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Abstract

Most of the curves and surfaces encountered in geometric metling are de ned
as the set of solutions of a system of algebraic equations anidequalities (semi-
algebraic sets). Many problems from di erent elds involve proximity queries like
nding the (nearest) neighbours or quantifying the neighbourliness of two objects.

The Voronoi diagram of a set of sites is a decomposition of sga into prox-
imal regions. The proximal region of a site is the locus of paits closer to that site
than to any other one. Voronoi diagrams allow one to answer poximity queries
after locating a query point in the Voronoi zone it belongs ta The dual graph of
the Voronoi diagram is called the Delaunay graph. Only apprximations by conics
can guarantee a proper order of continuity at contact points which is necessary for
guaranteeing the exactness of the Delaunay graph.

The theoretical purpose of this thesis is to elucidate the baic algebraic and
geometric properties of the o set to an algebraic curve and b reduce the semi-
algebraic computation of the Delaunay graph to eigenvaluescomputations. The
practical objective of this thesis is the certi ed computation of the Delaunay graph
for low degree semi-algebraic sets embedded in the Euclidealane.

The methodology combines interval analysis and computatioal algebraic
geometry. The central idea of this thesis is that a (one time)symbolic preprocessing
may accelerate the certi ed numerical evaluation of the Dehunay graph con ict
locator. The symbolic preprocessing is the computation of lhe implicit equation of
the generalised o set to conics. The reduction of the Delauay graph con ict loc-
ator for conics from a semi-algebraic problem to a linear algbra problem has been
possible through the use of the generalised Voronoi vertexa(concept introduced in
this thesis).

The certi ed numerical computation of the Delaunay graph has been possible



by using an interval analysis based library for solving zeredimensional systems
of equations and inequalities (ALIAS). The certi ed comput ation of the Delaunay
graph relies on theorems on the uniqueness of a root in giventiervals (Kantorovitch,
Moore-Krawczyk). For conics, the computations get much fager by considering only
the implicit equations of the generalised o sets.
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Chapter 1

Introduction

We can encounter almost everywhere in the real world curved lojects in a three
dimensional Euclidean space. Most of the curves and surfasesncountered in geo-
metric modelling are de ned as the set of common zeroes of a sef polynomials
(algebraic varieties or subsets of algebraic varieties de ned by one or more alde
raic inequalities (semi-algebraic sets). More formally, ¢t us recall the following

de nition.

De nition 1.0.1. (Semi-algebraic set, adapted from [BCR98, De nition 2.1.4) A

semi-algebraic setof RN is a subset of the form

[S \I’i
X 2 RNjfi;j ?i 0
i=1j=1
where thef;; are polynomials in the variablesxy;::;; XN with coe cients in R and

7 iseither< or =, for i =1;:5sandj =1;::r.

See [BR90, BCR98] for an introduction on semi-algebraic set Examples
of semi-algebraic sets include Bezier, Spline curves [B&4] in geometric modelling,
Geographic Information Systems, Computer Graphics and Aeonautics; the coupler
curve [Mer96] in mechanism theory, workspace and singularan gurations [Mou96]

in robotics, etc. Maps are unthinkable without curved objeds. Many problems from



di erent elds involve proximity queries like nding the ne arest neighbour, nding
all the neighbours, or checking or quantifying the neighbouliness of two objects.

The potential applications of proximity queries on semi-abebraic sets em-
bedded in two or three dimensional spaces include the probie of motion planning
in a real environment for robots [Mou96] and Geographic Infomation Systems with
curved objects being spatial primitives [Mio02]. The retraction planning problem
[OY85, OSY86, OSY87] in robotics is strongly linked to questions of proxinity
among the projections of real-world objects in real-world @vironments onto the
plane. The optimal path of a robot (considered as a disk) to tansport the widest
load while avoiding obstacles is a subset of the Voronoi diagm of those obstacles.
Even if we assume that the obstacles a robot might encounter W not be curved
in most of practical situations, the trajectories of the other robots or moving pieces
that the robot may encounter, are curves that are expressed .semi-algebraic sets.
The growth models used in several natural sciences are alstrangly linked to prox-
imity: the growth of crystal aggregates (the Johnson-Mehl nodel [OBS92]), the
growth of trees in a forest (Voronoi diagrams [MB97]), etc. h geography, the study
of in uence zones and spatial analysis is also strongly lin&d to proximity queries on
curved objects in the plane [VC90]. In all these applicatiors, the qualitative know-
ledge of the neighbourliness is more critical than the quaritative knowledge of the
Voronoi diagram. In crystallography, the exact knowledge d the neighbourliness is
necessary for the prediction of the crystallisation proces.

Voronoi diagrams are irregular tessellations of the spaceyhere space is con-
tinuous and structured by discrete objects [AKOO, OBS92]. The Voronoi diagram
[Vor07, Vor08, Vorl0] (see Figure 1.0.1) of a set of sites is decomposition of the
space into proximal regions (one for each site). Sites weregints for the rst his-
torical Voronoi diagrams [VorQ7, Vor08, Vorl0], but in this thesis we will explore
sets of circles, conics and more generally semi-algebraiets. The proximal region

corresponding to one site (i.e. its Voronoi region) is the seof points of the space



that are closer to that site than to any other site of the set of sites [OBS92]. We
will recall now the formal de nitions of the Voronoi diagram and of the Delaunay

graph. For this purpose, we need to recall some basic de nitins.

De nition 1.0.2.  (Metric) Let M be an arbitrary set. A metric on M is a mapping
d:M M ! R, suchthatfor any elementsa, b, and c of M, the following conditions
are fullled: d(a;bp =0, a= b d(a;b= d(b;a, andd(a;c) d(a;b+ d(b;09.

(M;d) is then called ametric space and d(a;b) is the distance betweena and b.

Remark 1.0.3 The Euclidean spaceRN with the Euclidean distance is a metric
space RN;

LetM = RN, and denote a distance between points. LeB = fs1;:::;Smg
M;m 2 be a set ofm dierent subsets of M, which we call sites. The distance

between a pointx and a sites; M is de ned asd(x;s;) =inf yo5 f (X;y)0.

De nition 1.0.4. (Bisector) For si;s; 2S;s; 6 sj, the bisector B (s;; sj) of s; with
respect tos; is: B (sj;sj) = fx 2 Mjd(x;si) = d(x;sj)g (see example on Figure

1.0.2).

De nition 1.0.5. (Inuence zone) For si;s; 2 S;s; 6 sj, the inuence zone
D (si;sj) of si with respect to s; is: D (si;s5) = fx 2 Mjd(x;si) < d (X;sj)g

(see example on Figure 1.0.3).

De nition 1.0.6. (Voronoi region) The Voronoi region V (si;S) of s; 2 S with
T
respect to the setS is: V (si;S) = 525565 D (si;sj) (see example on Figure

1.0.4).

De nition 1.0.7.  (Voronoi diagram) The Voronoi diagram of S is the unionV (S) =

s2s @Msi; S) of all region boundaries (see example on Figure 1.0.5).

De nition 1.0.8. (Delaunay graph) The Delaunay graph DG (S) of S is the dual
graph of V (S) de ned as follows:
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Figure 1.0.1: The ordinary Voronoi diagram (plain lines) of points (squares), and
its topology expressed by the Delaunay triangulation (dasked lines)



Figure 1.0.2: The bisector (parabola) of a point and a line sgment

Figure 1.0.3: The in uence zone (hashed) of a point with resgct to a line

Figure 1.0.4: The Voronoi zone (dark grey) of a cubic (light gey). The two objects
are a circle and a cubic.



Figure 1.0.5: The Voronoi diagram (light lines) of a circle,an ellipse and a hyperbola
(dark lines)

the set of vertices ofDG (S) is S,

for each (N 1) dimensional facet of V (S) that belongs to the common
boundary of V (s;i;S) and of V (s;;S) with sj;s; 2S and s; 6 s, there is an

edge of DG (S) betweens; and s; and reciprocally, and

for each vertex of V (S) that belongs to the common boundary of
V (si;;S);inV o siy., S, with 8k2f1;::;;N +2g;s;, 2S all distinct, there
exists a complete graph Ky.> between the s; ;k2f1,::;;N +2g, and

reciprocally (see example on Figure 1.0.6).

The one-dimensional elements of the Voronoi diagram are ckdd Voronoi
edges. The points of intersection of the Voronoi edges are tbad Voronoi vertices.
The Voronoi vertices are points that have at leastN + 1 nearest neighbours among
the sites of S. In the plane, the Voronoi diagram forms a network of vertices and
edges. In the plane, when sites are points in general positip the Delaunay graph
is a triangulation known as the Delaunay triangulation. In t he plane, the Delaunay

graph satis es the following empty circle criterion: no site intersects the interior of
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Figure 1.0.6: The Delaunay graph of the sites of Figure 1.0.5

the circles touching (tangent to without intersecting the interior of) the sites that
are the vertices of any triangle of the Delaunay graph (see Kjure 1.0.7).

Once the Voronoi region a query point belongs to has been id¢ired, it is
easy to answer proximity queries. The closest site from the gery point is the site
whose Voronoi region is the Voronoi region that has been iddaned. The Voronoi
diagram de nes a neighbourhood relationship among sites: wo sites are neighbours
if, and only if, their Voronoi regions are adjacent, or altemnatively, there exists an

edge between them in the Delaunay graph.

The certi ed computation of the Delaunay graph is important for two reas-
ons. By certied computation, we mean a computation whose owput is correct.
First, unlike the Voronoi diagram, the Delaunay graph is a discrete structure, and
thus it does not lend itself to approximations. Second, the naccurate computation
of this Delaunay graph can induce inconsistencies within tls graph (see Sections
2.3 and 3.1.2), which may cause a program that updates this gph to crash. This
is particularly true for the randomised incremental algorithm for the construction
of the Voronoi diagram of semi-algebraic sets. The algoritm that certi es whether

the facets of the Delaunay graph whose vertices arBl + 1 given sites would remain



Figure 1.0.7: The 3 empty circles for the sites of Figure 1.G

or not after the addition of a given site is central to the despn of a semi-dynamic
(allowing additions of sites but not deletions) algorithm for the construction of the
Voronoi diagram for semi-algebraic sets. This algorithm iscalled the \Delaunay
graph conict locator " in the reminder of this thesis. Its input is a (N + 2)-tuple
of sites, and its output is the list of all the Voronoi vertices corresponding to the
(N 1) dimensional facets of the Delaunay graph having the rstN + 1 sites as
vertices that would not remain in the Delaunay graph after the addition of the
(N +2) th site, and a value that certi es the presence in that list (for each Voronoi
vertex). The fact the addition of the (N +2) th site would imply the disappearance of
a Delaunay graph facet is called a conict. Thus, it justi es the name of \Delaunay
graph conict locator". In the context of the ordinary Voron oi diagram of points
in the plane, the concept that is analogous to the Delaunay gaph con ict locator
is the Delaunay graph predicate which certi es whether a triangle of the Delaunay
triangulation would remain or not after the addition of a poi nt. The development
of the Delaunay graph con ict locator is the main objective of this thesis.

The certi ed knowledge of the Delaunay graph for curved objets may sound

like a purely theoretical knowledge that is not central in practical applications.



This is not the case in some applications. These applicatiosn include crystallo-
graphy, metallography and VLSI layout. The Johnson-Mehl tessellations (which
generalise several weighted Voronoi diagrams) [OBS92] ptaa central role in the
Kolmogorov-Johnson-Mehl-Avrami [Kol37] nucleation and gowth kinetics theory.
The Kolmogorov theory provides an exact description of the knetics during the heat-
ing and cooling processes in crystallography (the Kolmogav equation [Kol37]).
The certi ed knowledge of the neighbourliness among moledes is central to the
prediction of the formation of crystal aggregates. In metalography, the analysis of
precipitate sizes in aluminium alloys through Transmissian Electronic Microscopy
[Des03, Section 1.2.2] provides an exact measurement of tloeoss sections of these
precipitates when they are rodes with a xed number of orienations [Des03, Section
1.2.2]. In VLSI design, the second order Voronoi diagram oflte layout is used in the
computation of the critical area, a measure of a circuit layat's sensitivity to spot
defects [CPX02, Section 1]. An important concern on criticd area computation is
the robustness [CPX02, Section 1].

In the context of the application to robotics, one might object that the
real-world objects a robot may collide with are approximate because of their man-
ufacturing process. This is indeed true, but their speci caion is exact and can be
expressed as semi-algebraic sets owed to the possibility afjebraic translation of the
geometric speci cation of the methods of manufacturing pracess. Indeed, the mech-
anical manufacturing process methods such as turning, couarsinking, sharpening,
drilling, bending, roll bending, or pressing can be expressd as geometric transform-
ations, which in turn can be expressed algebraically. The nshed result (mechanical
component) is speci ed as a semi-algebraic set.

Another limitation of approximative algorithms for the com putation of the
Delaunay graph is that when approximate computations are peformed on objects
de ned approximately (within some geometric tolerance), the propagation of the

errors can be critical, especially if the nal computation involves approximate in-



termediary computations. Interval analysis allows one to @rtify computations on
objects de ned approximately. Indeed, interval analysis dlows one to consider ob-
jects de ned approximately since these objects can be speed by intervals. Interval
analysis allows one to certify computations on intervals byproviding bounds on the
results.

Finally, on another hand, the certi ed computation of the De launay graph
participates to the recent move in the development of numergal and simulation

software as well as computer algebra systems to exact systeniBCSS98].

1.1 The problem

The proximity queries stated above could be e ectively ansvered if the Delaunay
graph for sets of geometric objects could be computed in an ecient and certi ed

way. This would require the embedding of the Delaunay graph ad the location of
the query point in that embedded graph. The embedded Delauna graph and the
Voronoi diagram are dual subdivisions of space, which can bstored in a quad-edge

data structure [GS85].

The rst and most explored Voronoi diagram is the Voronoi diagram for a set
of points [Vor07, Vor08, Vor10] in the Euclidean plane or in the three-dimensional
Euclidean space (see Figure 1.0.1). Voronoi diagrams haveskn generalised in many
di erent ways including by modifying the space in which they are embedded (see
[Aur87, OBS92] for a general survey of Voronoi diagrams): lgher dimensional Eu-
clidean spaces, non Euclidean geometries (e.g. Laguerreageetry, hyperbolic geo-
metry, etc.). Fewer generalisations of Voronoi diagrams coespond to extending
the possible sites from points to geometric objects. The ol generalisations of
this kind that have been explored are \abstract Voronoi diagrams" [Kle89] and
the Voronoi diagram for lines [OBS92]. (the sites are points line segments, cir-

cular arcs or piecewise analytic curves). The Voronoi diagem for curved objects
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does not necessarily satisfy the property of the abstract Voonoi diagrams. Ab-
stract Voronoi diagrams are two-dimensional Voronoi diagrams de ned by topolo-
gical properties [Kle89] (which is that the bisector of any mir of sites is an unboun-
ded simple curve). Therefore, the Voronoi diagram ofN curved objects cannot be
computed with the randomised O (N log N ) algorithm for the construction of ab-
stract Voronoi diagrams [Kle89]. The Voronoi diagrams for ines that have already
been studied are the Voronoi diagram for circles (set of site comprising circles)
[KKSO01lb, KKS0la, KKS00], the Voronoi diagram for sets of ponts and straight
line segments, the Voronoi diagram for sets of points, line egments and circular
arcs [Yap87], and the Voronoi diagram for planar domains wih curved boundaries
(piecewise analytic) [RF99a, RF99b]. In principle, the Voronoi diagram can be gen-
eralised to sets of sites comprising more general geometribjects (especially general
curved objects). We will refer to these generalisations oftie Voronoi diagram as the
Voronoi diagram of sets of geometric objects (points, curve, surfaces; see Figure
1.0.5).

These Voronoi diagrams of sets of geometric objects have bedar less ex-
plored, and they have been computed only approximately: as proximation al-
gorithms decomposing the objects by points sets [OBS92] orpproximating the
computation of Voronoi vertices by a Newton-Raphson schemdor curves with ra-
tional parameterisation [RF99a, RF99b]. By computation of the Voronoi diagram,
we mean computation of the coordinates of the Voronoi verties, of the equations of
the Voronoi edges, and of the network formed by theses vertes and edges. The rst
type of approximation algorithms for constructing Voronoi diagrams is not guaran-
teed to give topologically correct results, because the Vanoi diagram is very sens-
itive to the order of continuity at contact points (see Section 2.3 and [RF99a]). The
second type of approximation algorithms for constructing Voronoi diagrams does

not directly address the exactness of the Delaunay graph, lmuse the basic compu-

11



tation is the computation of the Voronoi vertex instead of the computation of the
Delaunay graph predicate, and this predicate was not addresed in [RF99a, RF99D].
The neighbourhood relationship among sites is addressed diirectly through the
identi cation of the Voronoi vertices and their classi cat ion. The curves that they
addressed are parametric curves admitting rational paramterisations (i.e. ratios of
polynomials), and therefore, it excludes conics (see Seoti 2.3). Moreover, their
computation of the Voronoi vertices uses basic techniquespfojective resultants)
of higher complexity because these techniques consider comon zeroes in the pro-
jective space instead of in the ane space or in the algebraictorus (C?)N. This
di erence in complexity is explained later in the section on sparse elimination (see
Section 3.3.1). This higher complexity of the algebraic comutation techniques used
is particularly signi cant because those projective resutant computations are not al-
gebraic precomputations done only once, but computations dne each time a bisector
is computed. The algorithm for constructing the Voronoi diagram for points, line
segments and circular arcs proposed in [Yap87] proceeds by divide-and-conquer
paradigm using vertical slabs, which excludes an incremem construction of the

Delaunay graph.

The computation of the Delaunay graph con ict locator for conics and more
generally for semi-algebraic sets is the main problem thats being addressed in
this thesis. The Delaunay graph conict locator is the basic tool for maintaining
the Delaunay graph when the curved objects are introduced spuentially. A direct
application of this Delaunay graph conict locator is a rand omised incremental
algorithm for the construction of the Voronoi diagram of semi-algebraic sets. This
algorithm could be used for maintaining a semi-dynamic (albwing only insertions
but not deletions) Voronoi diagram for semi-algebraic sets Such a Voronoi diagram
could be stored with the embedded Delaunay graph in a quad-ege data structure

[GS85]. We will see how such an algorithm can be designed fromie Delaunay
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graph con ict locator in the following section.

1.2 The motivation

In this section, we will examine how the Delaunay graph con ict locator can be
used to maintain the Voronoi diagram of semi-algebraic setsn the plane as those
semi-algebraic sets are introduced one by one. Finally, weiWWennounce a necessary
and su cient condition for the connectivity of the Voronoi d iagram of semi-algebraic
sets in the projective plane, that has a direct application n the representation of
spatial data at di erent resolutions.

Knowing the Voronoi diagram V (S) of a set S=fs;;::::smg R? of at
least two semi-algebraic setsih > 1) and its embedded Delaunay graphDG (S)
stored in a quad-edge data structure, we would like to get theVoronoi diagram
V (S [f sm+10), wheresm41 is a semi-algebraic set oR?. In all this section, we will
say that a circle C touchesa semi-algebraic sets; if, and only if, Cis tangent to s;
and no point of s; is contained in the interior of C. The Voronoi edges and vertices
of V (S) may or may not be present inV (S [f sm+19). Each new Voronoi vertex w
induced by the addition of sy,+1 necessarily belongs to two Voronoi edges d&f (S),
because two of the three closest sites tw necessarily belong tdS. The new Voronoi
edges induced by the addition ofsy,+1 will clearly connect Voronoi vertices ofV (S)
to new Voronoi vertices induced by the addition of s;,+1 or new Voronoi vertices
between themselves. Any of these later Voronoi edge=’ must be incident with one
of the former Voronoi edges at each extremity ofe (because the Voronoi vertex at
each extremity of € belongs to only one new Voronoi edge, i.e.€). Any of the
former Voronoi edgese must be a subset of a Voronoi edge of (S), since e must
be a new Voronoi edge between sites & (otherwise the Voronoi vertex belonging
to V (S) at one of the extremities of e by the de nition of e would be a new Voronoi
vertex). Thus, to get V (S [f sm+10), we need to know which Voronoi vertices and

edges ofV (S) will not be presentin V (S [f sm+10), which Voronoi edges ofV (S)
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will be shortened inV (S [f sm+10) and which new Voronoi edges will connect new
Voronoi vertices between themselves.

We can test whether each Voronoi vertexv of V (S) will be present in
V (S[f sm+10). Let us suppose thatv is a Voronoi vertex of s;, s; and s¢. Vv
will remain in V (S [f sp+10) if, and only if, no point of s,+1 is contained in the
interior of the circle centered onv that touches s;, s; and si. This is a sub-problem
of the Delaunay graph conict locator that can be tested by giving s;, sj, sk and
Sm+1 as input to the Delaunay graph conict locator, and then retain only the
solutions where the Voronoi vertex isv.

We can test whether each Voronoi edgee of V(S) wil be
presentinV (S [f spm+10). Let us suppose thate is a locus of points havings; and
s; as closest sites.e will disappear entirely from V (S [f sn+10) if, and only if, a
point of sn+1 is contained in the interior of each circle centered ore and touching
si, sj and each common neighbouss, to s; and s; in DG (S) in turn. This can be
tested by giving s;, Sj, sk and sy+1 as input to the Delaunay graph con ict locator
and then retaining only the solutions where the Voronoi vertex belongs toe. e will
be shortened (possibly inducing one or more new Voronoi edggin V (S [f Spn+10)
if, and only if, there exists Voronoi vertices ofs;, s; and si+1 on e and there is no
point of any common neighboursy to s; and s; in DG (S) in the interior of a circle
centered one and touching s, s; and sy+1. The centre of each one of such circles
will be a new Voronoi vertex in V (S [f sm+10). This can be tested by giving s;,
Sj, Sm+1 and sy as input to the Delaunay graph con ict locator and then retai ning

only the solutions where the Voronoi vertex belongs toe.

This may not be the best way to proceed, but the Delaunay graphcon ict
locator is su cient to maintain the Voronoi diagram of semi- algebraic sets. Tests
might be limited to edges and vertices on the boundaries of tB Voronoi regions

V (si;S);si 2 S that intersect sy+1 and of the Voronoi regionsV (s;;S);s; 2 S
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adjacent to a Voronoi regionV (si;S). Indeed, a point (and thus a semi-algebraic
set) can steal its Voronoi region only from the Voronoi regia it belongs to and the

adjacent Voronoi regions.

We will nish this section with a necessary and su cient cond ition for the
connectivity of the Voronoi diagram of connected semi-algbraic sets in the project-
ive plane. This result allows the characterisation of danghg edges in the Delaunay
graph corresponding to the presence of closed edges in the rdmoi diagram. In or-
der to proceed, let us recall some notations used in point sebpology: let S denote
the closure ofs, and s denote the interior of s in the sense of the point set topology
in R?. Note that if s bounds a closed domain then the interior ofs is meant to be

the interior of the closed domain bounded bys.

Proposition 1.2.1. (Connectivity of the Voronoi diagram in the plane) The Voro-

noi diagram V (S) of a setS = fsy;:::;smg R? of at least two connected semi-

S
2 [1:::;m]nl. Let S= ,, si. SinceS s;, any circle touching both as;;i 2 |
and s; must be contained insj. SinceS\ 5= 5\ 5 = ;, no circle can touch each
ofasj;i 21, s; ands;. Thus, there is no point that has as;;i 2 I, s; and s, as

nearest neighbours. Thus, there is no Voronoi vertex of &;;i 2 |, s; and s;. Since

no Voronoi vertices on the bisector ofS and s;. SinceS\ 57 = S\ 5= ;, any circle

centred on the bisector ofS and s; and touching both S and s; does not intersect

V (S). Sinces; is connected andS s;, the bisector of S and s; is a closed curve.
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Thus, the Voronoi diagram of S is not connected inP?.

Only if: Assume the Voronoi diagram of S is not connected in P?. Then,
V (S) has at least two connected components. Thus, at least one dhese connected
components does not have points at in nity. Let us consider he connected com-
ponent (let us call it C1) that does not have points at in nity. Since C; is composed
of Voronoi edges, each edge inC1 must end at either a Voronoi vertex or a point
at in nity. Since C; does not have any point at in nity, all Voronoi edges in C;
connect Voronoi vertices. ThusC; is a network of vertices and edges linking those
vertices. The regions that this network de nes are Voronoi regions. LetD be the
union of the closure of those Voronoi regions.D is a closed set set by its de ni-
tion. Let us consider now the semi-algebraic sets;| 2 L whose Voronoi regions
are contained inD. Let S = S,2L s;. From the de nition of a semi-algebraic set,
its is straightforward that the union of two semi-algebraic sets is a semi-algebraic
set. Thus S is a semi-algebraic set. We will now consideE as a site instead of each
one of thes;;| 2 L. The inuence zone of S = S,2L S| is clearly D, because the
in uence zone of a union of semi-algebraic sets is clearly #n closure of the union
of the Voronoi regions of those semi-algebraic sets. Let = @. It is a portion of
the bisector of S and another semi-algebraic set. Let us call itsj. If not all the
bisector of S and s; was contained inV (S), then e would end at Voronoi vertices (a
point on the Voronoi diagram has at least two closest sites) othe point at in nity,
a contradiction with e not being connected. Thus, the bisector ofS and of s; is
contained in V (S), and it is equal to e. By the de nition of e, e must be a closed
curve. Assume the positions ofS and s; with respect to e are not always the same.
Then, S and s; must intersect. The bisector of S and s; must have two branches
near the intersection points (see Figure 1.2.1). Since is a closed curve andsS is
contained in the interior of e, s; must be closed, and the other branches must be

unbounded (a contradiction with e not being connected inP?). Thus, the positions

a one-dimensional component of the Voronoi diagram, whichs also the locus of points
having two nearest sites
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of S and s; with respect to e are always the same along. Sinces; is connected,S
is contained in the interior of e and the positions of S and s; with respect to e are
always the same alonge, S sj. Sincee is the bisector of S and s; and belongs to

V (S), any circle centred on e and touching both S and s; does not intersect any

O

The only cases of disconnected (considered iR?) Voronoi diagrams corres-
pond to one or more sites (semi-algebraic sets) contained ithe interior of another
site. This property has a direct application in Geographic Information Systems.
When the same regionR bounded by a semi-algebraic set is represented at dif-
ferent scales, the representation of the details insid® does not change the Voronoi
diagram outside R. The edges of the Delaunay graph corresponding to a discon-
nected Voronoi diagram (considered inP?) are respectively dangling edges or cut
edges (the Delaunay graph is not bi-connected and removing aut edge induces
two connected components). It is possible to detect if thereexists one or more sites
si;i 2 | contained in the interior of another site s; by checking that there exists no
Voronoi vertex of s, s; and any s, 2 S distinct from s; ands;. This is a subproblem

of the Delaunay graph con ict locator.

1.3 Outline of the research

The main theoretical objectives of this thesis are the detemination of a general for-
mula for degree of theo set to (i.e., the locus of points at a given distance from) an
algebraic curve, and the reduction of the Delaunay graph cornct locator for algeb-

raic curves from a semi-algebraic problem to a linear algelar problem (computing
the eigenvalues of a matrix). The main practical objectivesof this thesis are the
computation of an implicit equation of the generalised o set (i.e., the locus of centres

of circles of a given radius tangent) to a conic de ned by a fomal polynomial, the
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Figure 1.2.1: The relative position with respect to the bisetor must be constant

18



exact symbolic computation of the sparse resultant matrix for the Delaunay graph
con ict locator for conics, and the certied computation of the Delaunay graph
con ict locator for conics and for semi-algebraic sets. In # the computations, the
central ideas were to use the lightest computational techrjues and to simplify the

formalisation of the solutions.

The original contributions in this thesis are as follows.

1. A general formula for the degree of the generalised o setd an algebraic curve
has been determined by studying the algebraic properties ahese o sets. The
knowledge of the degree of the generalised o set to a conic igsed in the
identi cation of the implicit equation of the generalised o set to a conic as a

factor of a sparse resultant;

2. The number of points on which the Delaunay graph con ict locator for conics
is evaluated has been computed. It corresponds to the numbeof lines of the
matrix whose eigenvalues need to be computed for the algebi@acomputation

of the Delaunay graph con ict locator for conics;

3. The Voronoi diagram and the Delaunay graph for circles hae been computed

exactly and symbolically through a completely symbolic conict locator;

4. The computation of the Delaunay graph of conics has been drced from a
semi-algebraic problem to a linear algebra problem. The maix for which the
eigenvalues of a Schur complement of one of its submatricesvg the answer to

the Delaunay graph con ict locator for conics has been compted symbolically;

5. The computation of the Delaunay graph of semi-algebraic sts embedded in
a two-dimensional space has been done using ALIAS. Althouglthere is no
known lower nor upper bound for this problem, the running time is satisfactory

for exploration purposes.
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We have also outlined how the Delaunay graph con ict locator could be
used for the incremental construction of the Voronoi diagran of semi-algebraic sets.
We have also proved a necessary and su cient condition of conectivity of the
Voronoi diagram for semi-algebraic sets in the plane, whicthas a direct application
in Geographic Information Systems.

The originality of this contribution resides in the formali sms that have been
used (the generalised o set, see Chapter 4) and introducedtfie generalised Voronoi
vertex, see Chapter 5), and in the fact this work represents lhe rst computation of

the Delaunay graph con ict locator for general semi-algebaic sets.

The thesis contents are organised as follows. Chapter 2 restvs the gener-
alisations of the Voronoi diagram for curved objects. Vororoi diagrams for general
semi-algebraic sets have not been studied previously. Therpblems closest to the
Voronoi diagram for semi-algebraic sets are the Voronoi digrams for manifolds,
studied by Devillers et al. [DMT92] in 1992, the Voronoi diagram for curved ob-
jects, studied by Alt and Schwarzkopf [AS95] in 1995, and theVoronoi diagram for

planar domains with curved boundaries [RF99a, RF99b].

Chapter 3 introduces the approach used to design the computeon of the
Delaunay graph con ict locator for semi-algebraic sets. Tte approach used in this
thesis involves combining symbolic precomputations and nmerical computations to
nd the fastest computation of that con ict locator. The cen tral tools for formalising
the Delaunay graph conict locator are the generalised o sd (the locus of points
that are locally at a given distance from a given geometric olfect [ASS99]) and the
generalised Voronoi vertex (a concept introduced in this thesis: see Section 5.2).

With regard to symbolic computing, the approach includes waking with
the \geometry" of the monomials (see Section 3.3.1) composg a polynomial (i.e.

representing the exponents of the monomials appearing in agdynomial as points in
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an N dimensional space, wheré\ is the number of variables we wish to eliminate)
and the sparse resultant algorithms of Emiris [EC95, CEOQO] ad of Singular [GPSO01].
This is used to get an implicit equation of the generalised oset to a conic (see
Section 4.4), and the matrix for which the eigenvalues of a Swr complement give
the answer to the Delaunay graph con ict locator for conics (see Chapter 5).

