Journal of Artificial Intelligence Research 16 (2002) 209-257 Submitted 5/01; published 4/02

Structured Kno wledge Representation for Image Retriev al

Eugenio Di Sciascio disciascio@poliba.it
Francesco M. Donini donini@poliba.it
Marina Mongiello mongiello@poliba.it

Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari
Via Re David, 200{ 70125BARI Italy

Abstract

We proposea structured approad to the problem of retrieval of imagesby corntent and
preser a description logic that hasbeendevisedfor the semariic indexing and retrieval of
imagescontaining complex objects.

As other approacesdo, we start from low-level features extracted with image analysis
to detect and characterizeregionsin an image. Howewer, in cortrast with feature-basedap-
proaches, we provide a syntax to describe segmemed regionsas basic objects and complex
objects as compositions of basic ones. Then we intro duce a companion extensional seman-
tics for de ning reasoningservices,suc asretrieval, classi cation, and subsumption. These
servicescan be usedfor both exact and approximate matching, using similarity measures.

Using our logical approac asa formal speci cation, we implemented a complete client-
sener imageretrieval system,which allows a userto poseboth queriesby sketch and queries
by example. A set of experiments hasbeencarried out on a testbed of imagesto assesshe
retrieval capabilities of the system in comparisonwith expert usersranking. Results are
presened adopting a well-establishedmeasureof quality borrowed from textual information
retrieval.

1. Intro duction

Image retrieval is the problem of selecting, from a repository of images,those imagesful-
Tling to the maximum extent some criterion speci ed by an end user. In this paper, we
concernrate on content-based image retrieval, in which criteria expressproperties of the
appearanceof the imageitself, i.e., on its pictorial characteristics.

Most of the researt in this eld hastill now concerrated in devisingsuitable techniques
for extracting relevant cueswith the aid of imageanalysisalgorithms. Current systemsresult
e®ective when the speci ed properties are so-called low-level characteristics, such as color
distribution, or texture. For example, systemssud as IBM's QBIC! can easily retrieve,
among others, stamps containing the picture of a brown horsein a green eld, when asked
to retrieve imagesof stamps with brown certral areaover a greenishbadground.

Nevertheless, presen systemsfail at treating correctly high-level characteristics of an
image| such as,\retriev e stampswith a galloping horse". First of all, most systemscannot
even allow the userto specify such queries,becausehey lack a languagefor expressinghigh-
level features. Usually, this is overcomewith the help of examples:\retriev e imagessimilar
to this one". However, examplesare quite ambiguous to interpret: which are the features

1. See e.g., http://wwwgbic.almaden.ibm.com/cgi-bin/stamps-demo
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in the example that should appear in retrieved images? This ambiguity producesa lot of
\false positives", asany one can experience.

Evenif relevant featuresare pointed out in the example,the systemcannot tell whether
what is pointed out is the color distribution, or its interpretation | after all, a galloping
brown horseproducesa color distribution which is more similar to a running brown fox than
to a galloping white horse. In this aspect, image retrieval facesthe sameproblems of object
recognition, which is a certral problem in robotics and arti cial vision. The only e®ectie
solution overcomingthis problem is to assaiate to a query somesigni cant keywords, which
should match keywords attached in someway to imagesin the repository. Here ambiguities
in image understanding are just transferred to text understanding, asnow a brown portrait
of Crazy Horse| the famousindian chief| could be consideredrelevant.

Resorting to human experts to specify the expected output of a retrieval algorithm can,
in our opinion, only worsentheseambiguities, sinceit makesthe correctnessof an approact
to depend from a subjective perception of what an image retrieval systemshould do. What
is neededis a formal, high-level speci cation of the imageretrieval task. This needmotivates
the researt we report here.

1.1 Contributions of the Paper

We approad the problem of image retrieval from a knowledge represertation perspective,
and in particular, we refer to a framework already successfullyapplied by Woods and
Scmolze (1992) to conceptualmodeling and semartic data modelsin databaseg(Calvanese,
Lenzerini, & Nardi, 1998). We consider image retrieval as a knowledge represenation
problem, in which we can distinguish the following aspects:

Interface: the useris givenasimplevisual languageto specify (by sketch or by example)
a geometric composition of basic shapes, which we call description. The composite shape
description intuitiv ely stands for a set of images (all cortaining the given shapesin their
relative positions); it can be used either as a query, or as an index for a relevant class of
images,to be given somemeaningful name.

Syntax and semantics: the system has an internal syntax to represen the user's
gueriesand descriptions, and the syntax is given an extensional semarics in terms of sets
of retrievable images. In contrast with existing image retrieval systems, our semartics is
compositional, in the sensethat adding details to the sketch may only restrict the set of
retrievable images. Syntax and semariics constitute a Semaric Data Model, in which the
relative position, orientation and size of eat shape componert are given an explicit no-
tation through a geometric transformation. The extensional semariics allows us to de ne
a hierarchy of composite shape descriptions, basedon set containment between interpre-
tations of descriptions. Cohererily, the recognition of a shape description in an image is
de ned as an interpretation satisfying the description.

Algorithms and complexit y: basedon the semartics, we prove that subsumption
betweendescriptions can be carried out in terms of recognition. Then we deviseexact and
approximate algorithms for composite shapesrecognition in animage, which are correct with
respect to the semarics. ldeally, if the computational complexity of the problem of retrieval
was known, the algorithms should also be optimal with referenceto the computational
complexity of the problems. Presenly, we solved the problem for exact retrieval, and

210



Str uctured Kno wledge Represent ation for Image Retriev al

propose an algorithm for approximate retrieval which, although probably non-optimal, is
correct.

Exp erimen ts: while the study of the complexity of the problem is ongoing, the syntax,
semarics, and sub-optimal algorithms obtained so far are already sutcient to provide the
formal speci cation of a prototype systemfor the experimental veri cation of our approad.
The prototype hasbeenusedto carry out a set of experimerts on a test databaseof images,
which allowed us to verify the e®ectivenessof the proposedapproad in comparison with
expert usersranking.

We believe that a knowledgerepresenation approad brings seweral bene ts to researt
in imageretrieval. First of all, it separatesthe problem of nding an intuitiv e semartics for
guery languagesin image retrieval from the problem of implementing a correct algorithm
for a given semariics. Secondly oncethe problem of imageretrieval is semariically formal-
ized, results and techniques from Computational Geometry can be exploited in assessing
the computational complexity of the formalized retrieval problem, and in devising etcient
algorithms, mostly for the approzimate image retrieval problem. This is very much in the
samespirit as nite model theory hasbeenusedin the study of complexity of query answer-
ing for relational databases(Chandra & Harel, 1980). Third, our languageborrows from
object modeling in Computer Graphics the hierarchical organization of classesof images
(Foley, van Dam, Feiner, & Hughes,1996). This, in addition to an interpretation of compos-
ite shapeswhich one can immediately visualize, opens our logical approad to retrieval of
imagesof 3D-objects constructed in a geometriclanguage(Paquet & Rioux, 1998), which is
still to be explored. Fourth, our logical formalization, although simple, allows for extensions
which are natural in logic, suc as disjunction (OR) of componerts. Although alternative
componerts of a complex shape are dixcult to be showvn in a sketch, they could be used
to specify moving (i.e., non-rigid) parts of a composite shape. This exempli es how our
logical approach can shedlight to extensionsof our syntax suitable for, e.g., video sequence
retrieval.

1.2 Outline of the Paper

The rest of the paper is organized as follows. In the next section, we review related work
on image retrieval. In Section 3 we describe our formal language, rst its syntax, then its
semartics, and we start proving somebasic properties. In the following section, we analyze
the reasoningproblems and the semartic relations amongthem, and we devise algorithms
that can solve them. Then in Section 5 we illustrate the architecture of our system and
propose someexamplespointing out distinguishing aspects of our approad. In Section 6
we preser a set of experiments to assesgetrieval capabilities of the system. Last section
draws the conclusionsand proposesdirections for future work.

