
A Lock-Free Multiprocessor OS KernelHenry Massalin and Calton PuDepartment of Computer ScienceColumbia UniversityNew York, NY 10027Technical Report No. CUCS-005-91calton@cs.columbia.eduRevised June 19, 1991AbstractTypical shared-memory multiprocessor OS kernels use interlocking, implemented as spin-locks or waiting semaphores. We have implemented a complete multiprocessor OS kernel (in-cluding threads, virtual memory, and I/O including a window system and a �le system) usingonly lock-free synchronization methods based on Compare-and-Swap. Lock-free synchronizationavoids many serious problems caused by locks: considerable overhead, concurrency bottlenecks,deadlocks, and priority inversion in real-time scheduling. Measured numbers show the low over-head of our implementation, competitive with user-level thread management systems.



Contents1 Introduction 12 Synchronization in OS Kernels 12.1 Disabling Interrupts : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12.2 Locking Synchronization Methods : : : : : : : : : : : : : : : : : : : : : : : : : : 22.3 Lock-Free Synchronization Methods : : : : : : : : : : : : : : : : : : : : : : : : : 23 Lock-Free Quajects 33.1 LIFO Stacks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43.2 FIFO Queues : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43.3 General Linked Lists : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 53.4 Lock-Free Synchronization Overhead : : : : : : : : : : : : : : : : : : : : : : : : : 64 Threads 84.1 Scheduling and Dispatching : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 84.2 Thread Operations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 94.3 Thread Operation Overhead : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 115 Virtual Memory 115.1 Memory Model and Interface : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 115.2 Real Memory Management : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 125.3 Virtual Memory Management : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 135.4 Memory Management Overhead : : : : : : : : : : : : : : : : : : : : : : : : : : : : 146 Input/Output 146.1 Terminal and Display : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 156.2 File System : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 157 Related Work 168 Conclusion 16A Architectural Support 17A.1 De�nition of Compare-and-Swap : : : : : : : : : : : : : : : : : : : : : : : : : : : 17A.2 Hardware Measurement Tools : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17
ii



1 IntroductionMutual exclusion is commonly accepted as the standard synchronization technique in OS ker-nels. In multiprocessors, mutual exclusion may be achieve through waiting locks and spin-locks.Anderson [1] analyzed the performance and overhead trade-o�s of spin-locks for multiproces-sor systems, �nding considerable potential for system performance degradation due to mutualexclusion.Herlihy [4] has shown that in wait-free and non-blocking synchronization, atomic read-modify-write instructions such as compare-and-swap are more powerful than test-and-set, theinstruction commonly used in the implementation of spin-locks. However, there has been noempirical evidence that OS kernels using this kind of lock-free synchronization methods achievebetter performance than state-of-art multiprocessor OS kernel implementations using lock-basedsynchronization (e.g., spin-locks and semaphores), such as Mach [3] and Psyche [11].The version 1 (abbreviated V.1) of Synthesis kernel implemented on a dual-68030 SonyNEWS workstation is based entirely on lock-free synchronization, developed from the optimisticsynchronization methods developed for the single-processor version 0 of Synthesis [8]. Theimplementation of Synthesis V.1 shows three things. First, lock-free synchronization is su�cientfor all synchronization needs of a multiprocessor OS kernel supporting threads, virtual memoryand all the usual I/O. Second, a lock-free multiprocessor OS kernel is practical. Third, such anOS kernel achieves very high performance.The remaining of this paper is organized as follows. Section 2 discusses the general problemof synchronization in an OS kernel. Section 3 describes the lock-free objects the Synthesis kerneluses. Sections 4, 5, and 6 describe the use of lock-free synchronization in the implementation ofthreads, virtual memory and input/output. Section 7 summarizes related work and Section 8concludes the paper.2 Synchronization in OS Kernels2.1 Disabling InterruptsThere are three basic kinds of synchronization problems in an OS kernel: hardware interrupts,software interrupts (also called signals), and critical sections. Inside interrupt handlers, tem-porary disabling of hardware interrupts is necessary for saving the hardware event information.Otherwise, hardware interrupts can remain enabled even during the other kinds of synchroniza-tion.However, in a single processor kernel (including many avors of Unix), all three kinds ofproblems can be solved cheaply by disabling hardware interrupts. While interrupts are disabledthe executing procedure is guaranteed to continue uninterrupted, so no interleaving may occur.Since disabling and enabling interrupts cost only two instructions, which is orders of magnitudecheaper than other synchronization mechanisms such as semaphores, its use is widespread. Forexample, 112 of the 653 procedures that make up the Sony NeWS kernel (a BSD 4.3 derivative)disable interrupts, most of which protect kernel data structures under updates. In processingscheduling and dispatching, all interrupts are disabled to prevent context switches while the runqueue is examined or modi�ed, for example changing priorities.Despite the cost advantage of disabling interrupts, it has several limitations. First, interruptscannot remain disabled for too long a period of time, otherwise frequent hardware interrupts suchas clock may be lost. This places a limit on the length of execution path within critical regionsprotected by disabled interrupts. Second, in a shared-memory multiprocessor, data structuresmay be modi�ed by di�erent CPUs. Therefore, some explicit synchronization mechanism isneeded. 1