With respect to scienti c computing, the interval analysis and consistency
methods implemented in ALIAS [Mer00] have allowed us to degjn and implement
the Delaunay graph conict locator for semi-algebraic setsand to obtain another
Delaunay graph conict locator for conics (by applying the interval analysis and
consistency methods to the implicit equation of the generdbed o set to a conic).
Matlab eigs function has been used to compute the eigenvalgeof the matrix ob-

tained through symbolic computing for the Delaunay graph can ict locator for conics

Chapter 4 studies the algebraic properties of the o set to analgebraic curve.
From these algebraic properties, we have obtained a generédrmula for the degree
of the o set to an algebraic curve. We applied this formula to conics in order to
get the degree of the o set to conics. We used the sparse regaht algorithm of
Emiris [EC95, CEO0Q] and the geometry of monomials to get an irplicit equation of

the generalised o set to a conic.

Chapter 5 presents the algebraic computation of the Delaung graph con ict
locator for conics. Recent theoretical achievements from Fyebraic Geometry and
Computational Algebraic Geometry allow one to solve systers of algebraic equa-
tions by solving a linear algebra problem (computing eigenalues [CLO98]). The
eigenvalue problem has been studied for a long time and it isamputationally tract-
able [CDOO0]. By computing in the quotient algebra [Lan02, Setion 3, Chapter 1] of
the ring of polynomials by the ideal corresponding to a zeradimensional algebraic

variety, it is theoretically possible to transform a complex problem of resolution of
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a system of algebraic equations into the more tractable andglored linear algebra
problem of nding eigenvalues. Indeed, the quotient of the ing of polynomials in
the variables of the problem by the ideal corresponding to tke zero-dimensional
variety object of the study is a nite dimensional vector space. Thus, every linear
mapping can be expressed by a matrix in any ( nite) basis of the quotient algebra.
Moreover, the values of a given polynomialg at the points of the zero-dimensional
variety correspond to the eigenvalues of the matrix of the m@ corresponding to
the multiplication by g (see Theorem 4.5 on page 54 in [CLO98]). This is the basis
of the symbolic part of the Delaunay graph con ict locator for conics. The sparse
resultant matrix corresponding to that con ict locator is a sparse matrix, and sparse

methods for eigenvalues [Pin02, Nik00, vdVv99, CD0O0, Kra92can be applied on it.

Chapter 6 presents the interval analysis based computatiorof the Delaunay
graph con ict locator for semi-algebraic sets. Interval analysis provides a more gen-
eral approach for solving systems of algebraic equations @nnequalities. Some new
tools have appeared recently for solving systems of equati@ and inequalities with
real coe cients based on interval analysis (see ALIAS [Mer®] and Section 3.3.3).
ALIAS is a library developed at INRIA Sophia Antipolis, by Dr . Jean-Pierre Mer-
let. ALIAS considers the real roots of zero-dimensional syems of equations and
inequalities. ALIAS uses the PROFIL/BIAS (Programmer's Ru ntime Optimized
Fast Interval Library [Knu94]) library for evaluating int ervals. It uses dierent
theorems from Real Algebraic Geometry [BCR98] for analysig as well as solving
zero-dimensional semi-algebraic systems. The certi ed coputation of the Delaunay
graph con ict locator relies on theorems on the uniqueness foa root in given inter-
vals (Kantorovitch, Moore-Krawczyk) and on the certi ed co mputation of function
intervals by the PROFIL/BIAS library. This computation use s a bisection process
on one or all the variables using either only the equations ofhe system, or using the

Jacobian of the system (Moore-Krawczyk test for nding \exactly" the solutions),
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or using the Jacobian and the Hessian of the system (with Karmbrovitch, Moore-
Krawczyk tests). We rst used ALIAS on the original system of algebraic equations
and inequalities that speci es the Delaunay graph con ict locator for semi-algebraic
sets. Then, we have obtained faster computations for conicey replacing the ori-
ginal system by a system simpli ed by introduction of the implicit equation of the

generalised o set to a conic.

Chapter 7 summarises the results obtained in this thesis andgresents the

avenues of future work.
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Chapter 2

Generalisations of the Voronoil

diagram for curved objects

In this chapter, we present an overview of the generalisatios of the Voronoi diagram
for curved objects. These are the generalised Voronoi diagms which are most
closely related to the problem we are addressing in this thds. These generalisations
will be presented in increasing order of relevance for the msent thesis. In Section
2.1, we will brie y introduce the Voronoi diagrams for manif olds, studied by Devillers
et al. [DMT92] in 1992. In Section 2.2, we will introduce the \Voronoi diagram for
curved objects, studied by Alt and Schwarzkopf [AS95] in 198. Finally, in Section
2.3, we will present in more detail the Voronoi diagram for planar domains with

curved boundaries [RF99a, RF99Db].

2.1 Voronoi diagrams of general manifolds

The Voronoi diagrams for manifolds were analysed in the coréxt of the space of
generalised spheres by Devillers et al. [DMT92] in 1992 (sefeigure 2.1.1). In RN,
an hypersphereS centred on 2 RN and of radiusr is mapped to a pointS 2 RN+
(at the distance r? below the intersection of a vertical line passing through and

the paraboloid of equation 2 2=0) of the space of generalised spheres (see
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the upper part of Figure 2.1.1). The image of a concentric peail of circles is the
vertical line passing through its centre (see Figure 2.1.1)

The sites of the Voronoi diagram for manifolds are manifoldsof any dimen-
sions embedded inRN [DMT92]. The distance induced by the metric in RN is
denoted by . An N -dimensional topologicalmanifold is a Hausdor (or separated)
space i.e., such that every point in it has an open neighbourbhod homeomorphic
to the open ball in RN. The distance is the usual distance from a pointM to a
manifold Z: (M;Z)=min p2z [MP . Therefore, (M;Z) is the radius of the min-
imum sphere centred atM and \tangent" to Z (such that Z intersects the sphere
but not its interior). Let 7 be the set of all the spheres tangent ta&Z. An example
of this set 7 with Z being a circle S is shown on Figure 2.1.2 (the corresponding
set is denoted g). In the space of generalised sphereS (E), if Z is an analytic
manifold (i.e. such as all the connecting maps are in nitely often di erentiable),
then 7 is an analytic manifold (see [DMT92, page 20]): it is the uppe envelope
of the polar! planes of the point-spheres (points) ofZ with respect to the earlier
mentioned paraboloid. Let S be a set of sites (manifolds). LetUs be the upper

envelope of the manifolds z forall Z 2 S.

The intersection of the Us with a vertical line = M in the space of spheres
gives the sphere with centreM whose radius is the distance to the nearest neighbour
of M in S. The projection of the Us on the n-dimensional Euclidean space is the
Voronoi diagram of S. However, by bounding the upper envelopdls, what corres-
ponds to considering only the spheres that are contained in &ig sphere enclosing
all the sites, we get a compact convex set. The work of Devills et al. [DMT92] did
not include any algorithm for the construction of the Voronoi diagram of general

manifolds.

1The polar plane of a point M with respect to a quadric Q is the locus of the harmonic
conjugates ofM with respect to the two intersections of a line through M intersecting Q
with Q.
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2.2 Voronoi diagrams for curved objects

An incremental randomised algorithm for the construction of the Voronoi diagram
for curved objects in the Euclidean plane has been proposed/tAlt and Schwarzkopf
[AS95], and it is motivated by the applications in motion planning \which lead to
the so-called retraction method" [AS95]. The approach of At and Schwarzkopf is
to decompose the complex curves into open curves that are chacterised by the
property that no circle touches them in more than one point. Such curves are called
\harmless". This decomposition is motivated by the fact that the Voronoi diagram
for connected curved objects is not necessarily connectechd there may be Voro-
noi edges between two di erent parts of the same site (thesedyges are called self
Voronoi edges) and Voronoi vertices between three di erentparts of the same site
(these Voronoi vertices are called self Voronoi vertices)The self Voronoi edges are
loci of centres of circles tangent to without containing di erent parts of the same
site, while self Voronoi vertices are centres of circles tagent to without containing
di erent parts of the same site. The curves are broken up into\harmless" pieces to
prevent the computation of self Voronoi vertices and self Voonoi edges by the ran-
domised incremental algorithm for the construction of the Voronoi diagram. They
prove that this decomposition into harmless pieces assurdbat the Voronoi diagram

is connected, no region is empty, and each region is simply naected.

The rst basic assumption of this approach is that curves are abstract ob-
jects, and \certain elementary operations are available ablack boxes" [AS95]. These
operations are the following constructions: \ nding the points having the same dis-
tance from three given points, nding all points of a given slope, nding points where
the curvature has a local maximum, nding the representation of a bisector given
the representation of two curves, and nding intersection points of given curves"
[AS95]. The curves are encoded as their parametric represeion ( : 1 ! R?

where | R is some closed interval). The second basic assumption is th@urves
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are supposed to be regular and simple. They de ne a harmlesste as either a point,
an open circular arc, or a harmless curve (which is also openytde nition); and they

de ne a harmless site collection as a nite set S of pair-wisadisjoint harmless sites
with the condition that for every circular arc and harmless curve of S, its endpoints
are also members of S. This de nition of harmless sites exclles closed straight line
segments and circular arcs as well as circles (a circular arshould be open, and
a circle has to be partitioned into a point and an open circula arc). The points

responsible for the non-harmlessness of curves are the ldgaaxima of the absolute

value of the curvature (see proof at the beginning of sectior8 in [AS95]).

In the incremental randomised algorithm for constructing the Voronoi dia-
gram for curved objects in the plane, the insertion of the sies is done in two steps.
First, a point acting as place holder is computed for each onalimensional harmless
site. The point objects and these place holders are insertedst in a random order.
Then, the one-dimensional harmless sites are inserted in aandom order. The pre-
dicates and constructions needed for this incremental randmised algorithm have
been considered as \black boxes", and no implementation rests have been presen-
ted. Algebraic curves are harmful, and the decomposition ofin algebraic curve into

harmless sites may require a number of cuts bounded by its dege minus one.

2.3 The Voronoi diagram and medial axis transform for

planar domains with curved boundaries

We will review the work of Rajesh Ramammurthy and Rida T. Farouki [RF99Db,
RF99a]; of Rida T. Farouki and Rajesh Ramammurthy [FR98b, FR98a]; and of
Rida T. Farouki and John K. Johnstone [FJ94b, FJ94a] on Voromi diagrams for
planar domains with curved boundaries, and point-curve andcurve-curve bisectors.

This review will also consider a result from [CCM97] stating the sensitivity of the
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Voronoi diagram to the order of continuity of the approximat ions at contact points

that is cited in some of the earlier mentioned papers.

The Voronoi diagram and medial axis of a closed bounded plarradomain
are basic geometric entities associated with that domain. e Voronoi diagram
of a domain bounded by N curve segments is a network specifying a partition of
the plane into N regions such that each point within a given region is at least
as close to its associated curve segment as to all other cunsgegments. The me-
dial axis is the locus of centres of maximum-radius circleshat may be inscribed
within the domain. This locus forms also a network. The compuation of these geo-
metric entities involves the computation of the nodes and edes of these networks.
The edges of these networks are part of point/curve, curve/arve, or self bisectors.
The nodes of these networks are the centres of circles touetd the boundary at at
least two distinct points. The basic assumption (and focus 6 the work) of Rida
T. Farouki et al. [RF99b, RF99a, FR98b, FR98a, FJ94b, FJ94a] is that planar
domains are considered with piecewise analytic boundaried~or domains with poly-
gonal or piecewise linear/circular boundaries, the bisecairs are conics, and e cient
algorithms that yield essentially (i.e. topologically) exact Voronoi diagrams have
been developed. These bisectors admit rational parametesations. However, for
planar domains bounded by curves having a polynomial or ratnal parameterisa-
tion, the corresponding curve/curve bisectors do not necesarily admit such simple

rational parameterisations.

One possible approach for computing the bisectors of thoseucves having a
rational parameterisation is to use approximations by the arlier mentioned piece-
wise linear/circular curves. However, this yields results\that are not even qualitat-
ively (topologically) correct” [RF99a]. The argument presented in [RF99a] involves

two counter examples. In one of them, \the discrepancy betwen the true Voronoi
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Figure 2.3.1: The dierence between (a) the true Voronoi diggram of a planar
domain bounded by curves, and the computed from piecewisedear boundary ap-
proximations with (b) 15 segments and (c) 60 segments (takerfrom [RF99a])

diagram and the approximated one grows as the tolerance on # approximation is

tightened by introducing further linear/circular approxi mating segments” (see Fig

ure 2.3.1). In the other one, \the Voronoi diagram and the medal axis are identical
for the exact boundary while they di er for the approximate b oundary" (see Figure
2.3.2). The explanation that is given to justify this strang e behaviour is that both
the Voronoi diagram and the medial axis are very sensitive tahe order of continuity

of the boundary curve segments at their contact points [CCMY].

The approach used by Ramammurthy and Farouki [RF99b, RF99a]is:

to determine the rational parameterisations of the Voronoi edges that admit

them, and

to provide piecewise-rational approximations that satisfy a prescribed geomet-

rical tolerance for the remaining Voronoi edges.
The main results that are at the basis of their algorithm are:

the bisector of a point and a rational curve segment can be desibed exactly

(e.g. in the customary Bezier form [FJ94b));
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Figure 2.3.2: The internal part of the Voronoi diagram and the medial axis are
identical for the exact boundary while they dier for the app roximate boundary
(taken from [RF99a])

the bisector of two rational (or even polynomial) curves is rot necessarily
a rational locus, but by expressing the curve/curve bisecto as the envelope
of a family of point/curve bisectors (see Figure 2.3.3), thegeneration of the
sequences of singularities (tangent discontinuities) oftie curve/curve bisector

can be reduced to a family of univariate polynomial root- nding problems,

the true curve/curve bisector can be approximated to any given geometric
tolerance by means of adaptive subdivision and error meases for geometric
Hermite interpolants, and its \singularities (tangent dis continuities) can be

captured in an essentially exact manner" [FR98D].

This work allows one to only construct the Voronoi diagram approximately
since some Voronoi vertex computations are approximate. Mreover, the compu-
tation of the bisectors is very heavy since it involves discetising both curves, and
then computing the envelopes of the two families of point-cuve bisectors. The only
algebraic curves that can be processed with the proposed pjective resultant based

technigues are the algebraic curves admitting rational paameterisations. Finally,
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Figure 2.3.3: The bisector of two curves as the envelope of afily of point/curve
bisectors (taken from [FR98b])
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this work does not directly address the problem of computingexactly the Delaunay
graph con ict locator.

We will review the results presented above as well as the algibhm for com-
puting the Voronoi diagram. We have presented this work in futher detail hereafter
because it is the only implementation of an algorithm for corstructing the Voronoi
diagram of quite general curved objects.

The algorithm for computing the Voronoi diagram of a planar domain
bounded by a rational curve is incremental: one boundary sement is introduced
at a time. To perform the Boolean operations involved in the ncremental
construction of the Voronoi diagram, a complete descriptim of the oriented
boundaries of the involved regions is necessary and su ciein Such a description
involves a classi cation of the Voronoi vertices.

While some kinds of Voronoi vertices involve only rational kdsectors, and
they can be computed by standard curve intersection algoribms, which are essen-
tially exact; other kinds of Voronoi vertices involve non-rational bisector segments,
which must be approximated. Therefore, their location compted as intersection
of non-rational bisectors is inherently approximate. Suchnon-rational bisectors are
approximated using a polynomial interpolation method that guarantees the desired
order of continuity at contact points (the Hermite interpol ant). Moreover, the com-
puted Voronoi vertices are re ned through a Newton-Raphsonscheme.

The computation and classi cation of the Voronoi vertices are done by in-
termediate computations of curve/curve bisectors. These arve/curve bisectors are
generally portions of high-order algebraic curves that do ot admit rational para-
meterisations. The approach of Farouki and Ramammurthy is © approach these
segments to a prescribed geometrical tolerance. In order tolo so, they provide a
means of recognising transition points between segments lmnging to di erent types

and singularities.
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The philosophy of the method to computing curve/curve bisedors is to break
the curve/curve bisector into a sequence of segments betweesingular points, and
then to transform the problem of generating ordered sets of pints along the bisector
to a sequence of univariate polynomial root- nding problems, using point/curve
bisectors as an intermediate tool.

Each curve is discretised in turn. The curve/curve bisectoris computed as
the curves formed by the left and right candidate points (seeFigure 2.3.4). The left
and right candidate points are the points on the left and right side of the discretised
curve respectively that belong to the envelope of the familyof point/curve bisectors.
The left and right candidate points are the centres of circles passing through the
point on the discretised curve and tangent to the other curveor passing through an
extremity of that other curve.

The locus of the left and right candidate points is a supersebf the curve/curve
bisector, called the untrimmed bisector. The untrimmed curve/curve bisectors are
trimmed by identifying the values between discrete sampleson the untrimmed bi-
sector at which there is a corresponding change in the statufor the candidates: re-
tained/discarded, i.e., belonging/not belonging to the trimmed bisector. The Voro-

noi vertices and the singular points on the curve/curve bisetor are also identi ed.

For each retained point, the unit tangent and curvature of the curve/curve
bisector are computed. Hermite interpolants are used to costruct the curve/curve
bisectors between Voronoi vertices and/or singular points If the Hermite inter-
polants do not satisfy the speci ed tolerance, then additicnal intermediary points
may be added.

Finally, the point/curve bisectors are computed by trimmin g in a similar way

the point/curve bisectors (which admit rational parameter isations).

The problem we address in this thesis is the certied computdion of the
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Figure 2.3.4: The left and right candidate points (taken from [FR98b])
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Delaunay graph of sets of semi-algebraic sets. The fact thaive address the Voro-
noi diagram of semi-algebraic sets makes of our work an extsion of the work on
Voronoi diagrams for planar domains with curved boundaries Indeed, we consider
semi-algebraic sets which include algebraic varieties, wbh in turn strictly include

algebraic curves with rational parameterisations. The prger conics (circle, ellipse,
parabola and hyperbola) are the simplest example of algebiea curves that do not ad-
mit rational parameterisations, and that cannot be proces®d by the work presented
in this section. This results from that the resultant techniques used on the rational

parameterisations exclude curves without an algebraic rabnal parameterisation.
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Chapter 3

Combining symbolic
computation and scienti c

computation

In the rst section, | will present the Delaunay graph con ic t locator for additively
weighted points and for circles. This presentation will allow me to introduce in
an easier way the reader to the formalisms of the generalised set (which will
be studied in Chapter 4), and of the generalised Voronoi vemx (which will be
introduced in Chapter 5).

In the second section, | will present di erent attempts made to compute the
Delaunay graph conict locator by using a formulation of the con ict locator that
was based on the original curves, both using symbolic compational techniques and
numerical computational techniques. These were the rst atempts at computing
the Delaunay graph conict locator. These experiments suggsted that a purely
algebraic solution starting from the original curves was na tractable (except for the
simple case of the Voronoi diagram of circles).

In the third section, | will brie y introduce the key computa tional techniques

used in this research that constitute a hybrid approach integrating symbolic algeb-
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raic precomputations with numerical computational techniques for nding eigen-
values and for solving systems of equations and inequalit'ee The di erent aspects
of this hybrid symbolic-numerical approach will be introduced in Chapters 5 (for
conics) and 6 (for arbitrary semi-algebraic sets). Generdy, one performs rst al-
gebraic precomputations, and then take over with numericalcomputations. The
main challenge is to identify where the symbolic precomputéions should stop, or

alternatively, where the numerical analysis techniques sbuld start.

Two central ideas have driven this thesis. The rst one is tha knowing the
structure of the set of solutions may help nding the solutions. For the structure of
the solution set, algebraic geometry plays a central role. Tie second one is that some
(one time) symbolic preprocessing may accelerate the cerdd numerical evaluation
of the Delaunay graph con ict locator to be performed severatimes.

The main computational challenges that have been encountexd during this
thesis are identifying which computational techniques midt work and which com-
putational techniques will probably not work, and nding th e optimum between the
legitimate wish to compute everything exactly, symbolicaly and algebraically, and
the universal scope of the numerical computational methodgor solving systems of
equations and inequalities.

We will see that although the Delaunay graph of sets of circle can be com-
puted symbolically and exactly, and the Delaunay graph of sés of algebraic curves
can be speci ed theoretically, the exact computation of the Delaunay graph of sets
of algebraic curves is beyond the present limits of exact coputational methods
such as Gmbner bases [G®39, Buc92, Buc70, Buc79, Buc8®BCK88, Buc98] and
classic projective resultants. Indeed, the complexity of he computation of Gmebner
bases is doubly exponential in the number of variables (seehe doubly exponen-
tial lower bound in [MM84, Hwy86] and the doubly exponential upper bound in

[MM84, Giu84]), and the complexity of the computation of the sparse resultant
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is exponential in the number of variables [Emi96]. This expoential complexity
of the computation of Gmbner bases or resultants does not &ct the complexity
of the evaluation of the conict locator because those comptations are algebraic
precomputations done only once before implementing the algrithm for evaluating
the Delaunay graph conict locator. So, it makes sense to tryto attempt such a
huge complexity algebraic precomputations. However, the rost limitative resource
for those algebraic precomputations is the amount of RandomAccess Memory and
of Virtual Memory accessible. Also, the size of the matrix ofthe sparse resultant
determines the complexity of the numerical computations fo nding eigenvalues

performed each time the Delaunay graph con ict locator is canputed.

3.1 The exact symbolic Delaunay graph con ict locator

for circles

We will rst present the exact symbolic Delaunay graph con i ct locator for additively
weighted points when weighted points are introduced one by pe, and then introduce
what changes for circles. For this purpose, we will present@me preliminaries about

Additively Weighted Voronoi diagrams.

3.1.1 Preliminaries

Let N be the set of integers,R be the set of real numbers, andR? be the Euclidean
plane. LetP = fPq;:::; Py g be the set of generators or sites, wherB; is the weighted
point located at p; 2 R? and of weight w; 2 R. Let C; be the circle centred atp;
and of radius w;, which we call weight circle hereafter.

The de nitions of bisector, in uence zone, Voronoi region and Voronoi dia-
gram presented in Chapter 1 generalise to the case where thetsof sitesS is a set of
weighted points P, and the distanced(M;P;) (called additive distance) between a

point M and a siteP; isd(M;P;)= (M;pi) w;,where isthe Euclidean distance
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between points.

The Voronoi region of P; with respect to the set P is dened by:
V(Pi;P)= M2R%8j6i: (M;pi) wi< (M;p;) w; . The Additively
Weighted Voronoi diagram of P is dened by: V (P)= Smp @MP;;P). The
Additively Weighted Voronoi diagram is illustrated on Figu re 3.1.1: the weight
circles are drawn as plain disks with a small hole at their cetres, the Additively
Weighted Voronoi diagram is drawn in plain thick hyperbola segments, and the

Delaunay graph is drawn in dashed lines.

Figure 3.1.1: The Additively Weighted Voronoi diagram

The Additively Weighted Voronoi diagram de nes a network composed of
edges (loci of points having two nearest neighbours), and véces (loci of points
having three nearest neighbours).

The Additively Weighted Voronoi diagram is related to the Ap ollonius Tenth
problem. The Apollonius Tenth problem is to nd a circle tan gent to three given
circles C1, C,, C3 (see Figure 3.1.2). For additively weighted points, we will see
later in this section that only the circles that are either externally tangent to each
of three given circlesCy, C,, C3 or internally tangent to each of C,, C,, C3, are
relevant to the Delaunay graph conict locator. The centres of the circles that are

solutions to the Apollonius Tenth problem are the rst examp le encountered in this
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thesis of generalised Voronoi vertices (a concept that we Wiintroduce in Section
5.2). Informally, generalised Voronoi vertices are the cemmes of circles tangent to
N + 1 sites, where N is the dimension of the Euclidean space.

Hereafter we will call the solutions of the Apollonius Tenth problem Apol-
lonius circles. The centres of the Apollonius circles that are either extenally tangent
to each of three given circlesC,, C,, C3 or internally tangent to each of Cq, Cy, C3
are the rst example encountered in this thesis of true Vorori vertices (i.e. centres
of circles that are touch N + 1 sites where N is the dimension of the Euclidean

space).

Figure 3.1.2: The Apollonius Tenth problem

3.1.2 The Delaunay graph conict locator for additively wei ghted

points

In this subsection, we present an exact algebraic con ict l@ator for the Delaunay
graph of additively weighted points (i.e. the dual graph of the Additively Weighted

Voronoi diagram). The maximum degree of the polynomials wheh need to be eval-
uated to compute this Delaunay con ict locator is 16 (thus, we say that the degree
of the con ict locator is 16). This Delaunay graph con ict lo cator would be the core

of a randomised incremental algorithm for constructing the Additively Weighted
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Voronoi diagram since the Additively Weighted Voronoi diagram is an abstract
Voronoi diagram [Kle89], and thus, it can be constructed with the randomised in-
cremental algorithm of Klein [Kle89]. This work solves the robustness issue in the
work of Anton, Mioc and Gold [AMG98] on dynamic Additively We ighted Voro-
noi diagrams by providing an exact con ict locator. The exact computation of the
Additively Weighted Voronoi diagram has not been addresseduntil Anton et al.
[ABMY02]. That paper addressed the exact predicate for the oline construction
of the dual graph of the Additively Weighted Voronoi diagram from the dual of the
Power Voronoi diagram of spheres by using the relationship btween the Additively
Weighted Voronoi diagram in the plane and the Power Voronoi dagram® of spheres
in the three-dimensional space. In their independent work,Karavelas and Emiris
[KEO2] provided several exact predicates of maximum degre&6 for achieving the
same \in-circle/orientation/edge-con ict-type/di ere nce of radii" test as we do in a
single con ict locator. They reduced the degree of their pralicate from 28 to 20 and

then to 16 using Sturm sequences and invariants.

The motivation for an exact con ict locator lies in the fact t hat without
an exact computation of the Delaunay graph of additively weghted points, some
geometric and topologic inconsistencies may appear. Thissiillustrated with an
example. The starting con guration is shown on Figure 3.1.3 There are three
weighted points (whose corresponding weight circles are dwn). The Delaunay
graph is drawn in dashed lines. The Apollonius circles tanget to the weight circles
have been drawn in dotted lines. The real con guration after addition of a fourth
weighted point is shown on Figure 3.1.4. The con guration that might have been
computed by an approximate algorithm is shown on Figure 3.15: the dierence

between real and perceived situations has been exaggeratéo show the di erence.

1The Power Voronoi diagram is a generalised Voronoi diagram Were sites are hyper-
spheres and the distance between a point and a site is the powef that point with respect
to that site [Aur87].
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The old Apollonius circles have been adequately perceivedtbe invalid with respect
to the newly inserted weighted point. About the new Voronoi vertices, while on the
right of the gure two new Voronoi vertices have been identi ed as valid with respect
to their potential neighbours, on the left of the gure, only one Voronoi vertex has
been identi ed as being valid with respect to its potential neighbours. While the new
Voronoi edge between the middle and bottom weighted points an be drawn between
the two new Voronoi vertices of the new, middle and bottom weghted points; the
Voronoi edge between the top and new weighted points cannot é& drawn, because
there is no valid Voronoi vertex on the left. There is an incorsistency within the
topology: there is one new Voronoi vertex (the Voronoi verte of the top new and
middle weighted points) that cannot be linked by a new Vorond edge to any other
new Voronoi vertex and thus, that Voronoi vertex is incident to only two Voronoi
edges. That additively weighted Voronoi diagram that might have been computed by
an approximative algorithm is not an additively weighted Voronoi diagram. Thus,
even if we perturbate the input weighted points, we will neve get that additively
weighted Voronoi diagram.

We consider the maintenance of the Delaunay graph of additiely weighted
points in an incremental way: we check the validity of all the triangles of the
Delaunay graph whose vertices areP1, Py, P3 with respect to a newly inserted
weighted point P4 [AKMO02]. Thus, the input of the con ict locator is constitut ed
by four points: the rst three are supposed to de ne a triangle in the Delaunay
graph, and the last one is the newly inserted weighted point.Let (X;;V;) be the co-
ordinates of p;, for i = 1;2;3;4. There are two possible outcomes to the above test
of validity: either the triangles are valid with respect to t he newly inserted weighted
point and the triangles remain in the Delaunay graph, or one @ two triangles are
not valid with respect to the newly inserted weighted point and those triangles will
not be present in the Delaunay graph any longer. We can see arxample of the later

case in Figure 3.1.6. A triangle havingP1P,P3 as vertices is not valid with respect
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Figure 3.1.3: The starting con guration

to the weighted point P4. Thus, it will not belong any longer to the Delaunay graph
after the insertion of Pg.

The conict locator consists of determining which ones of the additively
weighted Voronoi vertices of Py, P, and P3 will not remain after the insertion of Pg.
This is equivalent in turn to the additive distance from which ones of the additively
weighted Voronoi vertices ofP1, P, and P3 to P4 is smaller than the additive distance
of that Voronoi vertex to P; (or P, or P3, see Figure 3.1.6).

Any additively weighted Voronoi vertex| of Py, P», and P3 with coordinates
(x;y) can be obtained algebraically by computing the common intesection of the
three circles C?, C9 and C§ expanding (see Figure 3.1.7), or shrinking (see Figure

3.1.8) from the three rst circles Cq1, C, and C3 all at the same rate. The common
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Figure 3.1.4: The real con guration after addition of the fourth weighted point (bold
weight circle)

signed expansion of the rst three circles is denoted byr. Each circle C%®centred
on (x;y) and of radius r is either externally tangent to the rst three circles (if
the expansionr is positive) or internally tangent to the rst three circles (if the
expansionr is negative).

The centres coordinatesx;y and radii r of the circles C%centred on the
intersections | = C2\ C9\ C{ and either externally or internally tangent to each
of C1, Cy, and C3 can be computed algebraically as the solutions of the folloimg

system of three quadratic equations in the variablesx, y and r:
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Figure 3.1.5: The con guration computed by an approximate dgorithm

QGy;r)=(x x)?+(y y1)® (wi+r)?=0
SOGY;r)=(x x2)2+(y y2)? (wWa+r)>=0
SGy;r)=(x x3)?+(y ys)?® (ws+r)>=0

W AW 0

Subtracting one of the equations (say§ (x;y;r) = 0) from the remaining two
(S (x;y;r)=0and c§(x;y;r) = 0) results in a system of 2 linear equations, from
which x and y may be expressed as linear functions of. Substitution in the rst
equation c‘l’ (x;y;r) = 0 then leads to a quadratic equation in r. This means that
the unknown quantities x;y;r can be expressed with quadratic radicals as functions
of the given centres and radii.

