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Shape Spectrum Based View Grouping and
Matching of 3D Free-Form Objects
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Abstract —We address the problem of constructing view aspects of
3D free-form objects for efficient matching during recognition. We
introduce a novel view representation based on “shape spectrum”
features, and propose a general and powerful technique for organizing
multiple views of objects of complex shape and geometry into compact
and homogeneous clusters. Our view grouping technique obviates the
need for surface segmentation and edge detection. Experiments on
6,400 synthetically generated views of 20 free-form objects and 100
real range images of 10 sculpted objects demonstrate the good
performance of our shape spectrum based model view selection
technique.

Index Terms —Free-form objects, sculpted surfaces, 3D object
representation, COSMOS, shape spectrum, clustering, view matching.
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1 INTRODUCTION

A 3D rigid object can give rise to arbitrarily many different 2D
appearances (views). For an object with free-form or sculpted sur-
faces, only a part of a surface will typically be visible from a single
viewpoint due to the object’s curvedness. Variations in viewing
directions and angles can result in very distinct views of the ob-
ject, with more of the curved surface(s) either coming into the
view or disappearing from the view. A free-form surface is de-
fined as a smooth surface on which the surface normal is well
defined and continuous almost everywhere, except at vertices,
edges, and cusps [1]. The surface is not constrained to be polyhe-
dral, piecewise-quadric, or superquadric, and its shape can be
arbitrary. Some representative free-form objects are human faces,
cars, boats, airplanes, and sculptures. Fig. 1 shows a set of range
images of 3D free-form objects which were obtained using a laser
range scanner (Technical Arts White scanner) that produces depth
data in an X-Y grid. The figures show surface depth as pseudo
intensity, displaying the relative orientation of the surfaces; points
oriented almost vertically are shown in darker shades.

With growing interest in automated manufacturing and inspec-
tion, representation of free-form objects is gaining a lot of attention
[1], [2]. Previous approaches to 3D object representation can be cate-
gorized as either viewpoint-independent (object-centered) or viewpoint-
dependent (viewer-centered). A viewpoint-independent representa-
tion attaches a coordinate system to an object; all points or object
features are specified with respect to this system. The description
of the object thus remains canonical, independent of the view-
point. However, it is difficult to derive an object-centered repre-
sentation from an input image. A unique coordinate system needs
to be first identified from the input images, and this becomes diffi-
cult when the object has many natural axes. Therefore, this ap-
proach is well suited to simple 3D objects that can be specified by
analytic functions.

A viewer-centered approach, on the other hand, describes an ob-
ject relative to the viewer; as one does not have to compensate for
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the viewpoint, the representation can be easily computed from the
image. A major disadvantage is that a large number of views needs
to be stored for each object, since different views of an object are, in
essence, treated as containing distinct objects. However, represent-
ing an object with multiple views is quite useful for view-based
matching, alleviating the need for expensive 3D model construction.

When representing a free-form object, viewer-independent
schemes suffer greater difficulty. A free-form object may neither
have a complete geometric model nor a description in terms of
analytic functions. It may not be an assembly of simple surfaces,
such as planes and cylinders. Therefore, a practical solution would
be to build a multiple view based representation of the object.
However, a sculpted object gives rise to infinitely many different
views owing to its curved nature. In practice, only a finite number
of such views can be stored. Therefore, an important issue is
which and how many of these views are actually necessary and
useful for object recognition.

The problem we address in this paper is as follows: Given a set of
views (range images) of a 3D free-form rigid object, how do we rep-
resent and organize these views in a meaningful and efficient man-
ner? Specifically, how do we generate a representative and adequate
grouping of the views such that a new object view can be indexed
effectively and efficiently to one or a few of the stored views in the
database? We place emphasis on automatically obtaining the clus-
ters of views without requiring segmentation of object surfaces. Such
a set of view clusters will serve as a view-based representation of
each object in the database. Our focus is on generation of a set of
representative views suitable for efficient retrieval, rather than for
geometric reasoning or other purposes. Efficient retrieval of a cluster
of views provides a set of plausible correct matches for further re-
fined matching. The term view refers to a range image of an unoc-
cluded object obtained from any arbitrary viewpoint. For the pur-
poses of this paper, two views of an object are not considered dis-
tinct if they produce appearances of the object that merely differ
from each other by a rotation about the view plane.