2. Related Work
Content-Based Image Retrieval (CBIR) hasrecertly becomea widely investigated researd

area. Sewral systemsand approades have been proposed; here we brie°y report on some
signi cant examplesand categorizethem in three main researd directions.
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2.1 Feature-based Approac hes

Largest part of researd on CBIR has focusedon low-level features sudch as color, texture,
shape, which can be extracted using image processingalgorithms and usedto characterize
an image in some feature spacefor subsequen indexing and similarity retrieval. In this
way the problem of retrieving imageswith homogeneouscontent is substituted with the
problem of retrieving imagesvisually closeto a target one (Hirata & Kato, 1992; Niblak
et al., 1993; Picard & Kabir, 1993; Jacobs, Finkelstein, & Salesin, 1995; Flickner et al.,
1995;Bach, Fuller, Gupta, Hampapur, Horowitz, Humphrey, Jain, & Shu, 1996; Celertano
& Di Sciascio,1998;Cox, Miller, Minka, & Papathomas, 2000; Gevers & Smeulders,2000).

Among the various projects, particularly interesting is the QBIC system (Niblak et al.,
1993; Flickner et al., 1995), often cited as the ancestor of all other CBIR systems, which
allows queriesto be performed on shape, texture, color, by exampleand by sketch using as
target media both imagesand shots within videos. The systemis currently embeddedasa
tool in a commercial product, ULTIMEDIA MANAGER. Later versionshave introduced an
automated foreground/background segmeiation scheme. Here the indexing of an imageis
made on the principal shape, with the aid of someheuristics. This is an evidert limitation:
most imagesdo not have a main shape, and objects are often composedof various parts.

Other researters, rather than concenrating on a main shape, which is typically as-
sumedlocated in the certral part of the picture, have proposedto index regionsin images;
so that the focus is not on retrieval of similar images, but of similar regions within an
image. Examples of this idea are VISUALSEEK (Smith & Chang, 1996), NETRA (Ma
& Manjunath, 1997) and BLoBwoRLD (Carson, Thomas, Belongie, Hellerstein, & Malik,
1999). The problem is that although all these systemsindex regions, they lack of a higher
level description of images. Hence,they are not able to describe| and hencequery for |
more than a singleregion at a time in an image.

In order to improve retrieval performances, much attention has been paid in recert
yearsto relevance feedba&. Relevancefeedba is the mechanism, widely usedin textual
information systems, which allows improving retrieval e®ectivenesshy incorporating the
userin the query-retrieval loop. Depending on the initial query the systemretrievesa set
of documerts that the usercan mark either asrelevant or irrelevant. The system, basedon
the user preferencesye nes the initial query retrieving a new set of documerts that should
be closerto the user'sinformation need.

This issueis particularly relevant in feature-basedapproacdes,ason one hand, the user
lacks of a languageto expressin a powerful way her information need, but on the other
hand, deciding whether an imageis relevant or not takesjust a glance. Examplesof systems
using relevance feedba&k include MARS (Rui, Huang, & Mehrotra, 1997), DRAWSEARCH
(Di Sciascio& Mongiello, 1999) and PicHUNTER (Cox et al., 2000).

2.2 Approac hes Based on Spatial Constrain ts

This type of approad to the problem of image retrieval concerirates on nding the simi-
larity of imagesin terms of spatial relations among objects in them. Usually the emphasis
is only on relativ e positions of objects, which are consideredas "symbolic images" or icons,
identi ed with a single point in the 2D-space. Information on the content and visual ap-
pearanceof imagesare normally neglected.
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Chang, Shi, and Yan (1983) presert the modeling of this type of imagesin terms of
2D-strings, eat of the strings accourting for the position of icons along one of the two
planar dimensions. In this approacd retrieval of imagesbasically reverts to simpler string
matching.

Gudivada and Raghavan (1995) consider the objects in a symbolic image assciated
with vertexesin a weighted graph. Edges| i.e., lines connectingthe certroids of a pair of
objects | represen the spatial relationships among the objects and are ass@iated with a
weight depending on their slope. The symbolic imageis represerted as an edgelist. Given
the edgelists of a query and a databaseimage, a similarity function computesthe degreeof
closenes$etweenthe two lists asa measureof the matching betweenthe two spatial-graphs.
The similarity measuredepends on the number of edgesand on the comparison between
the orientation and slope of edgesin the two spatial-graphs. The algorithm is robust with
respect to scaleand translation variants in the sensethat it assignsthe highest similarity to
an image that is a scaleor translation variant of the query image. An extended algorithm
includes also rotational variants of the original images.

More recent papers on the topic include those by Gudivada (1998) and by El-Kwae
and Kabuka (1999), which basically proposeextensionsof the strings approac for excient
retrieval of subsetsof icons. Gudivada (1998) de nes #R-strings, a logical represenation of
an image. Sud represertation also provides a geometry-basedapproad to iconic indexing
basedon spatial relationships betweenthe iconic objects in an image individuated by their
certroid coordinates. Translation, rotation and scalevariant imagesand the variants gener-
ated by an arbitrary composition of thesethree geometric transformations are considered.
The approad doesnot deal with object shapes, nor with other basic image features, and
considersonly the sequenceof the namesof the objects. The concatenationof the objectsis
basedon the euclideandistance of the domain objects in the image starting from a reference
point. The similarity betweena databaseand a query image is obtained through a spatial
similarity algorithm that measuresthe degreeof similarity betweena query and a database
image by comparing the similarity betweentheir §R-strings. The algorithm recognizesro-
tation, scaleand translation variants of the image and also subimages,as subsetsof the
domain objects. A constraint limiting the practical use of this approad is the assumption
that an image can contain at most one instance of ead icon or object.

El-Kw ae and Kabuka (1999) proposea further extension of the spatial-graph approad,
which includesboth the topologicaland directional constraints. The topological extensionof
the objects can be obviously useful in determining further di®erenceshetweenimagesthat
might be consideredsimilar by a directional algorithm that considersonly the locations
of objects in term of their certroids. The similarity algorithm they propose extends the
graph-matching one previously described by Gudivada and Raghavan (1995). The similarity
betweentwo imagesis basedon three factors: the number of commonobjects, the directional
and topological spatial constraint betweenthe objects. The similarity measureincludesthe
number of objects, the number of common objects and a function that determines the
topological di®erencebetweencorresponding objects pairs in the query and in the database
image. The algorithm retains the properties of the original approad, including its invariance
to scaling, rotation and translation and is also able to recognizemultiple rotation variants.
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2.3 Logic-based and Structured Approac hes

With referenceto previous work on Vision in Arti cial Intelligence, the use of structural
descriptions of objects for the recognition of their imagescan be dated badk to Minsky's
frames, and somework by Brooks (1981). The idea is to assaiate parts of an object (and
generally of a scene)to the regions an image can be segmeted into. The hierarchical
organization of knowledgeto be usedin the recognition of an object was rst proposedby
Marr (1982). Reiter and Mackworth (1989) proposeda formalism to reasonabout maps as
sketched diagrams. In their approad, the possiblerelative positions of lines are xed and
highly qualitativ e (touching, intersecting).

Structured descriptions of three-dimensional images are already presen in languages
for virtual reality like VRML (Hartman & Wernedke, 1996) or hierarchical object mod-
eling. Howewer, the semarics of such languagesis operational, and no e®ort is made to
automatically classify objects with respect to the structure of their appearance.

Meghini, Sebastiani,and Straccia (2001) proposeda formalism integrating Description
Logics and image and text retrieval, while Haarslev, Lutz, and MAeller (1998) integrate
Description Logicswith spatial reasoning. Further extensionsof the approacd are described
by Moeller, Neumann, and Wessel(1999). Both proposalsbuild on the cleanintegration of
Description Logicsand concrete domains of Baader and Hansdke (1991). Howevwer, neither
of the formalisms can be usedto build complex shapes by nesting more simple shapes.
Moreover, the proposal by Haarslev et al. (1998) is basedon the logic of spatial relations
named RCC8, which is enoughfor specifying meaningful relations in a map, but it is too
gualitativ e to specify the relative sizesand positions of regionsin a complex shape.