Though the simplest thing to do now would be to compute the two Voronoi

vertices and use their computed coordinates and corresporiay signed expansion in
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Figure 3.1.6: The Delaunay graph con ict locator for the Additively Weighted Voro-
noi diagram

the computation of the values certifying the output of the Delaunay graph con ict
locator, it is not desirable because this method would not begeneralisable to conics
or higher degree algebraic curves. We will detail hereafteonly the computation
of the values certifying the presence in the output list. To get the exact Delaunay
graph conict locator in a more elegant and generalisable wg, we evaluated the
values certifying the con ict locator output without relyi ng on the computation of
the Voronoi vertices as an intermediary computation. This is done by evaluating
the values taken by the polynomial function expressing the elative position of C4

with respect to C%on the set of solutions of the system (i.e. the common zeroed o
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Figure 3.1.7: The Additively Weighted Voronoi vertex as the common intersection
of three expanding circles

Figure 3.1.8: The Additively Weighted Voronoi vertex as the common intersection
of three shrinking circles

the three polynomials c2; ¢ and c§). This is possible thanks to the translation that
exists between geometry and algebra. More speci cally, to he geometric setX of
the set of common zeroes of the three polynomials}; ¢ and cJ in K 3, whereK is an
algebraically closed eld [Lan02, De nition before Theorem 1, Section 2, Chapter
VII], we can associate the set of all polynomials vanishing o the points of X, i.e.,
the set of polynomialsf ;¢ + f,c3 + f3c3 where thef;;i = 1;2;3 are polynomials in
the three variables x;y;r with coe cients in K. This set is the ideal [GP02, De n-

ition 1.3.1] he?;c;cJi. The set of polynomials with coe cients in K forms with
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the addition and the multiplication of polynomials a ring: t he ring of polynomials
[GP02, De nition 1.1.3]. It is easy to see that a polynomial function g(x;y;r) on
K 3 is mapped to a polynomial function on X if we recursively subtract from g any
polynomial in g belonging to hc2; c3; cJi until no monomial in g can be divided by
each one of the lexicographically highest monomials ircd;c3 and cJ. The result
of this mapping gives a canonic representative of the reminer of the Euclidean
division of the polynomial g by the polynomials c;c3 and ¢§. The image of the
ring of polynomials by this mapping is called the quotient algebra[Lan02, Section
3, Chapter 1] of the ring of polynomials by the ideal hc2;c3; ci. It is also easy to
see thathef; & ;¢  Qi=hf;c3; i. Moreover, if we recursively subtract from
g any polynomial in g belonging to hc?; ¢ ;8 i till the only monomials in
g are 1 andr, we get the same result as the preceding mapping. The polynoials
;% ;8 & constitute what is called a Gmbner basis [GP02, De nition 1.6.1]
of the ideal hed; c3; c3i. The monomials 1 andr are standard monomials. Grebner
bases are used in Computational Algebraic Geometry in ordeto compute a ca-
nonic representative of the remainder of the division of ongrolynomial by several
polynomials generating a given ideall . This canonic representative belongs to the
quotient algebra of the ring of polynomials by the ideall. The Gmbner basis for
this system provides a set of polynomials that de ne uniquey the algebraic rela-
tionships between variables for the solutions of the systemThe initial (largest with
respect to some monomial order [CLO98]) monomials of each enof the polynomi-
als of the Gmbner basis form an ideal. The monomials that donot pertain to this
ideal form a basis for the representatives of the equivalerecclass of the remainders
of the division of a polynomial by the polynomials of the sysem in the quotient
algebra. These monomials are called standard monomials. Thsize of this basis
equals thedimension [GP02, see de nition on page 414] of the quotient algebra and
the number of solutions of the system counted with their multiplicity [Lan02]. In

the case of the con ict locator for the additively weighted Voronoi diagram, there
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are two solutions.

The polynomial g= (x4 x)2+(ya Vy)? (r + rs)? expresses the relative
position of C, with respect to C% Indeed C%is tangent to C, if, and only if, the
Euclidean distance between the centres o€%and of C, (i.e., (X;y) and ps) equals
the sum of the radii r and ra, i.e. (xa X)2+(ya y)®> (r+rs)?=0. The
open balls bounded byC%and C, intersect if, and only if, the Euclidean distance
between the centres ofC%and of C4 is smaller than the sum of the radiir and rg,
ie. (xa X)2+(ys Y)?> (r+rs)?< 0. The circlesC%®and C,4 are disjoint if,
and only if, the Euclidean distance between the centres o€%and of C, is greater
than the sum of the radii r and r4, i.e. (X4 x)2 +(ys y)2 (r+ r4)2 > 0. We
considered the operation of multiplication of polynomialsby the polynomial g. This
multiplication operator is a linear mapping. The operation of this mapping on the
canonic representative of the reminder of the division of a plynomial by c?; ¢ and
c} is also a linear mapping that can be expressed by a matrix sire the quotient

algebra has a nite dimension. 0 1

Moo Mo . .
Y A of the following multi-

Mo M1y

First, we compute the matrix Mg = @

plication operator on the quotient algebra:
mg:[f]! [of].

The eigenvalues ofMq4 are the values ofg taken on X (see Theorem 4.5,
page 54 in [CLO98]). The eigenvalues ol 4 are the solutions ofdet(My | ) =0,

where| denotes the 2 2 identity matrix, i.e. the roots of

2 (mgo+ mMu1)+(meomi1) (MoiMyg) =0 (3.1.1)

The values certifying the presence in the list output by the Delaunay graph
conict locator are the signs of the values taken by g, and they are determined
by the sign of the roots of Equation 3.1.1 (which are the eigevalues of Mg). If
there is only one eigenvalue and it is O then the fourth circleis tangent to the

circle externally tangent to the rst three circles. The sign of (where =
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(mgo + m11)2 4 (mggmp1  MpiMyp) ) cannot be negative because this would be
equivalent to the fact there would be no triangle with vertices C;, C, and Csz in
the old Delaunay graph (because of the absence of real Voronwertex, see Figure
3.1.9). Thus, sign () is 0 or positive, and we have to evaluate the sign of the roots

of the quadratic equation.

@

(=

Figure 3.1.9: There is no such triangle in the old Delaunay gaph because of the
absence of a real Voronoi vertex

When there is only one double root of Equation 3.1.1 then we hee the
following two possibilities. Either the value of the root of Equation 3.1.1 is positive
or 0 and the triangle will remain in the new Delaunay graph, orthe value of the root
of Equation 3.1.1 is negative and the triangle will disappea in the new Delaunay
graph (see Figure 3.1.6). When there are two real roots of Ecation 3.1.1, we have
two triangles to consider (see Figure 3.1.10). The triangle that correspond to the
roots with a negative value will disappear in the new Delaung graph (see Figure
3.1.10).

There is not much interest in showing the elements of the matix of the
multiplication operator here, but the Macaulay 2 [GS] code s presented in Appendix
A. The exact algebraic computation of the Delaunay graph corict locator we have

presented in the previous paragraph is not generalisable tthe other proper conics or
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Figure 3.1.10: Two triangles can possibly disappear simuéneously by the addition
of a single weighted point

higher degree algebraic curves. Indeed, the size of the migtication operator matrix
is greater than 4 for the other proper conics and for higher dgree algebraic curves
(see Section 5.3), and an algebraic equation of degree 5 or neois not necessarily
solvable by radicals (see [BB96, Theorem 8.4.8]). Even if wean obtain the matrix
of the multiplication operator symbolically, we will need numerical methods for
computing the eigenvalues of that matrix, which give the ansver to the Delaunay
graph con ict locator. We will now present the Delaunay graph con ict locator for
circles, emphasising on the changes with respect to the Dalmay graph of additively

weighted points presented in this subsection.

3.1.3 The Delaunay graph conict locator for circles

Let C= fCq;::;;Cn g be the set of generators or sites, with all theC; being circles
in R2. Let p; be the centre ofC; and r; be the radius of C;.

The de nitions of bisector, in uence zone, Voronoi region and Voronoi dia-
gram presented in Chapter 1 generalise to the case where theetsof sites S is
a set of circlesC, and the distance d(M;C;) between a point M and a site C;

is the Euclidean distance betweenM and the closest point on C; from M, i.e.
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Figure 3.1.11: Seven Apollonius circles centres that are tre Voronoi vertices

d(M;Ci)=] (M;p;) rij, where is the Euclidean distance between points. Ob-
serve that assumingC; is centred onp; and ri = w; for i = 1;::;N, this distance

is the absolute value of the additive distance used in the préous subsection. The
Voronoi region of C; with respect to the set Cis thus de ned by:

V(Ci;O= M2R?8j6i:j (M;p)) rij<ij (M;pj) rjj . The Voronoi dia-

gram of Cis de ned by: V (O = SCi oc @MC;; O).

In the previous subsection, we observed that two Apolloniuscircles centres
are true Voronoi vertices of the Additively Weighted Voronoi diagram (the circles
that are either externally or internally tangent to three gi ven circles). When the
sites are circles, up to seven of the eight Apollonius circke may be relevant to the
Delaunay graph con ict locator (see Figure 3.1.11).

We consider the maintenance of the Delaunay graph of circlegh an incre-
mental way: we check the validity of all the triangles of the Delaunay graph whose
vertices are a given triple of circles with respect to a givennewly inserted circle.
Thus, four circles Cq, C,, C3 and C4 are given: the rst three are supposed to de ne

one or more triangles in the Delaunay graph, and the last ones the newly inserted
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circle. Let (xi;y;) be the coordinates ofp; for i = 1;2;3;4. There are two possible
outcomes to the above test of validity. Either the triangles are valid with respect

to the newly inserted weighted point and the triangles reman in the new Delaunay
graph, or there is at least one triangle that is not valid with respect to the newly in-
serted weighted point and these triangles will not be presenin the Delaunay graph

any longer.

The Apollonius circles of C1, C, and C3z can be obtained algebraically by
computing the common intersection of the three circlesC?, C2 and C{ (see Figure
3.1.7) expanding or shrinking from the three rst circles C1, C, and C3 all with the
same absolute value of the rate. The common unsigned expamsi of the rst three
circles is denoted byr. The coordinates of the intersectionl of C?, C? and C§ are
denoted (x;y). The circle C%®centred on (x;y) and of radius r is tangent to the rst
three circles.

Thus, the Apollonius circles are the solutions of one of the ight following
gystems (I) of three quadratic equations in three unknownsx;y;r:

2 (x x)?+(y y)? (i1 n?=0
(x x2?+(y y2? (2 1)?=0.
(x x’+(y ya)* (r3 1?=0

By replacing r by r in one of the preceding systems of equations, we still
get another one of the preceding systems of equations. Thuget us supposer is
the signed expansion ofC;. Then, we can reformulate the preceding systems of

equations as the following systems (ll) of equations:

8
2 (x x)?+(y y)® (i+n)?=0

(x x22+(y y2? (r2 r)?=0

(x xa)?+(y ya)® (r3 r)?=0
Now let us consider for each system (ll) the setX of solutions of the system (lI) of

equations in K 3, whereK is an algebraically closed eld.

Subtracting one of the equations from the remaining two resits in a system
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of 2 linear equations, from whichx and y may be expressed as linear functions of
r. Substitution in the rst equation then leads to a quadratic equation in r. This
means that the unknown quantities x;y;r can be expressed with quadratic radicals
as functions of the given centres and radii for each one of theystems of equations
above.

As before, though the simplest thing to do how would be to compite the two
Voronoi vertices and use their computed coordinates and ceesponding signed ex-
pansion in the computation of the values certifying the output of the Delaunay graph
con ict locator, it is not desirable because this method woudd not be generalisable
to conics or higher degree curves.

For the Delaunay graph of additively weighted points, the true Voronoi ver-
tices are the solutions of one system of algebraic equation&Jnlike the previous case,
for the Delaunay graph of circles, the true Voronoi verticesare not all the solutions
of one system of algebraic equations, but a subset of the sdlans of four systems
of algebraic equations. The solutions of the algebraic equ@ans are the Apollonius
circles, whose centres are generalised Voronoi vertices ¢ancept that we will intro-
duce in Section 5.2). We thus need to determine which Apolloius circles centres
are potentially true Voronoi vertices (only the real Apollonius circles centres can be
true Voronoi vertices).

There are four possible determinations of the true Voronoi ‘ertices from

Apollonius circles centres ofC4, C, and Ca:

rst case if Cy, Cy and C3 mutually intersect, then the real circles among the seven
Apollonius circles that are not internally tangent to each of C;, C, and C3
correspond to true Voronoi vertices (their centres are trueVoronoi vertices,

see Figure 3.1.11), and reciprocally.

second case if one circle (sayC,) intersects the two others (C, and C3) which do
not intersect, then only the real Apollonius circles that are either externally

tangent to each of C,, C, and Cg, or internally tangent to C; and externally
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Figure 3.1.12: Four Apollonius circles centres that are trie Voronoi vertices

tangent to C, and C3 correspond to true Voronoi vertices (their centres are

true Voronoi vertices, see Figure 3.1.12).

third case if two circles (say C; and C») intersect the interior of the third one
(C3) and at least one of them (sayC,) is contained in the interior of Cs, then
only the real Apollonius circles that are externally tangernt to C; and C, and
internally tangent to C3 correspond to true Voronoi vertices (their centres are

true Voronoi vertices, see Figure 3.1.13).

fourth case otherwise (if none of the three situations above apply), ory the real
Apollonius circles that are externally tangent to C,, C, and C3 correspond
to true Voronoi vertices (their centres are true Voronoi vertices, see Figure

3.1.14).

The case where one circle (sag1) lies in the interior of a second circle (say
C>), which lies in the interior of the third circle ( C3), or only one circle (sayC,) lies
within the interior of one of the other ones (say C,) cannot happen because then,

there would be no Voronoi vertices and the triangleC,C»C3 would not exist in the
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Figure 3.1.13: Two Apollonius circles centres that are trueVoronoi vertices ( rst
case)

Figure 3.1.14: Two Apollonius circles centres are true Vorooi vertices (second case)
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Delaunay graph.
Now that we have seen the di erent cases of true Voronoi verttes, we will
see how we can test in which case we are and which solutions dfig systems of

equations (Il) described above correspond to true Voronoi ertices.

rst case C;, C, and Cz mutually intersect if, and only if, d(p1;p2) r1 r2 O
and d(p;p3) r1 rz3 Oandd(pe;ps) rz2 rz 0. The computation
of this test can be done exactly, since the only variables thare not input
to the Delaunay graph conict locator are the distances, andthese distances
are expressed by radicals. Indeed, we need to test the sign thfe di erence of
a radical and a number which do not depend on intermediary comutations.
The true Voronoi vertices are the real solutions of all the sptems of equations

(I such that r > 0.

second case C; intersects C, and C3, and C, and C3 have no point of intersection
if, and only if, d(p1;p2) r1 ro Oandd(py;ps) ri1 rsz Oandd(pz;ps3)
ro rz > 0. The computation of this test can be done exactly for the sare
reasons as the previous case. The true Voronoi vertices arée real solutions
gf the system of equations:
2 (x x)’+(y y)? (1 r)?=0
(x x)?+(y ¥2)* (2 1)?=0
(x x3)?+(y y3)? (3 r?=0
with r < 0.
third case C; lies in the interior of C3 and C, intersects the interior of Cs if, and
only if, d(p;;pa)+ r1 rs< Oandd(pz;ps) r2 rz< Oand(xy x3)°+
(y1 yg,)2 rZ < 0. The computation of this test can be done exactly for
the same reasons as the previous case. The true Voronoi veréis are the real

solutions of the system of equations:
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8
2 (x x02+(y y)? (rn+r)?=0

(x x2)?+(y y2)? (r2+1)?=0
(x x3)?+(y ys)® (r3 1)?=0
such that r > 0.
fourth case this is the case if all the previous three tests failed. The tue Voronoi
gertices are the real solutions of the system of equations:
2 (x x0?+(y y)® (rn+rn?=0
(x x2?+(y y2)? (r2+1)?=0
(x xa)?+(y ya)® (r3+1)?=0
with r> 0.

As before, we used the same algebraic machinery to compute ¢hvalues
of polynomials that are taken by the true Voronoi vertices without solving any
intermediate system of equations. We computed the Gmbnerbasis of the ideal of
X for each one of the systems (II) encountered. Each one of thesGmbner basis
consists of the earlier mentioned quadratic equation inr and linear equations inx,
yandr.

For the Delaunay graph of additively weighted points, we ob®rved that eval-
uating the signs of a single polynomial § = (xa X)?+(yas y)?> (r + r4)?) taken
on the real points of X was enough to provide the values certifying the presence in
the list output by the con ict locator. As before, we can check for the existence of
real solutions by evaluating the sign of the discriminant ofthe characteristic polyno-
mial. We will suppose the real solutions to the systems (ll) lave been tested. Unlike
in the previous case, here we need to evaluate the signs takdsy both g and r on
each one of the points ofX . Indeed, we need not only to check the relative position
of C4 with respect to the Apollonius circles, but we need for each Aollonius circle,
to check the relative position of C4 with respect to that Apollonius circle, and to
check whether that Apollonius circle corresponds to a true \éronoi vertex.

As before, we considered the operation of multiplication ofpolynomials by
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the polynomial g, whose sign expresses the relative position of, with respect

to C% We also considered the operation of multiplication of polynomials by the

polynomial r, whose sign allows one to check whether the solutions corngend to

true Voronoi vertices. These operations are linear mapping. The operations of these
mappings on the canonic representative of the remainder ofite Euclidean division
of a polynomial by the three polynomials of the system are als linear mappings
that can be expressed by a matrix.

We need to be able to associate the signs of the values gfwith the signs of
the values ofr taken on the (real) solutions of each system (Il). For a givensystem
(I1), let Mg and M, be the matrices of the result of the multiplication by g and
by r respectively on the canonic representative of the remaindeof the division of
a polynomial by the three polynomials of the system. Since tlese multiplication
maps commute, it is possible to use the transformation matrk obtained during the
computation of the Jordan form of one of these matrices to trangularise the other
matrix by a simple multiplication of matrices [CLO98]. Inde ed, the computation
of the Jordan form for My gives the triangular matrix P *M¢P of the Schur form
of that matrix where P is a unitary matrix called the transformation matrix; and
P IM,P is triangular. Finally, we can obtain the solutions by reading the diagonal
entries in turn in each one of the Jordan forms of these matries (the diagonal entries
of the Jordan form of a matrix are its eigenvalues). The row number on each one
of these matrices corresponds to the index of the solution. 1 evaluating the signs
of the diagonal entries in the Jordan forms ofM4 and of M, on the same line, we
associate the signs of the values aj with the signs of the values ofr taken on the
solutions of each system (I1).

We will see that though this method for computing several poynomials in
the quotient algebra can be generalised to algebras of highelimension, it will not

be possible in practice to use this method to compute the Delanay graph for conics.
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3.2 Formulating the Delaunay graph con ict locator for

curves from those curves

In this section, we describe di erent experiences with di erent Computer Algebra
Systems and the interval analysis based solver ALIAS in tryhg to compute the
Delaunay graph con ict locator for algebraic curves.

To compute that con ict locator, we need rst to write the alg ebraic equa-
tions (and inequalities) that should be satis ed by all the geometric loci that will
intervene in the evaluation of the con ict locator. The inpu t of the Delaunay graph
con ict locator is a quadruple (Cq; C,; C3; C4) of semi-algebraic one-dimensional sets
in the plane. These geometric loci that are considered in thecon ict locator are
one point (xj;yi) on each one of the four curve<;;i = 1;::;4, and the circle (whose
centre will be denoted (;y) and radius r) touching C;, C, and C3 (see Figure
3.2.1). The distance between X;y) and (X4; y4) will be denoted R. The formulation
of the Delaunay graph con ict locator will be described in more detail in Sections
4.1 (generalised o set), 5.3 (con ict locator for conics) and 6.1 (con ict locator for
semi-algebraic sets). For each one of the four curveS;;i = 1;::; 4, there are three
equations: the implicit equation of the curve Ci: ¢ (Xi;Vi), the equation of the nor-
mal to the curve C; at the point ( X;;Vy;): n; (Xi;Vi; X;y), and the equation expressing
the distance between the point &;;y;) and the point (x;y): di (Xi;Vi;X;y;r) for
i =1;2;3 and ds(X4;Y4;X;y;R). The equality of the distances between X;y) and
(X1; Y1), between (x;y) and (x2;y2), and between ;y) and (x3;y3) and r expresses
the fact that the circle centred at (x;y) of radius r is tangent to the three curvesCy,
C,, and C3. The equation d4 expresses that the distance betweenx(y) and (X4; Ya4)
is R. The equation of the normal n; is half of the di erential of the square distance
between the point (Xi;y;) and the point (x;y). It vanishes at the local extrema of
that square distance and expresses the necessary conditiéor (x;;y;) to be a closest

point on C; from the point (x;y). These equations form a system of 12 equations
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Figure 3.2.1: The Delaunay graph con ict locator that certi es whether the addition

of a curve C4 changes or does not change each one of the triangles inducey three
curvesCq, C,, and C3

in 12 unknowns.

As in Section 3.1, we need to write programs for solving the awesponding
system of algebraic equations. Such systems have a nite nuber of solutions (the
solutions constitute a nite set of points i.e. a zero-dimersional variety). As be-
fore we consider the quotient algebra of the ring of polynomsls in the variables of
the system (Xq;::;; XN ) by the zero-dimensional ideall generated by the algebraic
equations of the system to be solved. Computing in the quotiet algebra involves
generalising Euclid's algorithm for the division of one polnomial in one variable by
another polynomial in one variable to the division of one poynomial f in the vari-
ablesxy; ::;; XN by the generatorsf 1;:::;fs of | and having a canonic representative

for the coset (i.e. the equivalence class) of . This can be done by computing a
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Gmebner basis of the ideall, and then dividing the polynomial f by the generators
of the Gmbner basis. If the system has a nite number of soldions (points), the
guotient algebra dimension is nite and therefore, its bases are nite. We can de ne
a multiplication map mg in this quotient algebra that maps the coset of p to the
coset ofgp. Let M4 be the matrix of this linear map in the basis B of the quotient
algebra. The key property of multiplication operators for evaluating a polynomial
g at the points of a zero-dimensional algebraic variety is tha the eigenvalues of
Mg are the results of the evaluation of the polynomialg on the points of the zero-

dimensional variety (see Section 3.3.1).

As before we can compute the matricedMy, of the multiplication maps by
each one of the variables X3;::;;xn). Since these multiplication maps commute,
it is possible to use the transformation matrix obtained during the computation of
the Jordan form of one of these matrices to triangularise otler matrices by a simple
multiplication of matrices [CLO98] (see Section 3.1).

Gmbner bases can be computed in most Computer Algebra sysims. Singular
[GPSO01] gave incorrect normal forms (i.e. the remainder of e Euclidean division
of a polynomial by the polynomials of the Gmbner basis), while CoCoA [CNROO]
did not give any result within a month of computation. The tests with GB/RS [Fau,
Rou] have been done on the LEON machines of the UMS Medicis [CR| at Ecole
Polytechnique (1 proc alpha 500 Mhz, 640 Mo RAM) from UMS Medcis [CNR].
The tests with Macaulay 2 have been done on the LEON machineslso. The tests
with Maple [CGGL92] have been done on a Pentium 1l 550 Mhz, 124 Mo RAM.
The tests with Maxima [GG82] have been done on an Ultra 5-10 sttion 440 Mhz,
768 Mo RAM, because the a ne module (used for Grebner basis omputations) was
not available from UMS Medicis machines. The tests with Maxma were done on
GIULIA machines (2 proc Pl 933 Mhz, 1 Go RAM) from UMS Medici s. The tests

with toric resultants involve a preprocessing on Maple in oder to produce some les
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necessary for calling Emiris's [Emi97] \Resin" C program of computation of toric
resultants, and a post-processing with Maxima to compute tle determinant of the
matrix returned by Resin where the symbolic coe cients have been replaced by their
formal values. The time corresponding to the Toric Resultan row includes all these
three steps. The precomputations with Maple for \Resin" were done on the same
machine as the one used for the earlier mentioned tests on Mém Similarly, the
computations with Maxima after \Resin" were done on the samemachine as the one
used for the earlier mentioned tests on Maxima. The column tiled \Canonic conic"
corresponds to an equation of the conic of the formax? + by? + ¢ = 0. The column
titted \Generic conic" corresponds to a generic equation ofa conic of the form
ax?+ bxy+ cy’?+ dx + ey+ f = 0. The column titled \+ monomial" corresponds
to a preprocessing step on the system to remove the leading momial by linear
combination of the current polynomial with the other polyno mials. In the case of
Gmebner basis, new variables have been introduced and thesvariables correspond
to invariants. Invariants can be useful for rewriting the polynomials as polynomials
with fewer monomials and lower degree to make them more managble in Computer
Algebra Systems. Particularly the following property of the Voronoi diagram is
useful: the image of the Voronoi diagram of a set of curves by anotion is the
Voronoi diagram of the images of the original curves by that notion. Even a partial
rewriting of polynomials in the variables x1;:::; XN as polynomials inxq;:::;;xy and
some invariants might simplify the polynomials. The invariants that are relevant
here are the fundamental invariants of the group of motions.These are the invariants
of the special orthogonal group for points (scalar productsand vector products of
the vectors involved in the problem: the vectors between paits on the original
curves and the centre of the circle touching the rst three cuves).

The following tests deal with the Delaunay graph con ict locator for an input
constituted by a circle, a parabola, a hyperbola and a circlede ned with numeric

parameters. The results are summarised in Table 3.1. When thre is no numerical
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H without mon H + monomial

| |
\ GB/RS | 12 hours | segmentation fault |
| Toric Resultant | \not enough memory” ||  \not enough memory” |
\ Maxima | bad normal forms | bad normal forms |
| Bezoutian-Maple || \object too large” | \object too large” \
| Macaulay 2 || \not zero-dimensional ideal” || \not zero-dimensional ideal" |
\ ALIAS | 11 min. | 11 min. |

Table 3.1: The comparison of dierent algebraic methods for computing the
Delaunay graph conict locator for a circle, a parabola, a hyperbola and a circle
de ned with numeric coe cients

value, the table reports either the error reported by the Computer Algebra System
between quotation marks, or the problem that induced a wrongcomputation (bad

normal forms). The normal forms are canonic representative of the equivalence
class of the reminder of the division of one polynomial by thepolynomials of an
ideal.

We can observe that using invariants to simplify the writing of the polyno-
mials before the computation does not bring any acceleratio in the computation.
We can also observe that approaches based on Gmbner basewice much slower
computations (GB/RS [Fau, Rou]) than interval analysis based methods (ALIAS).
Finally, projective resultants based approaches do not indce any result in the case

of Maple [CGGL92].

3.3 An hybrid approach linking symbolic computation

and scienti c computation

These rst experiments with Computer Algebra Systems forcel us to distance
ourselves from a pure algebraic approach oriented towards @bner bases and to
adopt a hybrid symbolic/scienti c computing approach to tr y to nd the optimum

running time combination with the guarantee of a certi ed Delaunay graph con-

ict locator. This optimum corresponds to a tradeo point be tween what can be
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achieved with algebraic precomputations (possibly givingrise to huge matrices), and
what can be achieved with numerical computations.

We will present in this section the key characteristics of the main tools that
have been used to nd this optimum, and to obtain the Delaunay graph con ict

locator for semi-algebraic sets.

3.3.1 The sparse resultant

In this subsection, we review the main concepts and results lrout mixed subdivi-
sions, mixed volumes, and sparse resultants that will be ugkin Section 4.4 and
Chapter 5. We put the emphasis on the properties of the sparsessultant that have
allowed us to get the results presented in Section 4.4 and Cipder 5. Indeed, the
sparse resultant of the equations presented in the last seictn cannot be computed
because of a lack of memory (see Table 3.1) even on machinesw4Gb of RAM and
more than 6Gb of virtual memory [CNR]. We could compute the sparse resultant
needed for the Delaunay graph con ict locator only after simplifying the polynomi-
als involved to reduce the sparse complexity of the system oéquations. For this
purpose, we have used a key property of the Newton polytope ahthe mixed volume
as well as a speci c usage of a sparse resultant.

The key property of the mixed volume for our work with sparse resultants

is that if we replace a polytope (sayQ;) by a polytope Q° whose Newton polytope

decreases. We will present this property later in this secton. This key property
allowed us to get the equation of the generalised o set to a coic (see Section 4.4)
and the sparse resultant matrix needed for the algebraic comutation of the con ict
locator (see Chapter 5). Let us now introduce the concepts oNewton polytope and
mixed volume and the key property mentioned in this paragramh.

The classical projective resultant of N + 1 polynomials in N + k a ne vari-

ables is a polynomial ink variables, which characterises the solvability of a system

67



[CEOO, CLO98]. Thus, it allows the elimination of N variables, and is therefore also
called eliminant. The degree (i.e., the algebraic complexy) of the projective result-
ant of several polynomials relatively to the coe cients of one of these polynomials is
the product of the degrees of the other polynomials. Sparseesultants generalise the
classical (projective) resultant and exploit the monomial structure of the polynomi-
als of the system [CE00]. The Newton polytope expresses the anomial structure
of a polynomial, i.e. the monomials appearing in the polynonml. The degree of the
sparse resultant is determined only by information about the exponent vectors of the
polynomials and it is generally lower than the complexity of the classical projective
resultant [CLO98]. The sparse resultant has been extensivg treated in Canny and
Emiris [CE00, EC95].

Let K be an algebraically closed eld (see [Lan02] for a de nitionof \algeb-
raically closed eld"). Let K|[x1;::;Xn] denote the ring of polynomials in the vari-

ablesxq;:::;xn over the eld K. Let K xll;:::;xN1 = K x;x 1 denote the eld

then let x2 denote the monomialx§*x32 :::x3" . If Q is a polytope of RN, then let

Vol(Q) and V oly (Q)denote the N dimensional volume ofQ.

De nition 3.3.1. (Support of a polynomial [CEQO, De nition 3.1, page 420]) The

support A; of a polynomial ;2K [x; L. :::;le] is the set of exponent vectors inZN
P

corresponding to non-zero coe cients, i.e. fi =, CaX®, Ca 6 0. The Newton

polytope Q; of f; in RN is the convex hull of A;.

For example, for the strophoid of equationy? x? x3 = 0, the exponent

vectors are: (Q2), (2;0), and (3;0).

De nition 3.3.2.  (Minkowski sum [EC95, De nition 3.2, page 121]) The Minkowski
sum A+ B of point setsA and B in RN is the pointsetA+B = fa+ a2 A;b2 Bg

(see example on Figure 3.3.1).
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pL 24 4 A+B

0d = 06 =0
0 1 2 0 1 2 0 3

Figure 3.3.1: The Minkowski sum of the point setsA and B

De nition 3.3.3.  (Mixed volume [CEOQQ, De nition 3.4, page 421]) Let N polytopes
Q1;:;0Qn RN whose vertices belong tazN . The mixed volumeMV (Qq;:::;Qn)

is the coe cient of the monomial 1::: y inVol( 1Q1+ i+ NOn)-

De nition 3.3.4.  (Polyhedral subdivision [CE0O, De nition 4.3, page 421]) A poly-
hedral subdivisionof a compact setS RN is a collection of polyhedra whose union
equalsS, such that each intersection of two polyhedra of the same diransion is an-
other polyhedron in the subdivision of lower dimension. Thepolyhedra of maximal

dimension are called maximal cells or facets.

De nition 3.3.5. (Mixed subdivision [CLO98, De nition 6.5, page 344]) Let Q =

Q1+ i+ Qn RN be a Minkowski sum of polytopes, and assume thaQ has
dimension N. Then a subdivision Ry;:::; Rg of Q is a mixed subdivisionif each cell
R; can be written as a Minkowski sumR; = F; + ::: + F,, where eachF; is a face of

Qi and N = dim (Fq) + ::: + dim (F,) (see example on Figure 3.3.2).

De nition 3.3.6.  (Mixed cell [CLO98, De nition 6.6]) Suppose that R = F1+ :::+
Fm is a cell in a mixed subdivision ofQ = Q1 + ::: + Qn. Then R is called amixed

cell if dim (F;) 1 for all i.