2 PREvVIOUS WORK

To construct a multiple view based description of an object, an
“approximate visibility technique” is adopted to restrict the set of
possible viewpoints to a sphere of large but finite radius, centered
around the object. The surface of the viewing sphere is tessellated
in a quasiregular fashion to provide a discrete set of points which
provide viewpoint vectors in the approximate visibility space. In
this paper, range data of an object surface seen from each of the
sampled view directions are obtained using the laser range scan-
ner or from the CAD model or a surface triangulation of the ob-
ject.

View clustering for a single object has been addressed by sev-
eral researchers under the topics of characteristic views (CVs) [3]
and aspect graphs (AGs) [4]. Although there exists an extensive
body of work dealing with construction of aspect graphs of poly-
hedra and a class of curved surfaces [5], [6], [7], [8], [9], a major
difficulty that confounds the use and implementation of AGs for
object recognition is that complicated objects can result in enor-
mous and complex AGs. To derive aspect graphs of manageable
sizes, appropriate heuristics need to be designed. The problem of
computing the aspect graph of an arbitrary object still remains
unsolved. Ikeuchi’s practical approach [10] relied on detecting the
planar and curved faces of an object, using photometric stereo in
order to form the aspects of the object containing topologically
similar views. However, such an approach is difficult with a free-
form object, since each viewpoint gives rise to a slightly different
view of the object, because of its smoothly curved nature. It is also
hard to define a single face in a sculpted object. A recent approach
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Fig. 1. Range images of views of 3D free-form objects.

[11] organizes the model base hierarchically, using parametric
structural descriptions built from the CAD models of objects,
where it is assumed that a complete 3D description of an object is
available for its recognition. Other approaches to organizing object
views for indexing include [12], [13], [14], [15], [16], but space
limitations preclude a detailed discussion. In brief, our approach
differs from them in terms of the features used (we use the shape
spectrum for the first time), the usage of scale information (we
normalize instead), construction of view aspects of volumetric
parts of the object (we use shape summaries of whole object
views), modelbase dependent feature prediction hierarchies and
decision trees (in our case view grouping and modelbase organi-
zation are carried out independently), and object domain limita-
tions (we report experiments on real free-form objects).

3 COSMOS AND THE SHAPE SPECTRUM

Many of the representational problems associated with free-form
objects have been addressed in a scheme called cosmos. We
briefly review a few basic concepts of cosmos, referring the reader
to [2] for details. We begin with the definition of the shape index, a
quantitative measure of the shape of a surface at a point p:
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Fig. 2. The shape index (S)) on the principal curvature (x; — x5) plane.
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where x; and x;, are the principal curvatures of the surface, with
Ky 2 ky. All shapes can be mapped into the interval S, € [0, 1] and
every distinct shape corresponds to a unique value of S;, except
the planar shape. Points on a planar surface have an indeterminate
shape index since x; = &, = 0. For computational purposes, our
implementation uses a symbolic label—an arbitrarily chosen
“shape index value” of 2.0—to indicate surface planarity. The shape
index of a rigid surface is not only independent of its position and
orientation in space, but also independent of its scale and is unitless.
Fig. 2 shows how the shape index varies in the x; — i, plane.

An object’s shape can now be characterized quantitatively in
terms of its shape spectrum. It characterizes the shape content of an
object by summarizing the area on the surface of an object at each
shape index value. The shape spectrum of an object view is ob-
tained from its range data by constructing a histogram H(h) of the
shape index values—we used 0.005 as the bin width—and accu-
mulating all the object pixels that fall into each bin. The proposed
shape spectrum of a view can be computed from any collection of
(x, y, z) points on which the fundamental notions of metric, tan-
gent space, curvature, and natural coordinate frames can be suita-
bly defined. Since the shape spectrum of a view is constructed
directly using the original shape index values computed at each
pixel in its image, segmentation of object surfaces is avoided.