Also for Hacid and Rigotti (1999) description logics and concrete domains are at the
basisof a logical framework for image databasesaimed at reasoningon query containment.
Unfortunately, the proposedformalism cannot consider geometric transformations neither
determine speci ¢ arrangemeris of shapes.

More similar to our approad is the proposal by Ardizzone, Chella, and Gaglio (1997),
where parts of a complex shape are described with a description logic. However, the com-
position of shapesdoesnot considertheir positions, hencereasoningcannot take positions
into accourt.

Relative position of parts of a complex shape can be expressedn a constraint relational
calculus in the work by Bertino and Catania (1998). Howewer, reasoning about queries
(containment and emptiness)is not consideredin this approac. Aiello (2001) proposesa
multi-mo dal logic, which provides a formalism for expressingtopological properties and for
de ning a distance measureamong patterns.

Spatial relation betweenparts of medical tomographic imagesare consideredby Tagare,
Vos, Ja®e,and Duncan (1995). There, medicalimagesare formed by the intersection of the
image plane and an object. As the image plane changes,di®erern parts of the object are
considered. Besides,a metric for arrangemers is formulated by expressingarrangemeris
in terms of the Voronoi diagram of the parts. The approad is limited to medical image
databasesand doesnot provide geometrical constraints.

Compositions of parts of an image are consideredin the work by Sanfeliu and Fu
(1983) for character recognition. Howewer, in recognizing characters, line compositions
are \closed", in the sensethat onelooks for the speci ed lines, and no more. Instead in our
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framework, the shape\F" composedby three lines, is subsumedby the shape\i" | some-
thing unacceptablein recognizing characters. Apart from the di®eren task, this approac
doesnot make useof an extensional semariics for composite shapes, henceno reasoningis
possible.

A logic-basedmultimedia retrieval system was proposedby Fuhr, GAvert, and Rélleke
(1998); the method, basedon an object-oriented logic, supports aggregatedobjects but it
is oriented towards a high-level semaric indexing, which neglectslow-level features that
characterize imagesand parts of them.

In the "eld of computation theories of recognition, we mention two approachesthat have
someresenblance to our own: Biederman's structural decomposition and geometric con-
straints proposedby Uliman, both described by Edelmann (1999). Unfortunately, neither of
them appears suitable for realistic image retrieval: the structural decomposition approach
doesnot considergeometric constraints between shapes, while the approadc basedon geo-
metric constraints doesnot considerthe possibility of de ning structural decomposition of
shapes, hencereasoningon them.

Starting with the reasonableassumption that the recognition of an object in a scene
can be easedby previous knowledge on the context, in the work by Pirri and Finzi (1999),
the recognition task, or the interpretation of an image, takesadvantage of the information
a cognitive agert has about the ervironment, and by the represenation of thesedata in a
high-level formalism.

3. Syntax and Semantics

In this sectionwe preser the formalism dealing with the de nition of composite shape de-
scriptions, their sematrtics, and somepropertiesthat distinguish our approac from previous
ones.

We remark that our formalism dealswith image features, like shape, color, texture, but
is independent of the way features are extracted from actual images. For the interested
reader, the algorithms we usedto compute image features in our implementation of the
formalism are preseried in the Appendix.

3.1 Syntax

Our main syntactic objects are basic shapes, position of shapes, composite shape descrip-
tions, and transformations. We also take into accourt the other features that typically
determine the visual appearanceof an image, namely color and texture.

Basic shapes are denotedwith the letter B, and have an edgecortour e(B) characterizing
them. We assumethat e(B) is described asa single, closed2D-curve in a spacewhoseorigin
coincideswith the certroid of B. Examplesof basicshapescanbe circle, rectangle, with
the cortours e(circle) = ° , e(rectangle) = [ |, but alsoany complete, rough corntour
| e.g.,the oneof a ship| is a basic shape. To make our language compositional, we
consider only the external cortour of a region. For example, if a region is contained in
another, asin Iil the cortour of the outer region is just the external rectangle.

The possibletransformations are the simple onesthat are presert in any drawing tool:
rotation (around the certroid of the shape), scaling and translation. We globally denote a
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Figure 1: The graphical interface with a query by sketch.

rotation-translation-scaling transformation as 7. Recall that transformations can be com-
posedin sequences ... +m, and they form a mathematical group.

The basic building block of our syntax is a basic shape component he,t, 7, Bi, which
represerns a region with color ¢, texture t, and edge contour 7(e(B)). With 7(e(B)) we
denote the pointwise transformation 7 of the whole contour of B. For example, 7 could
specify to place the cortour e(B) in the upper left corner of the image, scaledby 1/2 and
rotated 45 degreesclockwise.

Composite shape descriptions are conjunctions of basic shape componerts | ead one
with its own color and texture | denoted as

C= I’tl,tl,Tl,Bli u ¢ecu rbn,tn,Tn,Bni

We do not expect end usersof our systemto actually de ne composite shapes with this
syntax; this is just the internal represenation of a composite shape. The system can
maintain it while the userdraws| with the help of a graphic tool | the complex shape by
dragging, rotating and scaling basic shapes choseneither from a palette, or from existing
images(seeFigure 1).

For example, the composite shape 1ighted-candle could be de ned as

lighted-candle = hey,t1, 71, rectanglei U heo, to, 79, circlei
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with 71, 7 placing the circle asa °ame on top of the candle, and textures and colorsde ned
accordingly to the intuition.

We remark that, to the best of our knowledge, the logic we preser is the rst one
combining shapesand explicit transformations in one language.

In a previous paper (Di Sciascio,Donini, & Mongiello, 2000) we preseried a formalism
including nestedcomposite shapes,asit is donein hierarchical object modeling (Foley et al.,
1996,Ch.7). Howewer, nestedcomposite shapescan always be °attened by composing their
transformations. Hencein this paper we focus on two levels: basic shapesand compositions
of basic shapes. Also, just to simplify the presenation of the semarics, in the following
section we do not preser color and texture features, which we take into accourt from
Section 4.2 on.

3.2 Semantics

We consider an extensional semartics, in which syntactic expressionsare interpreted as
subsetsof a domain. For our setting, the domain of interpretation is a set of images¢, and
shapesand componerts are interpreted as subsetsof ¢. Hence,also an image databaseis
a domain of interpretation, and a complex shape C is a subset of such a domain | the
imagesto be retrieved from the databasewhen C' is viewed as a query.

This approad is quite di®erer from previous logical approachesto imageretrieval that
view the image database as a set of facts, or logical assertions, e.g., the one based on
Description Logics by Meghini et al. (2001). In that setting, image retrieval amouns to
logical inference. However, obsene that usually a Domain Closure Assumption (Reiter,
1980) is made for image databases:there are no regionsbut the oneswhich can be seenin
the imagesthemseles. This allows oneto considerthe problem of imageretrieval assimple
model cheking | ched if a given structure satis es a description?.