Disabling signals is considerably more complex than disabling interrupts. Before a criti-cal section, a kernel call disables signals. The signal delivery routine must test whether thatparticular signal is currently allowed. If not, take the appropriate action to stack up the signalprocessing at the end of the critical section. (One example is procedure chaining in Synthesis [8].)After each critical section, the system must test and execute any pending signals. More seriousthan kernel overhead, disabling signals may cause processes to become stuck when expectedevents do not happen. For example, the NFS kernel calls in SUNOS cannot be interrupted withControl-C, so a server crash makes its clients to loop until server is restored. Thus disablingsignals is not an ideal solution to protect critical sections.2.2 Locking Synchronization MethodsMutual exclusion can protect a critical section by allowing only one process at a time to executein it. The many styles of algorithms and solutions for mutual exclusion may be divided into twokinds: busy-waiting (usually implemented as spin-locks) and blocking (usually implemented assemaphores). Spin-locks sit in tight loops while waiting for the critical region to clear. Blockingsemaphores (or monitors) explicitly send a waiting process to a queue. When the currentlyexecuting process exits the critical section, the next process is dequeued and allowed into thecritical section.The main problem with spin-locks is the waste of CPU time while spinning. The justi�cationis that every process is dedicated to some processor. This assumption is false when multiplethreads are mapped to a physical processor. The main di�culty with waiting locks is theconsiderable overhead to maintain a waiting queue and to set/reset the semaphore.Besides the overhead in acquiring and releasing locks, a major disadvantage of using locks isthe potential for poor performance due to lock contention. For example, Mach uses a single lockfor the global run-queue. This can cause signi�cant contention if several processors try to accessthe queue at the same time, as would occur when the scheduler clocks are synchronized [3]. Oneway to reduce the lock contention in Mach relies on scheduling \hints" from the programmer.For example, hand-o� hints may give control directly to the destination thread, bypassing therun queue. Although hints may decrease lock contention for speci�c cases, their use is di�cultand their bene�ts uncertain.Besides the overhead and lock contention problems, there are two additional problems withlocks. First, locks may cause deadlocks. Typically OS kernel avoid deadlocks by imposing arequest order for the resources. Second, in real-time systems locks may cause priority inversion,when a low priority process in a critical section is preempted for some reason and causes otherhigh priority processes waiting for that very critical section. There are sophisticated solutionsfor priority inversion problem, but they contribute to make locks less appealing. For all thesereasons, we want to build a lock-free multiprocessor OS kernel.2.3 Lock-Free Synchronization MethodsCompare-and-Swap is the foundation of lock-free synchronization. It is designed to atomicallyupdate one or two words (both are supported by the Motorola 68030 processor on our machine).Two-word Compare-and-Swap lets us e�ciently implement many basic data structures such asstacks, queues, and linked lists because we can atomically update both a pointer and the locationbeing pointed to.Herlihy [4] de�nes an object to be wait-free if it guarantees that each process will completean operation in a �nite number of steps. An object is non-blocking if it guarantees that someprocess will complete an operation in a �nite number of steps. The main di�erence is thatwait-free prevents starvation. In this paper, we use the term lock-free as a synonymous with2



non-blocking. We have chosen to use lock-free synchronization instead of wait-free because thecost of wait-free is higher and the probability of starvation in an OS kernel is low.Herlihy introduced a general methodology [4] to transform a sequential implementation ofany data structure into a wait-free, concurrent one using Compare-and-Swap. His concurrentdata structures, however, carry relatively high CPU and memory overhead even when there isno interference. For example, updating a limited-depth stack is implemented by copying theentire stack to a newly allocated block of memory, making the changes on the new version,and switching the pointer to the stack with a Compare-and-Swap. This cost is too high for alow-overhead OS kernel such as Synthesis, so we designed special-purpose objects for SynthesisV.1.The �rst step in our approach is to try to squeeze the shared data into one or two words. Ifthat succeeds, then we can use Compare-and-Swap on one or two words directly. If the shareddata is larger than two words, then we try to encapsulate it in one of the lock-free objects wehave designed (explained in Section 3): LIFO stacks, FIFO queues, general linked lists.If we need to maintain consistency over data that does not �t into one of those lock-freeobjects, we use the general optimistic strategy to write a critical section. At the beginning weencode the system state in one local word. The encoding is such that each thread will producea di�erent word. Then we enter the critical section. Note that in optimistic synchronizationthe critical section should save enough information for retries. At the end of the critical sectionwe check whether the system state encoding has changed. If negative then no other thread hasentered the critical section and we exit safely. Otherwise interference happened and we mustretry.In addition to using only lock-free objects and optimistic critical sections, we also work hardto minimize the length of each critical section to decrease the probability of retries. Sometimeswe can divide a critical section into two shorter ones by �nding a consistent state in it. Oneway to produce a consistent state is to carefully shift some code between readers and writers.Another way to reach consistency is to encapsulate data in a temporary lock-free object knownonly to this critical section. Since the temporary object is free of external interference, it canhelp avoid problems. A third way to minimize critical sections is code isolation, where onlyspecialized code handles the manipulation of data. An example of code isolation is the run-queue. Typically a run-queue is protected by semaphores or spin-locks in Unix and Machimplementations. In Synthesis, only code residing in each element can change it, so we separatethe run-queue traversal (done lock-free, safely and concurrently) from the queue element update(done locally).When all else fails, it is possible to create a separate thread to act as a server that serializesthe operations. Using lock-free queues to communicate with the server will assure consistency.Even though we occasionally use this escape mechanism as a �rst implementation, we havebeen able to �nd better solutions for every instance. There are no such servers in the currentimplementation of Synthesis V.1.3 Lock-Free QuajectsThe V.1 kernel is composed of quajects , chunks of code with data structures. Some quajectsare instances of abstract data types, such as stacks, queues, and linked lists described in thissection. Other quajects represent OS abstractions, such as threads, memory segments, and I/Odevices described in subsequent sections. 3



Push(elem){retry:old_SP = SP;new_SP = old_SP - 1;old_val = *new_SP;if(CAS2( old_SP,old_val, new_SP,elem, &SP,new_SP) == FAIL)goto retry;}Pop(){retry:old_SP = SP;new_SP = old_SP + 1;elem = *old_SP;if(CAS(old_SP,new_SP,&SP) == FAIL)goto retry;return elem;} Figure 1: Stack Push and Pop3.1 LIFO StacksStack Pop is implemented in almost the same way as a counter increment. We read the currentvalue of the stack pointer into a private variable, de-reference it to get the top item on the stack,and increment the stack pointer using Compare-and-Swap to detect changes. Stack push is morecomplicated because we must make sure when we are writing the element on the stack, thatwe do not overwrite data that was pushed by another concurrent push operation. This requiresa two-word Compare-and-Swap. We read the current stack pointer into a private variable,decrement it placing the result into another private variable, test that the stack pointer hasn'tchanged and store the new value of the stack pointer and also store the element on the top ofstack. But to perform two stores with Compare-and-Swap we also have to perform two tests,so we have to read the old value above the top-of-stack into a third private variable to havesomething to test against.3.2 FIFO QueuesIn a previous paper [8] we described an array implementation of FIFO queues using lock-free syn-chronization (called optimistic synchronization in that paper). We summarize here the propertiesof these queues to make this paper self-contained. FIFO queues support two main operations,Q_put and Q_get. These queues, synthesized by the Synthesis kernel, callback the user of aqueue on four conditions, Q_full and Q_empty to handle reaching the boundary conditions plusQ_full-1 and Q_empty+1 to handle leaving the boundary conditions. The queue elements maybe one of three types: byte-at-a-time, longword-at-a-time, and byte-stream. They all supportQ_put and Q_get operations on �xed-size data (byte or longword). In addition the byte-streamtype also supports elements of arbitrary-sized blocks of data.For e�ciency, a programmer can choose from four kinds of queues: (1) single producer andsingle consumer, (2) single producer and multiple consumers, (3) multiple producers and sin-4