Fig. 3 shows nonplanar shape spectra (spectra computed with-
out taking the planar points on the surfaces into account) of object
views. For example, the shape spectrum of a vase, Vase2 in
Fig. 3b, indicates that the main shape category present in this ob-
ject is dome, along with a few smaller peaks in the ridge and saddle-
ridge categories. Concavities in the vase are characterized by the
nonzero bins below the 0.5 shape index level.

The shape spectrum derived from complete 3D surface data of
an object is viewpoint-independent. However, the spectrum de-
rived from a single range image of an object is view-dependent.
The view sensitivity of this high-level feature is exploited for ob-
ject view grouping as shown in Section 4. Fig. 3 also shows how
shape spectra of views of various objects differ and how spectra
computed from range images obtained by observing an object at
nearby viewpoints are similar to one another. The strong similari-
ties between the spectral plots of two different views of Cobra can
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Fig. 3. Shape spectrum: (a) Range image of Vase2; (b) shape spectrum of Vase2; (c) a view of the cobra head—Cobra-1; (d) shape spectrum of

Cobra-1; (e) another view—Cobra-2; (f) shape spectrum of Cobra-2.

be seen in Figs. 3d and 3f. These plots also indicate the predomi-
nance of rut (0.25), ridge (0.75), and trough (0.125) shapes in Cobra.

Since the spectra of purely polyhedral objects exhibit a single
peak at the shape index value of 2.0 (all the planar patches con-
tribute to this bin), it is difficult to discriminate between various
views of polyhedral objects. However, shape spectrum based clas-
sification can be used to categorize object views in a database into

two classes: those that are purely planar and those that contain
nonplanar shapes on the object surfaces. Since there is a huge
body of techniques available for polyhedral object recognition,
and since most objects in the world are free-form and nonpolyhe-
dral, we will not discuss polyhedral object matching further. We
will study mainly the use of nonplanar shape spectra for grouping
object views of free-form surfaces for fast matching.
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Fig. 4. Range images of 20 objects generated using 3D object models.

4 ORGANIZING OBJECT VIEWS USING SHAPE SPECTRA

We now describe how the shape spectra of object views can be
used efficiently for
1) view grouping and
2) view matching.

When the model database is populated during its construction, the
object identities of the views to be stored in the database are
known. We first investigate whether multiple views of the same
object can be clustered into meaningful groups based on their
shape spectra. We have chosen to perform clustering, instead of
supervised classification, to find out whether there is any inherent
clustering tendency present among the training set views. Second,
the object view grouping can be repeated with each set of object
views, and the model database can thus be structured into a col-
lection of distinct groups of views of each object. We propose to
determine the matching efficiency and accuracy by hierarchically
comparing an input view with the view cluster representatives
first, followed by matching it with the views within the clusters
themselves. Our primary concern is to structure a large database
of object views in order to eliminate matching the input view with
all the stored views, and to narrow down the possible set of views
that need to be matched more comprehensively.

4.1 Feature Representation and Similarity Between Shape
Spectra

A group of object views organized on the basis of “similarity” of
shape spectral features would contain views that exhibit the char-
acteristics of the same set of visible surfaces of the object. Note
that views that can be obtained by rotations about the viewing
direction are likely to possess similar shape spectral features and
are therefore grouped together.

We have proposed a feature representation that emphasizes the
spread characteristics (variance) of the spectral distribution. Our
feature vector representation R of a view is based on the first 10
moments of the normalized (with respect to the visible object sur-
face area) shape spectral distribution H(h) of an object view. By
normalizing the spectrum with respect to the total object area, we
remove the scale (size) differences that may exist between different
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objects. Moreover, we reduce the problems associated with bin
quantization that cause poor performance if direct comparison of
two histograms is used. These features are best understood if we
observe the likeness between the shape spectrum of an object view
and a probability density function of a random variable.