Theorem 3.3.7. ([CLO98, Theorem 6.7]) Given polytopes Q1;:::; On RN and
a mixed subdivision ofQ = Q1 + ::: + Qu, the mixed volumeMVy (Q1;:::;;Qn) is
computed by the formulaMVy (Q1;:::;;Qn) = RrVoly (R), where the sum is over

all mixed cellsR of the mixed subdivision.
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Mv=4

Figure 3.3.2: A mixed subdivision of the Minkowski sum shownin Figure 3.3.1 and
the corresponding mixed volume (the mixed cells are not lled and the lled cells
are copies of the Newton polytopes)

Proposition 3.3.8.  (Bernstein's Theorem [EC95, Theorem 3.6, page 122]) For the
systemps;:pn 2 K xll;:::;xN1 = K x;x !, the sum of the multiplicities (see
De nition 4.1.5) of solutions in (K ?)'\I is in nite, or bounded by the mixed volume

of the Newton polytopes. If the coe cients are generic, thenthis bound is exact.

Generally, this bound (also known in the literature as the BKK bound be-
cause of the existence of closely related papers by Kushnimko and Khovanskii) is
lower than the Bezout number (i.e., the product of the degrees of the polynomials),
which expresses the sum of multiplicities of isolated soluons in PN .

Now let us introduce the sparse resultant and its use for the emputation of
the implicit equation of the generalised o set to a conic (se& Section 4.4) and the
multiplication operator matrix needed for the algebraic computation of the con ict
locator (see Chapter 5). The main interest of the sparse redtant in the computation
of the implicit equation of the generalised o set to a conic & that it allows one to
do the elimination of N variables from N + 1 polynomials like projective multi-
polynomial resultants with an algebraic complexity that is lower than the Bezout
number, and therefore, the matrices obtained are smaller, ad the computations can
be performed faster.

In order to introduce the sparse resultant, let us recall sone basic de nitions:
De nition 3.3.9. (Zariski topology, adapted from [GP02, De nition A.2.1, para-
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graph following Lemma A.2.4 and Lemma A.4.3]) In the Zariski topology, a closed
set is a subset consisting of all common zeroes of nitely many plgnomials with
coe cients in K. A quasi-projective variety is an open subset of a closed projective

set. The Zariski closure of a setX is the smallest closed set containingX .

The sparse resultant is a necessary condition of existencef golutions of a
system of algebraic equations in C?)N :

Given a set of exponent vectors A=f ;9 zZN, let
LA)=fcix 1+ i+ gx ':¢ 2 Cg be the set of polynomials whose terms all
have exponents in A. Consider N +1 Laurent polynomials f; 2L (A;). Let
Qi = Convex hull(A;) and MV =MV (Qo;:::;Qi 1;Qi+1;:::;0N). Let
Z (Ao An)L (Ag) ::L (An) be the Zariski closure of the set of all

(fo;:;fn) for which fo(xq; 5 xn)=m=fn (X1; 5 XN ) has a solution in (C )N.

De nition 3.3.10. (Sparse resultant, [CLO98, Theorem 6.2 p. 342]) Assume that
Qi is an N -dimensional polytope for all i. Then, there is an irreducible polyno-
mial called the sparse resultant Resp,::a, in the coe cients of the f; such that

(fornfn) 2 Z (Ao An) . Respagay, =0.

However, it is not su cient generally.

On the toric variety constructed from the Minkowski sum of th e Newton
polytopes of the polynomials of a system of algebraic equatns, the sparse resultant
is a necessary and su cient condition of existence of solutbns of the system. Let
us de ne rst the toric variety constructed from the Minkows ki sum of the Newton
polytopes of the polynomials of a system of algebraic equatns. For this purpose,
we recall that PN denotes the N dimensional projective space overK , i.e., the
set of lines of K N*1 going through the origin O of the coordinate system ofk N *1

(adapted from [GP02, De nition A.4.1]).

De nition 3.3.11. (Toric variety, [CLO98, p. 307]) Let A = fmq;::;mg  ZN,

and suppose thatf; = atM1+ 1+ g t™, i =0;::;; N areN +1 Laurent polynomials
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in L (A). Assume that the convex hull of A has dimensionN. Then consider the
map a :(C)ON 71 P Tdened by A (ti;:ity) = (tM;nnt™). Then, the toric

variety Xa is the Zariski closure of the image of 4.

The necessary and su cient condition of existence of solutons of the system

in the preceding toric variety is:

Theorem 3.3.12. (adapted from [CLO98, Theorem 3.4]) Resa (fo;::;fn) = 0 f,

and only if, fo = ::: = fy =0 has a solution in Xa.

The sparse resultant is a factor of the determinant of the Newon matrix,
which can be computed using a mixed subdivision [CE00, CLO98 The sparse
elimination using the sparse resultant allowed us to obtainan implicit equation of
the generalised o set to a conic (see Section 4.4).

The main interest of the sparse resultant of the polynomialsfg;:::;;fyn In
the variables x1; ::;; XN in the algebraic computation of the Delaunay graph is that
it allows one to compute the values taken by the polynomialfq at V (f1;:::;fN).
The sparse resultant matrix allows one to do computations inthe quotient algebra
A = KX i xn]=hq; o fni. We will see this now. We need now to intro-
duce some notations for this purpose. Lefq;:::fy be N +1 Laurent polynomials.
Let Qo;:::;;Qn be their Newton polytopes. Let R be the sparse resultant of the
polynomials fo;:::f y. Let deg, R denote the total degree of the resultantR in the

coe cients of the polynomial f;. Let MV { = MV (Qq;::;; Qi 1;Qi+1;::50nN).

Theorem 3.3.13. ([EC95, Theorem 3.10]) The sparse resultant is separately &+
mogeneous in the coe cients ¢ of eachf; and its degree in these coe cients equals

the mixed volume of the otheN Newton polytopes, i.e.,deg,R = MV ;.

From the last theorem, it follows that the total degree of the sparse res-
ultant equals the sum of the mixed volumes ofN Newton polytopes: deg(R) =
P
iN:O MV ;. Let Q= Qg+ ::+ Qu. For an in nitesimal vector 2 QN, we de ne

“=(Q+ )\ ZN.
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Theorem 3.3.14. [CLO98, Theorem 6.17 p. 354] For the set~described above, the

cosets[x ] for 2 *form a basis of the quotient ringC xll; ::;xN1 =hfq;nfNi.

S
We dene :*=! AicpTta; 2Ai, p2 = Fot+ it ap +il+
FnidimFj > 0;8)>i ,andBi =fp  (p):p2*% (p) §Aig We decompose the

M M
00 TOIA 50 that the
Mo M1

rows and columns ofM gy correspond to elements oBg. The elements ofBg are in

sparse resultant matrix (i.e. the Newton matrix): Mg = @

one-to-one correspondence with the integer coordinates s of the mixed cells of
any mixed subdivision off 1;:::;fn . Thus, the cardinality of Bg is the mixed volume
MV o. Let A= C xll;::;xN1 =hf 1;:::;fn i be the quotient algebra of the ring of

polynomials C xll; ::;xNl by the ideal H 4;:::;f i generated byfq;::fn.

Theorem 3.3.15. [CLO98, Theorem 6.21, p. 356] Letf; 2 L (A;j) be generic
Laurent polynomials, and letfg = ug + uixy + i+ uyXn. Using the basis from
Theorem 3.3.14, the matrix M, of the multiplication map ms, : A ! A which
maps[g] to [fog] is the transpose of the Schur complement of the matrif1: M =

Moo MoiM;*Mg.

Thus the size of the matrix of the multiplication map ms, is the mixed
volume of Q1;:::; Qn, Which is the sparse bound for the humber of common zeroes
of fq;::;fN (counted with their multiplicities). This is coherent with the fact the
dimension of the quotient algebra is the number of common zeares offq;:::;fn
(counted with their multiplicities). The values taken by fq onV (fq;:::;fN) are the
eigenvalues of the matrix of the multiplication map m¢, : A'! A (see [CLO9S,
Theorem 4.5])

Moreover, sinceM;, = ugl + UMy, + i+ uy My, , where My, is the matrix
of the map of the multiplication by x;, by [CLO98, Corollary 4.3, p. 53], M =
Ugl + ugMrq + i+ uy My, where eachM; is obtained as in Theorem 3.3.15. Then

M, = MT implies that My, = M .
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As observed in Section 3.1, we can compute the matricdd , of the multiplic-
ation maps by each one of the variablesxy; :::; XN ) by a simultaneous diagonalisation

of all these matrices [CLO98].

3.3.2 Numerical methods for computing exactly the signs of t he

eigenvalues of large sparse matrices

In this subsection, we present numerical methods for compthg exactly the signs
of the eigenvalues of large sparse matrices used in the nunieal computation of the

con ict locator that follows the algebraic precomputation of the matrix of the sparse
resultant for the Delaunay graph con ict locator (see Section 5.5). The results re-
ported in this section can be found in [Hea02]. For computingall the eigenvalues
of an arbitrary real matrix, the standard approach is to reduce the matrix to the

Hessenberg form (lower Hessenberga; = 0 for i >j + 1, or upper Hessenberg:
aj =0 fori<] 1), and then apply QR iteration on that Hessenberg matrix
[Hea02]. However, for very large sparse matrices, like the atrix of the sparse res-
ultant or the multiplication operator matrix for the Delaun ay graph con ict locator

computation, standard algorithms for reduction to the Hessenberg form are prohib-

itively time and memory consuming [Hea02].

The current method of choice for general sparse square matnes of sizeN is
the Arnoldi method [Hea02]. The Arnoldi method for large spase non-symmetric
eigenvalue problems is implemented in ARPACK [LSY98]. It isthe basis for the
MATLAB [Hea02] function eigs for computing a few (the six having highest modulus
by default) to almost all (up to the N 1 having the highest modulus) eigenvalues
and eigenvectors of a matrix.

The Arnoldi method is a Krylov subspace method, whose main asump-
tion is that the input matrix is best considered as a linear operator, with which

one can form matrix-vector products. Krylov subspace methas are based on a
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simple method (known as the power iteration) for computing asingle eigenvalue of
an N N matrix A, which multiplies an arbitrary nonzero vector by successiely
higher powers of the matrix A. Assuming A has a unique eigenvalue ; of max-
imum modulus and v is its corresponding eigenvector, power iteration convergs
to a multiple of vi. Subspace iteration methods (also known as simultaneouset-
ation methods in the literature) use power iteration with several di erent starting
vectors to compute several eigenvalues of a matrix simultagously. The sequence
of vector spaces spanned by the product of these starting véars by successively
higher powers of the matrix A will converge towards the invariant space spanned by
the eigenvectorsvy; :::; vp corresponding to thep largest eigenvalues ofA in modulus

1,5 p. Krylov subspace methods provide similarity reduction to the Hessenberg
form using only matrix-vector multiplication. The applica tion of the mathematical
setup presented above for computing eigenvalues is di cultbecause the columns of
the matrices computed by the Krylov subspace methods convere towards multiples
of the dominant eigenvector ofA and thus, they become exceedingly ill-conditioned.
In order to remedy to this an orthonormalisation (othogonalising the new vector
with respect to all the previous ones and normalising it) of the vector used for
matrix-vector multiplication is done at each iteration. Th is algorithm is owed to
Arnoldi [Hea02]. Since the Arnoldi method requires at iteraion k a matrix-vector
multiplication by A plus O (kN ) for the orthonormalisation, plus O k2 for the com-
putation of the eigenvalues, it is run for a few iterations ard then restarted with a
new starting vector that is relatively rich in components of the desired eigenvectors.
A few repetitions of the restarted Arnoldi process produce gcellent approximations
to the extreme eigenvalues ofA.

The certi ed computation of the sign of eigenvalues of spars matrices can be

done by computing tight bounds on the intervals taken by eigawvalues [Kra92]. This
method gives an interval bound for the exact eigenvalue witlout the user providing

error estimations. The existence of the true eigenvalue whin the computed bounds
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is \simultaneously proven by the method" [Ka92].

3.3.3 ALIAS

In this subsection, we present the key properties of the ALIAS library that have
been used for the computation of the Delaunay graph con ict bcator for semi-
algebraic sets presented in Chapter 6. Interval analysis isa well-known method
for computing bounds of a function, being given bounds on thevariables of that
function [Han92, Mer01]. The basic mathematical object in hterval analysis is the
interval instead of the variable. The operators need to be rde ned to operate on
the intervals instead of the variables. This leads to an inteval arithmetic. In the
same way, most usual mathematical functions are rede ned byan interval equival-
ent. Many packages implement basic interval operations [Ha92, Mer01]. However,
interval analysis has two main drawbacks. The rst drawback is that the bounds of
a function depend heavily on the way the function is written [Mer01]. This can lead
to or be accompanied with an over-estimation of the bounds [Mr01]. The second
drawback is that it is di cult to test rapidly the e ciency of  an interval analysis
based algorithm [Mer01]. The implementation of such an algathm involves three
di erent levels of software: a basic level where the basic oprations of interval arith-
metic are performed, an end-user level where the bounds forhe function to be
evaluated will be computed using the functions of the rst level, and an algorithm
level where the function evaluation of the second level wilbe used to solve a prob-
lem [Mer01]. ALIAS [Mer00] is a library of algorithms enabling to analyse and solve
zero-dimensional systems of equations and inequalities th real coe cients. ALIAS
allows \the user to focus on the algorithmic part of the problem, while o ering a
convenient way to use interval analysis and, furthermore, aabling one to easily
change the analytic form of the function that will be evaluated” (from [Mer0Q1]).
ALIAS is composed of a C++ library (the kernel of ALIAS), a Map le [CGGL92]

interface (which enables to produce the code that will solvea system of equations
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and inequalities directly from MAPLE by using the C++ librar y), and a parser
(which enables to perform the interval evaluation of a funcion whose analytical
formulation is written in a le).

The analysis of the zero-dimensional system of equations aninequalities
encountered in the Delaunay graph con ict locator computation (see Chapter 6)
relies on results about the uniqueness of a root in an interda(Kantorovitch [Kan57]
and Moore-Krawczyk [Moo77]).

The mathematical setup is as follows [Han92]. Aninterval number is a real,
closed interval (x;X). Arithmetic rules are replaced by interval arithmetic rules, e.g.
let two interval numbers X = (x;X), Y = Yy, then X +Y = x+ y;X+y and
X Y= x Vy;X Yy.Aninterval function is an interval-valued function of one or
more interval arguments. An interval function F is said to beinclusion monotonic
if, Xi Yjfori2 [LN]implies F (Xq1;:5XNn)  F (Yg;:5Yn). A fundamental
theorem is that any rational interval function evaluated with a xed sequence of op-
erations involving only addition, subtraction, multiplic ation and division is inclusion

monotonic [Han92].

Theorem 3.3.16. Moore theorem [Mo077] Let a system ofN equations in N un-
knowns: F = fFj (x1;:5Xn)=0:i 2 [1;N]g each F; being at leastC!. Let X be
an interval vector for fx1;::;;XNnQ, Y @ point inside X and Y an arbitrary nonsin-
gular real matrix. Dene K asK (X)=y YF(y)+ fl YFOX)g(X ). If
K (X) X andkl YFO9X)k< 1then there is a unique solution ofF in X.

This unique solution can be found using the Krawczyk solving method

[Moo77].

Theorem 3.3.17. Kantorovitch theorem [Kan57] There exists a unique solutio
x of the functional equation P (x) = 0, where P is an operator twice continuously
di erentiable, which maps the normed spaceX onto Y, if the following conditions

are satis ed:

77



1. There exists a real valued majoring functionQ (x) on an interval (zo; z9 (i.e.,
kP (xo) k Q(zo) and kPO(x)k QO%z) if kx xok z zg Z° zo) for

which the relation Q (z) =0 has real rootsz1, zo(zo z1 2z 29;
2. There exists an inverse operator o= [P%xg)] LB = [Q%z)] 1> O;
3.k P (xo)k BQ (20);
4. k P"(x)k BQ"(z) for kx xok z zg Z° zo.

The solution x is bounded bykx Xok z1  zp and furthermore it is unique in
kx Xok z» zg. The approximations xy obtained by the Newton methodX +1 =
xn [PP(xn)] P (xn)) and its modi cation ( xn+1=Xn  [P%(X0)] P (xn)) con-

verge tox .

All the general purpose solving procedures for zero-dimemsnal systems have
been tested in the computation of the Delaunay graph conict locator for semi-
algebraic sets. These general purpose solving proceduresedased on a bisection
process on onegingle bisection), several (mixed bisection) or all the variables (full

bisection) using either:
only the equations and inequalities of the system,

the equations and inequalities of the system and the Jacobia of the system

(Moore-Krawczyk test for nding \exactly" the solutions),

the equations and inequalities of the system and the Jacobiaand Hessian of

the system (with Kantorovitch and Moore-Krawczyk tests).

The bisection process (single, mixed or full) can be set by stng the \ALIAS/single _
bisection" parameter (to 2, 1 or 0) and in the case of mixed bisction, the number
of bisected variables can be set by setting the \ALIAS/mixed_bisection" parameter.

The variables that will be bisected will be the ones having the largest interval width.
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n . o
Let X1;::::Xm be the set of unknowns and letl 1 = x};x% D xﬁq;x%q

be the set ofm intervals in which we are searching the solutions of theN equations or
inequalities F1 (X1;::5xm)f=; 9 0 Fn (X155 Xm) =5 g 0. The indices in the
x{ are unknowns indices, while the exponents in thex? (and indices in the | ;) are
iteration indices. Let F; be the interval value of F; when this equation is evaluated
for the interval value Xi;X1 ;i Xm;Xm Of the unknowns while F (1) be the
N dimensional interval vector constituted of the F; when the unknowns have the
interval value de ned by the set | ;.

The algorithms use a list of interval vectors (or boxeg | whose maximal size
M is an input of the program. The general purpose solving algathm bisects the
input intervals until either their width is lower than an acc uracy on the variables
or the width of the equation interval is lower than an accuracy on the equations ¢
(provided there is enough storage space in the list to storehte intervals) [Mer00].
Then, if all the equations and inequalities intervals are aceptable (they contain O
for an equation or they contain positive or negative values acording to the sense
for an inequality), we get a new solution, if one of them is notacceptable, there is
no solution of the system within the current variable intervals. The new interval
vectors are added to the list ofl with an ordering which aims at considering rst
the input intervals having the highest probability of conta ining a solution. There
are two ordering criteria: maximum equation ordering and maximum middle point
equation ordering. In the maximum equation ordering, the boes are ordered along
the value of C = Max Fi (1);Fi (1) for all k in [1;N] (the rst box will have

lowest C). In the maximum middle-point ordering, the boxes are ordered along the

value of C = Max F (Ci); Fk (Ci) whereC; is the vector whose components are
the middle points of the intervals | . This full bisection process on all the variables
simultaneously may induce a combinatorial explosion (at eah iteration, 2N new
interval vectors or boxes are produced). Instead of bisecatig on all the variables

simultaneously, it is possible to bisect only one variable tieach iteration. This may
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reduce the computation time as the number of function evaluéions may be reduced
[Mer00]. The variable that will be bisected is the one for whch the bisection will
produce the intervals with the lowest criteria except if for at least one variable
the intervals that will result from the bisection cannot possibly contain a solution.
Moreover, to avoid bisecting always the same variable, andter test is used: let
di be the width of the interval X;i;Xi and dmax be the maximum of all the d;; if

dntwj;x < 0:1, x; is not considered as a possible bisection variable.

Aside from these bisection processes, it is possible to use@her bisection
method called the 3B approach (by setting the \ALIAS/3B" parameter to 1 and
the maximal range \ALIAS/Max3B" and minimal range \ALIAS/D elta3B" para-
meters). Each variable x; and its range X;;X; are considered in turn. Let x"
be the middle point of this range. First, the interval evaluations for the equations
and inequalities in the system with the full ranges of the vaiables except for the
variable i where the range is x;;x" are computed. Clearly, if one of the equations
or inequalities is not satis ed, it is possible to reduce therange of the variablei to
[xM;Xi]. If this is not the case, let's de ne a newx{" as the middle point of the
interval x;;x™ and repeat the process until either we have found an equatioror
an inequality that is not satis ed (inducing a new reduction of a variable interval)
or the width of the interval  x;;x[" is lower than a given threshold . A similar pro-
cedure can be used to reduce the input interval on the right. V¢ may additionally
select a subset of equations and/or inequalities whose intgals will be evaluated.

This can be done by setting the \ALIAS/SubEQ3B" variable [Me r00].
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Chapter 4

The o set to an algebraic curve

While the o set (i.e. locus of points at a given distance, seean example on Figure
4.1.1) to a curve or a surface and the bisector of two curves osurfaces have been
studied for their applications (see [HV91]), nothing has ben written about the
degree of the polynomials de ning these objects, and no imptit equation has been
given, even in the simple case of conics. In the reminder of th thesis, we will
call the oset true o set (to contrast it with the generalise d o set, that we will
review in this chapter). What Ho mann and Vermeer [HV91] de ne as o set curves,
Arrondo, Sendra and Sendra [ASS99] de ne as generalised @e$ curves (see Figure
4.1.2). The extraneous solutions (corresponding to a sindar point of the curve
or surface, for example, the circle centred on the self intexection of the strophoid
on Figure 4.1.2 and of radius the o set parameter) have been @dressed in [HV91].
Ho mann and Vermeer [HV91] did not address the computations but they gave
some examples computed using Gmbner bases (see also [Hof® Arrondo, Sendra
and Sendra [ASS99] computed the genus of the generalised escurve when the
eld has characteristic [Lan02, end of Section 2 of Chapter I] zero. Farouki and Ne
studied the analytic properties [FN90b] as well as the algelaic properties [FN90a]
of the true o set to a planar parametric curve.

In this chapter, we will address the degree of the true o set b an algebraic
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plane curve in its most general setting, i.e. in an algebraially closed eld of zero
characteristic. Knowing the degree of the generalised o seto conics allowed us to
identify the factor of the sparse resultant that correspondto the implicit equation of
the generalised o set to a conic (see Section 4.4). This imptit equation is central
to the formalisation and computation of the Delaunay con ict locator for conics (see
Chapter 5 and Section 6.3). Moreover, the degree of the genalised o set to conics
determines the Bezout bound! on the degree of the algebraic variety on which we
will evaluate the Delaunay graph conict locator. Our main contributions are a
general formula for the degree of the true o set curve and itsapplication for the
determination of an implicit equation of the generalised o set to a conic (which is
the Zariski closure of the true o set, see Section 4.1). The onic is de ned implicitly
by a formal polynomial (i.e. a polynomial whose coe cients are formal constants).
We used the general formula for the degree of the true o set cwe to eliminate
the extraneous factors from the sparse resultant [CEQO, CLOS8] to get an implicit
equation de ning the generalised o set to a conic (see Seatin 4.4).

This chapter is organised as follows: in section 4.1, we stydthe equation of
the o set. In section 4.2, we study the algebraic propertiesof the true o set to an
algebraic curve in order to determine its degree. In sectior.3, we apply the results
of section 4.2 to the conics. In section 4.4 we use the resultf sections 4.3 and 3.3.1

to compute an implicit equation of the generalised o set to aconic.

4.1 Equations de ning the o sets

Let us rst recall some basic de nitions about algebraically closed elds, rings
of polynomials and algebraic varieties. LetK be a zero characteristicalgebraic-
ally closed eld, i.e., a eld such that all polynomials with coe cients in K have
a root in K [Lan02, De nition before Theorem 1, Section 2, Chapter VII] and

8x 2 K;N 2 N:Nx 60. Let K [x1;:::; XN ] be thering of polynomials [GP02, De n-

LIn this case, the Bezout number is the degree of the generasied o set to the power 4
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Figure 4.1.1: The strophoid (C) and its true o set (thick lin es)

ition 1.1.3] in the variables x1;:::;xn with coe cients in K. In all this chapter, we
assume thatV (f1;:::;fs) E denotes thealgebraic variety embedded inE de ned
by the polynomials fq;:::;fg, i.e., the set of all the points of E whose coordinates
are common zeroes of all the polynomial$ (;:::;;fs [Sha94]. IfE = KN is an ane
space, then the variety is ana ne variety [GP02, De nition A.2.1]. If E = PN is
a projective space overK , then the variety is a projective variety [GP02, De nition
A.4.2]. We can now recall the notion of degree. Thedegreeof a projective variety
X PN is the maximum number of points of intersection of X with a projective
linear subspacePN 9mX of complementary dimension in general position with re-
spect to X (see page 234 in [Sha94]). Thus, the degree of a projectivenety is the

degree of its maximal dimensional component.

In this chapter, we focus on algebraic curves in the ane spae K2 = C2.
We thus supposeK = C in the remaining of this thesis.

We will now introduce the true o set curve.

De nition 4.1.1. (True oset) Let C = V(f) K2 for f 2 K[x;y], be an

algebraic curve andR 2 R* be the o set parameter. The true R o set curve to C
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Figure 4.1.2: The strophoid and its generalised o set

is the locus of points of R? being at the distanceR from C (see Figure 4.1.1).

Remark 4.1.2 This is equivalent to saying that each point g = (u;v) of the true
o set curve is the centre of a circle D of radius R that is tangent to C, and does

not contain any point of C in its interior.

We will suppose that f has positive degree (i.e.f is not constant), which
implies that C is not empty and not equal to K 2. We will also suppose thatR 6 0
unless stated otherwise.

Let us now introduce the generalised o set and emphasize itdi erences
with the true o set. There exists a superset of the true R-o set curve, called the
generalisedR-o0 set curve and denoted by O that is de ned as the locus of points

that are locally at the distance R from the given curve (see example on Figure 4.1.2):

De nition 4.1.3.  (Generalised o set, adapted from [ASS99]) Thegeneralised o set
to a hypersurface at distanceR is the Zariski closure of the set of intersection points
of the spheres with centre on a non-singular point of and radius R, and the normal

lines to at the centre of the spheres.
This is equivalent to saying that each point g = ( u; v) of the generalised o set
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Figure 4.1.3: Relationships between the generalised o seto the strophoid and the
strophoid

curve O is the centre of a circleD of radius R that is tangent to C, but may contain

points of C in its interior (see Figure 4.1.3).

We will now establish the systems of equations and inequalies that de ne
the generalisedR-0 set O and the true R-o set to an algebraic curve C. For this
purpose, we will describe which points have to be removed fra the generalised
o set in order to get the true oset. Let us rst introduce the following notation
and de nitions. Let g=(u;v) be an arbitrary point on the generalised R-0 set (see
Figure 4.1.3).

If C is the ane variety dened by f 2 K[x;y] (i,e. C = V (f)), then the
normal to C at a given point m=(; ) 2 C isthe variety de ned by n (i.e. V (n)),
for

n(uv)= fy(m) (u )+ f(m) (v )

wherefy = % and fy = %X;yy) denote the partial derivatives of f .

De nition 4.1.4.  (Tangent space [Sha94]) Thdangent spaceto an algebraic variety
V (fq;0fs) E at m 2 V (fy;:::;fs) is the locus of points on lines tangent to

V (fq;:fs) at m.
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De nition 4.1.5.  (Singular point) A point m of an algebraic varietyV (f1;:::;fs)
E wheref; 2 K[xq1;X2;:::; XN ] is called asingular point if, and only if, the tangent

space atm is E, or equivalently, g—; (m)y=0forall i=1;:;;sandj =1;:;n.

We have already seen an example of singular point: the self tersection of
the strophoid.

We are ready to describe the points that belong to both the gerralised o set
and the true o set to an algebraic curve. For a givenq= (u;v) 2 R?, let M be the
set of pointsm=(; )2C T R? such that q 2 V (n). This condition is achieved
whenever the normal to C at m passes throughg, or m is singular. In the general
case,M is nite. However, if C is a circle centred ong, then M = CT R?. To get
in all cases a nite set of points m of CT R? such that g2 V (n), we useS = M
when M is nite, and S = fwg for an arbitrary point w of CT R? when C is a

circle centred ongq.

T
Lemma 4.1.6. The set of all the closest points onrC ~ R? from q is contained in

M.

Proof. The polynomial n de ning M expresses half of the di erential of the scalar

product !qm !qm (which is equal to the square of the Euclidean distance (q; m))
T

with respect to m. The closest points onC = R? from q are global minima of the

Euclidean distance (q;m), so, the di erential (and thus, n) vanishes on them. O

Recall the de nition of the power of a point p, with respect to a circle centred
at c of radiusr: it is equal to cp! cp r2. The power is positive, zero or negative if
p is outside, on, or inside the circle respectively.

Let D be the circle of radiusR centred onq (see Figure 4.1.3).

T
Lemma 4.1.7. The minimum power of the points ofC ~ R? with respect toD is at

least the minimum power of the points ofS with respect toD.

T
Proof. The points of C R? having minimum power with respect to D are the

T
closest points onC ~ R? from g, becauseD is centred ong. In Lemma 4.1.6, we

86



have seen that the set of all closest points orCT R? from q is contained in M .
Thus, the minimum power of the points of C T R? with respect to D is the power of
a point of M with respect to D. If C is not a circle centred ong, M = S, and we
are done. IfC is a circle centred ong, all the points of M are at the same distance
from q: the radius of C. Thus, the minimum power of the points of CT R? with

respect toD is the power of the pointw of S. O

A direct consequence of Remark 4.1.2 is that the power of anyqint of C T R?
with respect to any circle D centred on a point q of the true R-o0 set and of radius
R is positive or zero. Lemma 4.1.7 allows us to restate this ldscondition as the
power of any of the points of the setsS with respect to any of the circlesD must
be positive or zero.

By De nition 4.1.3, the point g on the generalisedR-o set curve O can be
constructed from a non-singular point p = (Xx;y) on C as the intersection of the
normal to C at p and the circle centred onp, and of radius R (see Figure 4.1.4).

This circle is the variety V (d), where
disy;uv)=(u x)*+(v y)* R%
whereas the normal is the varietyV (n), where

nigy;uiv)= fy (u x)+fx (v y):

We are ready to write the equations of the o set.
Letus considerthemap :K®! KZ2denedby ((x;y;u;v;; ))=(uv).
The generalisedR-0 set O is the Zariski closure of the image by of the

variety of K ® de ned by the following system of equations and inequalities:
8

S fy)=nGy;uv) = dy;uv) =0
: fx(x;y) 60 o0r fy(x;y) 60
The rst line in the preceding system of equations and inequdities contains

the algebraic equations de ning the point p on C and the point g on the generalised
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V(n)

Figure 4.1.4: The construction of a point of the generalisec set

oset to C. The second line is a necessary and su cient condition forp not being
singular.

The true R-0 set is obtained as the di erence of the generalisedR-o0 set O
and the union of each one of the images by of the sets de ned by the following

system of equations and inequalities for each poinm =( ; ) of S:
8
S f(G )=n(uyv )=0

(u )P+(v )® R2?<0O
We will now ennounce some fundamental properties of the trueo set that

are central to the design of the Delaunay graph con ict locabr.
Proposition 4.1.8. The true o set to an algebraic curve is a semi-algebraic set.

Proof. The true R-o set is de ned as the di erence of two sets. The second sets
a nite union of sets (since S is nite), each one of them being the projection of a
set de ned by a system of equations and inequalities. Such aet$ is a semi-algebraic
set. The projection of a semi-algebraic set is semi-algebi@[BCR98, Thm.2.2.1]. A

nite union or di erence of semi-algebraic sets is semi-algbraic (see Note following

88



De nition 2.1.4 in [BCR98]). Thus, the second set is a semi-&ebraic set. The rst

set is also semi-algebraic, as the image of an algebraic sef b projection. O

Proposition 4.1.9. The true o set to an algebraic curve is not necessarily algeb

raic.