Insert(elem){retry:old_first = list_head;*elem = old_firstif(CAS(old_head,elem,&list_head) == FAIL)goto retry;}Delete(){retry:old_first = list_head;if(old_first == NULL)return NULL;second = *old_first;if(CAS2(old_head,old_first, second,0, &list_head,old_first) == FAIL)goto retry;return old_first;} Figure 2: Linked-List Insert and Delete at Headgle consumer, (4) multiple producers and multiple consumers. Each implements the minimumsynchronization necessary for its intended use. For example, blocking queues are implementedby connecting the Q_full and Q_full-1 callbacks to the corresponding thread's suspend andresume procedures. To give an idea of relative costs, the current implementation of multiple-producer, single-consumer has a normal execution path length of 11 MC68030 instructionsthrough Q_put. In the case where two threads are trying to write an item to a su�cientlyempty queue, they will either both succeed (if they attempt to increment Q_head at di�erenttimes), or one of them will succeed as the other fails. The thread that succeeds consumes 11instructions. The failing thread goes once around the retry loop for a total of 20 instructions.3.3 General Linked ListsFigure 2 shows how we use Compare-and-Swap to perform linked-list insert and delete fromthe head of the list. Insert reads the address of the list's �rst element into a private variable(old_first), copies it into the link �eld of the new element to be inserted, and then usesCompare-and-Swap to atomically update the list's head pointer if it had not been changed sincethe initial read.1 Insert and delete to the end of the list can be carried out in a similar manner,but maintaining a list-tail pointer.Allowing delete operations on interior nodes of the list is much harder, because a node maybe deleted and deallocated while another thread is traversing it. If a deleted node is the allocatedand reused for some other purpose, its new pointer values may cause invalid memory referencesby the other thread still traversing it. Herlihy's solution [4] uses reference counts (Figure 3).Visiting a node uses a two-word Compare-and-Swap to load the pointer and increment thereference count. Leaving a node similarly decrements the reference count. A node is not actuallyfreed until the reference count reaches zero.To avoid the overhead of incrementing and decrementing reference counts during a visit, we1The one-word Compare-and-Swap operation (CAS) and two-word CAS2 are de�ned in appendix Section A.1.5



Operation No Sync Opt., 0 retry Opt., 1 retry Opt-0/No-syncnull procedure callin C 1.0 | | |Increment counter 0.3 1.4 2.6 4.4Linked-list Insert 0.4 1.4 2.7 3.2Linked-list Delete 0.6 2.2 4.3 3.6Circular-Queue Insert 1.5 2.9 5.6 1.9Circular-Queue Delete 1.7 2.5 4.8 1.5Stack Push 0.6 2.1 3.9 3.3Stack Pop 0.7 1.5 2.9 2.2Times in microseconds68030 CPU, 25MHz, 1-wait-state main memory, cold cacheTable 1: Cost of Lock-Free Operationsrestrict the delete operation to \safe" situations. A delete operation is \safe" if the deletednode's link pointers continue to be valid, i.e., pointing to nodes that eventually take it back tothe main list where the Compare-and-Swap will detect the change and retry the operation. Thishappens if a node is deleted but not placed on the free list. Herlihy's reference count is a goodexample. Also, if we insert and delete at the head of the list, a two-word Compare-and-Swapcan guarantee safety by simultaneously checking the previous node's pointer, which is alwaysvalid at the head. In the middle of the list, we can achieve the same e�ect by deleting a nodeonly when the permanence of the previous node is guaranteed. We do this in two steps: (1)mark the nodes to be deleted and leave them in the list; (2) if the previous node is not markedfor deletion, sit on it and delete the original node marked for deletion. Since step 2 may requiregoing back the list an arbitrary number of nodes, usually we do the step 2 the next time wetraverse the list to avoid the overhead of traversing the list just for deletion.The main di�culty with linked list traversal is that nodes can disappear while visiting them.Herlihy's reference count is a general solution. In the Synthesis run-queues, there is only onethread visiting a TTE at any time. So we can simplify the implementation to use a binarymarker instead of counters. We set the mark at the same time we enter the node using a two-word Compare-and-Swap. This is easier than incrementing a counter because we don't have toread the mark beforehand { it must be zero to allow entrance. Non-zero means that node isbeing visited, so we skip to the next one repeating the test. We omit the traversal code sincethe only di�erence from unsynchronized access is the Compare-and-Swap.3.4 Lock-Free Synchronization OverheadTable 1 shows the overhead measured for the lock-free objects we have described in this6