The 10 moments are defined as follows:

m, =Y (WH(h); m, = (h—m) H(h), 2<p<10. (2

Then the feature vector is denoted as R = (my, m,, ---,
that the range of each of these moments is [-1, 1].
Let O = {Ol, 02, ., 0"} be a collection of n 3D objects whose

my,). Note

views are present in the model database, M. The jth view of the
ith object, O] in the database is represented by <Lij, R:> where L

is the object label, and R; is the shape spectral moment vector.

(Lo Rl
that describe m views of the ith object, the goal is to derive a parti-
tion of the views, P' = {C C),

Given a set of object representations R' = {<Li . R >

i} (see Fig. 5). Each cluster in

7 contains views that have been adjudged similar, based on the
dissimilarity between the corresponding moment features of the
shape spectra of the views. The measure of dissimilarity between
R} and R, is defined as

Y (R, -RL) 3)

D(R}, R, ) =

where R;| is the Ith moment of the jth view of the ith object. Since
the moment terms are unitless, the different moment terms can be
added up coherently.

4.2 View Grouping
In order to provide a meaningful categorization of views of the
object O', views are clustered based on their dissimilarities

D(Rij, R'k) using a hierarchical clustering scheme, such as the

complete-link algorithm [17]. The partition 7 is obtained by split-
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Fig. 5. Model view selection with the view grouping and matching system.
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Fig. 6. Hierarchical grouping of 320 views of Cobra.

ting the hierarchical grouping of O'ata specific level of dissimi-

larity in the dendrogram. The split level is chosen at a user-
specified dissimilarity value to result in a set of compact and well-
separated clusters. Alternatively, if the number of resultant clus-
ters is prespecified as a design criterion, then the cut level can be
automatically selected.

Once the partition 7' is determined from the training views of

Oi, the database M, is organized into a two-level structure, My =

{Tl, -, P}, where each 7' is itself a set of view clusters. A sum-
mary representation, such as the centroid, is abstracted for each
view cluster C; from the moment vectors of its constituent views.

Given an input view, its object label and best-matching view are

identified quickly and accurately in two stages:

1) The object identity is established by first comparing the
moment vector of the input view with the cluster summary
representations and selecting the best-matched cluster;

2) Comparison of the input view with the moment vectors of
the views in the best-matched cluster determines the view
that matches most closely with the input.

5 EXPERIMENTAL RESULTS
We have used two databases in our experiments:

1) a database containing 6,400 synthetically generated range
images of 20 sculpted objects with 320 views per object, and
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TABLE 1
OBJECT MATCHING ACCURACY WITH AN INDEPENDENT TEST SET OF 2,000 VIEWS

Object class Correct object view classification (%)
when K best-matched clusters were examined
K=1 K=2 K=5 K=10 [ K=15 | K=20 | K=25 | K=30
Vase2 30.0 43.0 79.0 98.0 100.0
Vasel 27.0 51.0 84.0 97.0 97.0 97.0 97.0 97.0
Big-Y 3.0 7.0 35.0 68.0 92.0 100.0
Cobra 61.0 84.0 100.0
Cup 31.0 56.0 90.0 98.0 100.0
Apc 21.0 44.0 97.0 100.0
Jeep 25.0 48.0 94.0 100.0
Truck 17.0 48.0 88.0 98.0 98.0 99.0 99.0 99.0
Al 25.0 51.0 86.0 99.0 99.0 99.0 99.0 99.0
Beethoven 33.0 63.0 91.0 99.0 100.0
Cow 29.0 62.0 96.0 100.0
Dinosaur 23.0 46.0 70.0 92.0 98.0 99.0 99.0 99.0
Porsche 16.0 44.0 75.0 98.0 99.0 100.0
Shark 36.0 46.0 80.0 93.0 96.0 96.0 98.0 99.0
Shoe 39.0 59.0 78.0 91.0 95.0 100.0
Triceratops 23.0 41.0 77.0 97.0 99.0 100.0
Venus 26.0 46.0 81.0 100.0
Violin 66.0 95.0 99.0 100.0
Camaro 21.0 26.0 66.0 97.0 99.0 99.0 100.0
Mustang 19.0 23.0 47.0 77.0 85.0 91.0 96.0 100.0

2) a second database of 100 range images of 10 free-form ob-
jects (10 views per object) collected using the laser range
scanner.