Proof. We have proved that the true o set is a di erence of two sets, where the
rst one is the projection of an algebraic set, and the secondne is a semi-algebraic
set. If the second set is dierent from the empty set, then the true o set can-
not be algebraic. Let's consider the strophoid, which is thea ne algebraic variety
V y2 x2 x3 (see Figure 4.1.2). The true o set curve to a strophoid di ers from
its generalised o set because around the origin of the cooidate system, the gener-
alised o set has two branches which intersect the strophoid Indeed, the intersection
points of the strophoid and its generalised o set cannot be @rt of a true o set (with
positive 0 set value) to the strophoid, because their distance to the strophoid is zero.

Thus, any positive true o set to the strophoid is not algebraic. O

The fact the true o set is not an algebraic set implies that th e true Voronoi
vertices (as intersections of 3 true o sets) are not algebri, and thus, they cannot
be de ned by a system of algebraic equations. The fact the tre o set is a semi-
algebraic set implies that the true Voronoi vertices are semalgebraic sets (as nite
intersection of semi-algebraic sets). The algebraic vartg closest to the true Voronoi
vertex in the plane is the intersections of three generalisa o sets, that we will call
a generalised Voronoi vertex. This notion will be formally de ned in Chapter 5, and

it will be used as a central tool for the Delaunay graph con ict locator for conics.

4.2 The degree of the generalised o set curve

In this section, we will prove a general formula for the degre of the generalised
o set to an algebraic curve. Let us start with some notations. Consider polyno-

mials in K [x;y;u;Vv] and the projective spaceP?, in which K4 is embedded. The
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homogenisation variable will be denoted ad. We consider the pointg = (u;Vv) on
the generalised o set curve O constructed from an arbitrary point p = (Xx;y) on
C=V(f) K2 Inthis section, the varieties will be considered in di erent under-
lying spaces. We will use the notationV (f ) extensively hereafter. When necessary,
we will precise the underlying space by an inclusion, e.gV (f) K%orV (f) K2

Now let us de ne the dierent a ne varieties that allow one to de ne the
generalised o set. We will consider these a ne varieties inK 4 since the polynomials
involved belong to K [x;y;u;v]. Let B = V(f) K* be the image ofC by the
inclusion map from K2 to K4 dened by (x;y) 7! (x;y;u;v). Let N = V (n),
D = V(d) and V (fy;fy) be considered inK# in the same way. Now,V (n) is a
proper subset ofK 4 provided that p is not singular. If f is not square-free (i.e. f
admits a factorisation with square factors), there is an in nity of singular points.
The generalised o set curveO is the image of ¢/ (f)\ V (n)\ V (d)) nV (fy;fy) by
the canonical projection :K*! K? onto the (u;v)-plane.

We will determine the degree of the generalised o set consiered inK 4. Re-
call that the de nition of degree of a projective variety we gave at the beginning
of Section 4.1 depends on the dimension of the projective vaty. Thus, we need
to determine the dimension of the generalised o set. For thg purpose, we will con-
sider the projective completion (i.e. the smallest projective variety containing it) of
V (f;n;d) K*. The motivation for the consideration of the projective completion
instead of the a ne variety lies in the conditions of the theorem (Theorem 4.2.4)
we will use in order to determine the dimension of the generaded o set. Then, we
will decompose this projective completion as the union of i component at in nity
(i.e. the points with homogeneous coordinate equal to zerg)its singular component
(points induced by singular points p on C), and the generalised o set considered
in K# (i.e. the ane variety V (f;n;d) nV (fx;fy) K#. We will thus obtain
the generalised o set considered inK 4 as a di erence of projective varieties, and

we will determine their dimensions and degrees in order to dermine the degree
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of the generalised o set. Now, we need some notations relateto homogenisation,

projective completion and component at in nity.
Notation 4.2.1. Let

f denote the homogenisation(i.e. the replacement of each monomiam in f
by mtded(f) deg(m) wheret is the homogenisation variable and deg denotes the

degree) of the polynomialf ,

V denote the projective completion of the variety V,

f T denote the polynomial de ning the component at in nity of V (f).

The homogenisation of a polynomialf de nes the projective completion of
the variety V (f): V(f)= V f ; see [CLO97, Sec.8.4]. Clearlyy f ;V (1) and
V d are all subsets ofP*. Let W := V (f)\ V (n)\ V (d). Thus, W = V f; m;d
P*. Let W, be the subset of W dened as W n V (fx;fy)[ V(1) P4 W,

is the generalised o set considered inK . W, is a quasi-projective variety since

V)V V(n)\ V(d) and V (fy;fy) [ V(1) P* are projective varieties. Let

us de ne the projective variety Ws := W\ V (fy;fy) and the projective variety
W; = W\ V (). Thus, the generalised o set considered inK # is the following

S
ane variety: Wa=Wn(W; Ws).

We will now determine the dimension of the component at in nity W; of
W. SinceW =V f;md PtandW; = W\ V(t), Wy =V fT;nT;d";t .
Thus, in order to determine the dimension of W1 , we will examine how the di-
mension is changed when going fronvV fT to vV fT;d" , and fromV fT;d"
toV fT;d";t,and nally from V f7;d";t toV fT;d";t;nT = W, . For this
purpose we use the following theorem on the dimension of an Ipersurface. We will
now introduce regular functions, hypersurfaces and irreduaible closed sets, in order

to recall the theorem on the dimension of a hypersurface. Hyprsurfaces will also be
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encountered in the proofs of Lemma 4.2.15 on the dimension /1 and of Theorem

4.2.18 on the degree of the generalised o set.

De nition 4.2.2. (Regular function on an a ne closed set) Let X be a closed set
in the ane space KN. A function f given on X is called regular if there exists
a polynomial F with coe cients in k such that f (x) = F (x) for all points x 2 X

[Shao4].

If X is closed inPN and F 6 0 is a complex valued regular function onX,
then we denote by X ¢ the closed subset ofX , known as aprojective hypersurface

dened by F =0.

De nition 4.2.3.  (Irreducible closed set [Sha94]) A closed seX is called reducible
if there exist closed subsetsX X, Xo X, X1 6 X, X, 8 X, such that

X = X1[ X»,. Otherwise, X is called irreducible.

Thus, a closed sefX = V (f) is irreducible if, and only if, f cannot be written
asf = hihy with hy;hy 2 K[x;y;u;Vv] and hy and h, are not constant polynomials.
In such case, we call the polynomiaf irreducible.

The following Theorem on the dimension of a hypersurface came found as

[Sha94, Thm.4,Ch.1,Sec.6] or [CLO97, Cor.4,p.459].

Theorem 4.2.4. (Theorem on the dimension of a hypersurface) If a complex vakd
regular function F does not vanish on an irreducible projective varietyX, then

dimXg =dim X 1.

In order to apply the theorem on the dimension of an hypersuréce on a pro-
jective variety X = V (f ) whose irreducibility is not known, we determine if none of
the irreducible components ofX is contained in an irreducible component ofV (F).
Indeed, if an irreducible componentV (h;) is contained in an irreducible component
V (F;) of V (F), then Fj and F vanish onV (h;), and the dimension ofV (hi)T XEe

is the same as the dimension o¥/ (h;). In Lemma 4.2.6, we determine that none of
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the irreducible components ofV f T P* is contained in an irreducible component
of v d' P4 In Lemma 4.2.10, we determine that none of the irreducible om-
ponents ofV fT:d"  P*is contained in an irreducible component ofV (t) P*.
Finally in Lemma 4.2.11, we determine when none of the irredaible components
of V fT;d";t P* is contained in an irreducible component ofV nT P4,
Lemma 4.2.15 will conclude the determination of the degree fahe one-dimensional

component of Wy .

Here are the notations and de nitions needed to ennounce angrove Lemma
4.2.6.

Let V fT = V(h)[ V(h2)[ [ V(hs) be a minimal (i.e. such as
V (hj) 6 V (hj) for any j 6 i) decomposition ofV f T into irreducible closed sets.
Such a minimal decomposition ofV d" into irreducible closed sets contains at
most two components since the degree ai’ = (u x)2 +(v y)2 is2. vV d =
V (dy) [ V (d), whered; := (u xX)+(v y),dr:= (U xX)+(v y)and is
a root of the equation x2 + 1 = 0 in the algebraically closed eld K, is a minimal

decomposition ofV d" into irreducible closed sets.

Notation 4.2.5. For fq;:::;fs2 K[xq;: XN ], let i q; i fsi denote theideal gen-
erated by fq;::5;fs in K[Xxq;:xn]. Let P denote the radical of the ideal [Sha94,
CLO97]. The radical pI_of an ideall ofaring A ispl_: a2 AjON 2 N:aV 2 |

We can now state and prove Lemma 4.2.6.

Lemma 4.2.6. None of the irreducible components oV fT  P*is contained in

an irreducible component ofvV d" P4,

Proof. We will prove it by contradiction. Let us assume that V (h;) V dT ,ie.,
d™ 2 1 (v (h)) K [x;y;u;v;t] for somei 2 f1;2;:::;sg. By Hilbert's Nullstel-
lensatz [Sha94],| (V (h))) = P Hhi. Sinceh; is irreducible, P Hhii = hhiji. Thus,

there existsg 2 K [x;y;u;Vv;t] such that d” = g h;. The sum of the degrees ofy
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and of h; equals 2. Now, either the degree of is 0 and the degree oh; is 2, or the
degrees ofg and of h; are both 1, or the degree ofg is 2 and the degree oh; is 0.
The rst case is not possible, because if the degree df; is 2, then h; is reducible.
In the second cased” =g (x + y + ),where , and are coe cients of K.
This would imply that the terms in u? and the terms in v of d” must come from
g. These terms induce terms inu®x, u2y, v2x, and v2y which cannot be cancelled.

In the last case, h; reduces to a constant, which is impossible sinc¥ (h;) 6 ;. O

In order to present Lemmas 4.2.10 and 4.2.11, we need to retalome de n-
itions and results about regular functions and regular mappngs on projective vari-

eties.

De nition 4.2.7.  (Regular mapping of a ne closed sets) Let X be a closed set of
KN and Y be a closed set oK N. A mapping f : X ! Y is called regular if there
exists N regular functions f1;::;;fy on X such that f (x) = (f1(x);:;fn (X)) for

all x 2 X [Sha94].

Let PN denote theN dimensional projective space, so that a point 2 PN
is given by N + 1 elements (o ::::: n) of K and not all the ; are 0 [Sha94]. Let

AN Dbe the subset ofPN consisting of all the points for which ; 6 0.

De nition 4.2.8. (Regular mapping of quasi-projective varieties) Letf : X I Y
be a mapping of quasi projective varietiesand Y PN. This mapping is called
regular if for every point x 2 X and every open ane set AN containing the point
f (x) there exists a neighbourhoodU of x such that f (U) AN, and the mapping
f :U! AN is regular [Sha94].

Theorem 4.2.9. ([Sha94, Thm.8, Sect.1.6]) Letf : X ! Y be a regular map
between projective varieties withf (X) = Y. Suppose thatY is irreducible and that
all the bres f 1(y) for y 2 Y are irreducible and of the same dimension, therX

is irreducible.
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We are now ready to state and prove Lemmas 4.2.10 and 4.2.11.

Lemma 4.2.10. None of the irreducible components o/ fT;d"  P*is contained

in an irreducible component of vV (t)  P%.

Proof. Notice that V fT andV (h;) are not contained in the hyperplane at in nity
V (t) and that the irreducible components of V f T;d" are the V (h;;d;) for all
i=1;:::;s;) =1;2. Consider the following sequence of projections:

S Vi(hid) PP V() P2
b (t:x:y:u:v) 71 (t:x:y) '

Clearly, these j are regular mappings of projective varieties. Clearly alsp
each bre of these mappings is irreducible. The bres i L) for! 2V (hj) have
dimension 1 since the points on these bres have xedx, y andt coordinates (those
of I'), and their other coordinates u and v are related by the equation ofd;. Thus,
all the bres have the same dimension. Then, we can apply Thewem 4.2.9, and
conclude that the V (h;j; d;) are irreducible.

We will show that none of theseV (hj;d;) is contained in an irreducible
component of V (t). Let's supposet 2 | (V (hj;d;)) for somei 2 f 1;2;:::;sg and
j 2f1;2g. By Hilbert's Nullstellensatz [Sha94], | (V (hi;d;)) = P hi; dji. Since the
V (hj; dj) are irreducible, P W = hhj;dji. Thenthere existsa; b2 K [x;y;u;v;t]
such that t = ah; + bd. Sinceh; and d; don't have monomials with t nor constant
terms, t in ah; + bd must come froma or b or both. Since h; and d; don't have
constant terms, the monomial of least total degree contaimgt in ah;+ bd must have

a degree greater than or equal to 1 in the other variables. Thi is a contradiction. [

Lemma 4.2.11. None of the irreducible components oV fT;d";t P* is con-
tained in an irreducible component ofV nT P4 if, and only if, f] + fyT 2
hhii and fJ fy Zhhi fori=1;2:;s.
Proof. Now, consider the following sequence of mappings:
CVi(hisdist) PH L V() PP

(t:x:y:u:v) 71 (t:x:y) '
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Notice that V fT;d";t is contained in the hyperplane at in nity V(t), and
thus doesV (hj;d;;t). Clearly, these mappings are regular mappings of projectie
varieties and j (V (hi; d;j;t)) = V (h;;t). Clearly also, each bre of these mappings
is irreducible, and V (h;;t) is also irreducible. The bres i Yayfor ! 2 V(h:t)
have dimension 1 since the points on these bres have xed, y coordinates (those
of 1), their t coordinate equals 0, and their other coordinatev is related to u by
the equation of dj, and is therefore also xed. Thus, all the bres have the same
dimension. Then, we can apply Theorem 4.2.9, and conclude #t the V (hj;d;t)
are irreducible.

We will prove the contrapositive of the conditional statements. Let's sup-
pose f,/ + fJ 2hhii for somei 2 f 1;2;::;s9. We have to show thatn™ = 0
on V (hj;dy;t). Since fJ + fJ 2 hhi, there exists g 2 K [x;y] such as

fi + fyT = g hi. But, hy =0 on V (h;;di;t). Thus, f, + fyT = 0,
ie, fy = fJ. Then, replacing innT, we getn™ = fJ(u x)+fJ(v y)=
( (u xX)+(v y)fJonV(hij;dg;t). Sinced; =0on V (hi;dg;t), (U x)+
(v y) =0, and therefore, nT =0 on V (h;;d;;t). We can prove in the same way
that if f) fy 2 hhii thenn™ =0 on V (h;; dy).

Reciprocally, let us supposen™ =0 on V (h;;d;;t) for somei 2 f 1;2;:::;sg. Since
none of nT;h;;d; depend ont and nT = 0 on V (hj;di;t), nT = 0 on V (h;;dy).

Sinced; =0on V (hj;dy), then  (u x)+(v y)=0, and

8
SnT= fJu x+ fJ@u x=0
nT=fJ(v +fi(v y)=0
onV (hi;di). Since fJ+ f] = fJ+f] , we can rewrite the last system of

equations as

S + ] (U x)=0
fy+ 4 (v y)=0
onV (hj; dy).
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The subvariety V (hj;di;u x;voy) of V (hj;d1) is a one-dimensional
variety in the two-dimensional variety V (hj;d;). The open set
V (hj;dy)nV (hij;di;u x;v y) is a dense open subset of (h;;d;). From the last
system, we know that fyT + f.] vanishes on this dense open subset. Now, we
considerV h;j;ds; fyT + f] . This is a closed projective set. We know that it
contains the open setV (hi;d;) nV (h;;di;u  x;v y). Thus, it contains also its
Zariski closure, i.e., V (hj;di). Thus, fyT + fJ  vanishes on V (h;;dy).
Therefore, there existsa;b2 K [x;y;u;v] such that fyT + £ = ahj + bay, ie.,

fy+ fl=ah+b( (U x)+v y).
Let a,, be the sum of all the terms ofa containing the variablesu or v. Since
fyT + f does not depend on any of the variablesi and v, ay,hi+ b( u + v) =
0. Thus, a,vhi = b(u v). Since the left hand side of this equality has terms inx
or y, b must also have terms inx or y. The last two facts imply that there exists a
polynomial e 2 K [X;y;u;Vv] such that b= eh, and a,, = e(u v). Sinceb= eh,
b2 hhii. Thus, fJ+ fJ 2hhii. Thus, f] + f ] = fy + £ 2hhii. Inthe

same way, we can prove thatifn™ =0on V (hi;dz;t) P*thenf) fJ 2hhi. O
We are now going to analyse the dimension ofV; .

Notation 4.2.12. Let | = 1if fJ + fJ 2 hhji or fJ fJ 2 hh;ii for some

i 2f1;2;:::;s9, and | = 0 otherwise.
Lemma 4.2.13. The dimension of W1 is equal tol.

Proof. We can seeW; in the following two equivalent ways Wy = B\ N\ D\

V() PHLoW; =V fh:nT:d;t P4. Considering the last expression, by
Lemmas 4.2.6, 4.2.10 and three repeated applications of Tloeem 4.2.4, we get that
v fT:d":t P* has dimension 4 3 = 1. Thus, the dimension of W; is 0 or
1. By Theorem 4.2.4, the dimension ofW; is O if, and only if, | = 0 by Lemma
4.2.11. ]
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The following Lemmas 4.2.15 and 4.2.16 give the degrees ofdlone-dimen-
sional component at in nity and of the one dimensional singuar component of
the projective variety W. They will allow us to conclude with the degree of the
generalised o set in Theorem 4.2.18.

We recall the de nition of localisation (see [GP02, De nition 1.4.4]) at a
prime ideal (see [GP02, De nition 1.3.10]) P K [t1; 5 tm], where K is a eld.
We denote by K [X1;::;; Xm]p the set of all rational functions f=g such that f;g 2

K [X1;::Xm] whereg 62P .

De nition 4.2.14. (Intersection multiplicity, adapted from [GP02, Def.A.8. 16,
p.480)) Let f;g 2 K[X;y], p = (p1;p2) 2 V(f)T V(g K2 andletM p= X
p1;y p2i be the maximal ideal ofp. We dene ,(f;g) :=dimy¢ K[xylu ,=f;gi ,
and call it the intersection multiplicity of f and g at p.

Now let F; G 2 K [z; X; y] be homogeneous polynomials, lgh = (po : p1: p2) 2
\% (F)T V (G) P2, and let M p = Moox p1z;poy p2zi be the homogeneous
ideal of p. Assume that pp 6 O then, for the intersection multiplicity  ,(F;G) =
dimg K{[z;xylu ,=hF;Gi , itis easy to see that it equals , (f;g), wheref = Fj;=1
and g= Gjz=1.

If C;D are projective curves such ad (C) = hFi, and | (D) = hGi, then

p(C:D) = p(F;G) = p(V(F);V(G)) is the intersection multiplicity of C;D

at p.

Let C; be the component at in nity of the projective completion of C, i.e.
C=V Tt K 2.

Lemma 4.2.15. The degree of the one-dimensional component &V, is:
X
2l oV fT ;v onT
p2Cy
wherep®is an arbitrary point of W; whose projection on the projective(t; x; y )-plane

(or equivalently on Cq ) is p.
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Proof. Lemma 4.2.13 implies that W; has a one-dimensional component if, and
only if, I = 1. In this case, there exists an irreducible componentV (h;) such
that nT =0 on V (hj;dj;t). Thus, the points of W; are the same as the ones of
\Y; P HdT;fT;ti , but their multiplicities di er.

The one-dimensional component o/ P hdT;fT:ti is constituted of all the
points p? whose projection on the projective € x;y)-plane is a pointp of C; P2
and whose projection to the a ne (u;v)-plane is the circleV d' . There are also
the two isolated cyclic points (0:0:0:1: )in Wy, but they do not belong to
the one-dimensional component ofV; .

The degree of the one-dimensional component of P Hd;fT;ti  equals
the product of the degree ofd™ (which is 2) by the number of isolated points in
C, . The degree of the one-dimensional component diV; is twice the sum of the

multiplicities of V fT:nT  P* at the points p°for all the points p of C; . O

Let Cs be the a ne subvariety of C composed of all its singular points, i.e.

Lemma 4.2.16. The degree of the one-dimensional component &iVs is:
X _
2 eV f i vm
gq2Cs
where ¢? is an arbitrary point of Wg whose projection on the ane (x;y)-plane (or

equivalently onCs) is q.

Proof. Each point g of Cs induces a trivial equation n. Thus, at the level of Wg, it
induces a one-dimensional variety that consists of all the pints g° whose projection
on the a ne ( x;y)-plane is g and whose projection on the projective €, u;v)-plane
is a projective circle centred atg and of radius R. It follows that Ws does not have
a one-dimensional component at in nity. The only component at in nity of Wsg are
the points (0:Xo:Yo:1:Yo (1 X)), where (Xo;Yo) is a common root of f T,

X (xy), and fy (x;y)).
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The points of Wg are the same as the points ofV «fy;fid , but
theirq multiplicities dier. The degree of the one-dimensional component of
\% fx;fy;f; d  equals the product of the degree ofd (which is 2) by the
number of isolated points in Cs. The degree of the one-dimensional component of
Ws is twice the sum of the multiplicities of V f; m P* at the points ° for all

the points q of Cs. O

Remark 4.2.17. We could think that since the only variables in common to f and
nm are x and y, and these are the only variables off , the intersection multiplicity
of V T P*and V (M)  P* at ¢° should equal the intersection multiplicity of
vV f K2 andV (M) K?2atg. In fact this is not necessarily true. Indeed, by
the projection from the four-dimensional projective spaceto a projective plane, the
intersection multiplicity may be lowered.

An example isf = x%y y3. The intersection multiplicity of V f  P*
andVv(@m Pratg®=(1:0:0:0:0)is 9 while the intersection multiplicity of
vV f K2andV (M) K2atq=(0;0)is 6. The degree ofWs is 18, which

corresponds to twice the intersection multiplicity of V f P*and vV (m) P*at
o
The point ¢® was taken on the 0 generalised o set to the curve de ned by
f=x2y y3itsatises d=(u x)2+(v y)®> R22=0with R =0. However,
whenR =0, Wg is 0-dimensional, but its degree corresponds to that annouced by
Lemma 4.2.16. In this caseW; is 0-dimensional (the three points (0:1:0:1:0),
(0:1:1:1:1)and(0:1: 1:1: 1)), andl =0. Finally, the degree of W is 18.
However, in this case the degree of the canonical projection
:P*nf(1:0:0:0:0qg! K2 is not any more 1, but 6. Indeed, any point ;y)
of the generalised o set is the image of possibly 3 double pois (t: x :y:u:v) of

W, by . This justi es that the degree of the 0 generalised o set is 3.

Theorem 4.2.18. The degree of the generalised o set to an algebraic curvwé (f)
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K 2 of degreem, such asf is square-free is :

X X _
2m? 2| oV ET vt 2 oV T vm ;
p2Cy g2Cs

where p® and o° are de ned as in Lemmas 4.2.15 and 4.2.16.

Proof. Bezout's Theorem [Sha94] tells us that for projective varieties, the degree of
the intersection of two such varieties is generically equato the product of the degrees
of these varieties. Therefore, the degree oV = B\ N'\ D is generically 2n2. The
guasi-projective varietiesW, Wy, W1 , and Wg are related byW, = Wn(W;y [ Ws).
Since W is de ned by three polynomials, its dimension is at least 1 acording to
Theorem 4.2.4. Sincen is a polynomial in two more variables than f, n cannot
identically vanish on B. Sinced is a polynomial whose coe cients are polynomials
in R, R 6 0 and the coe cients of f and d do not depend onR, d cannot identically
vanish onB\ N, and the dimension ofW is exactly one. SinceW is one-dimensional,
the degree ofW is the sum of the degrees of its one-dimensional component$hus,
the degree ofW, equals the degree of¥ minus the degree of the one-dimensional
component of W1 [ Ws.

SinceWs has no one-dimensional component at in nity (see proof of Lenma
4.2.16), the one-dimensional components oV, and of Wg are disjoint, and the
degree of the one-dimensional component aV,; [ Ws is the sum of the degrees of
the one-dimensional components ofW; and of Ws. By Lemmas 4.2.15 and 4.2.16,

the degree ofW, is

X X _
2m? 2| oV T ;v nT 2 oV T vm: (4.2.1)
p2Ci g2Cs
By de nition, t never vanishes or\WW,. Finally, the generalised o set O is the image of
W, by the canonical projection :P*nf(1:0:0:0:0g! K2 : (t:x:y:u:v)7!

$. ¢ with degree 1. Thus, the degree oD is (4.2.1). O

The multiplicity of the extraneous variety corresponding to a singular point

is at least the product of the valuations of the polynomialsf and n at a generic point
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of Ws. The valuation of f corresponds to the multiplicity m, of the singular point
of C. The valuation of n is the valuation of f minus 1 sincen involves the partial
derivatives of f. Thus, the multiplicity of the extraneous variety corresponding
to a singular point is at least m,(m, 1), and the degree of the corresponding

extraneous factor is at least Znp (mp  1).

4.3 The degree of the generalised o set to a conic

In this section, we use the general formula for the degree ofhe generalised o set
to a conic developed at the preceding section in order to comye the degree of the
generalised o set to the dierent conics. In this section, we deal with real a ne

curves.
Proposition 4.3.1. The degree of the generalised o set to a circle is 4.

Proof. The projective completion of the circle is the projective vaiety
V(X at)2 +(y bt)2 r’t?> . Replacingt by 0 in the previous polynomial, we
getfT = x2+y2=(x+ y)(x y)= hih, By taking the partial derivatives, we
getfy =2x, fJ =2y. Thus, fJ + fJ =2(x+ y) 2 hhji. Thus, the dimension of
the component at in nity of the projective completion of the generalised o set is 1.
Since the component at in nity of a circle is the two cyclic points (0:1: ), and
V fT andV nT do not meet tangentially, P o, oV fT v nT =2 and
the degree ofW; is 4. Since a circle does not have singular pointsCs = ;. Thus,

the degree of the generalised o set to the circle is 22° 4 0=4. O

Proposition 4.3.2.  The degree of the generalised o set to an ellipse or a hyperlao

is 8.

Proof. The ellipse can be considered in some coordinate system asetha ne
variety V §§+ g 1 . The projective completion is the projective variety

V Px?2+ a?y? a?bk’t? . Replacing t by 0 in the previous polynomial, we get
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fT = Px?+ a’y?= h; hy, whereh; = bx+ ay and h, = bx ay. By taking the
partial derivatives we get fl =21x, fy =2a?. Thus,
fg+ fJ =2 Px+ a?y 2hhii, and f] fJ =2 Px a?y 2hhy unless
a’= . Thus, the dimension of the component at in nity of the proje ctive
completion of the generalised o set equals 0 unlesa = b, in which case the conic is
a circle. Thus, | = 0. The ellipse (or the hyperbola) does not have singular paits,
thus Cs = ;. Thus, the degree of the generalisedo set to the ellipse is 222 = 8.
The same reasoning allows one to conclude with the same degrefor
the hyperbola: the di erence with the case of the ellipse is hat the polynomial
2

L %; 1 is replaced by§§ 5 L O

a

Proposition 4.3.3.  The degree of the generalised o set to a parabola i6.

Proof. The parabola can be considered in some coordinate system ahet a ne

variety V y? 2px . The projective completion is the projective variety
V y? 2pxt . The projective completion of the normal at the point (x;y) is the
projective variety V ( 2yu+2xy 2ptv+2pty). Replacing t by 0, we get
fT = y?=h? where hy = y. By taking the partial derivatives, we get f, =0,

fy =2y. Thus, f/ + fJ =2y 2hhii. Thus, the dimension of the component at
in nity of the projective completion of the generalised o s et equals 1. The
component at in nity is given by fT = y>=0, hence (0:1:0). SinceV fT and
V nT do not meet tangentially, P ooc; o V fT 3V nT =1 and the degree
of Wy is 2. Since a parabola does not have singular pointsCs = ;. Thus, the

degree of the generalised o set to the parabolais: 222 2 1 1=8 2=6. O

Lastly, we consider the generalised o set curve of two straght lines. The
two straight lines are the following a ne variety V ((ax + by+ c)(dx + ey+ f)).
It is the union of V (ax+ by+c) and of V (dx+ ey+ f). The projective
completion of the two straight lines variety is the ane vari ety

V ((ax + by+ ct) (dx + ey + ft)). Replacing t by 0 in the previous polynomial, we
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get fT =(ax+ by)(dx+ ey)= hy h,, where hy = ax + by and h, = dx + ey. By
taking the partial derivatives of the previous polynomial, we get
fi = a(dx+ ey)+ d(ax + by), fy = b(dx + ey) + e(ax + by). Thus,
fg + fy =(a(dx+ ey)+ d(ax+ by)+ (b(dx+ ey)+ e(ax+ by)) and
fl fy=(a(dx+ ey)+ d(ax+ by) (b(dx+ ey)+ e(ax + by)).

Lemma 4.34. |1=1, ae bd=0ora b=0ord e=0.
Proof. ) : There must exist a polynomial g of K|[x;y] such as
(a(dx + ey) + d(ax + by)) (b(dx + ey)+ e(ax+ hby)) = g(ax+ by) or
(a(dx + ey) + d(ax + by)) (b(dx + ey)+ e(ax+ by)) = g(dx+ ey).
Thus,
8

<0r (ax+ by)(d e)+(dx+ey)(a b)= g(ax+ by)
© (ax+by)(d e)+(dx+ey)(a b)= g(dx+ ey)

The rst equality implies that ae bd=0or a b=0. The second equality
implies that ae bd=0or d e =0. For conics with real coe cients, this implies
that ae bd=0.

( :If ae bd= 0 then there exists z 2 k such that dx + ey = z(ax + by). Thus,
fg fJ=(ax+by)(d e)+(dx+ey)(a b)=(ax+by(d e+z(a b)),
andf, fJ 2hhi.

If a b=0, fJ fy = (ax+by) (d e) + (dx+ey) (a b) =
(d e)(ax+ by). Thus, f ] 2hhi.

Ifd e=0,then ff fJ =(ax+hy) (d e)+ (dx+ey)(a b)=

f

(a b) (dx+ey). Thus, fJ y 2hhzi. In all these cases, |=1. O

Proposition 4.3.5.  The degree of the generalised o set curve of two distinct saight

lines is 4.

Proof. Accordingto Lemma4.3.4,1=1, ae bd=0ora b=0ord e =0. How-

ever, for real straight lines (i.e. de ned by polynomials with real coe cients), the
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dimension of the component at in nity of the projective completion of the general-
ised o set equals 1 if, and only ifae bd=0, sincea b=0ord e =0isimpossible
with a;b;d;ebeing all real coe cients. Thus, the dimension of the comporent at
in nity of the projective completion of the generalised o s et equals 1 if, and only
if, the two straight lines are parallel and distinct (if they were notf would not be
square-free). The component at in nity of two parallel and distinct straight lines is
one-dimensional and it is the zero set off T = (a+ d)?+(b+ €)? (ax+ by)?,
i.e. of (ax+ by)z. Thus, sinceV fT and V nT do not meet tangentially,
i e, p V fT 3V nT  =2andthe degree ofW; is 4. If the two straight lines
are parallel, the variety does not have singular points, andCs = ;. Thus, the degree
of the generalised o set to two parallel and distinct straight linesis 2 22 4 0=4.
Otherwise, the two straight lines have a single real intersetion, | = 0, and the variety
has exactly one singular point (the intersection point) of multiplicity 2. Thus, since
Vv f andV (n) do not meet tangentially, P wce o V f V(M =2 and the

degree of the generalised o set to two non-parallel straighlinesis222 0 4=4. O

The results of this section are summarised in the following able 4.1.