Formally, an interpretation is a pair (I ,¢), where ¢ is a set of images,and | is a
mapping from shapesand componens to subsetsof ¢. We identify ead image I with the
setof regionsfry,...,rngit canbe segmeted into (excluding badkground, which we discuss
at the end of this section). Each region » comeswith its own edgecortour e(r). An image
I 2 ¢ belongsto the interpretation of a basic shape componert hr, BiZ if I corntains a
region whosecontour matchesr(e(B)). In formulae,

hr,BiZ=fI2¢ j9r2 I:e(r)= 1(e(B))g 1)

The above de nition is only for exact recognition of shape componerts in images, due to
the presenceof strict equality in the comparison of contours; but it can be extended to
approximate recognition asfollows. Recallthat the characteristic function fs of asetSisa
function whosevalue is either 1 or 0; fs(x) = 1if x 2 S, fs(x) = 0 otherwise. We consider
now the characteristic function of the set de ned in Formula (1). Let I be an image;if I
belongsto hr, BiZ, then the characteristic function computed on I has value 1, otherwise
it hasvalue 0. To keepthe number of symbols low, we usethe expressionhr, BiZ also to

2. Obviously, a Domain Closure Assumption on regions is not valid in artificial vision, dealing with two-
dimensional images of three-dimensional shapes (and scenes), because solid shapes have surfaces that
will be hidden in their images. But this is outside the scope of our retrieval problem.
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denote the characteristic function (with an argumert (I) to distinguish it from the set).

1w L if 92 I:e(r) = 7(e(B))

hr, Bi7(1) = 0 otherwise

Now we reformulate this function in order to make it return areal number in the range[0, 1]
| asusualin fuzzy logic (Zadeh, 1965). Let sim(¢ @ be a similarity measurefrom pairs of
contours into the range [0, 1] of real numbers (where 1 is perfect matching). We usesim(¢ ¢
instead of equality to compare edgecontours. Moreover, the existertial quanti cation can
be replacedby a maximum over all possibleregionsin I. Then, the characteristic function
for the approximate recognition in an image I of a basic componer, is:

hr, BiZ(I) = rpea}xf sim(e(r), 7(e(B))) g

Note that sim dependson translations, rotation and scaling, sincewe are looking for regions
in I whosecorntour matchese(B), with referenceto the position and size speci ed by 7.

The interpretation of basic shapes, instead, includes a translation-rotation-scaling in-
variant recognition, which is commonly usedin single-shape Image Retrieval. We de ne the
interpretation of a basic shape as

Bf=f12¢ j979r2 I:e(r) = 7(e(B))g
and its approximate counterpart asthe function
BI(I) = max maxf sim(e(r), 7(e(B))) g
4 re

The maximization over all possibletransformations max, can be e®ectiely computed by
using a similarity measuresimss that is invariant with referenceto translation-rotation-

scaling (see Section 4.2). Similarity of color and texture will be added as a weighted sum
in Section4.2. In this way, a basic shape B can be usedas a query to retrieve all images
from ¢ which are in BZ. Therefore, our approach generalizesthe more usual approaces
for single-shaye retrieval, suc as Blobworld (Carson et al., 1999).

Composite shape descriptions are interpreted as sets of imagesthat contain all com-
ponerts of the composite shape. Componerts can be anywhere in the image, as long as
they are in the described arrangemert relative to eat other. Let C' be a composite shape
description hry, B1i u ¢¢¢u hryy, Bni. In exact matching, the interpretation is the intersection
of the setsinterpreting ead componert of the shape:

CT=f12¢ jor: 12\ hr+7),Bilg 2)

Obserwe that we require all shape componerts of C' to be transformed into image regions
using the sametransformation . This presenesthe arrangemen of the shape componerts
relative to ead other | given by ead 7 | while allowing C* to include every image
containing a group of regionsin the right arrangemen, wholly displacedby .

To clarify this formula, considerFigure 2: the shape C is composedby two basic shapes
By and B,, suitably arranged by the transformations = and 7». Suppose now that ¢
contains the image I. Then, I 2 C? becausethere exists the transformation 7, which
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Figure 2: An example of application of Formula (2).

globally brings C' into I, that is, 7 £ 7, brings the rectangle B; into a rectangle recognized
in I, and T = 5 brings the circle Bs into a circle recognizedin I, both arranged according
to C. Note that I could cortain also other shapes, not included in C.

We can now formally de ne the recognition of a shape in an image.

De nition 1 (Recognition) A shape description C is recognizedin an image I if for
every interpretation (I ,¢) such that I 2 ¢, it is I 2 CT. An interpretation (1 ,¢) satis es
a composite shape description C' if there exists an image I 2 ¢ such that C is recognized in
I. A composite shape description is satis able if there exists an interpretation satisfying it.

Obsenwethat shape descriptionscould be unsatis able: if two componerts de ne overlapping
regions, no image can be segmetred in a way that satis es both componerts. Of course,if
composite shape descriptions are built using a graphical tool, unsatis abilit y can be easily
avoided, sowe assumethat descriptions are always satis able. Anyway, unsatis able shape
descriptions could be easily detected, from their syntactic form, since unsatis abilit y can
only arise becauseof overlapping regions (seePropaosition 4).

Obsene also that our set-basedsemartics implies the intuitiv e interpretation of con-
junction \u" | onecould easily prove that u is commutativ e and idempotent.

For approximate matching, we modify de nition (2), following the fuzzy interpretation
of u as minimum, and existertial as maximum:

C*(1) = max fmin fh(r £n), Bi*(1)gg 3)
é i=

Obsere that our interpretation of composite shape descriptions strictly requiresthe pres-
enceof all componerts. In fact, the measureby which an image I belongsto the interpreta-
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tion of a composite shape description C7 is dominated by the least similar shape componert
(the onewith the minimum similarity). Hence,if a basicshape componert is very dissimilar
from every regionin I, this brings nearto 0% alsothe measureof CZ(I). This is more strict
than, e.g., Gudivada & Raghavan's (1995) or El-Kwae & Kabuka's (1999) approades, in
which a non-appearing componert can decreasethe similarity value of CZ(I), but I canbe
still above a threshold.

Although this requiremert may seema strict one, it capturesthe way details are used
to re ne a query: the \dominant" shapesare used rst, and, if the retrieved set s still too
large, the user adds details to restrict the results. In this re nement process,it should not
happen that other imagesthat match only somenew details, \p op up" enlarging the set of
results that the user was trying to restrict. We formalize this re nement processthrough
the following de nition.

Prop osition 1 (Downward re nemen t) Let C be a composite shape description, and
let D be a refinement of C, that is D = C u hr', B'i. For every interpretation | , if shapes

are interpreted as in (2), then DT W CZ; if shapes are interpreted as in (3), then for every
image I it holds D*(I) - C*(I).

Proof. For (2), the claim follows from the fact that D? considersan intersection of the same
componerts as the one of CZ, plus the set W +7'), BiZ. For (3), the claim analogously
follows from the fact that DZ(I) computesa minimum over a supersetof the valuesconsid-
ered for CZ(1). -

The above property makesour languagefully compositional. Namely, let C' be a com-
posite shape description; we can considerthe meaningof C | whenusedasa query| as
the set of imagesthat can be potentially retrieved using C. At least, this will be the mean-
ing perceived by an end user of a system. Downward re nement ensuresthat the meaning
of C can be obtained by starting with one componert, and then progressiwely adding other
componerts in any order. We remark that for other frameworks cited above (Gudivada &
Raghavan, 1995; EI-Kw ae & Kabuka, 1999) this property doesnot hold. We illustrate the
problem in Figure 3. Starting with shape description C, we may retrieve (among many
others) the two images I, I», for which both C*(I;) and C%(I,) are above a threshold ¢,
while another image I3 is not in the set becauseC”?(I3) < t. In order to be more selec-
tive, we try adding details, and we obtain the shape description D. Using D, we may still
retrieve I,, and discard I;. Howewer, Is now partially matchesthe new details of D. If
Downward re nement holds, D*(I3) - C%(I3) < t, and I3 cannot \p op up". In cortrast,
if Downward re nement doesnot hold (as in Gudivada & Raghavan's approad) it can be
DI(I3) >t > C*(I3) becausematched details in D raise the similarity sum weighted over
all componerts. In this case,the meaning of a sketch cannot be de ned in terms of its
componerts.

