This method associate an authenticated user with the current access con-
trol context. Hence, subsequent access control checks will be based upon both
code and user.

3 Architecture of a Smart Card Based Authentication

Figure 1 gives an overview of our login module and its environment. The login
module in itself implement the javax.security.auth.spi.LoginModule inter-
face in pure Java using the OpenCard Framework packages to communicate with
a user’s smart card which holds his keys and credentials.



A Smart Card Login Module 3

JAAS

Login module

OCF

GPK card 
services

GPK card

LDAP 
directory

JNDI

User management module

PKI

Fig. 1. The authentication architecture

4 The Login Module

We have chosen to use the latest public key enabled smart card in the Gemplus
product range: the GPK8000 card. As card services are available for this card,
it is far easier to exploit the GPK8000 by this mean than by dealing with low
level Application Protocol Data Unit.

The authentication protocol between the card and the login module is based
on a classical challenge/response exchange based on public key cryptography.
The card containscd a private/public RSA key pair which is used to sign a
random challenge sent by the login module. The login verifies the card signature
and if the verification is correct, considers the user as authenticated.

For the login module, there are two remaining issues: how to associate a
user with a public key and how to obtain the user’s public key. The association
between a user and its public key is usually done by a Certification Authority
who issues signed certificates which tie a user identity with its public key. The
Public Key Infrastructure also maintains a list of revocated certificates.

The certificates can be carried by the user’s card, or obtained somewhere
on the local network in a LDAP directory or in a directory maintained by the
Certification Authority. In any case, the login module needs to contain the public
key of the Certification Authority. This key will be used to verify the certificates.



4 Laurent Gauteron and Pierre Girard

5 The Environment

In addition to the above mentioned PKI and directory, a tool is needed to ad-
ministrate the users base. This tool maintain the list of authorized users and
help the administrator to add and remove users, update their rights, etc.

This tool outputs the security policy of the JVM, and personalizes or modifies
users’ smart card. It also communicates with the PKI and the directory to obtain
new certificates for new users, to revoke certificates of deleted users, etc.

6 Using JAAS

The smart card login module and the user centric security policy usage is demon-
strated through a public mail access application.

This application runs continuously on publicly accessible terminals allowing
users to check their mail inside a campus or a wide organisation.

They authenticate themselves with their smart card (potentially their smart
ID organization badge) and then check their mail. With a user-centric security
policy and JAAS, it is not necessary for the users to log-on the underlying
operating system. Once authenticated, they are authorized to access their own
files, but the access controller guaranty that access to other files is prohibited.

7 Conclusion

We have introduced a new smart card base login module for JAAS and its
support environment. The check mail application demonstrates the interest of a
user centric security policy and tests our login module.

References

1. Charlie Lai, Li Gong, Larry Koved, Anthony Nadalin, and Roland Schemers. User

authentication and authorization in the java platform. In Fifteenth Annual Com-

puter Security Application Conference, pages 285–290. IEEE Computer Society, De-

cember 1999.