Conic ellipse/hyperbola | parabola | circle | two lines
O set degree 8 6 4 4

Table 4.1: The degree of the generalised o set to conics

4.4 An implicit equation of the generalised o set to a

conic
In this section, we use the results of the preceding sectiomiorder to compute an
implicit equation of the generalised o set to a conic as a fator of a sparse resultant.

This implicit equation of the generalised o set to a conic will be used in both the

algebraic formalisation (in Chapter 5) and the numerical canputation (in Section
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6.3) of the Delaunay graph con ict locator for conics.

A conic C can be de ned implicitly as the variety de ned by a second de-
gree formal polynomial: f (x;y) = x2+ xy + y?2+ x+ y+ =0. We
shall compute an implicit equation of its generalised o set The partial derivat-
ives arefy =2x + y + andfy = x +2y + . An equation of the nor-
mal N = V(n) K?* to the original conic at the point (x;y) is: n(x;y;u;v) =

(x +2y + )(u xX)+(2x + y + )(v y)=0. If aconicis not degenerate
(proper conic di erent from the union of two lines), then it h as no singular points,

and Cs = Wg = ;.

The generalised o set to a conic is the Zariski closure of theprojection of
the ane variety V( f;n;d) nV (fy;fy) onto the (u;v) plane. Its implicit equation
is thus a factor of the resultant expressing the elimination of the variables x and
y from the three polynomials f;n;d. However, if the conic is not degenerate, an
implicit equation of the generalised o set is the sparse resltant itself. Since we are
using the sparse resultant instead of the \normal" projective resultant, we should
pay attention to the fact the sparse resultant is a necessarycondition of existence
of common solutions in C )N instead of PN. The axes of equationx =0 and y =0
can be part of the generalised o set to a conic only if the corg is the degenerate
union of two straight lines with one of them being the line of equation x = r or
y = r, wherer is the o set parameter. Since the conic is de ned genericall, the
generalised o set will not generically contain one of the axes of equationx = 0 and
y =0.

The main objective that has been sought in the computations $ to simplify
the polynomials. This simpli cation has to induce a system o equations equivalent
to the original system of equations in order to generate the ame set of zeroes (i.e.

the same variety). In the case of the sparse resultant compuation, this has been
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Figure 4.4.1: The Newton polytope off .

achieved by replacing the original system of algebraic equians by an equivalent
system of algebraic equations, where one polynomial is regpted by a linear com-
bination of the polynomials in the system of equations havirg a Newton polytope
strictly inscribed in the Newton polytope of the original polynomial.

The sparse resultants have been computed thanks to the spagsresultant
software developed by Emiris [EC95, EmIi97]. This software bowed us to compute
the sparse resultant matrix. We computed the determinant of this matrix and its
factorisation. The degree of the generalised o set to conis has been determined in
Section 4.3 (see Table 4.1). This allowed us to identify thedctor that corresponds

to an implicit equation of the generalised o set.

In the case where and are dierent from O, we call the conic \generic".
If not stated otherwise, we will suppose the conic is generién all this subsection.
The Newton polytope of the polynomial de ning B = V (f) K% is illustrated in
Figure 4.4.1.

The polynomial de ning N = V (n) K *# can be rewritten in the following
way exhibiting its monomials in the variables x and y, which need to be eliminated
in order to get an equation of the generalised oset: n(x;y;u;v) = x2 y?2+
2( IXy+( u+ )x+(v Yy+( u+ v)=0. The monomial in x? can

be eliminated if we replacen (x;y;u;v) by n (x;y;u;v) f (x;y). The Newton
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Figure 4.4.2: The Newton polytopes ofn and of n f.
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Figure 4.4.3: The Newton polytopes ofd and off  d

polytopes of n (x;y;u;v) and of n (x;y;u;v) f (x;y) are shown in Figure 4.4.2.
It is easy to see from Figures 4.4.1, 4.4.2 and 4.4.3, that notleer monomial can be
eliminated in addition to x2 if we replacen by a linear combination of n, f and d.

If we replace d(x;y;u;v) by f (x;y) d (x;y;u;v), the monomial in x2
disappears. The Newton polytopes ofl(x;y;u;v) and of f (x;y) d (X;y;u;v) are
shown in Figure 4.4.3. It is easy to see from Figures 4.4.1, 42 and 4.4.3, that
no other monomial can be eliminated in addition to x? if we replaced by a linear
combination of d, f and n.

The mixed volumes off and n f and off andf d are 4 (see Figures
4.4.4 and 4.4.6), and the mixed volume ofn f andf d is 3 (see Figure 4.4.5).

In our search for an equivalent system of algebraic equaticsy we could have
supposed thatn or d will be unchanged instead off . In both cases, we would arrive

to the same mixed volume. We get an equation for the generalesl o set as the
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Figure 4.4.4: The mixed volume off and n f.

Figure 4.4.5: The mixed volume of n f andf
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Figure 4.4.6: The mixed volume off andf d.
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sparse resultant of the three polynomialsf , n f andf d. The code written
to get this sparse resultant has been placed in Appendices B.(Maple code generat-
ing the les that will be input to the \Resin" program [Emi97] ), and B.2 (Maxima
code used to compute the sparse resultant as a factor of the tegrminant of the mat-
rix returned by the \Resin" program). This implicit equatio n is publicly available
at: http:// www.cs.ubc.carfanton. However, it is possibl e to further simplify the
equation of a non-degenerate conic by using a di erent coorishate system. For an
ellipse or an hyperbola, a nice coordinate system has its ajin at its centre (the
intersection of its axes of symmetry), and axes the axes of sgmetry of the conic.
For a parabola, a nice coordinate system has its origin at itssummit (intersection of
the parabola with its axis of symmetry), and one of the axes ighe axis of symmetry

of the parabola.

In the case of an ellipse or an hyperbola, the equation of theanic in a co-
ordinate system with origin at the centre of the conic, and axes the axes of symmetry
of the conic, simplies to g; {—; 1 =0, assuming botha and b are di erent from
0. By multiplying this equation by a?, we get an equivalent equation of the form
x2 %fryz a’? = 0. Then, by replacing %; by ¢, and a2 by e, we get an equivalent
equation of the formx?+ cy?+ e=0Owheree bc=0. Let f = x2+ cy’ + e

The Newton polytope of the polynomial dening B = V (f) K* is illus-
trated in Figure 4.4.7.

The polynomial de ning N = V (n) K * can be rewritten in the following
way exhibiting its monomials in the variables x and y, which need to be eliminated
in order to get an equation of the generalised o set:n(x;y;u;v) = 2cy(u x)+
2x (v y) =0. The Newton polytope of n (x;y;u;Vv) is shown in Figure 4.4.8. Itis
easy to see from Figures 4.4.7 and 4.4.9 that it is not possiblto remove monomials
from n without adding new monomials by replacingn by any linear combination of
f, nandd.
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Figure 4.4.7: The Newton polytope off for ellipses and hyperbolas.

X

0

0 1 2

Figure 4.4.8: The Newton polytope ofn for ellipses and hyperbolas.
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Figure 4.4.10: The mixed volume off and n for ellipses and hyperbolas.

If we replace d(x;y;u;v) = (u x)2 + (v y)2 R2 = 0 by f (xy)
d(x;y;u;Vv), the monomial in x? disappears. The Newton polytopes ofd (x;y; u; V)
and of f (x;y) d(x;y;u;v) are shown in Figure 4.4.9. As with that equation in
the case of a generic conic, no other monomial can be eliminadl in addition to x2
if we replaced by a linear combination of d, f and n (see Figures 4.4.7, 4.4.8 and
4.4.9.

The mixed volumes off andn and off andf d are 4 (see Figures 4.4.10
and 4.4.12), and the mixed volume ofn andf dis 3 (see Figure 4.4.11).

As before, in our search for an equivalent system of algebraiequations, we
could have supposed thatn or d will be unchanged instead off . In both cases,
we would arrive to greater mixed volumes. The sparse resulta of f;n;f din
the variables u and v in the case where the equationf of the ellipse or hyperbola

is expressed in a coordinate system centred on its centre angdith axes its axis of
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Figure 4.4.11: The mixed volume ofn andf d for ellipses and hyperbolas.
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Figure 4.4.12: The mixed volume off andf d for ellipses and hyperbolas.
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Figure 4.4.13: An ellipse and its 05 generalised o set

symmetry has been placed in Appendix B.4.

The degree (8) of this equation matches the degree of the geradised o set
to an ellipse or hyperbola obtained in Section 4.3. By a sim@ change of coordinate
system, we can obtain easily the general equation of the gersised o set to an
ellipse or an hyperbola. As a means of veri cation of these aybolic computations,
if we replace the formal coe cients of the equation of an ellipse or an hyperbola by
their numerical values, we get exactly the same equation oftte generalised o set
when we use the general equation of the generalised o set to eonic or the general
equation of the generalised o set to an ellipse or an hyperbla. Two examples of
generalised o sets to an ellipse computed using the precedg equation are shown
in Figures 4.4.13 and 4.4.14. Two examples of generalised sets to a hyperbola

computed using the preceding equation are shown in Figures.4.15 and 4.4.16.

In the case of a parabola, the equation of the conic in a coordate system
with origin at the summit of the parabola, and one of the axes leing the axis of the
parabola, simplies to y> 2px = 0.

The Newton polytope of the polynomial dening B = V (f) K* is illus-
trated in Figure 4.4.17.

The polynomial de ning N = V (n) K * can be rewritten in the following

way exhibiting its monomials in the variables x and y, which need to be eliminated in
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Figure 4.4.14: The same ellipse and its 3generalised o set

Figure 4.4.15: An hyperbola and its 05 generalised o set

%

Figure 4.4.16: The same hyperbola and its 3generalised o set

115



24

X

0

0 1 2
Figure 4.4.17: The Newton polytope off for parabolas.

y
2

14

X

0 1 2

Figure 4.4.18: The Newton polytope ofn for parabolas.

order to get an equation of the generalised o set:n (x;y;u;v) = 2yu+2xy 2pv+

2py = 0. This polynomial has monomials in xy, y, and a constant term. It is easy
to see from Figures 4.4.17 and 4.4.19 that it is not possiblea remove monomials
from n without adding new monomials by replacingn by any linear combination of
f, nand d. The Newton polytope of n (x;y;u;Vv) is shown in Figure 4.4.18.

If we replace d(x;y;u;v) = (u x)2+(v y)> R2 =0 by f(xy)
d(x;y;u;Vv), the monomial in y? disappears. The Newton polytopes ofd (x;y; u; V)
and of f (x;y) d(x;y;u;v) are shown in Figure 4.4.19. Itis easy to see from Figures
4.4.17, 4.4.18 and 4.4.19 that no other monomial can be elimated in addition to

y? if we replaced by a linear combination of d, f and n.
The mixed volumes off andn and ofn andf d are 3 (see Figures 4.4.20
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Figure 4.4.19: The Newton polytopes ofd and of f  d for parabolas.
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Figure 4.4.20: The mixed volume off and n for parabolas.

and 4.4.21), and the mixed volume off andf dis 4 (see Figure 4.4.22).

The sparse resultant off;n;f  d in the variables u and v in the case where
the equation f of the parabola is expressed in a coordinate system centrednaits
summit, and one axis of the coordinate system is its axis of symetry has been
placed in Appendix B.3.

The degree (6) of this equation matches the degree of the geradised o set
to a parabola obtained in Section 4.3. By a simple change of @rdinate system, we
can obtain easily the general equation of the generalised et to a parabola. As
before, as a means of veri cation of these symbolic computadns, if we replace the
formal coe cients of the equation of a parabola by their numerical values, we get
exactly the same equation of the generalised o set when we @sthe general equation
of the generalised o set to a conic or the general equation ofthe generalised o set

to a parabola. Two examples of generalised o sets to a parada computed using
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Figure 4.4.21: The mixed volume ofn andf d for parabolas.
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Figure 4.4.22: The mixed volume off andf d for parabolas.

the preceding equation are shown in Figures 4.4.23 and 4.442

45 Conclusions

We have obtained a general formula for the degree of the genglised o set to an
algebraic curve de ned in its most general setting: an implcit equation with coef-
cients in a zero characteristic algebraically closed eld. We have applied it to
compute the degree of the generalised o set to conics. We havwobtained an implicit
equation of the generalised o set to a conic de ned by a form& polynomial. We
have also obtained simpli ed equations in two cases: in the rst case, the conic is a
circle, an ellipse or an hyperbola de ned by a formal polynonial; and in the second

case, the conic is a parabola de ned by a formal polynomial. The same simpli c-
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Figure 4.4.23: A parabola and its 05 generalised o set

ation can be obtained in the case of a degenerate conic (i.e.wb straight lines).
This implicit equation of the generalised o set to a conic has been used in order to
get algebraic descriptions for the generalised Voronoi véex of three conics and the

algebraic Delaunay graph con ict locator for conics.
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Figure 4.4.24: The same parabola and its 3generalised o set
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Chapter 5

The Delaunay graph con ict

locator for conics

In this chapter, we present an algebraic approach to the comptation of the Delaunay
graph con ict locator in the case of conics.

In Section 5.1, we will show how the de nitions related to gereralised Voronoi
diagrams presented in Chapter 1 adapt to the case where the tsis are conics. In
Section 5.2, we will present the formalisation of the Delaumay graph con ict locator
for conics. In Section 5.3, we present the simpli cation of he equations de ning
the Delaunay graph con ict locator for conics. In Section 54, we present how these
simplications allowed us to compute the matrix of the sparseresultant used for the
computation of the Delaunay graph conict locator. Finally, in Section 5.5, we

present the numerical computation of the Delaunay graph corict locator.

5.1 Preliminaries

We consider nowM = R2. Let S = fCy; 25Cng  M;m 2 be aset ofm dierent
conics inM . Let us de ne the distance d(p;s;) between a pointp and a conicC; as
d(p;s)=inf (p;9ijq2 s;, where denote the Euclidean distance between points.

The de nitions of in uence zone, bisector, Voronoi region and Voronoi diagram we
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presented in Chapter 1 hold, and in this context they are the @ nitions of in uence

zone, bisector, Voronoi region and Voronoi diagram of conis.

5.2 Formalisation of the Delaunay graph conict loc-

ator

In this section, we consider the maintenance of the Delaunaygraph for conics in
an incremental way: we check the validity of the triangles ofthe Delaunay graph
of the set of sitesS formed by a given triple of conics with respect to a newly in-
serted conic. The reason of the simultaneous treatment of &lthe triangles of the
Delaunay graph formed by a given triple is algebraic: we canat treat portions of
curves because they are semi-algebraic sets instead of bgialgebraic sets. We need
to treat whole algebraic curves. Thus, four conicsC,, C,, C3 and C4 are given: the
rst three are supposed to be the vertices of one or more triagles in the Delaunay
graph, and the last one is the newly inserted conic. Our apprach is similar to the
one we used in [AKMO02]. We consider now the notion of generalied o set of a conic

(see Section 4.1), which can be seen as an expansion/shrinkj of conics.

We introduce the notion of generalised Voronoi vertex:

De nition 5.2.1. (generalised Voronoi vertex) A generalised Voronoi vertex of
three conicsCy, C,, and Cs is a point of intersection of the generalised o sets ofC1,

C,, and C3 with the same o set parameter (see Example on Figure 5.2.1).

The generalised Voronoi vertex shown in Figure 5.2.1 is not drue Voronoi
vertex because the circle centred on that vertex and tangento the three conics has
points of one of the conics in its interior. In contrast, the generalised Voronoi vertex
shown in Figure 5.2.2 is a true Voronoi vertex: the circle cetred on that vertex and

tangent to the three conics has no points of any of the conicsniits interior.
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Figure 5.2.1: A generalised Voronoi vertex (dot) of three caics (thick lines)

Figure 5.2.2: A true Voronoi vertex of three conics (thick lines)
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Figure 5.2.3: The insertion of C4 induces a con ict with the triangle C,C,C3

The objective of the Delaunay graph con ict locator is to determine whether
or not the insertion of a new conic C4 would change each one of the triangles of
the Delaunay graph DG (S) of S corresponding to the triple Cyq; C,; C3. There are
two possible outcomes to the con ict locator: either the trianglesC,C,C3 are valid
with respect to C4 and the triangles remain in the new Delaunay graph, or some
triangles are not valid with respect to C4 and these triangles will not be present
in the Delaunay graph (and in the quad-edge data structure sbring it) any longer.
We can see an example of the later case in Figure 5.2.3. One did two triangles
C,C,C3 is not valid with respect to the conic Cg4, thus that triangle will not belong
any more to the Delaunay graph (see Figure 5.2.4).

The Delaunay graph con ict locator consists of determiningwhich of the true
Voronoi vertices of the conicsC,, C,, and C3 are at a distance (denoted asR) with
respect to C4 lower than the distance (denoted asr) with respect to Cq, C,, and C3
(see Figure 5.2.5).

Let (x;y) be the coordinates of a generalised Voronoi vertex o€,, C,, and
C3. Let r be the local distance between the generalised Voronoi verteof Cq, C,,
and C3 and C;. Let R be the local distance between the generalised Voronoi verke

of Cq, Cy, and C3 and C4. Let X be the set of all possible values ofX(y;r;R) that
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Figure 5.2.4. The new Delaunay graph after insertion ofC,4: the edges in plain thin
lines remain, those in dashed lines disappear, and those ingn thick lines appear

Figure 5.2.5: The Delaunay graph con ict locator for conics
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are solutions to the system of four equations composed of thenplicit equations of
the three r generalised o sets toC;, C,, and C3 and the R generalised o set to
C4 in the four unknowns x;y;r; R, such that (x;y) is a true Voronoi vertex of Cq,
C,, and Ca.

The Delaunay graph con ict locator is computed in two phaseshby evaluating
the sign of the polynomial R r among the solutions &;y;r; R) of the system com-
posed of the threer generalised o sets toC,, Cy, and C3 and the R generalised
oset to Cy4 in the four unknowns x;y;r; R, and computing the x;y;r coordinates
of the solutions for which R r has the desired sign, in order to isolate them. The
computation of the x;y;r coordinates is not used as an intermediary computation
of the Delaunay graph con ict locator computation. It is used in order to check
that the coordinates of a solution of the preceding system ofequations is a true
Voronoi vertex (this is done in a second phase which is explaed below). If one
of the points of X is such that R r < 0, then there is a change in the Delaunay
graph. The true Voronoi vertices are the generalised Voronovertices whose empty
circle does not con ict with any of the rst three (de ning) ¢ onics. This is checked
in the second phase by evaluating the sign of R-r on the solutins of each one of
the systems composed of the three generalised o sets toC,, C,, and C3 and the
R generalised o set to a fourth conic, where the fourth conic & alternatively each
one of the rst three conics, and isolating the x;y;r coordinates of the solutions for
which R r 0. The true Voronoi vertices (x;y) are those for whichR r 0 for
any solution (x;y;r; R) of any system composed of the three generalised o sets to
C4, Cy, and C3 and the R generalised o set to C4 in the four unknowns x;y;r; R,
where C4 is alternatively C;, C,, and C3. We can summarise this paragraph with

the following theorem:

Theorem 5.2.2. The Delaunay graph conict locator output list is empty if, and

only if, R r does not take a negative real value on the points of.
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5.3 The simpli cation of the Delaunay graph conict

locator

In this section, we will present the simpli cation of the alg ebraic equations specify-
ing the generalised Voronoi vertices ofC;, C, and C3 and their local distancesr to
C, or C, or C3, and R to C4. This simpli cation allowed us to compute the sparse
resultant needed for the algebraic computation of the Delamay graph con ict loc-

ator.

Since the o sets to ellipses or hyperbolas have degree 8 whilthe o sets to
parabolas have degree 6 (see Table 4.1), we will cal; a conic whose o set has
maximum degree amongC,, C,, and C3: one of the ellipses or hyperbolas among
C4, Cy, and C3 if there is one, or a parabola if there are no ellipses nor hygbolas
amongCi, C,, and C3. We will suppose without loss of generality that we can make
a change of coordinate system such that the x-axis of our newoordinate system is
parallel to the main axis of symmetry of C1, and that the origin of the new coordin-
ate system is the summit ofC, if C1 is a parabola or its centre ifCq is a conic with
centre (ellipse or hyperbola). Thus in this new system of coalinates, the equation
of Cq is either g; {)2—2 1=0o0ry? 2px =0. The equations of the conicC;;i 6 1
can be obtained from the generic equation of a conic in a syste centered on the
summit/centre of C; and with x-axis the main axis of symmetry of C; by applying an
a ne transformation given by: x = ;X iY+ ;andy= X+ Y+ ;. Inthe
same way we can obtain an implicit equation of ther generalised o set to C; from
the generic equation of ther generalised o set to C; in a system centered on the
summit/centre of C; and with x-axis the main axis of symmetry of C; by applying
the a ne transformation given by: x = ;X iY+ jandy= X+ Y+ ;.
We have already studied and obtained an implicit equation ofthe generalised o set

to the di erent types of conics in Section 4.4. Observe that the variable r appears
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Figure 5.3.1: The Newton polytope of the implicit equation of the r generalised
o set to a parabola in a system centred on its summit and with x-axis the axis of
symmetry of the parabola

always as powers of 2 since the only term in which it occurs is the term r? of the
polynomials d; (x;y; u;Vv) expressing the distance between the point on the curve;
and the point on the generalised o set. Therefore, we can cosider the following
change of variabler? > r for all the conics. Although, we have to eliminate the
four variables x;y;r; R, and thus we need to consider the Newton polytopes irK 4,
we represented all the Newton polytopes of this section irK 2 since the variableR

only appears in the implicit equation of the R generalised o set to the fourth conic.

An implicit equation of the r generalised o set to a parabola of parameter
p in a system centred on its summit and with x-axis its axis of synmetry has been
placed in Appendix B.3.

The Newton polytope of the implicit equation of the r generalised o set to
a parabola in a system centred on its summit and with x-axis the axis of symmetry
of the parabola is shown on Figure 5.3.1.

The Newton polytope of the implicit equation of the r generalised o set to
a parabola in an arbitrary system is shown on Figure 5.3.2.

However, if we subtract the implicit equation of the r generalised o set
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Figure 5.3.2: The Newton polytope of the implicit equation of the r generalised
0 set to a parabola in an arbitrary system

to a parabola in a nice system centred on its summit and with xaxis its axis of
symmetry from this equation, the term in r3 disappears, and the corresponding
Newton polytope is shown on Figure 5.3.3.

An implicit equation of the generalised o set to an ellipse a hyperbola of
big axis a and small axisb in a system centred on the centre of the conic and with
axes the axes of symmetry of the conic has been placed in Appéix B.4.

The Newton polytope of the implicit equation of the r generalised o set to
an ellipse or hyperbola in a system centred on the centre of th conic and with axes
the axes of symmetry of the conic is shown on Figure 5.3.4.

The Newton polytope of the implicit equation of the r generalised o set to
an ellipse or an hyperbola in an arbitrary system is shown on kure 5.3.5.

However, in a linear combination of the implicit equations dfthe r generalised
0 set to a parabola in a nice system centred on the centre of tle conic and with
axes the axes of symmetry of the conic and in an arbitrary systm, the term in r#

disappears, and the corresponding Newton polytope is showan Figure 5.3.6.
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Figure 5.3.3: The Newton polytope of the di erence of the imdicit equations of the
generalised o set to a parabola in a nice system and in an arliary system

oRrNWA

Figure 5.3.4: The Newton polytope of the implicit equation of the r generalised
o set to an ellipse or an hyperbola in a system centred on the entre of the conic
and with axes the axes of symmetry of the conic
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Figure 5.3.5: The Newton polytope of the implicit equation of the r generalised
o set to an ellipse or an hyperbola in an arbitrary system

or N W

Figure 5.3.6: The Newton polytope of a linear combination ofthe implicit equations
of the generalised o set to an ellipse or an hyperbola in a nie system and in an
arbitrary system
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5.4 The algebraic precomputations

In this section, we present how the simpli cations describal in the preceding section
allowed us to compute the matrix of the sparse resultant needd for the algebraic

computation of the Delaunay graph con ict locator of conics.

Let o denote the polynomial expressing the implicit equation of he gener-
alised o set of the conic C; in the coordinate system based orC;.

In order to evaluate the sign of the polynomial R r among the solutions
(x;y;r; R) of the system composed of the three generalised o sets toC;, C,, and
Cs3 and the R generalised o set to C4 in the four unknowns x;y;r; R, we evaluate
the sparse resultant matrix (i.e. the Newton matrix) of the polynomials R r,
01, 0y, 03, and 04. Indeed, the matrix of the multiplication map by R r in the
guotient algebra K [x;y;r;R]= < 01;00;03;04 > is the transpose of the Schur com-
plement of the submatrix M1; of the sparse resultant matrix of the polynomials
R r, o1, 0o, 03, and o4 (see Section 3.3.1). The sparse resultant matrix is a
square matrix of size up to 7995 (in the case of four ellipsetyperbolas). The com-
putation of this Schur complement involves the computation of the inverse of the
matrix M13, which is a square matrix of up to 7995 1024 = 6971 rows (in the
case of four ellipses/hyperbolas). Even with a UNIX workstdion equipped with
4 Gb of RAM (cosimo or ginevra machines at Medicis [CNR]), tha computation
on a symbolic matrix halts due to a lack of memory. Thus, the S@ur complement
computation must be done after having replaced formal coe dents by their numer-
ical values (fractions). The di erent possible con gurati ons and the corresponding
mixed volumes and the degree of the sparse resultant are shown Table 5.1. The
sparse resultant computations were done using Singular [G801], on both an Apple
PowerBook G4 with 1Gb of RAM running under Mac OS X and the cosmo ma-
chine at Medicis [CNR] (a Compaqg DS20E - Alpha EV 6 with 4Gb of RAM running
under OSF/1 4.0f). We have given the Singular [GPSO01] code fothe cases of four
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Ci|C|C3|Cs| MV 1| MV 2| MV 3| MV 4| MV g deg(RA)

Pl P|P | P 108 108 108 108 324 756

P | P | P |Eh 144 144 144 108 432 972
Eh| P | P | P 108 144 144 144 432 972
Eh|Eh| P | P 144 144 192 192 576 1248
Eh |Eh |Eh | P 192 192 192 256 768 1600
Eh|Eh | P P 144 192 192 144 576 1248
Eh |Eh | P | Eh 192 192 256 192 768 1600
Eh | Eh | Eh | Eh 256 256 256 256 1024 2048

Table 5.1: The mixed volumes and sparse resultant degrees ttie di erent con g-
urations of conics (Eh stands for ellipse or hyperbola, P stads for parabola)

parabolas and four ellipses/circles/hyperbolas (see Apprdix C).

5.5 The numerical computation of the Delaunay graph

con ict locator

Observe that the sparse resultant matrix of the Delaunay grgh con ict locator is
very sparse: for the case of four ellipses/circles/hyperblas, the sparse resultant
matrix is a 7995 7995 matrix with only 589610 non-zero entries, i.e. a densjtof
0:92%! The computation of the Schur complement and of the eigeralues should be
done using methods for sparse matrices. Such computationssing standard matrix
methods can take several days on Singular [GPS01]. The comtation of eigenvalues
with ARPACK takes O (N) time where N is the number of lines of the square matrix.
The computation of the x;y;r coordinates can be done in theory by simultaneous
orthogonalisation of the matrix of the multiplication oper ator (see Section 3.3.1).
The positions (row or column number) of solutions for whichR r has the desired
sign are rst stored. Then, the coordinates corresponding® R r having the desired
sign can be read on the diagonal of the corresponding orthog@alised multiplication
operator matrix. In practice however, the computation of the Schur complement of

the matrix M1, involves the computation of the inverse of the matrix M11. In the
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Figure 5.5.1: The test case with four ellipses

case of four ellipses/circles/hyperbolas, the size oM 11 is 7995 1024 = 6971. We
have chosen a common case of four ellipses for the computaticof the Delaunay
graph con ict locator (see Figure 5.5.1). The computation o the Schur complement
takes 1 minute and half, and the computation of the eigenvales takes also 1 minute
and half.

The main problem in the computation of the Schur complement & that the
matrix M1 is badly conditioned due to the fact the numerical coe cients of this
matrix are very huge. This induces a precision problem in Matab [LM90]. This is
due to the fact Matlab does all the computations consideringmatrix coe cients as
doubles. The alternative is to do the computation of the Schu complement of the
Newton matrix using a Computer Algebra System (like Maple [CGGL92], Singular
[GPSO01], or Maxima [GGB82]) that does exact computations on factional numbers,
and then use a method of certi cation (like [Kra92]) that co mputes tight bounds on
the intervals taken by the eigenvalues. The problem with this computation is that
it takes far too much time for being a practical implementation within the context
of a randomised incremental algorithm for the construction of the Voronoi diagram
of conics. Another alternative is to compute the intervals taken by the entries of the
Schur complement, and then certify the computation of the egenvalues. However, we
can't apply the certi cation method for computing eigenval ues of matrices with exact

entries [Kra92]. This is due to the fact the Schur complemen is not a continuous
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function of the matrix entries. We already observed this prddlem in the simultaneous
orthogonalisation of the matrices of the multiplication operators in Section 3.2.
Thus, we can conclude that even though we could compute the Daunay
graph con ict locator \exactly” by computing the Schur comp lement of a submat-
rix of the sparse resultant (or Newton) matrix with a Compute r Algebra System
that does exact computations on fractions, this method woudl not lead to a prac-
tical implementation of the con ict locator that is fast eno ugh for the randomised
incremental construction of the Voronoi diagram of conics. The main problem if
we compute the Schur complement already mentioned above usj oating point
computations is that we must certify the results using interval analysis on the Schur
complement computation, and then we should do the same thingusing interval

analysis) on the computation of the eigenvalues.
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Chapter 6

The Delaunay graph con ict

locator for semi-algebraic sets

In this chapter, we will rst present a Delaunay graph conict locator for sites
being semi-algebraic sets. This conict locator checks whiher the addition of a
given semi-algebraic set would remove or not each facet of & Delaunay graph
DG (S) of a setS of semi-algebraic sets whose vertices are a giveiN(+ 1) tuple
of semi-algebraic sets. Thus, the input is anl +2) tuple of semi-algebraic sets,
where the rst N + 1 semi-algebraic sets de ne one or more facets of the Delaway
graph, and the (N +2) th semi-algebraic set is the semi-algebraic set being added.
This con ict locator will be based on the ALIAS library [MerO 0], whose important
features used here have been presented in Section 3.3.3. Welwst present the
system of equations and inequalities that must be satis ed i the con ict locator
outcome is positive (the addition of the semi-algebraic setwould remove one or
more triangles) in Section 1. We will then present in Section2 how we check the
existence of solutions to the preceding system of algebra@equations and inequalities
using ALIAS (with di erent solving techniques and corresponding parameters). We
will then present in Section 3 how the implicit equation of the generalised o set to

a conic (see Section 4.4) can be used in order to accelerateetltomputation of the
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con ict locator in the case the semi-algebraic sets are cows. This involves both

symbolic algebraic precomputations and scienti ¢ computdions.