VisitNextNode(current){ nextp = & current->next; // Point to current node's next node fieldretry:next_node = *nextp; // Point to next nodeif(next_node != NULL) { // If not null...refp = & next_node->refcnt; // Point to next node's ref. count fieldold_ref = *refp; // Get value of next node's ref. countnew_ref = old_ref + 1; // ... Incrementif(CAS2( next_node,old_ref, next_node,new_ref, nextp,refp) == FAIL)goto retry;}return next_node;}ReleaseNode(current){ refp = & current->refcnt; // Point to current node's ref. count fieldretry:old_ref = *refp; // Get value of current node's ref. countnew_ref = old_ref - 1; // ... Decrementif(CAS(old_ref,new_ref,refp) == FAIL)goto retry;if(new_ref == 0) {Deallocate(current);return NULL;} else {return current;}} Figure 3: Linked List Traversal
7



section. The \No Sync" column shows the time taken to execute an implementation of theoperation without synchronization. The \Opt., 0 retry" column shows the time taken by the lock-free implementation when there is no interference. The \Opt., 1 retry" column shows the timetaken when interference causes the �rst attempt to retry, with success on the second attempt.2The numbers shown are for in-line assembly-code implementation and assume a pointer to therelevant data structure already in a machine register. The lock-free code measured is the sameas that produced by the Synthesis kernel code generator.4 ThreadsWe describe here how thread operations can be implemented so they are lock-free. Synthesis hasa general-purpose kernel-threads system with performance an order-of-magnitude greater thanother comparable kernel-threads systems such as Mach, and similar in performance to user-levelthreads [2] from University of Washington.4.1 Scheduling and DispatchingEach thread is described by a thread table entry (TTE). V.0 had a single run-queue with round-robin scheduling. Each thread has its own dispatcher and scheduler, synthesized and stored inits TTE, including the thread context save area and other thread-speci�c data. The dispatcheris divided into two halves, the switch-out routine, which saves a thread's context, and theswitch-in routine, that load in the thread's context and installs its switch-out routine as thecurrent clock interrupt handler. When a CPU quantum expires, the clock interrupt handler(the exiting thread's switch-out routine) stores the thread's context and branches into the nextready thread's switch-in routine.V.0 had only a single run-queue that contained all the TTEs. A �ne-grain scheduling mech-anism based on software feedback [9] changes the CPU quantum of each thread according to itsneed. For example, if a thread's input queue is full, the software feedback increases its quantum.If the total run-queue length is reasonably short, and we can traverse the run-queue within ashort time, a relatively large CPU quantum simulates a higher priority (in terms of useful CPUtime accumulation rate). However, if the queue grows long, the response of the system couldbecome slower.In V.1, TTEs are organized into multiple run-queues for scheduling and dispatching. Priorityis explicitly represented in these queues, each level a separate queue. The number of levels isa parameter that can be changed at system generation time. Currently we have 8 levels andthe total CPU time given to the jobs at each level decreases exponentially. Each level allocatesCPU to the threads at that level according to the previously described single-queue policy. Thehighest level, level 0, receives half of the total CPU time, with the other half allocated for allthe remaining levels. In general, level N + 1 receives half the CPU left over from level N . Ifthere is insu�cient demand at any level, the extra CPU is made available to the lower levels.With multiple run queues, V.1 uses a global counter and a priority table that tells the dis-patcher which level's queue is next. The priority table contains the scheduling policy describedabove, i.e., 0 every other entry, 1 every fourth entry, 2 every eighth entry, etc (0; 1; 0; 2; 0; 1; 0; 3; � � �).Using the counter to follow the priority table, the kernel dispatches a thread from level 0 at everysecond context-switch, from level 1 at every fourth context-switch, level 2 at every eighth, andso on. The dispatching is illustrated by Figure 4. The search is limited by the number of levels.2This case is produced with a special version of the PGA program described in Appendix A.2, which generatedan interfering memory reference between the initial read and the Compare-and-Swap. Otherwise the interferencewould be very di�cult to produce and measure. 8



0

1

2

3

4

5

6

7

Table:

0 1 0 2 0 1 0 3 0 1

Choose from Queue[Table[level++]]Figure 4: The Organization of Run-QueueCurrently, the CPU division between levels is static, i.e., the table content is �xed. It is easyto see that changing the entries in the priority table will change the proportion of CPU given toeach level. We use second-order software feedback mechanisms to adapt the CPU distributionduring high-load situations according to speci�ed policies. This topic is beyond the scope of thispaper.When multiple CPUs attempt to dispatch threads from the run-queues, each active dis-patcher (switch-out routine) acquires a new TTE by marking it with Compare-and-Swap. Ifsuccessful, the dispatcher branches to the switch-in routine in the marked TTE. Otherwise,some other dispatcher has just acquired the attempted TTE, so this dispatcher moves on to tryto mark the next TTE. The mark does not prevent other active dispatchers from accessing therest of run-queues, just that they should avoid visiting this particular TTE.Virtual memory support introduces some extra overhead for context switch. If we are switch-ing between di�erent address spaces, we need to (1) load the root of new page table and (2)ush the memory management unit's translation lookaside bu�er (TLB, 22 entries on the 68030).Table 2 shows this cost.4.2 Thread OperationsThe overhead of create-thread operation has been reduced considerably, from 150 microseconds(in V.0 on 68020) down to 20 microseconds (in V.1 on 68030). The main cost of SynthesisV.0 thread-create was the large amount of state information that had to be initialized. TTEscontained pointers to routines that handled the various system calls and hardware interrupts.These included 16 system-call trap vectors, 21 program exception vectors, from 8 to 192 interruptvectors depending on the hardware con�guration, and 19 vectors for hardware failure detection.Almost all of the speedup in create thread was obtained through a copy-on-write optimization.Now, newly-created TTEs point to the same vector table of their creator and defer the creationof their own until they need to change the vector table.Currently, there are only two operations that change a thread's vector table: opening andclosing quajects. If a quaject is not to be shared, open and close test if the TTE is being shared,and if so they �rst make a copy of the TTE and then modify the new copy. Alternatively, threadsmay share the changes in the common vector table. For example, threads can now performsystem calls such as open file and naturally share the resulting �le descriptor with the otherthreads using the same vector table.Figure 5 shows the thread state-transition diagram. We now explain how the other thread9



(1,0)

Running,

Scheduler Invoked

(0,0)

Running

(0,0)

Ready

(1,0)

Suspended

In run-queue

(1,1)