Downward re nement is a property linking syntax to semartics. Thanks to the exten-
sional semariics, it can be extendedto an even more meaningful semartic relation, namely,

3. Not exactly 0, since every shape matches every other one with a very low similarity measure. Similarity
is often computed as the inverse of a distance. Similarity 0 would correspond to infinite distance.
Nevertheless, the recognition algorithm can force the similarity to 0 when it is below a threshold.

220



Str uctured Kno wledge Represent ation for Image Retriev al

Figure 3: Downward re nement: the thin arrows denote non-zerosimilarity in approximate
recognition. The thick arrow denotesa re nement.
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_ 7~

Figure 4: An example of subsumption hierarchy of shapes (thick arrows), and imagesin
which the shapescan be recognized(thin arrows).

subsumption. We borrow this de nition from Description Logics (Donini, Lenzerini, Nardi,
& Sdaerf, 1996), and its fuzzy extensions(Yen, 1991; Straccia, 2001).

De nition 2 (Subsumption) A description C subsumesa description D if for every
interpretation | , DT w CT. If (8) is used, C subsumes D if for every interpretation | and
image I 2 ¢, it is DT(I) - C*(I).

Subsumptiontakesinto accourt the fact that a description might contain a syntactic variant

of another, without both the user and the system explicitly knowing this fact. The notion

of subsumption extendsdownward re nement. It enablesalso a hierarchy of shape descrip-
tions, in which a description D is below another C if D is subsumedby C. When C and

D are usedas queries, the subsumption hierarchy makeseasyto detect query containment.

Containment can be usedto speedup retrieval: all imagesretrieved using D asa query can
be immediately retrieved alsowhen C' is usedas a query, without recomputing similarities.

While query cortainment is important in standard databases(Ullman, 1988), it becomes
even more important in an image retrieval setting, sincethe recognition of speci ¢ features
in an image can be computationally demanding.

Figure 4 illustrates an example of subsumption hierarchy of basic and composite shapes
(thick arrows denote a subsumption betweenshapes), and two imagesin which shapescan
be recognized(thin arrows).

Although we did not considera background, it could be added to our framework as a
special basic componert ke, ¢, ,backgroundi with the property that a region b satis es the
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badkground simply if their colors and textures match, with no chedk on the edgecontours.
Also, more than one badkground could be added; in that casebadground regions should
not overlap, and the matching of badkground regionsshould be consideredafter the regions
of all the basic shapesrecognizedare subtracted to the badkground regions.

4. Reasoning and Retriev al

We ervisageseweral reasoningservicesthat can be carried out in a logic for imageretrieval:

1. shape recognition: Given an image I and a shape description D, decideif D is recog-
nizedin 1.

2. image retrieval: given a database of imagesand a shape description D, retrieve all
imagesin which D can be recognized.

3. imageclassi cation: givenanimage I and a collection of descriptions D+, ..., Dy, nd
which descriptions can be recognizedin I. In practice, I is classi ed by nding the
most specific descriptions (with referenceto subsumption) it satis es. Obsene that
classi cation is a way of \prepro cessing"recognition.

4. description subsumption (and classi cation): given a (new) description D and a col-
lection of descriptions D1, ..., Dn, decidewhether D subsumes(or is subsumedby)
eah D;, fori=1,...,n.

While servicesl{2 are standard in an image retrieval system, services3{4 are lessobvious,
and we brie°y discussthem below.

The processof image retrieval is quite expensiwe, and systemsusually perform o®-line
processingof data, amortizing its cost over seweral queriesto be answered on-line. As an
example, all documert retrieval systemsfor the web*, both for imagesand text, usespiders
to crawl the web and extract somerelevant features (e.g., color distributions and textures
in images, keywords in texts), that are usedto classify documerts. Then, the answering
processusessuch classi ed, extracted features of documerts | and not the original data.

Our system can adapt this setting to composite shapes, too. In our system, a new
image inserted in the databaseis immediately segmened and classi ed in accordancewith
the basicshapesthat composeit, and the composite descriptionsit satis es (Service3). Also
a query undergoes the sameclassi cation, with referenceto the queriesalready answered
(Service 4). The more basic shapes are presen, the faster will the system answer new
gueriesbasedon these shapes.

More formally, given a query (shape description) D, if there exists a collection of de-
scriptions D+, ..., Dy and all imagesin the databasewere already classi ed with reference
to Dq,...,Dp, thenit may suxce to classify D with referenceto Di,..., D, to nd (most
of) the imagessatisfying D. This is the usual way in which classi cation in Description
Logics| which amourts to a semaric indexing| can help query answering (Nebel, 1990).

For example,to answer the query asking for imagescontaining an arch, a system may
classifyarch and nd that it subsumesthreePortalsGate (seeFigure 4). Then, the system

4. e.g., Altavista, QBIC, NETRA, Blobworld, but also Yahoo (for textual documents).

223



Di Sciascio, Donini & Mongiello

can include in the answer all imagesin which anciet Roman gates can be recognized,
without recomputing whether theseimagescontain an arch or not.

The problem of computing subsumption betweendescriptionsis reducedto recognition
in the next section, and then an algorithm for exact recognition is given. Then, we extend
the algorithm to realistic approximate recognition, reconsideringcolor and texture.

4.1 Exact Reasoning on Images and Descriptions

We start with a reformulation of (2), more suited for computational purposes.

Theorem 2 (Recognition as mapping) Let C = hry, Byi u ¢¢¢u hry, Bpi be a composite
shape description, and let I be an image, segmented into regions fry,... ,rmQ. Then C is
recognized in I iff there exists a transformation T and an injective mapping 7 :f1,...,ng!
f1,...,mg such that fori=1,...,n it is

e(rjiy) = 7(n(e(Bi)))

Proof. From (2), C is recognizedin [ i®

\n m
9r[I 2 W *n),B;jit] which is equivalert to 97 2 W7 +7),Biif]
i=1 i=1

Expanding W7 +7), Bii with its de nition (1) yields

9r[  9r 2 I.e(r) = 7(r(e(Bi)))]
i=1

and sinceregionsin I arefry,...,rmg this is equivalent to

Mm m

o[ e(r) = T(n(e(B))]

i=1j=1
Making explicit the disjunction over j and conjunctions over i, we can arrange this con-

junctiv e formula as a matrix:

% (e(r) = T(m(e(BY)) _ ®¢ _ e(rm) = 7(n(e(BY) ) A °
or§ : - - b @

(e(r1) = 7(m(e(Bn))) _ ®¢ _ e(rm) = 7(m(e(Bn))) )
Now we note two properties in the above matrix of equalities:

1. For a given transformation, at most oneregionamongri,...,rm canbe equalto eah
componert. This meansthat in ead row, at most onedisjunct can be true for a given
T.

2. For a given transformation, a region can match at most one componert. This means
that in ead column, at most one equality can be true for a given 7.
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We obsene that these properties do not imply that regionshave all di®erent shapes, since
the equality of contours depends on any translation, rotation, and scaling. We use equality
to represen true overlap, and not just equal shape.

Properties 1{2 imply that the above formula is true i® there is an injective function
mapping eadr componert to oneregion it matcheswith. To easethe comparisonwith the
formulae above we usethe samesymbol j asamappingj :f1,...,ng! fl ... ,mg. Hence,
Formula (4) can be rewritten into the claim:

97[9j : fl.ng! fl.omg e(ri)) = 7(ni(e(Bi))] 5)
i=1

J

Hence,evenif in the previous sectionthe semariics of a composite shape was derived from
the semartics of its componerts, in computing whether an image contains a composite shape
one can focus on groups of regions, one group 7; 1y, - - -, rj (n) for ead possiblemapping ;.

Obsene that j injective implies m , n, as one would expect. The above proposition
leaves open which one between r or 5 must be chosen rst. In fact, in what follows we
show that the optimal choicefor exact recognition is to mix decisionsabout j and . When
approximate recognition will be considered,however, exchanging quanti ers is not harmless.
In fact, it can change the order in which approximations are made. We return to this
issuein the next section, when we discusshow one can devise algorithms for approximate
recognition.