6.1 The algebraic equations and inequalities of the De-

launay graph con ict locator

The de nition of a semi-algebraic set has already been presged in De nition 1.0.1

in Chapter 1. Let X1;::;; Xn+2, be semi-algebraic sets. Let us suppose that each
semi-algebraic setX; is de ned as Sjsizl T W x 2 RNjfik 2k O,

wherefijk 2 R[Xj ;55X ] and 7« is either < or =, for i =1;2;3;4,] =1,
and k =1;:5rj; .

Let us assume without loss of generality that eachT W X 2 RNfik 2k O
for each X; is de ned by at least one non-trivial algebraic equation (i.e. dierent
from the zero polynomial). This is equivalent to each comporent of each semi-
algebraic set being de ned as the restriction of a proper cleed set in the Zariski
topology sense. Thus each component of each semi-algebraiet has a codimension
greater or equal to 1. If our starting assumption is not valid in the case we treat, we
can make it valid by adding the equations corresponding td i« = O for each (i;j; k )
such that j is the index of a component that is not de ned as in the assumpion
and i is the index of the semi-algebraic set to which the componenbelongs. This
realises the (real) topological closure of the set of solutins of thefjx ?x O such
that j is the index of a component that is not de ned as in the assumpion and i is
the index of the semi-algebraic set to which the component blengs. Let us denote
Vi as the intersection of all the V (fi;x ) such that 7« is = for eachi =1;2;3;4.
Let N; be the normal space toV; at the point x; = (Xj,;:::; Xy ). Each fi;x de ning
Vi inducesN 1 polynomials njjx; with | = 1;:;;N 1 that are the equations
de ning the normal to V (fj;x ) at xij. A point g = (yz;::;yn) belongs to N;j if its

coordinates satisfy each one of the equations of the normapsaces toV (f;x ) at X;
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such that 7 is =.

Foragiveng = (y1;::;;yn), let M ; be the the set of pointsm; = (z,;::;;z, ) 2
X; such that g belongs to the normal space tov; at the point m;.

In the general case, each seM ; is a nite set of points. However, if V
contains a portion of hypersphereP HS (q; ) centered ong, then M ; contains that
portion of hypersphere. To get in all cases a nite set of poits m; of Vi, we use
Si= M;whenM is nite, and S; T PHS (qg; ) = fwig for an arbitrary point w;
of PHS (q; ) whenV; contains a portion of hyperspherePHS (q; ) centered onq.

We are now able to write the system of algebraic equations anéhequalities
that de ne the outcome of the Delaunay graph con ict locator. Let us consider the
map :K3N 1 KN denedby (xi;q;m)= g

The point g is at the distancer from the point x; if, and only if, the distance
betweenq and x; is r. This is expressed algebraically by the equatiord; (q;x;) =
(v xi)?+m+(yn xi,)? r2=o.

The generalisedr-o set O; to X; is the image by of the points of K 3N

de ned by the following system of equations and inequalities:

8

9 2 [L;si];8k 2 [Lri;];

2
8
fl]k(x)’)ljk 0
if 2jke 1S V="
% di (xi;a) =0
§ 8l=1;:5N  Lnjjka (Xi;a)=0
fxil(xi) 60or ::: orfxiN (xj)60

The true r-o set to X; is obtained as the di erence of the generalised-o set O; to

Xi and the union of each one of the images by of the semi-algebraic sets de ned
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by the following system of equations and inequalities for eeh point m; of Sj:

8
9j 5 [1;si];8k 2 [1;ri51;

% ik (Mi) ik O

§ 8l=1;:5N  Lnjjs (mj;q) =0

It is obvious that a true Voronoi vertex of Xq;::;Xn+1 iS a point of inter-
section of the truer osetsto Xq;::;; Xn+1 respectively. Now, what is left to write
is rst, that the true Voronoi vertices of Xi;:;Xn+1 are at the distance R from
XnN+2, or alternatively, that the true Voronoi vertices of X 1;:::;; Xn+1 belong to the
true R osetto Xyn+2, and nally to evaluate the signs of the (real) values of R r.

Consider the (N +2) dimensional points whose rst N coordinates are the
coordinates of a true Voronoi vertex ofX 1; :::; XN +1 , and the remaining two are the
distancesr between that true Voronoi vertex and X 1;:::; Xn+1 , and R between that
true Voronoi vertex and X n+2. The Delaunay graph con ict locator output list will

not be empty if, and only if, R r < 0 for one of these N +2) dimensional points.

6.2 The formulation of the Delaunay graph con ict loc-

ator with ALIAS

All these equations and the nal inequality can be written in a Maple [CGGL92]
le (see Maple program in Appendix D). We have tested dierent solving pro-
cedures as well as di erent ALIAS parameters for computing he Delaunay graph
con ict locator for semi-algebraic sets on conics. We rst doserved better results
with the 3B consistency method (ALIAS/3B=1) than without (A LIAS/3B=0), both

in terms of running time and in terms of number of searched bors. Consequently,

we tested only 3B based searching techniques. We can eithepply the 3B consist-
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ency method on all the equations and/or inequalities, or we an specify a subset of
equations and/or inequalities on which the 3B consistency mnethod will be applied
(the ALIAS/subeq3B list variable). Typically, one chooses the algebraic equations
and inequalities with lowest degree for the SUbEQ3B subsetWe can also select a
maximal interval range (ALIAS/Max3B), that is the maximal r ange that the vari-
ables intervals should have in order for the 3B method to star being applied. By
setting this maximum interval range to the maximum variable interval range, we can
force the 3B method to be applied from the starting variablesintervals. We can also
select the tolerance interval range for the 3B method, by sding the ALIAS/Delta3B
variable. Some testing of these ALIAS bisection modes was a@ on the same ex-
ample of ellipses as in Chapter 5 (see Figure 5.5.1). The reksi are summarised in
Table 6.1. The executable was run always on the same machind a -peak hours
(in the evening). The signi cant results is that single bisection is much faster than
mixed bisection, which in turn is faster than full bisection. These running times
illustrate the impact of the exponential growth of the number of boxes with the
number of variables on the running times. The 3B consistencynethod improves the
results obtained by single bisection. There is a trade-o béween the additional time
required by the additional 3B interval evaluations and the reduction of the variable
intervals by the 3B method. The optimum in the example of Table 6.1 is to start
the 3B method after the variable intervals have been reducedyy 4 by the normal
single bisection process.

We have tested the full system of equations and inequalitiegorresponding to
the Delaunay graph con ict locator as well as the partial sydem for identifying the
generalised Voronoi vertices that are true or computing thecon ict locator assuming
we know which generalised Voronoi vertices are true Voronowertices. Note that
we need to execute the programN + 2 times instead of one if we use the partial
system (N +1 times for identifying the true Voronoi vertices and once for computing

the Delaunay graph con ict locator assuming the true Voronoi vertices have been
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Bisection process Running time for optimised GradientSolve
Full bisection 2h 34 min42s
Mixed bisection (half the variables) 26 min 26 s
Single bisection + 3B 2min 26 s
+ 3B with half Max3B 2min8s
+ 3B with one quarter Max3B 2min2s
+ 3B with one sixth Max3B 4 min 49 s
+ 3B with one eight Max3B 4 min 49 s

Table 6.1: Some running time results with di erent ALIAS par ameters on the system
with the generalised o sets (see Table 6.4)

Running time without subEg3B | with subEq3B
optimised General Solve 6 min 38 s 6 min 26 s
non-optimised General Solve

optimised Gradient Solve 2h56minl10s | 2h55min4ds
non-optimised Gradient Solve
optimised Hessian Solve 20h 17 min 42 s| 20 h 19 min 33 s
non-optimised Hessian Solve

Table 6.2: Some running time results for ellipses with the egations of the original
curves

identi ed). The results are summarised in Tables 6.2 and 6.3

While there is a time disadvantage in running the solver on tre full system
with respect to running the solver (four times) on the partial systems for the Gradi-
ent and Hessian based solvers, running the General solver dhe full system is less
time consuming. What is important to observe at this point is that if the full system
is not used, in addition to running four times the solver, we reed to check that the
coordinates and local distance to the de ning semi-algebriz sets of each generalised
Voronoi vertex corresponding to the solutions correspond @ a true Voronoi vertex.
The full system has all the constraints (inequalities in it). This is likely why the full
system can be solved faster than the four partial systems. M®over, the General
solver is the fastest one on the full and partial systems baskon the equations of

the original curves. Finally, specifying a subset of equatins and/or inequalities
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Running time without subEq3B | with subEg3B

optimised General Solve 2min5ls 2min 38 s
non-optimised General Solve
optimised Gradient Solve 26 min 52 s 27 min 8s

non-optimised Gradient Solve
optimised Hessian Solve 1h43 min42s |1 h45min 38 s
non-optimised Hessian Solve 1h49 min9s

Table 6.3: Some running time results for ellipses with the egations of the original
curves for the partial system

(ALIAS/subeq3B) on which the 3B bisection process will be agplied improves the
running time of the general solver while increases those ohte gradient and hessian
based solvers.

The general solver seems to be more e cient on the full systembased on
the equations specifying the semi-algebraic sets becausbet computations of the
gradient and of the hessian are more time consuming when theumber of variables
increases. A way to improve the running time is to improve the computations
of the intervals. What we have done is to use the parser to corert the Maple
[CGGL92] expressions into C++ code that uses the ALIAS C++ li brary in order to
do interval computations and identify intervals with possible solutions. The interval
computations resulting from this automatised process may ot be optimal. This is
true because the computation of the interval taken by a funcion depends on the way
this function is written. We have tried to optimise the way fu nctions are written
for the interval computations on the general solver code. Hwever, this did not lead
to any signi cant improvement on the running time of the opti mised code. It looks
like there is a trade-o0 between the running time improvement owed to the change
of expression of the function and the optimisation done by tle C++ compiler (g++

version 2.95.2).
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Running time without subEq3B | with subEg3B
optimised General Solve 12 min 37 s 12 min 56 s
non-optimised General Solve
optimised Gradient Solve 2 min 26 s 4 min 57 s
non-optimised Gradient Solve
optimised Hessian Solve 3mindls 3min42s
non-optimised Hessian Solve

Table 6.4: Some running time results for ellipses with the egations of the generalised
o sets

Ratios (without/with generalised o set) | without subEq3B | with subEg3B
optimised General Solve 0.526 0.497
non-optimised General Solve
optimised Gradient Solve 72.40 35.37
non-optimised Gradient Solve
optimised Hessian Solve 330.6 329.6
non-optimised Hessian Solve

Table 6.5: The ratios of the running time results without/wi th the equations of the
generalised o sets

6.3 The hybrid symbolic/scienti c computation of the

Delaunay graph con ict locator for conics

In the previous section, we have presented the computation fothe Delaunay graph
con ict locator for semi-algebraic sets. In this section, we will present how we can
use the implicit equation of the generalised o set to a conicin the ALIAS compu-
tations, and show some results that illustrate the consideable reduction of running
time realised by using the equations of the generalised o 98 instead of the equa-
tions of the original curves. Table 6.4 shows some results othe ellipses that were
used for the tests of the previous section. These results shoa decrease of running
time except for the general solver with ratios varying between 35 and 331 (see Table
6.5).
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Figure 6.3.1: The test case with four hyperbolas

In order to see if the same result could be achieved with hypdrolas, we also
tested the Delaunay graph con ict locator on hyperbolas. The test case we used is
illustrated on Figure 6.3.1. The running times obtained ushg the original implicit
equations of the hyperbolas are summarised in Table 6.6, wkd the running times
obtained using the implicit equations of the generalised osets to the hyperbolas are
summarised in Table 6.7. The general solver and 3B consistey method with spe-
ci cation of a subset of equations to be evaluated in the 3B mé&od on the system
with the implicit equations of the generalised o sets givesthe best running time

with 6 minutes and 20 seconds.

Another possibility of expression of the equations of conis is the replacement
of the implicit equations of conics by their parametric equaions in polar coordin-

ates'. This did not lead to any running time improvement with any of the solving

1The general polar equation of a non degenerate conic with r@ect to one of its foci is:
r= ﬁ where e is the eccentricity of the conic and p is that eccentricity times the

distance from the foci to the directrix.
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Running time without subEQ3B | with subEq3B
optimised General Solve 17 min 23 s 15min40 s
non-optimised General Solve
optimised Gradient Solve 1h 10 min 33s | 1h 07 min 28 s
non-optimised Gradient Solve
optimised Hessian Solve 1h 45 min 11 s
non-optimised Hessian Solve 1h 36 min0s

Table 6.6: Some running time results for hyperbolas with theoriginal equations of
the hyperbolas

Running time without subEq3B | with subEq3B
optimised General Solve 10 min 8 s 6 min 20 s
non-optimised General Solve
optimised Gradient Solve l1h2min2s 35 min 28 s
non-optimised Gradient Solve
optimised Hessian Solve 2h12min 17 s
non-optimised Hessian Solve 1h49 min9s

Table 6.7: Some running time results for hyperbolas with theequations of the
generalised o sets
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techniques used earlier.
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Chapter 7

Conclusions

The theoretical purpose of this thesis as de ned in Chapter lis the elucidation of
the basic algebraic and geometric properties of the generigkd o set to a curve that
are central to the Delaunay graph con ict locator. One of the practical objectives
(de ned in Chapter 1) is the computation of the Delaunay graph con ict locator for
algebraic varieties in the case of conics. The other practa purpose of this thesis
is the computation of the Delaunay graph conict locator for low degree (semi-)
algebraic sets embedded in the Euclidean plane.

We will brie y review the achievements obtained in this thesis. With respect
to the theoretical objectives, we have obtained what we xed as objectives. A
general formula for the degree of the generalised o set to aralgebraic curve has
been presented in Section 4.2. The degree of the generalisedet to a conic and
the degree of the Delaunay graph con ict locator for conics lave been computed
(see Sections 4.3 and 5.4 respectively). We have also reducthe problem of the
computation of the Delaunay graph con ict locator from a semi-algebraic problem
to a linear algebra problem (computing the eigenvalues of a mitrix, as described in
Chapter 5).

With respect to the practical objectives of this thesis, we have obtained

what we xed as objectives with algebraic precomputations Imited to the im-
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plicit equation of the generalised o set to a conic and the nunerical computa-
tions done with the interval analysis based solver ALIAS. The implicit equation
of the generalised o set of a conic de ned by a polynomial with formal coe cients
(ax?+ by?+ cxy+ dx+ ey+ f = 0) has been computed symbolically (see Section 4.4).
The exact Delaunay graph of the Voronoi diagram for circles las been computed
symbolically (see Section 3.1.3). This allows one to constict the Voronoi diagram
of circles exactly. The matrix of the sparse resultant of thepolynomials specifying
the Delaunay graph con ict locator for conics was computed gmbolically (see Sec-
tion 5.4). The Schur complement of a submatrix of this matrix is the multiplication
operator matrix whose eigenvalues allow one to answer the D&unay graph con ict
locator. Its computation has not been done symbolically, bu numerically.

The main problem with this computation is that it takes far to o much time
to have a practical interest in the randomised incremental onstruction of the Voro-
noi diagram for conics. The multiplication operator matrix and of its eigenvalues
were computed using Matlab [LM90]. However, this computaton cannot be done
with enough precision due to the bad conditioning of the matiix of the sparse res-
ultant. The certi ed Delaunay graph of algebraic curves and of semi-algebraic sets
de ned by numeric polynomials has been computed using the iterval analysis and
consistency based solver \ALIAS" (see Chapter 6).

The certied computation of the Delaunay graph of conics usihng interval
analysis gradient and hessian based solvers can bene t frorthe use of the implicit
equation of the generalised o set to a conic (from 35 to 331 tines faster, 2 min 26 s
for ellipses, 6 min 20 s for hyperbolas). This result con rmsthe idea that knowing
the structure of the set of solutions may help nding the solutions.

Even though there is no known theoretical lower nor upper boud for the
interval analysis based solvers, in practice those solversan compute the Delaunay
graph con ict locator much faster than the computation of th e eigenvalues of the

Schur complement of a submatrix of the sparse resultant matix. The rst time
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we encountered a result similar to this one was when we founchi Section 3.2 that
the same computation of the Delaunay graph con ict locator was taking 11 minutes
with ALIAS and 12 hours using GB/RS [Fau, Rou] (by computing t he Gmbner
basis and the eigenvalues of the multiplication operator méices).

Moreover, the computation of the Delaunay graph con ict locator by interval
analysis based solvers is more direct than the computation fothe con ict locator
through eigenvalues of the Schur complement of a submatrix fathe sparse resultant
matrix. Indeed, we can test whether the generalised Voronovertices are true Voro-
noi vertices and the Delaunay graph con ict locator simultaneously using ALIAS.
We do not have to evaluate rst the con ict locator assuming t he generalised Voronoi
vertices are true Voronoi vertices and then test which genealised Voronoi vertices
invalid with respect to the fourth conic were true Voronoi vertices of the rst three
conics.

Finally the computation of the Delaunay graph con ict locat or by interval
analysis based solvers can be used for semi-algebraic setsaatbitrary degree, which
is not possible for algebraic techniques because we have ob&d with conics the
limit on the memory that can be used in current systems (4 Gb ofRAM and 6
Gb of virtual memory on Medicis machines [CNR]). This is due © the exponential
complexity of the size of the matrices involved in the compuations. Moreover, the
computation of the Delaunay graph con ict locator by interv al analysis based solvers
can be easily generalised to general regular curves, whick absolutely impossible
for algebraic techniques.

This thesis has presented what we believe is the rst computdon of the
Delaunay graph conict locator for semi-algebraic sets (am in particular conics),
and its application to a semi-dynamic algorithm for the condruction of the Voronoi
diagram of semi-algebraic sets.

The computations involved in the certi ed Delaunay graph con ict locator

may be required only in almost degenerate cases where the seaigebraic set being
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added touches or almost touches one or more Delaunay graph gy circles. This
situation is not the most probable one, at least statisticaly. The algorithms presen-
ted in this thesis could be combined with simpler algorithmswhen the degenerate

cases can be ltered.

7.1 Limitations of this research

The implicit equation of the generalised o set to a conic is quite long and complex.
We could have tried to use invariants in order to try to simplify it after we obtained
the implicit equation. A simpli cation of this implicit equ ation of the generalised
0 set to a conic would imply simpler polynomials (i.e. with f ewer monomials and
maybe a lower degree). Simpler implicit equations for the geeralised o sets would
imply that the sparse resultant matrix of the Delaunay graph con ict locator would
be smaller, provided the new variables (the invariants usell allow one to identify
unambiguously the generalised Voronoi vertices and theirdcal distances to the rst
three conics and to the fourth conic. The problem here is to nd such a set of new
variables (the invariants used). The invariants of the spedal orthogonal group for
the generalised Voronoi vertex look like the only invariants that allow one to identify
unambiguously the generalised Voronoi vertices and theirdcal distances to the rst
three conics and to the fourth conic.

With respect to the Computer Algebra Systems, | tested a largg number
of them: all the public domain ones (CoCoA [CNRO0O], Macaulay2 [GS], Maxima
[GG82], and Singular [GPSO01]), and the most commonly commeial one used for
Grebner bases computations (Magma), as well as general Coputer Algebra Sys-
tems such as Maple [CGGL92] or Mathematica [Wol99].

With regard to numerical computations, | have tried only int erval analysis
based methods. Other methods such as homotopy continuatioriLiO3] allow one
to compute the solutions of systems of polynomial equations With respect to the

interval analysis based solvers, | tested only ALIAS for tworeasons. The rst one is
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the availability of the designers of ALIAS at INRIA Sophia-A ntipolis, where | made
a visit of one year and half. The second one is that ALIAS is an #empt to bring
together in a single library tools from interval analysis and consistency methods.
There are a lot of interval analysis solvers available eitheon the public domain or
commercially. Other alternatives could have been tested. Te libraries used at the
lower levels in order to perform interval evaluations for functions are however more
limited in number. ALIAS uses the PROFIL/BIAS [Knu94] libr ary for performing

interval evaluations.

7.2 Future research

The future research should try to go beyond the limitations d this research as out-
lined in the previous section. An interesting direct generdisation worth to explore
is the case of regular curves rather than semi-algebraic s&t However, the prac-
tical applications of such a generalisation does not seem tbe more important than
the case of semi-algebraic sets, because regular curves dam approximated to any
geometrical tolerance by semi-algebraic sets. What is crital is that the Voronoi
diagram and the Delaunay graph are very sensitive to the conhuity of the rst
order and second order derivatives at contact points. This $ the reason for which
approximation of curves by line segments does not guarantethe exactness of the
Delaunay graph. It would be useful to explore the di erencesin running times of
the Delaunay graph conict locator computation using regular curves or such an
approximation of regular curves by semi-algebraic sets (ath especially conics).

If the implicit equation of the generalised o set to a conic could be simpli ed
by using new variables such as invariants, it would be worth tying to compute the
Gmebner basis of the ideal generated by the threer generalised o sets to three
conicsCy, Co and C3 and the R generalised o set to a fourth conic C4. Knowing
the Gmbner basis of that ideal, two alternative approaches may be used in order

to evaluate the con ict locator: either the linear algebra approach in the quotient
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algebra (as developed in Section 3.1.3 or in Chapter 5), or tatriangular set approach

(as implemented in the triang library of Singular [GPSO01]).
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Appendix A

The Macaulay 2 program for the
exact Delaunay graph con ict
locator for the Additively

Weighted Voronoi diagram

gbTrace 4
dim FractionField = F -> 0
P = frac(QQJa,b,c,d,e,f,g,h,ij,kI])
R = P[x,yt]

cerclel = (x-a)"2+(y-b)*2-(c+t)"2

cercle2 = (x-d)"2+(y-e)"2-(f+t)"2

cercle3 = (x-g)"2+(y-h)"2-(i+t)"2

emptycircle = ideal(cerclel,cercle2,cercle3d)
ecgb = gb emptycircle

print ecgb

eckb = basis cokernel gens ecgb

print eckb
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kI = sort(flatten(entries(eckb)))

kmind = splice {0..#kl - 1}

scan(kl,entry->print ring entry);

hashlist = pack(2,mingle(kl,kmind));

feetmon = applyKeys(hashTable hashlist, key->toString(k ey));
compmat = f -> (htl=apply(kl,be->

hashTable(pack(2,mingle(apply(flatten(entries((coef ficients((f*be)
%ecgh))#0)),

item -> feetmon#(toString(item))),flatten(entries((co efficients
((fbe)%ecgb))#1))))));

matrix(table(#kl,#kl,(i,j)->if (htl#)#?] then (htl#) # else
0)));

matp2 = compmat((x-j)"*2+(y-K)"2-(t+)"2);
mO00 = matp2_(0,0)
mO01l = matp2 (0,1)
m1l0 = matp2_ (1,0)
mll = matp2_(1,1)

cm00 = coefficients m0O
cm000 = cmO00#0
cm001 = cmO00#1
cm01l = coefficients m01
cm010 = cmO01#0
cm011 = cmO01#1
cml0 = coefficients m10
cml1l00 = cml1l0#0
cml01 = cml0#1
cmll = coefficients m11l
cml1l0 = cmll#0
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cmlll = cmli#l
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Appendix B

An implicit equation of the

generalised o set to a conic

B.1 The Maple program for calling Resin for obtaining

the matrix of the sparse resultant

> restart;conique:=a*x"2+b*x*y+c*y"2+d*x+e*y+f;

conique:= ax®+ bxy+ cy?+ dx+ ey+ f

> normale:=expand(-diff(conique,y)*(u-x)+diff(conique X)*(V-Y));
normale := bxu+ bx? 2cyu+2cyx eu+ex+2axv 2axy+byv
by’ + dv dy

> distance:=(u-x)"2+(v-y)"2-r"\2;

distance:=(u x)2+(v y)? r?
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> collect(normale,[X,y]);
> collect(expand(X*conique+Y*distance),[X,y]);

> coeffs(collect(expand(X*conique+Y*distance),[x,Y]), x,'al;al;
> alpha:=coeffs(collect(expand(X*conique+Y*distance), X,y .)[3]
> ;coeffs(collect(expand(X*conique+Y*distance),[y,x]) y,'a2");az;
> beta:=coeffs(collect(expand(X*conique+Y*distance),| v.X1),VI3I;

> solve( falpha=b,beta=-b g, f X,Yg);simplify(expand(subs(solve(
> falpha=b,beta=-b g, f X,YQ),X*conique+Y*distance))); bl:=

> denom(simplify(expand(subs(solve( falpha=b,beta=-b g,

> fX,Yg),X*conique+Y*distance))))

> numer(simplify(expand(subs(solve(  falpha=b,beta=-b g,

> X,Yg),X*conique+Y*distance))))\

> simplify(expand(b1*normale-numer(simplify(expand(su bs(
> solve( falpha=b,beta=-b g, f X,Yg),X*conique+Y*distance))))));

bx2+(2c 2a)y+e bu+2av)x by +( 2cu d+bvyy eu+dv

(Xa+ Y)x2+(Xd+ Xby 2Yux+(Xc+Y)y?+( 2Y v+ Xe)y
Yr2+ Xf +YW2+YW
(Xc+ Y)y?2+( 2Yv+ Xe)y Yr2+Xf +YUW+YV Xd+ Xby 2Yu;
Xa+Y
1; x; x?

Xa+Y

(Xa+ Y)x2+(Xd 2Yux Yr2+Xf+YUuw+YV;, 2Yv+ Xbx+ Xe;
Xc+Y

1 y; y?
= Xc+Y

b(a+c);X:2 b g
a ¢ a c

fy =

bax?+2bxy+ cy?+2dx+2ey+2f au?+2aux avi+2avy ay?
+ar? cu?+2cux cx? cv+2cvy+crd=a o
bl:=a c

168



b(ax?+2bxy+ cy’+2dx+2ey+2f au’+2aux avi+2avy ay?
+ar? cu?+2cux cx? cv+2cvy+crd)

3bcvy bcux+bcV¥ bcecr? bavy 3baux 2bey+ bal+ bav
bar?+ bci? 2acyu+4acyx 2caxv+2a?xv 2Pxy 2bf cex

cdv+ cdy+2c?yu aeu 2c?yx+aex 2a’xy+adv ady+ceu

2bdx
> collect(distance,[x,y]);

> collect(expand(X2*conique+Y2*normale),[X,y]);

> coeffs(collect(expand(X2*conique+Y2*normale),[x,y]) Xx,'al");al;
> alpha:=coeffs(collect(expand(X2*conique+Y2*normale) Gy, X)[3
> ];coeffs(collect(expand(X2*conique+Y2*normale),[y,x 1).y,'a2?;

> a2;beta:=coeffs(collect(expand(X2*conique+Y2*normal e),[y.x]),y)

> [3];solve( falpha=1,beta=1 g, f X2,Y2g);simplify(expand(subs(solve(
> falpha=1,beta=1 g, f X2,Y2g),X2*conique+Y2*normale)));

> b2:=denom(simplify(expand(subs(solve(  falpha=1,beta=1 g,

> X2,Y2g),X2*conique+Y2*normale))));

> numer(simplify(expand(subs(solve(  falpha=1,beta=1 g, f X2,Y2g),

> X2*conigue+YZ2*normale))));

> simplify(expand(b2*distance-numer(simplify(expand(s ubs(solve(
> falpha=1,beta=1 g, f X2,Y2g),X2*conique+Y2*normale))))));

u? 2ux+ x?+v2 2vy+y? r?

(Y2b+ X2 a)x2+(( 2Y2a+2Y2c+ X2by Y2bu+Y2e+2Y2av+

X2d)x+(X2c Y2by?+(X2e 2Y2cu+ Y2bv Y2dy+ X2f Y2eu
+Y2dv

(X2¢c Y2hy?+(X2e 2Y2cu+ Y2bv Y2dy+ X2f Y2eu+Y2dyv;
( 2Y2a+2Y2c+ X2h)y Y2bu+Y2e+2Y2av+ X2d;Y2b+ X2a

1 x; x2

=Y2b+ X2 a
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(Y2b+ X2 a)x?+( Y2bu+Y2e+2Y2av+ X2d)x+ X2f Y2eu

+ Y2dv;
( 2Y2a+2Y2c+ X2hx+ X2e 2Y2cu+Y2bv Y2d;X2c Y2b

1;y; y?