Suspended

Not in run-queue

Suspend
Resume

Suspend
Resume

Resume

Schedule Schedule

Schedule

Figure 5: Thread State Transition Diagramoperations are made lock-free. The general strategy is the same. First, mark the intendedoperation on the TTE. Second, perform the operation. Third, check whether the situation haschanged. If negative, the operation is done. If positive, we retry the operation. An importantobservation is that all state transitions and markings are done through Compare-and-Swap toavoid race conditions.Suspend: The thread-suspend procedure sets the STOPME ag in the target thread's TTEindicating that it is to be stopped. If the target thread is currently running, a hardware interruptis sent to its CPU forcing a context-switch. (We optimize the case when a thread is suspendingitself by directly calling the scheduler instead.) Thread-suspend does not actually remove thethread from the run-queue.When a scheduler encounters a thread with the STOPME ag set, it removes its TTE fromthe run-queue and sets the STOPPED ag to indicate that the thread has been stopped. Thisis done using the two-word compare-and-swap instruction to synchronize with other CPU'sschedulers that may be operating on the adjacent queue elements. The mark on the TTEguarantees that only one CPU is visiting each TTE at any given time. This also makes thedelete operation safe.Resume: First, the STOPME and STOPPED ags are read and the STOPME ag is clearedto indicate that the thread is ready to run. If the previously-read STOPPED ag indicates thatthe thread had not yet been removed from the run-queue, we are done. Otherwise, we removethe TTE and insert the thread directly into the run queue. The main problem we have to avoidis the case of a neighboring TTE being deleted due to the thread being killed. To solve thatproblem, when a thread is killed, we mark its TTE as \killed", but do not remove it from therun-queue immediately. When a dispatcher realizes the next TTE is marked \killed" during acontext switch, it can safely remove it.Signal: Thread-signal is synchronized in a way that is similar to thread-resume. Eachthread's TTE has a stack for pending signals which contains addresses of signal-handler proce-dures. Thread-signal uses a two-word Compare-and-Swap to push a new procedure address ontothis stack. It then sets a signal-pending ag, which the scheduler tests. The scheduler removesprocedures from the pending-signal stack, one at a time, and constructs procedure call frameson the thread's runtime stack to simulate the thread having called that procedure.Step: Thread-step is intended for instruction-at-a-time debugging; calling it concurrentlyfrom more than one thread defeats its purpose. Therefore we do not give any particular meaningto concurrent calls of this function except to preserve the consistency of the kernel. In the currentimplementation, all calls after the �rst fail. We implement this using an advisory lock.10



Type of context switch Synthesis V.0 Synthesis V.1Integer registers only 7 11Floating-point 15 21Integer, change address space | 13 + 1:6 � TLB fillFloating-point, change address space | 23 + 1:6 � TLB fillTable 2: Overhead of Scheduling and Context Switch4.3 Thread Operation OverheadTable 2 shows the overhead of scheduling and dispatching. The \Synthesis V.1" columnshows the numbers for Synthesis V.1 on the Sony NeWS 1850 machine, a dual 68030 each at 25Mhz. These numbers were measured on the Quamachine (see Section A.2) and calculated forthe NeWS. For comparison, we also list the numbers from V.0 [8] under the column \SynthesisV.0". Those numbers are scaled by 16=25 to make up for the di�erent clock rate of the machine(a SUN-3/260) on which they were obtained.Context-switch has become a little slower because now we schedule from multiple run queues,and because there are some extra synchronization that was not necessary in the previous, single-CPU version. in addition, the oating-point number is slower because the Sony machine has thenew 68882 oating-point coprocessor with more state information to save and restore.Version V.1 of Synthesis supports virtual memory, while V.0 did not. The numbers inTable 2 is the scheduling and context-switch time including loading the memory managementunit's translation table pointer and ushing the translation cache. Extra time is then used upto �ll the translation cache. This is the \+1:5 � TLB fill" time. Depending on the thread'slocality of reference, this can be as low as 4:8 microseconds for 3 pages (code, global data, andstack) to as high as 35 microseconds to �ll the entire TLB cache.Table 3 shows how the cost of other thread operations have been a�ected with the additionof multiprocessor support and virtual memory. Thread create is signi�cantly faster because ofthe copy-on-write optimization. The other thread operations are somewhat slower because ofthe multiprocessor synchonization. Thread suspend, destroy, and signal have been split intotwo parts: the part done by the requestor and the part done by the dispatcher. The time forthese are given in the form \XX + XX", the �rst number is the time taken by the requestor,the second number is the time taken by the dispatcer. Thread resume has two cases, the casewhere the thread had been stopped but the scheduler had not removed it from the run queueyet, shown by the �rst number, and the case where it was removed from the run queue and mustbe re-inserted, shown by the second number.5 Virtual Memory5.1 Memory Model and InterfaceWe use the term address space to refer to the total amount of memory a CPU can directlyaddress. So an address space on the 68030 means 4GBytes that 32-bit registers can refer to.The 68030 page table has two protection bits per page, SUPERVISOR and READ-ONLY.11



Thread Operation Synthesis V.0 Synthesis V.1Create 95 19.2Destroy 7 2.2 + 6.1 in dispatcherSuspend 5 2.2 + 3.7 in dispatcherResume 5 3.0 if in Q; 6.6 not in QSignal 5 4.6 + 4.4 in dispatcherStep (no FP, no VM switch) 25 20Table 3: Thread operationsThe unit of protection in Synthesis is quaspace. An address space may contain many qua-spaces, but each quaspace is wholly contained in a single address space. By unit of protectionwe mean that each quaspace has a uniform view of its address space, mapped by its own copyof the page table. Each quaject resides in one quaspace.The unit of sharing in Synthesis is a segment, which is a chunk of contiguous pages. By unitof sharing we mean that whenever two quajects share memory, they must share entire segments,not parts of a segment. I.e., each quaspace may contain many segments, but each segment ispart of a single quaspace. A segment may be mapped into several quaspaces or even addressspaces, each one with its own protection setting.We reserve part of each address space for the kernel (called kernel quaspace for reasons thatwill become clear later). The size of kernel quaspace is recon�gurable at system generation time.In the current con�guration of V.1 we reserve the upper half of the address space (2GBytes).Kernel quaspace size can be reduced to 16MBytes without negative impact on system perfor-mance. We chose to make the kernel quaspace present in every address space for three reasons:1. This avoids the switching between kernel and user spaces during kernel calls (Psyche [11]had this problem).2. Kernel quaspace is so small (16 MB expected) and grows so slowly (as a function of numberof processors and threads) that there is no need to allocate an entire address space.3. The kernel quaspace is similar to a user quaspace in structure and implementation.Kernel quaspace is the only quaspace with SUPERVISOR bit turned on. In other aspectsit is just another quaspace. When a new address space is created, it starts out either empty orsharing everything with the creator's current address space. Segments may be created or simplyadded.5.2 Real Memory ManagementThe real memory management component of Synthesis kernel keeps track of the real memorypages. 12