Subsumption in this simple logic for shape descriptions relies on the composition of
contours of basic shapes. Intuitiv ely, to actually decideif D is subsumedby C, we ched
if the sketch assaiated with D | seenasan image| would be retrieved using C as a
qguery. From a logical perspective, the existertially quanti ed regionsin the semartics of
shape descriptions (1) are skolemizedwith their prototypical cortours. Formal de nitions
follow.

De nition 3 (Protot ypical image) Let B be a basic shape. Its prototypical image is
I(B) = fe(B)g. Let C = hry, Bii u ¢¢¢u hr,, Byi be a composite shape description. Its
prototypical image is I(C) = fr(e(B1)),- .., m(e(Bn))g.

In practice, from a composite shape description one builds its prototypical image just ap-
plying the stated transformations to its componerts (and color/texture llings, if preser).
Recall that we envisagethis prototypical image to be built directly by the user, with the
help of a drawing tool, with basic shapes and colors as palette items. The system will
just keeptrack of the transformations corresponding to the user'sactions, and usethem in
building the (internal) shape descriptions stored with the previous syntax. The feature that
makesour proposal di®erert from other query-by-sketch retrieval systems,is preciselythat
our sketcheshave also a logical meaning. So, properties about description/sketches can be
proved, containment betweenquery sketchescan be stated in a formal way, and algorithms
for containment cheding can be proved correct with referenceto the semarics.
Prototypical imageshave someimportant properties. The rst is that they satisfy (in
the senseof De nition 1) the shape description they exemplify | asintuition would suggest.
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Prop osition 3 For every composite shape description D, if D is satisfiable then the inter-
pretation hl,f I(D)gi satisfies D.

Proof. From Theorem 2, using an identical transformation 7 and the identit y mapping for
j. O

A shape description D is satis able if there are no overlapping regionsin I(D). Since
this is obvious when D is speci ed by a drawing tool, we just give the following proposition
for sake of completeness.

Prop osition 4 A shape description D is satisfiable iff its prototypical image I1(D) contains
no overlapping regions.

We now turn to subsumption. Obsene that if B, and Bs are basic shapes, either they
are equivalent (each onesubsumeshe other) or neither of the two subsumeghe other. If we
adopt for the segmeted regionsan invariant represeration, (e.g. Fourier transforms of the
contour) deciding equivalence between basic shapes, or recognizingwhether a basic shape
appearsin animage,is just a call to an algorithm computing the similarity betweenshapes.
This is what usual image recognizersdo | allowing for sometolerance in the matching
of the shapes. Therefore, our framework extends the retrieval of shapes made of a single
componert, for which e®ective systemsare already available.

We now consider composite shape descriptions, and prove the main property of pro-
totypical images, namely, the fact that subsumption between shape descriptions can be
decidedby cheding if the subsumercan be recognizedin the sketch of the subsumee.

Theorem 5 A composite shape description C subsumes a description D if and only if C
is recognized in the prototypical image 1(D).

Proof. Let C = hry, Byi u ¢¢¢u hry, Bri, and let D = hoq, Aqi u ¢CCU oy, Ami. Recall that
I(D) isde ned by I(D) = foi1(e(A1)),...,om(e(Am))0. To easethe reading, we sketch the
idea of the proof in Figure 5.

If. SupposeC is recognizedin I(D), that is, I(D) 2 C7 for every interpretation (I ,¢)
such that I(D) 2 ¢. Then, from Theorem 2 there exists a transformation # and a suitable
injective function j from f1,...,nginto f1, ..., mg such that

e(rj) = #xm(e(By)  fork=1,....n

Since I(D) is the prototypical image of D, we can substitute ead region with the basic
shape of D it comesfrom:

Oj (k)(e(Aj (k))) = £ 7 (e(Bx)) fork=1...,n (6)

Now supposethat D is recognizedin animageJ = fsy,...,sp0, with J 2 ¢. We prove that
also C' is recognizedin J. In fact, if D is recognizedin J then there exists a transformation
& and another injective mapping ¢ from f1,...,mginto f1,..., pg selectingfrom J regions
qu(l), -y Sqm)9 such that

e(sqn)) = & ton(e(An)) forh=1...,m )
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Figure 5: A sketch of the If-pro of of Theorem 5

Now composing ¢ and j | that is, selectingthe regionsof J satisfying those componerts
of D which are usedto recognizeC | one obtains

e(sqi k) = & 205 k)(e(4j 1)) fork=1,....,n 8)
Then, substituting equalsfor equalsfrom (6), one nally gets
e(sqi(ky) = BxPEn(e(By)  fork=1,....n

which provesthat C too is recognizedin J, using & 4 astransformation of its componerts,
and ¢(j(9) asinjective mappingfrom f1,... nginto f1, ... pg. SinceJ is a genericimage,
it follows that DZ p CZ. Since(l , ¢) is generictoo, C subsumesD.

Only if. The reversedirection is easier: suppose C' subsumesD. By de nition, this
amounts to DT p C7 for every collection of images| . For every | that contains I(D), then
I(D) 2 D?* for Proposition 3. Therefore, I(D) 2 CZ, that is, C is recognizedin I(D). ]

This property allows us to compute subsumption as recognition, so we concerirate on
complex shape recognition, using Theorem 2. Our concernis how to decidewhether there
exists a transformation = and a matching j having the properties stated in Theorem 2.
It turns out that for exact recognition, a quadratic upper bound can be attained for the
possibletransformations to try.
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Theorem 6 Let C' = hry, Byi u ¢¢¢u hm,, Bnhi be a composite shape description, and let I
be an image, segmented into regions fry,...,rmQ. Then, there are at most m(mj 1) exact
matches between the n basic shapes and the m regions. Moreover, each possible match can
be verified by checking the matching of n pairs of contours.

Proof. A transformation = matching exactly basic componerts to regionsis also an
exact match for their certroids. Hencewe concerrate on certroids. Each corresppndence
betweena certroid of a basic componernt and a certroid of a region yields two constraints
for . Now 7 is a rigid motion with scaling, henceit has four degreesof freedom (two
degreesfor translations, one for rotation, and one for uniform scaling). Hence,if an exact
match 7 exists betweenthe certroids of the basic componerts and the certroids of someof
the regions,then 7 is completely determined by the transformation of any two certroids of
the basic shapesinto two certroids of the regions.

Fixing any pair of basic componerts Bi, B, let p,, p, denote their certroids. Also,
let 7j(1),7j(2) be the regionsthat correspond to B, Bz, and let vj ), V), denote their
certroids. There is only onetransformation = solving the point equations(ead one mapping
a point into another)

T(n(pP) = Vi
7(72(P2))

Hence, there are only m(m i 1) sud transformations. For the secondclaim, oncea r
matching the certroids is found, one cheds that the edge contours of basic componerts
and regions coincide, i.e., that 7(r1(e(B1))) = e(rj1)), T(r2(e(B2))) = e(rj), and for
k=3,...,nthat T(r«(e(Bx)) coincideswith the cortour of someregion e(r; ).

Recalling Formula (5) in the proof of Theorem 2, this meansthat we can eliminate the
outer quanti er in (5) using a computed 7, and concludethat C' is recognizedin I i®:

95:fl.ng! fl.mg " e(rjiy) = 7(n(e(Bi)))
i=1

Obsene that, to prune the above seard, oncea 7 has beenfound as above, one can
chek for k = 3,...,n that 7(7¢(centr(By))) coincideswith a certroid of someregion rj,
before cheking contours.