=X2c Y2b

a ¢ 1
vz = b(a+c)'X2_2a+Cg

(bcvy bcux+ bcxX bavy+ baux+2bey+ bay+2acyu 4acyx
+2caxv 2a’xv+bcy+2Pxy+2bf+cex+cdv cdy 2cyu
+aeu+2c?yx aex+2a?’xy adv+ady ceu+ baxt+2bdx=b
(a+0)

b2 := b(a+ ¢)

bcvy bcux+ bcx¥ bavy+ baux+2bey+ bay+2acyu 4acyx
+2caxv 2a’xv+bcy+2Pxy+2bf+cex+cdv cdy 2cyu
+aeu+2c®yx aex+2a’xy adv+ady ceu+ baxt+2bdx

3bcvy bcux+bcV bcr? bavy 3baux 2bey+bal?+ bav
bar’+ bci# 2acyu+4acyx 2caxv+2a’xv 2bPxy 2bf cex
cdv+ cdy+2c?yu aeu 2c2yx+aex 2a’xy+adv ady+ceu

2bdx
> read("/cs/beta/People/Anton/ag/toric/mapl2form™);

> read("/cs/beta/People/Anton/ag/toric/maplib™);

Warning, the protected names norm and trace have been redefi ned and

unprotected

typelArray .= proc (tarray ; ttype)
local i; size
if not evalb(type(tarray ; array)) then RETURN( false) end if ;
if not type(tarray ; vector)then RETURN(true)end if ;
size := nops(convert(tarray ; list));
for i to sizedoif not evalb(type(tarray;; ttype)) then RETURN( false)

end if
end do;

RETURN( true)
end proc
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typeMatrix := proc (tmatrix ; ttype)
local i;
if not evalb(type(tmatrix ; matrix )) then RETURN( false) end if ;
for i to rowdim(tmatrix ) do
if not evalb(typelArray(row(tmatrix ; i); ttype)) then RETURN( false)

end if
end do;
RETURN( true)
end proc

> PList:=[expand(conique),
> simplify(expand(b1*normale-numer(simplify(expand(su bs(
> solve( falpha=b,beta=-b g, f X,Yg),X*conique+Y*distance)))))),
> simplify(expand(b2*distance-numer(simplify(expand(s ubs(

> solve( falpha=1,beta=1 g, f X2,Y2g),
> X2*conigue+YZ2*normale))))))];VList:=[x,y];

PList :=[ax?+ bxy+ cy?+ dx+ ey+ f; 3bcvy bcux+ bcV¥ bcr?
bavy 3baux 2bey+baw+ bav bar’+bcl 2acyu+4dacyx
2caxv+2a’xv 2BPxy 2bf cex cdv+cdy+2c®yu aeu
2c°yx+ aex 2a’xy+adv ady+ceu 2bdx; 2bcvy 2bcux
+bcV¥ bcr? 2bavy 2baux+ bal+ bav bar’+ bcl? Y2ex
+abx? X2bxy+ Y2bxu+ cby+ cbxX+aby X2f +2Y2cyu
2Y2cyx 2Y2axv+2Y2axy Y2byv X2ey X2dx X2cy?
X2 ax?+Y2dy Y2dv+ Y2by’+ Y2eu Y2bx
VList :=[X; y]
> sys_forC(PList,VList,u,
> “/cs/beta/People/Anton/ag/toric/offsetgeneralemtplu s%,2);

writing for C program: 5 arguments; returns symb.coeffs

Writing exponents of 3 polys in 2 vars to
“/cs/beta/People/Anton/ag/toric/offsetgeneralemtplu S.exps’.

written all exponents

Writing coeffile
“/cs/beta/People/Anton/ag/toric/offsetgeneralemtplu s.coef” with hidden
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degree=2
3 polyns in 2 variables [x, y] varslist and hidden u
wrote monoms, coeffile; return symbolic coeffs

fc3axl= X2f +bcl+bc¥ bcer? bar’+ Y2eu+ bal?+ baVv
Y2 dv;

c2x4= 2a’+4ac 2¢ 20

c2x3= 3bcv 2be+2c?u bav ad 2acu+ cd;clx6= b;c2xl =
baV+ ceu+ bcv¥ bcrP+adv cdv+ bci+ bal® 2bf bar?

aeu;c2x2= bcu 2bd 2cav 3bau+ae ce+2a?v;clxd= c;
clx5=a;clx2=d;clx3=e;clxl=f;, c3x6=ab Y2b+cb X2ag;
c3x6=2Y2a X2b 2Y2c;c3x4d= X2c+ ab+ Y2b+ cb;
c3x2=Y2bu 2bcu Y2e 2Y2av 2bau X2d,
c3x3=Y2d 2bcv+2Y2cu X2e Y2bv 2baw

B.2 The Maxima program for computing the sparse res-

ultant

c3x2 : a-C;
c3x3 : -a*r2+ar*u2+a*v/2-f;
c3x4 : -2*a*u-d;

c3x5 : -2*a*v-e;

clx2 : a;
clx3 : c;
clx4 : f;
c1x5 : d;
Clx6 : e;

c2x1 : bN2-2*a*c+2*a’2;
c2x2 : b*c+a*b;
c2x3 : -a*d*v+b*f+a*e*u;

c2x4 : b*d+a*b*u-2*a’2*v-a*e;
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c2x5 : b*e-a*b*v+2*a*c*u+a*d;

c3x1 : -b;
clxl : b;
M : matrix(

[ c1x1l, c1x2, cl1x3, clx4, clx5, cilx6, 0, 0, 0, O, O, O, 0],
[ c1x2, 0, cl1x1, 0, 0, c1x5, 0, 0, 0, c1x3, ci1x4, clx6, 0],
[ c2x1, 0, c2x2, c2x3, c2x4, c2x5, 0, 0, 0, O, 0, 0, 0],

[ 0, 0, O, c1x6, ci1x1l, c1x3, clx2, clx4, clx5, 0, 0, 0, 0],
[ c2x2, ¢c2x1, 0, 0, c2x5, 0, c2x4, 0, c2x3, 0, 0, 0, O
[ 0, 0, O, c2x5, c2x1, c2x2, 0, ¢2x3, c2x4, 0, 0, 0, O
[ 0, 0, c2x1, O, 0, c2x4, 0, 0, 0, c2x2, c2x3, c2x5,
[ ¢3x1, 0, c3x2, c3x3, c3x4, ¢c3x5, 0, 0,0, 0, 0,0, 0
[ c3x2, ¢3x1, 0, 0, c3x5, 0, c3x4, 0, c3x3, 0, 0, 0, O
[ 0, 0, 0, c3x5, c3x1, c3x2, 0, ¢3x3, c3x4, 0, 0, 0, O
[ 0, 0, c3x1, 0, O, c3x4, 0, 0, 0, c3x2, c3x3, c3x5, 0],

o

[ 0, 0, O, c1x5, c1x2, ci1x1, 0, O, O, 0, c1x6, c1x3, clx4],
[ 0, 0, O, c2x4, 0, c2x1, 0, 0, 0, 0, c2x5, ¢c2x2, ¢c2x3]

);

p:determinant(M);

r:factor(p);

B.3 An implicit equation for parabolas

An implicit equation of a parabola in a system centred on its immit (the intersec-
tion of its axis of symmetry with itself) and the x axis being its axis of symmetry
is: y2  2px =0.

An implicit equation of the r generalised o set to a parabola is: 4 y®+4

x2 y* 20 p x y* (12 r?2 p?) y* 16 p x® y? 8 (r? 4 p?) x? y%+
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4 (p r2 pd) x y?+2 (6 r* 10 p? r?) y2+16 p> x* 16 (p r2+pd
x3+4 (r* 2 p? r2+ph x2+16 (p r*+p3 r?) x (4 r%+8 p? rt+4 pt r?).

B.4 An implicit equation for ellipses, circles or hyper-

bolas

An implicit equation of the conic is: ’;—5 + g 1 =0 where stands for + in the
case of an ellipse or a circle and in the case of an hyperbola.

An implicit equation of the r generalised o set to an ellipse, a circle or an
hyperbolais: ¢* v8+2 (c*+c3) u? v® 2 ((2 ¢ @) r?+(c* 2 c) e) vo+(c*+
4c+c2) ut v 2 (B c* B+ r?2 (¢ B+3 A) e u? vA+((6 ¢t 6 3+
A) r*+2 3¢ 5c+3 A er?+(c* 6 c+6 ) €) vi+2 (B+c?) ub v? 2
(c* 43 ) r?2 B3¢ P+ e u* v2+2 (B ¢c* 5343 ) r* (2 ¢* 3
B 3c+2 ) er?+(B ¢ 5c2+3 ) ) uv? 2 (2 c* 3+ r%+3 ¢
4342 2 o) ert+(c* 2c+4 2 3¢ € 1?2 (2 3 cP+2 0 €) vi+c2 ud+
2 (¢ 22 r?+2 & ¢ e ub+((c* 6 c+6 ) r*+2 3 ¢c® 5c?+3 o) e
r’+6 ¢ 6 ctl) ) u* 2 ((c* 3c3+2 A)rb (¢* 2c3+4 2 3¢ er* (3
G 4c+2 c 1) € r? (22 3ctl) €) uH(c* 2 S+ r8+2 (¢* S A+
0 erf+(c*+2 & 6 ?+2 ct+l) € r*+2 (& 2 c+l) € r?+(c® 2 c+l) €Y

where ¢ = %; ande= a’and stands for + in the case of an ellipse or

a circle, and in the case of an hyperbola.
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Appendix C

The Singular program for
obtaining the matrix of the
sparse resultant of the Delaunay

graph con ict locator for conics

C.1 The case of parabolas

ring predicatr=(0,a,b,c,d,e,f,g,h,i,j,k,I,m,n,0,p,ud ,ul,u2,u3,ud),
(x.y.r,s),dp;

poly offsetl=4*y"6+4*x"2*y"4-20*p*x*y 4-12*r*y +p”2 *yng
~1B*PHXABRYND-BHAXADRYAD + ZDPADIXNDRYAD + ARy 2
SA*FpAB*XFYN2+1 2% 1M 2*yN2-20*pN 2 rFy N2+ 16*pr2* X M- 16%
P*rXN3-16*pN3*XN3+4* N 2*¥XN2-8* P 2*r* XN 2 +4*pNA*X N2
+16*p*r\2*x+16*p3*r*x-4*r"3-8*p2*r"2-4*p4*r;

poly offset2=4*(b*x+a*y+d)"6+4*(a*x-b*y+c)"2*(b*x+a* y+d)™
-20*o*(a*x-b*y+c)*(b*x+a*y+d)*4-12*r*(b*x+a*y+d) 4+ on2*
(b*x+a*y+d)"4-16*0*(a*x-b*y+c)3*(b*x+a*y+d)"2
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-8*r*(a*x-b*y+c)"2*(b*x+a*y+d)"2+32*0"2*(a*x-b*y+C) n2*
(b*x+a*y+d)"2+4*0*r*(a*x-b*y+c)*(b*x+a*y+d)"2
-4*0"3*(a*x-b*y+c)*(b*x+a*y+d)"2+12*r"2*(b*x+a*y+d) N2
-20*0"2*r*(b*x+a*y+d)"2+16*0"2*(a*x-b*y+c)"4
-16*0*r*(a*x-b*y+c)"3-16*0"3*(a*x-b*y+c)"3

+4*r"\2* (a*x-b*y+c)"2-8*0"2*r* (a*x-b*y+c)"2

+4*oN*(a*x-b*y+c) 2+16*0*r2*(a*x-b*y+c)+
16*0"3*r*(a*x-b*y+c)-4*r"3-8*0"2*r"2-4* 0" 4*r;

poly offset3=4*(f*x+e*y+h)"6+4*(e*x-f*y+g)"2*(f*x+e* y+h)™4
-20*n*(e*x-fry+g)*(f*x+e*y+h)"4-12*r*(f*x+e*y+h)"4
+n"2*(f*x+e*y+h)"4-16*n*(e*x-f*y+g)"3*(f*x+e*y+h)"2

-8*r*(e*x-fry+g)"2*(f*x+e*y+h)"2+32*n"2* (e*x-f*y+Q) n2*
(Frx+e*y+h)"2+4*n*r*(e*x-f*y+g)*(f*x+e*y+h)"2
-4 3* (e*x-fry+g)*(Fx+ery+h) 2+ 12*r2*(Fx+e*y+h) n2

-20*n"2*r* (P x+e*y+h)"2+16*n"2*(e*x-f*y+g) 4
-16*n*r*(e*x-f*y+g)"3-16*n"3*(e*x-f*y+g)"3

+4*r" 2% (e*x-fry+g)"2-8*n"2*r*(e*x-f*y+g)"2

+4*n"4* (e*x-fry+Q) 2+ 16*n*r"2*(e*x-fry+qg)+
16*n"3*r*(e*x-f*y+q)-4*r"3-8*n"2*r"2-4*n"4*r;

poly offsetd=4*(*x+i*y+)"6+4*(I*x-j*y+K) " 2*(j*x+i* y+)r4
20 m*(iI*X-Jy+K)*(Fx+i*y+) M- 12*s* (*x+i*y +)"4

+MA2* (X +i*y+)M-16*m*(i*X-*y+K) 3*(j*x+iry+)"2

-8*S*(I*X-Jry+K)N2* (j*Xx+i*y+)"2+32*mA2* (i*X-j*y+K) n2*
(*x+FYH)N 2+ M*S* (X[ y+K)* (X +H*Fy+)N2
-4 mA3*(I*X-TFy+K)* (A XH*Y+)A 2+ 124 2% (j* X +iry +]) n2

=20 MA2*S*(j*x+i*y+)"2+16* MmN 2* (i*x-j*y+k) 4
-16*m*s*(i*X-j*y+K)"3-16*m"3*(i*x-j*y+k)"3
+4*SN 2% (I*X-Jry+K)N2-8*mA2*s*(i*x-j*y +K)"2
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+A* M (XY +K) N2+ 16 m* SN 2% (i*x-j*y +K) +
16*MN3*s*(i*x-j*y+k)-4*"3-8*m"2*s"2-4*m"4*s;

ideal predicati=u0+ul*x+u2*y+u3*r+ud*s,offsetl,offse t2-offsetl,
offset3-offsetl,

offset4-(i"6+j"2*i"4)*offsetl,;

module predicatm=mpresmat(predicati,0);

C.2 The case of ellipses and/or hyperbolas

ring predicatr = (0,a,b,c,d,e f,g,h,i,j,k,l,m,n,0,p,q, t,u,u0,ul,u2,
u3,ud,v),

(x.y.r,8),(dp(4),C);

poly offsetl=a™4*y"8+2*(a™4+a"3)*x"2*y"6-2*((2*a™4-a 3)*r
+(ar4-2*a3)*b)*y"6+(ar4+4*a3+an2)* x 4ryN
-2%((3*a-at3+a’2)*r-(aM-a3+3*an2)*h) *x2*y N
+((6*at4-6*a3+an2) 11 2+2%(3*aN4-5*an3+3*al2) *b*r
+(aN-6*a3+6*aN2) DN 2) YA+ 2% (a3 +al 2) FXNGrYN2
-2%((@-an3+3%a2)*r-(3*an3-an2+a)*h) x4 ryn2
+2*((3*an4-5*an3+3*an2)*r"2-(2*a4-3*a"3-3*a2+2*a) *b*r
+(3*a’3-5*aN2+3*a) b 2)*x A 2*yn2-2%((2*a4-3*a 3+ar2 )13
+(3*at4-4*aN3+2*a’2-a)*b*r 2+ (at4-2*an3+4*al2-3*a)* bA2*r
-(@"3-3*an2+2*a)*h"3) Yy 2+an2 X 8+2*((an3-2*an2)*r
+(2*a’2-a)*h)*x"6+((a4-6*a"3+6*an2)*1"2
+2%(3*aN3-5*an2+3%a)*b*r+(6*a2-6*a+1)*h"2)*x 4
-2%((an4-3*a3+2*an2)*"3-(ar4-2* a3 +4*a2-3*a) b *r n2
-(3*an3-4*a2+2*a-1)*b"2%r-(2*a2-3*a+1)*h"3)*x"2
+((an4-2*al3+al2) A+ 2% (aM-a’3-an2+a)*b*3
+(aN4+2*an3-6*an2+2*a+1)*b"2*r2+2*(an3-a"2-a+1)*b" 3*r
+(@nr2-2*a+1)*b"4);
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poly offset2=c"4*(f*x+e*y+h)"8+2*(c 4+c"3)*(e*x-f*y+
(Frx+e*y+h)"6-2*((2*cN4-c"3)*r+(cN4-2*c"3)*d)*(f*x+
(ch4+4*cN3+cN2)*(exx-Fry+g) 4* (frx+e*y+h)"4-2*((3*C
(cM4-cn3+3*cN2)*d)*(e*x-f*y+g) 2* (f*x+e*y+h) +((6*
+2*(3*c"N4-5*c"3+3*c 2)*d*r+(c 4-6*c3+6*cN2)*d"2)*(
+2*(c"3+cM2)*(e*x-fry+g)N6*(f*x+e*y+h)"2-2*((c 4-c"
-(3*c"3-c"2+c)*d)*(e*x-fry+g) 4* (f*x+e*y+h) 2
+2*((3*cM4-5*c"3+3*CN2)*r"2-(2*cMN4-3*c3-3*c2+2*C)
+(3*c"3-5*c"2+3*c)*d"2)*(e*x-fry+g) 2*(f*x+e*y+h) 2
-2*((2*c"N4-3*cN3+cN2)*r"3+(3*cN-4*cN3+2*cN2-c)*d*r
+(cMN4-2*cN3+4*cN2-3*c)*dN2*r-(c3-3*c2+2*¢)*d"3)*(
+cN2*(e*x-fry+g)"8+2*((c"3-2*c 2)*r+(2*c2-c)*d)*(e
+((cN4-6*cN3+6*cN2)*r"2+2*(3*cN3-5*c2+3*C)*d*r+(6*
(e*x-fry+g)"4-2*((c"4-3*c"3+2*c"2)*"3-(cN4-2*c3+4
-(3*c"3-4*cN2+2*c-1)*d 2*r-(2*c2-3*c+1)*d"3)*(e*x-
+((cN4-2*cN3+cN2)* N A+2*(c N 4-cN3-cN2+c)*d*r 3+
(CN4+2*cN3-6*C2+2*C+1)*dN2*r"2+2*(cN3-c2-c+1)*d"3
(ch2-2*c+1)*d 4);

poly offset3=i"4*(I*x+k*y+n)"8+2*(iI"4+i"3)*(k*Xx-I*y+
(Fx+k*y+n)"6-2*((2*M4-i"3)*r+(i74-2*1"3)*j) *(I*x+
+(IN+AXN3+IN2)* (K*X-IFy+m) * (I*x+k*y+n) 4
-2*((3*IN4-iIN3+iIN2)*r-(iM-iN3+3*M2) ¥ ) * (KrX-I*y+m
+((6%IM4-6*IN3+iN2)* I 2+2%(3*N4-5*N3+3*N2) *j*r
+(IM-6%IN3+6*1"2) ¥ 2)* (I*x+k*y+n) N +2* (IN3+i2)*(
(Fx+k*y+n)"2-2%((iM4-i"3+3%M2)*r-(3*i13-i12+i)%))
(Fx+k*y+n)"2+2*((3*iM4-5*"3+3*12)*1"2-(2*iM4-3*i
+(3*iIN3-5*12+3*0) A 2) ¥ (K*X-I*y+m) N 2* (I*x+k*y+n) "2
-2%((2*1M4-3*IN3+iM2) 13 +(3*N-4%N3+ 2510 2-1) KT
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g)n2*
e*y+h) 6+
N-cN3+CN2)*r-
c"4-6*c3+cN2)*r"2
fx+e*y+h)™4
3+3*c"2)*r

*d*r

N2

f*x+e*y+h)"2
“x-fry+g)"6
c2-6*c+1)*d"2)*
*CA2-3%C)*dH 2
fry+g)"2

*r+

m)"2*

k*y+n)"6

Y2 (Irx+kry+n)Na

K*x-I*y+m)"6*

*(k*x-l*y+m)"4*

AZ-3HiN2+ %) 451

N2



+(IN-2%IN3+4*N2-3*i) A 2*r- (iM3-3*iN2+2*1) ¥ 3)*(

+IN2* (K*X-I*y+m)N8+2%((I"3-2*12)*r+(2*i"2-i)*))* (k
+((IM-6%IN3+6%IN2) ¥ 2+2%(3KN3-54(N2+3 i) j*r+(6*
(K*X-Fy M)A - 2%((iN4-34iN3+ 2517 2) 1 3-(iM4-2%13+4
-(3*IN3-4*iN2+2*- 1)*[N2*r-(2*iN2-3*i+ 1) 3) * (k*X-
+(((MA-2XINBHIN2)F TN 44 2% (IMA-IN3-iN2+i) K113

+(INAA+ 2510 3- BRI 2+ 2%+ 1) A2X A2+ 2% (1A 3-iN2-i+ 1) KA
+(iN2-2%i+1)5j4);

poly offset4d=0"*(t*x+q*y+v)"8+2*(0"4+0"3)*(g*x-t*y+
(trx+qg*y+v)"6-2*((2*0"4-0"3)*s+(0"4-2*0"3) *p) *(t*Xx+
+(0M+4*0"3+0"2)* (q*X-try+u)M* (trx+qry+v) " 4-2*((3*
-(0"4-0"3+3*0"2)*p)* (g*X-t*y+U) 2* (t*X+g*y+V)4+((6
SA2+2%(3*0N-5%0"3+3*0"2)*p*s+(0"4-6*0"3+6*0"2)*p"2
+2*(0"3+0"2)*(g*X-t*y+u)"6* (t*x+q*y+v)"2-2*((0"4-0"
-(3*0"3-0"2+0)*p)*(g*X-t*y+u) N 4*(t*x+qry+v) 2+
2%((3%0"N4-5*0"3+3*0"2)*"2-(2*0N-3%0"3-3*0\2+2*0)*
+(3*0"3-5*0"2+3*0)*p2)* (q*X-t*y+u) 2* (t*x+q*y+v)"2
-2%((2*0N4-3*0"3+0"2)*S"3+(3*0"4-4*0"3+2%0"2-0)*P*s
+(0"4-2%0"3+4*0"2-3%0)*p"2*s-(0/3-3*0"2+2*0) *p"3)¥(
+0/\2*(g*x-t*y+u)"8+2%((0"3-2*0"2)*s+(2*0"2-0)*p)*(q
+((0"4-6*0""3+6*0/'2)*s"\2+2*(3*0"3-5*0"2+3%0)*p*s
+(6*0"2-6*0+1)*p"2)*(g*x-t*y+u)"4-2*((0"4-3*0"3+2*0
-(0"4-2%0"3+4*0"2-3%0)*p*s"2-(3*0"3-4*0"2+2%0-1)*p"
-(2*0"2-3*0+1)*p"3)*(q*x-t*y+u)"2+((0"4-2*0"3+0"2)*
+2%(04-0"3-0"2+0)*P*S"3+(0"4+2*0"3-6*0"2+2*0+1)*p’
+2*(0"3-0"2-0+1)*p"3*s+(0"2-2*0+1)*p"4);

ideal pideal=u0+ul*x+u2*y+u3*r+ud*s,offsetl,

(an4-2*ar3+a2)*offset2-(c"4-2*c 3+c”2)*offsetl,
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FExHCY V)
3+3%0"2)*s

p*s

n2
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*X-t*y+u)"6

N2)*s"3
2*s
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(an4-2*an3+an2)*offset3-(i"4-2*"3+i"2)*offsetl,

(@"2)*offsetd-(0N4*qPAX N4+ 2% 0 M QA 2H NG+ N8 +2 03 GNG*TN2
+A*QNBHQIAMNAH2*ONBHGN2INGHON2KQNBH2¥ NGNGB+ ON2RQRAHNA)*
offsetl;

module pmodule=mpresmat(pideal,0);
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Appendix D

A Maple program for the
ALIAS based Delaunay graph
con ict locator for

semi-algebraic sets

After having speci ed the equations and inequality, we needto specify the set of
equations (EQ) and the set of unknowns (VAR) of the system of guations and
inequalities. Then, we need to specify the search intervalfor all the variables (IN).
The Maple program must specify where the ALIAS Maple library is located (by set-
ting the libname variable if it is not located in the standard Maple library location),
where the ALIAS C++ library is located (by setting the ALIAS/ Lib variable) as well
as where the BIAS/Pro | C++ library is located (by setting th e ALIAS/Pro | vari-
able). Then, some ALIAS parameters (pre xed with ALIAS) can be specied (de-
bugging: ALIAS/debug, bisection behaviour: ALIAS/single _bisection, optimisation:
ALIAS/optimised, 3B parameters: ALIAS/3B, ALIAS/Max3B, A LIAS/Delta3B).
Then, we issue the parser command that will convert the prevbus code into C++

code that uses the C++ ALIAS library (for example GradientSo Ive in the case of
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the Maple program shown here).

D.1 The system without the implicit equations of the

generalised o sets

OA := subs(alpha=-3,beta=2,x1"2/beta+y172/(beta/alpha )-1);
OB := subs(u=5*x2-3*y2+7,v=2*x2+3*y2+4,alpha=5,beta=4
ur2/beta+v"2/(beta/alpha)-1);

OC := subs(u=3*x3-2*y3+1,v=3*x3+2*y3+4,alpha=2,beta=1 ,
ur2/beta+v"2/(beta/alpha)-1);

NA = -diff(OA,y1)*(x-x1)+diff(OA,x1)*(y-y1);
NB := -diff(OB,y2)*(x-x2)+diff(OB,x2)*(y-y2);
NC := -diff(OC,y3)*(x-x3)+diff(OC,x3)*(y-y3);
DA = (X-X1)"2+(y-y1)"2-r"2;

DB = (X-x2)"2+(y-y2)"2 -r"2;

DC = (X-x3)"2+(y-y3)"2 - r"2;

OD := subs(u=5*x4-2*y4+1,v=x4+4*y4+2 alpha=3,beta=2,
ur2/beta+v"2/(beta/alpha)-1);

ND := -diff(OD,y4)*(x-x4)+diff(OD,x4)*(y-y4);
PVD:=(x-x4)"2+(y-y4)"2-r"2<0;
TOA:=subs(x1=xt1l,yl=ytl,0A);
TOB:=subs(x2=xt2,y2=yt2,0B);
TOC:=subs(x3=xt3,y3=yt3,0C);
PVA:=(X-xt1)"2+(y-yt1)"2-r"2>=0;

TNA = -diff(TOA,yt1)*(x-xt1)+diff(TOA,xt1)*(y-ytl);
TNB = -diff(TOB,yt2)*(x-xt2)+diff(TOB,xt2)*(y-yt2);
TNC := -diff(TOC,yt3)*(x-xt3)+diff(TOC xt3)*(y-yt3);

PVB:=(x-xt2)"2+(y-yt2)"2-r"2>=0;
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PVC:=(x-xt3)"2+(y-yt3)"2-r"2>=0;
EQ:=[OA,0B,0C,NA,NB,NC,DA,DB,DC,TOA, TOB, TOC,TNA]TNB,
PVA,PVB,PVC,0D,ND,PVD];

VAR:=[x1,y1,x2,y2,x3,y3,X,y,xt1,yt1,xt2,yt2, xt3,yt3 X4,y4.1];
libname:="/cs/beta/People/Anton/ag/ALIAS/ALIAS/mapl e" libname;
with(ALIAS);

"ALIAS/lib™:="/cs/beta/People/Anton/ag/ALIAS/ALIAS/ Lib-solaris™;
"ALIAS/profil*:="/cs/beta/People/Anton/ag/ALIAS/ALI AS/Profil";

IN:=[[-1000,1000]];
for i from 1 to 15 do IN:=[op(IN),[-1000,1000]]: od;
IN:=[op(IN),[0,1000]];

"ALIAS/debug” = 1;

"ALIAS/single_bisection™:=2;

"ALIAS/optimized™:=0;

"ALIAS/3B™:=0;
"ALIAS/SubE@3B*:=[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,1,1,1,1];
"ALIAS/Max3B™:=2000;

"ALIAS/Delta3B:=0.1;

"ALIAS/maxkraw :=30;

GradientSolve(EQ,VAR,IN);

D.2 The system with the implicit equations of the gen-

eralised o sets

offsete:=alpha”4*v/ 8+2*alpha’4*u2*v/ 6+
2*alpha”3*ur2*v6-4*alpha’4*r-v"\6

+2*alpha”"3*r*v"6-2*alpha”4*beta*v"6+4*alpha”"3*beta* v/"6
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+alpha™4*ur4*v™+4*alpha3*ur4*vM+alpha"2*u™4*v 4

-6*alpha™4*r*u"2*v"4+2*alpha™3*r*u*2*v"°4
-2*alpha’2*r*u"2*v"\4+2*alpha™4*beta*u”2*v~4
-2*alpha”3*beta*u”2*v*+6*alpha’2*beta*u2*v 4
+6*alpha”4*r"2*v 4-6*alpha’3*r"2*v 4+alpha”2*r2*v
+6*alpha”“4*beta*r*v*4-10*alpha”3*beta*rv/ 4
+6*alpha”"2*beta*r*v*+alpha”4*beta”2*v~4
-6*alpha”3*beta’2*v 4+6*alpha”2*beta”2*v"4
+2*alpha”"3*un6*v"2+2*alpha’2*u"6*v"\2
-2*alpha™4*r*ur4*v/ " 2+2*alpha™3*r*u*4*v"\2
-6*alpha”2*r*u"4*v"2+6*alpha”3*beta*u~4*v 2
-2*alpha”2*beta*u™4*v"2+2*alpha*beta*u”4*v/2
+6*alpha”4*r2*u2*v"2-10*alpha"3*r"2*u”2*v 2
+6*alpha2*r\2*un2*v"2-4*alpha™4*beta*run2*v"2
+6*alpha”3*beta*rrur2*v 2+6*alpha”2*beta*ru”2*v,2
-4*alpha*beta*rru~2*v"2+6*alpha’"3*beta”2*u"2*v"2
-10*alpha”2*beta2*u"2*v"2+6*alpha*beta”"2*u”2*v 2
-4*alpha™4*r3*v/2+6*alpha’3*r*3*v 2-2*alpha”2*r"3*
-6*alpha”4*beta*r*2*v"2+8*alpha”3*beta*r 2*v/2
-4*alpha”2*beta*r"2*v"2+2*alpha*beta*r"2*v/ 2
-2*alpha™4*beta”2*r*v*2+4*alpha”3*beta2*r*v/"2
-8*alpha”2*beta’2*r*v 2+6*alpha*beta’2*r*v/ 2
+2*alpha”3*beta"3*v"2-6*alpha”2*beta”3*v/"2
+4*alpha*beta”"3*v"2+alpha”2*u”8+2*alpha”3*ru”6
-4*alpha”2*r*u"6+4*alpha”2*beta*u”6-2*alpha*beta*u”
+alpha™4*r"2*u™4-6*alpha™3*r2*ur4+6*alphan2*r2*u”
+6*alpha”3*beta*r*u~4-10*alpha’2*beta*r*u™4

+6*alpha*beta*r*u*4+6*alpha”2*beta”2*u”4
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-6*alpha*beta”"2*u™4+beta”2*un4-2*alpha4*r"3*u2
+6*alpha”3*r"3*un2-4*alpha"2*r"3*u"2
+2*alpha”4*beta*r"2*u”2-4*alpha’3*beta*r"2*u2
+8*alpha”2*beta*r"2*u~2-6*alpha*beta*r"2*u”2
+6*alpha”3*beta"2*r*u~2-8*alpha”2*beta”2*ru"2
+4*alpha*beta”2*r*ur2-2*beta”2*r*u*2+4*alpha”2*beta
-6*alpha*beta"3*u”2+2*beta"3*u2+alpha™4*r*4-2*alph
+alphan2*r*4+2*alpha™4*beta*r*3-2*alpha”3*beta*r"3
-2*alpha”2*beta*r*3+2*alpha*beta*r*3+alpha”4*beta’2
+2*alpha”3*beta”"2*r"2-6*alpha”2*beta”2*r"2+2*alpha*
+beta”2*r"2+2*alpha”3*beta”3*r-2*alpha”2*beta”3*r
-2*alpha*beta"3*r+2*beta’*3*r+alpha’2*beta™4
-2*alpha*beta”4+beta™4;

offsetl:=simplify(subs(alpha=3,beta=-2,u=x,v=y,0ffs

offset2:=simplify(subs(u=5*x-3*y+7,v=2*x+3*y+4,alph
beta=-4,0ffsete));
offset3:=simplify(subs(u=3*x-2*y+1,v=3*x+2*y+4,alph
beta=-1,0ffsete));
offset4:=simplify(subs(u=5*x-2*y+1,v=x+4*y+2 alpha=
beta=-2,r=R4,0ffsete));
offsetlv:=simplify(subs(r=R1,offsetl));
offset2v:=subs(r=R2,offset2);
offset3v:=subs(r=R3,offset3);
t1:=R1-r>=0;t2:=R2-r>=0;t3:=R3-r>=0;t4.=R4-r<0;
EQ:=[offsetl,offset2,offset3,offset4,offsetlv,offse
offset3v,t1,t2,t3,t4];
VAR:=[x,y,r,R1,R2,R3,R4];
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libname:="/cs/beta/People/Anton/ag/ALIAS/ALIAS/mapl
with(ALIAS):
"ALIAS/lib™:="/cs/beta/People/Anton/ag/ALIAS/ALIAS/
"ALIAS/profil*:="/cs/beta/People/Anton/ag/ALIAS/ALI
"ALIAS/lib™:="/cs/beta/People/Anton/ag/ALIAS/ALIAS/
IN:=[[-1000,1000],[-1000,1000],[0,1000],[0,1000],[0
[0,1000][;

"ALIAS/debug™:=1;

"ALIAS/single_bisection™:=2;

"ALIAS/optimized :=1;

"ALIAS/3B™:=1;

"ALIAS/Max3B™:=2000;

"ALIAS/Delta3B™:=0.1;

"ALIAS/maxkraw :=30;
"ALIAS/SubEQg3B™:=[0,0,0,0,0,0,0,1,1,1,1];
GradientSolve(EQ,VAR,IN);
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