Allocate and Deallocate physical page: Free pages are linked together in a freelist. Apage is allocated by deleting the �rst one from the freelist using the previously mentioned listoperations. A page is freed by inserting it back into the head of the freelist, a linked list withinsert and delete at the list head, therefore lock-free.Allocate and Deallocate page table entries. These are done the same way as allocateand free physical pages, except we use two freelists because page map tables come in two sizes:64 entries (256 bytes) for the leaf tables and 128 entries (512 bytes) for the upper level tables. Ifeither freelist becomes empty, additional table space is obtained by allocating a physical page,splitting it into several chunks of the right size, and inserting them into the appropriate freelist.5.3 Virtual Memory ManagementSynthesis V.1 adopts a 3-level tree-structured page table, with 7-bit addresses at the �rst level,7 bits at the second level, and 6 bits at the third level for a page size of 4KBytes. Each thread'sTTE contains a pointer to its address space. By hardware constraint, each thread can onlyaccess one address space at any given time. As in other light-weight process models, manythreads may share an address space. Each address space has an address space descriptor (ASD),which contains two things: (1) the address space's page table and (2) the linked list pointing toall the pager quajects contained in the address space.Each segment is described by a segment descriptor, which contains three things: (1) theaddress range of the segment, (2) the pager that knows about this segment, and (3) a custom-generated active pager bu�er. The pager bu�er contains the procedures that convert page I/Orequests from the kernel to the pager's (synchronous) read and write calls. It bu�ers data tomatch the system page size to the pager's optimal I/O granularity and it maintains the list theof real pages allocated to the pager.The page table is built \on demand" as references are made. At a page fault, if the addressdoes not correspond to any quaspace, no quaject is there and the thread is terminated with amemory access exception. If there is a quaject at that address, the quaject's pager is expectedto supply the physical content of the page. The pager handles three cases:1. The access to the address is prohibited. This is shown by the page table entry. In thiscase we send a memory access exception signal to the thread.2. The page continuing the faulted address is in real memory bu�er but missing from thepage table. In this case it �lls the page table and returns from the interrupt.3. The page is not in real memory. The active bu�er allocates a new page frame, calculatesthe page address on disk, and calls the pager to read in the page from disk. Then do theitem 2.Add mapping to address space. This function installs new virtual-to-physical mappingsinto an address space's page table. It begins by traversing the page tables to �nd the leaf tablewhere the new mapping is to be placed. A null table pointer at any point in the traversal meansthat that part of the mapping tree is not yet allocated. When that happens, we allocate anew table, mark all its entries invalid, and store the its address into the previous level's tablepointer. Compare-and-Swap ensures that no other thread has already allocated a new tablefor that entry. If one had, we simply free our table. After the leaf table has been located, thevirtual to physical mapping is stored using Compare-and-Swap, testing against null. If this fails,it means that a mapping already exists, so we test that it is identical to the one we're adding.Di�erent mappings imply a programming error, since a logical address can map to at most onephysical address, so we destroy the address space, which then terminates all threads within it.Mark page invalid. Similar to the above, except that an invalid descriptor is stored in theleaf table, replacing the previous mapping. 13



Operation Time (in microseconds)Allocate page (pre-zeroed) 2.4Allocate page (needs zeroing) 152Allocate page (none free; replace) 152 + time to replaceZero-�ll a page (4 Kbytes) 148Free page 1.6Memory Access Exception 13.6Table 4: Low-level Memory Operation OverheadFinding custom pager. This procedure is called from the memory-fault handler to discoverwhich pager will supply the missing page. It begins by traversing the page table to obtain thepage descriptor for the faulted address. The page descriptor usually contains a hint pointing tothe pager. We check the hint, and if it matches, we are done. Otherwise, we traverse the addressspace's directory { a linked list representing a set of pager pointers and the virtual-address rangethat they map to.Page fault. Page faults are synchronous, which simpli�es synchronization for handlingthem, since each thread handles its own page faults. First determine the fault address andthe type of fault (e.g., invalid translation, write to read-only page) by examining the memorymanagement unit status register and the CPU exception stack frame. Then �nd which quajectcorresponds with the faulted address using the previous procedure. Next, call the quaject'scustom-generated VM interface procedure, passing it the memory o�set and type of fault. Thiscode invokes procedures within the quaject to perform page I/O operations, and when �nished,calls the previously-described \Add mapping" function and returns, causing the faulted accessto be retried.No other synchronization is necessary because each thread executes its own fault handlerand the quaject's pager performs its own paging I/O. I/O waits invoke thread-suspend as usual,preventing the thread from executing until its page arrives. Deadlock is not possible since ablocked thread cannot page-fault.5.4 Memory Management OverheadTable 4 contains the numbers of basic memory management operations calculated for theSony machine. The page zeroing is implemented with the MC68030 multiple register saveinstruction (13 words at a time), which is faster than bcopy.6 Input/OutputWe describe two examples of I/O subsystems in V.1 to illustrate the lock-free synchroniza-tion used in I/O. Although the primary reason for e�ciency in I/O processing is kernel codesynthesis [10]. 14