Basedon Theorem 6, we can devisethe following algorithm:

Algorithm  Recognize(C,I);
input a composite shape description C = hry, Byi u ¢¢¢u hr,, Bni, and
an image I, segmeted into regionsry,...,rm
output True if C is recognizedin I, False otherwise
begin
(1) compute the certroids v1,...,vm Of r1,...,rm
(2) compute the certroids p4,...,p, of the componerts of C'
(3) for i,h2 f1, ... mgwith ¢ < h do
compute the transformation 7 sud that 7(p;) = v; and 7(py) = Vp;
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if for every k2 f1, ..., ng
T(7(e(Bk))) coincides(for somej) with aregionrj in I
then return True
endfor
return False
end

The correctnessof Recognize(C,I) follows directly from Theorems?2 and 6. Regarding
the time complexity, step (1) requiresto compute certroids of segmeted regions. Seweral
methods for computing certroids are well known in the literature (Jahne, Haubeder, &
Geibler, 1999). Hence, we abstract from this detail, and assumethere exists a function
f(Nh, Ny) that bounds the complexity of computing one certroid, where Ny, N, are the
horizontal and vertical dimensionsof I (number of pixels). We report in the Appendix how
we compute certroids, and concerrate on the complexity in terms of n, m, and f(NVn, Ny).

Theorem 7 Let C = hry, Bii u ¢¢Cu hr,, Bni be a composite shape description, and let I be
an image with Nn £ Ny pizels, segmented into regions fry,...,rmg. Moreover, let f(Nn, Ny)

be a function bounding the complexity of computing the centroid of one region. Then C' can
be recognized in I in time O(m ¢f(Np, Ny) + n+ m? ¢n ¢N, CNy).

Proof. From the assumptions,Step (1) canbe performedin time O(m ¢f(Ny, Ny)). Instead,
Step (2) can be accomplishedby extracting the n translation vectors from the transforma-
tions 7q,...,7n of the componerts of C. Therefore, it requires O(n) time. Finally, the
innermost ched in Step (3) | chedking whether a transformed basic shape and a region
coincide| can be performedin O(Ny ¢Ny), using a suitable marking of pixels in I with
the region they belongto. Hence,we obtain the claim. O

Sincesubsumption betweentwo shape descriptions C' and D can be reducedto recogniz-
ing C in I(D), the sameupper bound holds for chedking subsumption between composite
shape descriptions, with the simpli cation that also Step (1) can be accomplishedwithout
any further feature-level image processing.

4.2 Appro ximate Recognition

The algorithm proposedin the previous section assumesan exact recognition. Since the
target of retrieval are real images, approximate recognition is needed. We start by re-
considering the proof of Theorem 2, and in particular the matrix of equalities (4). Using
the semartics for approximate recognition (3), the expandedformula for evaluating C*(I)
becomesnow the following:

2 maxf sim(e(r1), 7(11(e(B1)))) , ..., sim(e(rm), 7(71(e(B1))))) 92

maxmin
; >

é >

maXfsim(e(rl).,T(Tn(e(Bn))), ...., sim(e(rm),T'(Tn(e(Bn)))) g’

Now Properties 1{2 stated for exact recognition can be reformulated as hypothesesabout
sim, as follows.
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1. For a given transformation, we assumethat at most one region among r1, ... ,rm iS
maximally similar to each componert. This assumptioncan be justi ed by supposing
its negation: if there are two regions both maximally similar to a componert, then
this maximal value should be a very low one, lowering the overall value becauseof the
external minimization. This meansthat in maximizing ead row, we can assumethat
the maximal value is given by oneindex among1,...,m.

2. For a giventransformation, we assumethat a region canyield a maximal similarity for
at most one componert. Again, the rationale of this assumptionis that when a region
yields a maximal similarity with two componerts in two di®erert rows, this value can
be only a low one, which propagatesalong the overall minimum. This meansthat in
minimizing the maxima from all rows, we can considera di®erert regionin ead row.

We remark that alsoin the approximate casethese assumptionsdo not imply that regions
have all di®eren shapes, since sim is a similarity measurewhich is 1 only for true overlap,
not just for equal shapeswith di®eren pose. The assumptionsjust state that sim should
be a function \near" to plain equality.

The above assumptionsimply that we can focus on injective mappings from f 1..ng into
f 1..mg also for the approximate recognition, yielding the formula

n
MaX, max ., minfsim(e(rj), 7(n(e(Bi)) g
The choicesof 7 and j for the two maxima are independen, hencewe can considergroups
of regions rst:
n

amax - maxminfsim(e(rj ), 7(n(e(BN) 9 (9)
Di®erertly from the exact recognition, the choice of an injective mapping j doesnot directly
leadto atransformation 7, sincenow = dependson how the similarity of transformed shapes
is computed, that is, the choice of 7 dependson sim.

In giving a de nition of sim, we reconsiderthe other imagefeatures(color, texture) that
were skipped in the theoretical part to easethe preseration of semarics. This will intro-
duce weighted sumsin the similarity measure,where weights are set by the user according
to the importance of the featuresin the recognition.

Let sim(r, e, t, 7, Bi) be a similarity measurethat takesa region r (with its color ¢(r)
and texture #(r)) and a componert he, ¢, 7, Bi into the range [0, 1] of real numbers (where 1
is perfect matching). We note that color and texture similarities do not depend on trans-
formations, hencetheir introduction doesnot change Assumptions 1{2 above. Accordingly,
Formula (9) becomes

n

max max minf sim(r; iy, e, t, (7 £ 77), Bji 10

j{tn}—={1:m} ¢ i=1 szm(?“l ()15 ’(T TI)’ ! )g ( )

This formula suggeststhat from all the groups of regionsin an image that might resenble
the componerts, we should selectthe groupsthat presert the higher similarity. In arti cially

constructed examplesin which all shapesin I and C resenble ead other, this may generate
an exponertial number of groups to be tested. However, we can assumethat in realistic
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imagesthe similarity betweenshapesis selective enoughto yield only a very small number
of possible groups to try. We recall that in Gudivada's approach (Gudivada, 1998) an
even stricter assumption is made, namely, eat basic componert in C does not appear
twice, and ead region in I matches at most one componert in C. Hence our approac
extends Gudivada's one, also for this aspect | besidesthe fact that we consider shape,
scale,rotation, color and texture of eath componert.

In spite of the assumptions made, nding an algorithm for computing the \b est" =
in Formula (10) proved for us a dixcult task. The problem is that there is a corntinuous
spectrum of 7 to be seardied, and that the best 7 may not be unique. We obsened that
when only single points are to be matched | instead of regions and componerts | our
problem simpli es to Point Pattern Matching in Computational Geometry. However, even
recert results in that researt area are not complete, and cannot be directly applied to
our problem. Cardoze and Sculman (1998) solve the nearly-exact point matching with
excient randomized methods, but without scaling. They also obsene that best match is
a more dixcult problem than nearly-exact match. Also Chew, Goodrich, Huttenlo cher,
Kedem, Kleinberg, and Kravets (1997) propose a method for best match of shapes, but
they analyze only rigid motions without scaling.

Therefore, we adopt some heuristics to evaluate the above formula. First of all, we
decomposesim(r, he, t, 7, Bi) asa sum of six weighted cortributions.

Three cortributions are independent of the pose: color, texture and shape. The val-
ues of color and texture similarity are denoted by simcojor (c(), ¢) and simiextur e(t(r), 1),
respectively. Similarity of the shapes (rotation-translation-scale invariant) is denoted by
simshape(e(r), e(B)). For ead feature, and ead pair (region, componert) we compute a
similarity measureas explained in the Appendix. Then, we assignto all similarities of a
feature| say, color| the worst similarity in the group. This yields a pessimisticestimate
of Formula (10); howewer, for suc estimate the Downward Re nement property holds (see
next Theorem 8).

The other three contributions depend on the pose, and try to evaluate how the pose
of ead region in the selectedgroup is similar to the posespeci ed by the corresponding
componert in the sketch. In particular, simscae(e(r), 7(e(B)) represetts how similar in scale
are the region and the transformed componert, while sim; otation (e(7), 7(e(B)) denoteshow
e(r) and 7(e(B) are similarly (or not) rotated with referenceto the arrangemen of the
other componerts. Finally, simspatial (e(r), 7(e(5)) denotesa measureof how coincidert are
the certroids of the region and the transformed componert.