Fig. 4 shows the 20 complex objects, each of which was modeled
using 320 different views. The range images of the objects from 320
possible viewpoints (determined by the tessellation of the
viewsphere using the icosahedron) were synthesized either from the
CAD models when available or from the hand-constructed object
triangulations. The polyhedral models of some of the objects were
collected from a public domain database
(http://www.eecs.wsu.edu/~flynn) on the Internet.

5.1 View Clustering Results

For each object view, the shape index was computed at each pixel
in its range image from the principal curvatures that were reliably
estimated using an iterative curvature smoothing algorithm. Esti-
mation of local curvatures at each surface point and the iterative
smoothing of curvatures took between five and 15 minutes on the
average on images of size 240 x 240 containing about 15,000 sur-
face points on a SPARCstation 20. Computation of shape index at
each pixel in the image, construction of the shape spectrum from
S, values, and computation of the moment feature vector took
about a few seconds on the average. We clustered the views of
each object based on the dissimilarity measure D between their
moment vectors using the complete-link hierarchical clustering
scheme [17]. These steps are summarized in Fig. 5.

The dendrogram depicting the hierarchical grouping obtained
with 320 views of the Cobra object is shown in Fig. 6, where the
leaf nodes are the views themselves. The view grouping hierar-
chies of the other objects are similar to the dendrogram in Fig. 6.
These clusterings demonstrate that the views of each object fall
into several distinguishable clusters. The hierarchical grouping
obtained from each object was then cut at a dissimilarity level of
0.1 or less to result in compact view clusters. The centroid of each
of these clusters was determined by computing the mean of the
moment vectors of the views falling into the cluster. Observe that
the shape spectra of the views do not change with a rotation of the
views about a single axis, and this leads to a more concise method
for grouping multiple views.

5.2 View Matching Results

The goal of our experiments is to examine how view grouping
facilitates matching in terms of classification accuracy and the
number of matches necessary for correct classification of views.
For these experiments, the database containing views of different
objects was organized into a two-tiered structure: the first level
containing all the view groups obtained from clustering views of
each object individually, and the second level consisting of the
views themselves in these clusters. Given a set of test range im-
ages, we studied the number of clusters that had to be examined
in order to attain several levels of view misclassification rates.

We conducted several experiments in the resubstitution mode,
where we used the training views themselves as test patterns and
verified that object views were grouped into compact and homo-
geneous view clusters, thus demonstrating the discriminatory
power of the shape spectrum based feature representation. These
results also indicated that the simple centroid based generalization
that we adopted is a reasonable scheme, and the clusters are com-
pact enough that, after a test view picks a view cluster, it very
rarely matches with a wrong view within the cluster. Each test
moment pattern took about 20 ms to be correctly classified on a
SPARCstation 20. We refer the reader to [18] for details.

5.2.1 Testing with 6,400 Object Views

During the testing phase, we trained the view grouping system
with 6,400 training views (320 views per object) and tested it with
2,000 independent test views (100 per object). At the top level, the
database contained 229 view clusters of objects. The second level
contained the training views themselves. Each of the 2,000 test
views was used as a query view, and the number of best-matched
clusters that had to be examined in order to correctly identify the
object class of the query view was recorded.

Table 1 summarizes the results. It can be observed that only 10
(about 4.4 percent) of the view clusters had to be examined to
obtain an accurate classification of 95 percent of the test views.
Complex free-form objects, such as the Cobra, Vase2, Beethoven,
Cow, Violin, Venus, etc., required fewer clusters (15 top clusters or
less) to be examined to obtain 100 percent correct classification of
the test views, drawn from their object categories. Model views of
vehicles, e.g., from the Porsche and Camaro categories, were often
retrieved as the best-matched views for test views from either of
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these two categories. It can be observed from the table that the
number of best-matched clusters that must be examined for 100
percent object classification accuracy depends on the size of the
database. These results further demonstrate that the shape spec-
trum based moment vector for view representation can serve as a
useful pruning primitive during matching with a model database
containing many complex free-form objects. Only 20 percent of the
database was matched for view classification, on the average, over
2,000 test views, even when the top 30 clusters were examined.