Quaject Create (microseconds) Write (microseconds)TTY-Cooker 27 2.3 + 2.1 per charVT-100 terminal emulator 532 14.2 + 1.3 per charText window 71 23.9 + 27.7 per charTable 5: Selected Window System operations6.1 Terminal and DisplayA terminal window is a pipeline composed of primarily three quajects: a TTY-Cooker, a VT-100 Terminal Emulator, and a Text-Window. Each quaject has a �xed cost of invocation anda per-character cost that varies as a function of the character being processed. These costs aresummarized in Table 5. The invocation cost occurs each time the quaject is called, independentof the number of chars, and is given by the column of the same name. The per-character costsare the average cost summed over the characters in /etc/termcap.The sum of the total time for the three quajects exceeds the wall-clock time actually observed.This unexpected result happens because Synthesis kernel can optimize the data ow, resultingin fewer calls and less actual work than from a straight concatenation of the three quajects.For example, in a fast window system like Synthesis, many characters may be scrolled o� thescreen between the consecutive vertical scans of the monitor. Therefore the window managerbypasses the drawing of those characters by sampling the content of the virtual VT100 screen60 times a second and drawing the parts of the screen that have changed. The VT-100 emulatorstill has to parse each character and maintain the virtual screen. But this is much faster thanupdating the framebu�er because we store the characters as ascii codes rather than as bitmapsand use pointers to speed scrolling. The TTY-Cooker is a �nite-state machine that convertsediting commands such as escape characters and newline.The terminal driver receives the interrupts and passes the characters to the TTY-Cooker,which calls the VT-100 emulator through synchronous co-routine calls. The VT-100 emulatormaintains an internal bu�er (the virtual screen) that is shared with the Text-Window. In awindow system, there is no problem with Text-Window sharing the virtual screen with the VT-100 emulator, since it is OK to show partial updates of a window. Synthesis guarantees that ascreen update is reected in a window within two vertical scans after the application's putcharis �nished.6.2 File SystemThe �le system is also a pipeline of several quajects. At the bottom is the disk driver, whichsends data to File-Mapper. File-Mapper translates a logical array into disk cylinders and sectorsto supply the disk driver with appropriate hardware commands. File-Mapper stores data in aFile-Bu�er, which implements Unix-style �le I/O at the same abstract level of Unix read, writeand seek system calls. At the top is the File-System quaject, which synthesized the actual kernelcall code in an open file. Synchronous communications (between driver and File-Mapper) arethrough co-routines and asynchronous communications (between File-Bu�er and File-Mapperor File-System) through lock-free queues.Although the hard disk driver has not been �nished at the time of this writing, we have a15



ramdisk driver. All the virtual memory management development and debugging, including themeasurements, are done by connecting the pagers to a �le system using the ramdisk driver. Theramdisk is independent of architecture (works on both the Sony machine and Quamachine) andfully debugged.7 Related WorkSynthesis V.1 kernel di�ers from production multiprocessor OS kernels such asMach [3], Topaz [13],and Psyche [11] in being lock-free. All the synchronization problems in a shared-memory mul-tiprocessor are solved using lock-free synchronization methods based on Compare-and-Swap. Asmall number of lock-free objects such as packed ags, stacks, FIFO queues and linked listsconnect all of Synthesis kernel components. To the best of our knowledge, this has not beenattempted even in experimental multiprocessor OS kernels such as Elmwood [7].From the lock-free data structure point of view, our work is most close related to that of NYUUltracomputer by Hummel [6, 14] and IBM RP3 [5]. Even though the algorithms are not exactlythe same, in particular due to our use of double-word Compare-and-Swap, the objectives are thesame { applying lock-free synchronization to increase concurrency and decrease overhead. Theyhave described practical and useful solutions for particular concurrent data structures in thecontext of scheduling. Another paper describing concurrent access to queues is by Stone [12],who used Compare-and-Double-Swap involving two double words. In contrast, Synthesis useof lock-free synchronization is much more general since we have applied these techniques toimplement an entire OS kernel.Anderson et al. [2] have argued that kernel implementation of threads are necessarily moreexpensive than user-level thread management systems. Our implementation shows that withkernel code synthesis, kernel-level threads may be as e�cient as user-level threads even in amultiprocessor kernel with full funcionality.8 ConclusionWe have used only lock-free synchronization techniques used in the implementation of SynthesisV.1 mutiprocessor kernel on a dual-68030 Sony NeWS workstation. This is in contrast toother implementations of multiprocessor kernels that use interlocking. Locking synchronizationmethods such as disabling interrupts, spin-locking, and waiting semaphores have many problems.Semaphores carry high management overhead and spin-locks may waste signi�cant amount ofCPU. (A typical argument for spin-locks is that the processor would be idle otherwise. Thismay not apply for synchronization inside the kernel.) A completely lock-free implementationof a multiprocessor kernel demonstrate that we can reduce synchronization overhead, increaseconcurrency, avoid deadlocks, and eliminate priority inversion.We achieved this completely lock-free implementation with a careful kernel design. First wereduced the kind of data structures used in the kernel to a few simple abstract data types such asLIFO stacks, FIFO queues, and linked lists. Then, we restricted the uses of these abstract datatypes to a small number of safe interactions. Finally we implemented e�cient special-purposeinstances of these abstract data types using single word and double word Compare-and-Swap.The V.1 kernel is a fully functional kernel supporting threads, virtual memory, and I/O devicessuch as window systems and �le systems. The measured numbers show the very high e�ciencyof the implementation, competitive with user-level thread management systems.We learned two lessons from this experience. First, a lock-free implementation is a viableand desirable alternative to the development of shared-memory multiprocessor kernels. Up tonow, the usual strategy is to evolve a single-processor OS kernel to a multiprocessor kernel by16