5.2.2 Model View Selection with Real Range Data

The shape spectrum based matching scheme was also tested on
real range images of free-form objects obtained using the Techni-
cal Arts White scanner in our laboratory. The views in a database
of 100 range images of ten free-form objects (10 views per object)
were randomly separated into two different categories:

1) a model database containing 50 views with five views ob-
tained from each of the 10 different objects, and
2) anindependent test set containing 50 views.

Fig. 1 shows the range images of the test views of the objects.

The model database was structured into two levels: At the top
level were 10 view clusters, with each cluster containing five
views from its object class at the second level. Each test view was
first matched with the 10 view clusters to rank the best-matched
three view clusters, and then the views falling into these three
view clusters were examined clusterwise to select a best-matched
view from each of the three clusters. This resulted in a view classi-
fication accuracy of 92 percent, with only four out of 50 test views
failing to select even a single model view from their correct object
classes among their top three matches. When five best-matched
clusters were examined to select the best view from each one of
them, the accuracy increased to 98 percent, with only one test
view incorrectly classified. The wrongly classified test view was a
view belonging to the Creamer class. The shapes of the surfaces
visible in the wrongly classified view of Creamer were shared by
views from other objects, leading to an incorrect classification. The
average number of view comparisons performed in retrieving the
top five hypotheses that matched a test view was 35, which is
smaller than the number of view comparisons required when a
linear matching of the test view with all the 50 model views is
performed. Due to the relatively small size of the database (five
views per object), the percentage comparisons for accurate classi-
fication of a test view is higher than with the experiments reported
in Section 5.2.1. More sample views in each object class in the
model database are needed to increase the discrimination between
the object shapes visible in the views. Two of our examples (the
Cobra head and the Phone) demonstrate a small amount of self-
occlusion, and the shape spectrum successfully tolerated this.

6 DISCUSSION

We informally studied the efficacy of the moment features derived
from the shape spectra of object views in classifying an input view
correctly and found that only the first four moments significantly
contributed to correct classification of the input. The higher order
moments were low in magnitude and did not add much to the
Euclidean distances computed for comparison of moment vectors.
Alternative metrics, especially the Mahalanobis distance, could be
used instead to compare the feature vectors and measure the
similarity of views. The Mahalanobis distance ensures weighted
contributions of individual feature values to the distance com-
puted between views. A thorough comparison can be made be-
tween these two distance measures to determine the utility of the
high-order moments in the feature vectors derived from the shape
spectra of views.

VOL. 19, NO. 10, OCTOBER 1997 1145

A future research direction is to add more levels to the hierar-
chical database structure. For example, a set of object views can be
organized based on their shape spectra into several categories:
those that exhibit planar patches alone, and those that exhibit
other shapes in addition to planar patches. Given this broad or-
ganization, a fine-grain organization of the latter category into
views that contain purely nonconvex shapes and views that con-
tain purely convex shapes can also be obtained. Given an input
object view, its shape spectrum can be computed easily, and, then,
by descending through this hierarchy, it can be compared with
only a small subset of views that are likely to match best with it.

7 SUMMARY

We have addressed the problem of constructing view clusters of
free-form objects. By exploiting view grouping in model data-
bases, a small number of plausible correct matches can be quickly
retrieved for more refined matching. We have proposed a novel
shape spectral feature based scheme for grouping views that obvi-
ates surface segmentation and edge detection. These features al-
low object views to be grouped meaningfully in terms of the shape
categories of the visible surfaces and their surface areas. The pro-
posed approach is general and relatively easy to use. We have
demonstrated that, in a database containing 229 view clusters of
20 sculpted objects, only the top 14 percent of the best-matched
clusters need to be examined for 100 percent recognition accuracy.
With the database containing 6,400 views of 20 objects, only 20
percent of the database was examined, on the average, over 2,000
independent test views for correct classification. We also demon-
strated the effectiveness of the shape spectral matching scheme on
real range images of views of free-form objects.
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