surrounding critical sections with locks carries some performance penalty and potentially limitsthe system concurrency. One way to alleviate the lock overhead is to provide hardware locksupport,3 but this does not alleviate the concurrency bottleneck. Second, single and doubleword Compare-and-Swap are important for lock-free shared-memory multiprocessor OS kernels.RISC architectures that do not support these instructions will force the OS implementors touse locks, since e�cient emulations of Compare-and-Swap by weaker operations in Herlihy'shierarchy (e.g., Swap in SPARC) are an open research problem.A Architectural SupportA.1 De�nition of Compare-and-SwapSingle word Compare-and-Swap (CAS) and double word Compare-and-Swap (CAS2) are de-�ned here. These are particular cases of the Read-Modify-Write family of operations. Typicalhardware implementations of these operations (in machine instructions) lock the memory busor some other unique hardware resource to guarantee memory access atomicity for the durationof the instruction.CAS(compare,update,mem_addr){ if(*mem_addr == compare) {*mem_addr = update;return SUCCEED;} elsereturn FAIL;}CAS2(compare1,compare2,update2,update2,mem_addr1,mem_addr2){ if(*mem_addr1 == compare1 && *mem_addr2 == compare2) {*mem_addr1 = update1;*mem_addr2 = update2;return SUCCEED;} elsereturn FAIL;}A.2 Hardware Measurement ToolsAlthough Synthesis V.1 has been implemented and debugged on the Sony NeWS workstation, themeasurements described in this paper have been made on the Quamachine with special hardwaresupport. The numbers reported in Tables 1, 3, and 2, for example, are calculated from a directmeasurement of the number of machine cycles it took to run the respective programs. The mainadvantage of counting machine cycles directly is the avoidance of spurious code when doing themeasurements in software. Another reason is the relative independence of these numbers withrespect to architectural di�erences.The Quamachine has a MC68030 CPU (converted from 68020 since the last SOSP [8]), 2.5MB no-wait state main memory, 390 MB hard disk, 312 inch oppy drive. The Quamachine isdesigned and instrumented to aid systems research. The basis of such support is a Programmable3Stratus and SGI are reported to provide inexpensive hardware support for locks.17



Gate Array (PGA) on board. The 128-pin PGA is a �nite-state machine with several functions.First, the PGA is responsible for generating all the I/O interrupts for the CPU. Each I/O deviceconnects its interrupt line to a PGA pin, and the PGA translates it to the appropriate 68030interrupt format for that device. This substitute for an \interrupt controller" chip. Second, thePGA is capable of performing DMA on request from devices without DMA capability. Third,the PGA arbitrates memory bus accesses between the CPU, the disk controller DMA, and itself.Fourth, the PGA monitors the memory bus to map certain memory locations to I/O requests,including the system clock. Since the PGA is programmable, old functions may be enhanced ornew functions may be introduced as necessary or convenient.To measure the number of cycles of a program fragment, we use a stopwatch in the PGA.Since the PGA generates all I/O interrupts, it also implements the system clock. A 50 MHzcrystal generates a pulse every 20 nanoseconds, which is fed into the PGA to increment a 64-bitcounter. The time-of-day clock is a register holding a copy of this counter. The time-of-dayclock is mapped to a privileged memory location, monitored by the PGA. When the \clockaddress" is referenced, time-of-day register is updated. Similarly, we have two additional 64-bitmemory-mapped registers capable of storing the current time (content of the crystal impulsecounter), called start-time clock and stop-time clock for convenience.When we start a measurement, we store the starting timestamp in the start-time clock andwe store the �nishing timestamp in the stop-time clock. Subtracting one from the other wehave an interval timer of 20 nanosecond resolution, with each tick corresponding to one machinecycle.All the measurements were taken with the caches turned o�. We turned o� the on-chipcache because kernel calls typically are not expected to remain in cache, assuming that theuser threads actually do some useful work. The lack of an on-board cache in the Quamachinealso means that we are not considering the e�ect of on-board cache in the Sony machine. Thismakes our numbers an overestimate of overhead, which is on the safe side. In any case, dueto the preference of using registers instead of memory accesses in the V.1 kernel, turning onthe Sony on-board cache seems to improve the kernel performance by only a few percent. Themain memory cycle runs at 100 nanosecond with 1 wait state on both the Sony machine andthe Quamachine.The measurements are done by loading the V.1 kernel code into the Quamachine, runningit, and taking the timestamps to �nd out what is the number of cycles it takes to execute. Ifthere are several executions paths we run the program a number of times to check the variance.References[1] T.E. Anderson. The performance of spin lock alternatives for shared-memory multiproces-sors. IEEE Transactions on Parallel and Distributed Systems, 1(1):6{16, January 1990.[2] T.E. Anderson, B.N. Bershad, E.D. Lazowska, and H.M. Levey. Scheduler activations:E�ective kernel support for the user-level management of parallelism. Technical Report90-04-02, Department of Computer Science, University of Washington, April 1990.[3] D.L. Black. Scheduling support for concurrency and parallelism in the Mach operatingsystem. IEEE Computer, 23(5):35{43, May 1990.[4] P.M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languagesand Systems, 13(1), January 1991. To appear.18



[5] S. F. Hummel and E Schonberg. Low-overhead scheduling of nested parallelism. TechnicalReport RC 16424, T.J. Watson Research Center, IBM Research Division, 1990.[6] Susan Flynn Hummel. SMARTS { Shared-memory Multiprocessor Ada Run-Time Supervi-sor. PhD thesis, Department of Computer Science, New York University, 1988.[7] T.J. LeBlanc, J.M. Mellor-Crummey, N.M. Gafter, L.A. Crowl, and P.C. Dibble. The elm-wood multiprocessor operating system. Software { Practice and Experience, 19(11):1039{1055, November 1989.[8] H. Massalin and C. Pu. Threads and input/output in the Synthesis kernel. In Proceed-ings of the Twelfth Symposium on Operating Systems Principles, pages 191{201, Arizona,December 1989.[9] H. Massalin and C. Pu. Fine-grain adaptive scheduling using feedback. Computing Sys-tems, 3(1):139{173, Winter 1990. Special Issue on selected papers from the Workshop onExperiences in Building Distributed Systems, Florida, October 1989.[10] C. Pu, H. Massalin, and J. Ioannidis. The Synthesis kernel. Computing Systems, 1(1):11{32,Winter 1988.[11] M.L. Scott, T.J. LeBlanc, B.D. Marsh, T.G. Becker, C. Dubnicki, E.P. Markatos, andN.G. Smithline. Implementation issues for the Psyche multiprocessor operating system.Computing Systems, 3(1):101{138, Winter 1990.[12] J.M. Stone. Managing a shared FIFO queue with Compare-and-Swap. In Proceedings ofthe 1990 Supercomputing Conference. ACM, 1990.[13] C.P. Thacker, L.C. Stewart, and E.H. Satterthwaite, Jr. Firey: A multiprocessor work-station. IEEE Transactions on Computers, C-37(8):909{920, August 1988.[14] James M. Wilson. Operating System Data Structures for Shared-Memory MIMD Machineswith Fetch-and-Add. PhD thesis, Department of Computer Science, New York University,1988.
19