In summary, we get the following form for the overall similarity betweena region and a
componert:

sim(r,he,t, 7, Bi) = simspatial (e(r), 7(e(B)) Ca +
Simshape(e(r)a e(B)) ¢3 +
simeolor (¢(1), ¢) ¢y +
simyotation (€(r), 7(e(B)) ¢ +
simscale(e(r), T(e(B)) ¢n +
simiextur e(t(r),t) Ce
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where coezcients «, 3,7, §, 1, e weight the relevanceead feature hasin the overall similarity
computation. Obviously, weimposea+ 3+ v+ d+ n+ e = 1, and all coexcients are greater
or equalto 0. The actual valuesgiven to these coetcients in the implemented system are
reported in Table 2 in Section 6.

Becauseof the dixculties in computing the best 7, we do not compute a maximum over
all possibler's. Instead, we evaluate whether there can be arigid transformation with scaling
from 71(e(B1)), ..., m(e(Bn)) INtO 7j(,...,7j(n), through similarities simspatial , Simscale
and simyotation . There is a transformation i® all these similarities are 1. If not, the lower
the similarities are, the less\rigid" the transformation should be to match componerts and
regions. Hence,instead of Formula (10) we evaluate the following simpler formula:

s nn}?i){(1 m}rlrynf sim(rj iy, e, t, 1, Bil)g (11)
interpreting posesimilarities in a di®erert way. We now describe in detail how we estimate
posesimilarities.

Let C = hey,ty, 7, B1i) U ¢¢¢u hey, tn, T, Bni), and let j be an injective function from
f1.ng into f1..mg, that matchescomponerts with regionsfr;qy,...,rjn)d respectively.

4.2.1 SPATIAL SIMILARITY

For a givencomponert | say, componert 1| we compute all anglesunder which the other
componerts are seenfrom 1. Formally, let o, be the counter-clockwise-orierted angle with
vertex in the certroid of componen 1, and formed by the lines linking this certroid with
the certroids of componert i and h. There are n(n i 1)/2 sud angles.

Then, we compute the correspondert anglesfor region rj 1), hamely, anglesﬁ i ()

with vertex in the certroid of rj (), formed by the lines linking this certroid W|th the
certroids of regionsrj ) and rj ) respectively. A pictorial represeration of the anglesis
givenin Figure 6.

Then we let the di®erencet spatial (e(7j (1)), T1(e(B1)) be the maximal absolute di®erence
betweencorrespondent angles:

¢ spatial (e(7j (1)), T1(e(B1)) = h :g}%#hfj Yan i B, iy 9

We compute an analogousmeasurefor componerts 2,...,n, and then we selectthe maximum
of such di®erences:

¢ spatial [1] = rlnzale ¢ spatial (€(7 (i), Ti(e(Bi))g (12)

where the argument j highlights the fact that this measure depends on the mapping
j. Finally, we transform this maximal di®erence| for which perfect matching yields 0O
| into a minimal similarity | perfect matching yields 1 | with the help of the func-
tion © described in the Appendix. This minimal similarity is then assignedto every
simspatial (€(7j (1)), ni(e(Bi)), fori=1,....n

Intuitiv ely, our estimate measureghe di®erencen the arrangemen of certroids between
the composite shape and the group of regions. If there exists a transformation bringing
componerts into regionsexactly, every di®erenceis 0, and so simspatiai raisesto 1 for every
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Figure 6: Represemation of anglesused for computing spatial similarity of componert
and region rj ().
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Figure 7: Represemation of anglesusedfor computing rotation similarity of componert 1
and region rj ().

componert. The more an arrangemernt is scatteredwith referenceto the other arrangemen,
the higher its maximum di®erence.The reasonwhy we usethe maximum of all di®erences
as similarity for ead pair componen-region will be clear when we prove later that this
measureobeys Downward Re nement property.

4.2.2 ROTATION SIMILARITY

For every basic shape one can imagine a unit vector with origin in its certroid and oriented
horizontally on the right (as seenon the palette). When the shape is usedas a componert
| sa, componert 1| also this vector is rotated accordingto ;. Let h denote such a
rotated vector. Fori= 2,...,n let TG the counter-clockwise-orierted angle with vertex in

the certroid of componert 1, and formed by h and the line linking the certroid of componert
1 with the certroid of componert i.

For region r; (1), the analogousi of h can be constructed by nding the rotation phase
for which cross-correlationattains a maximum value (seeAppendix). Then, fori= 2,...,n
let (5j (6 (1) be the angleswith vertex in the certroid of rj;), and formed by @ and the line
linking the certroid of r; ;) with the certroid of ;. Figure 7 clari es the angleswe are
computing.

Then we let the di®erencet rotation (€(7} (1)), T1(e(B1)) bethe maximal absolutedi®erence
betweencorrespndert angles:

.....

If there is more than oneorientation of r; ;) for which cross-correlationyields a maximum |
e.g., a squarehas four such orientations | then we compute the above maximal di®erence
for all such orientations, and take the best di®erence(the minimal one).
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Figure 8: Sizesand distancesfor scalesimilarity computation of componert 1 and region
(1)

We repeat the processfor componerts 2 to n, and we select the maximum of such
di®erences:

¢ rotation [7] = rin:ale ¢ rotation (e(7 i), Ti(e(Bi)) 9 (13)

Finally, asfor spatial similarity, we transform ¢ | gaiion [F] into @ minimal similarity with
the help of ©. This minimal similarity is then assignedo every simotation (e(7j (i)), 7i (e(Bi)),
fori=1,...,n.

Obserne that also these di®erencesdrop to 0 when there is a perfect match, hencethe
similarity raisesto 1. The more a region has to be rotated with referenceto the other
regionsto match a component, the higher the rotational di®erences.Again, the fact that
we use the worst di®erenceto compute all rotational similarities will be exploited in the
proof of Downward Re nemert.

4.2.3 SCALE SIMILARITY

We concertrate again on componert 1 to easethe presenation. Let mi be the size of
componert 1, computedasthe meandistancebetweenits certroid and points on the cortour.
Moreover, for i = 2,...,n, let di; be the distance betweenthe certroid of componert 1 and
the certroid of componert i. In the image, let M) be the size of region r;;), and let
D; (1j iy be the distance between certroids of regions j(1) and j(i). Figure 8 pictures the
quartities we are computing.

We de ne the di®erencein scalebetweene(r; 1)) and 71(e(B1) as:

(- : )
—  minf M; 1y/Dj (i iy, m1/d1i9=
: = . )/ (), ML/

¢ scaele(ry o)), mi(e(Br)) = max - L maxf M; 1)/ Dj 1)y iy, ma/d1i@
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We repeat the processfor componerts 2 to n, and we selectthe maximum of such di®erences:
¢ scarelj] = MaXf ¢ scare(e(r; 1)), i (e(B)) g (14)

Finally, asfor the other similarities, we transform ¢ gcg¢[j] into a minimal similarity with
the help of ©. This minimal similarity is then assignedto every simscaie(e(rj i)), 7 (e(Bi)),
fori=1... n.

4.2.4 DISCUSSION OF POSE SIMILARITIES

Using the sameworst di®erencdn evaluating posesimilarities of all componerts may appear
a somewhatdrastic choice. However, we were guided in this choice by the goal of preserving
the Downward Re nement property, even if we had to abandonthe exact recognition of the
previous section.

Theorem 8 Let C be a composite shape description, and let D be a refinement of C, that
is, D= Cuhd/,t', 7/, B'i. For every image I, segmented into regions ri, ... ,rm, if Ct(I) and
DX(I) are computed as in (11) using similarities defined above, then it holds D¥(I) - CZ(I).

Proof. Every injective function j usedto map componerts of C into I/ can be extendedto
a function j’ by letting j/(n+ 1) 2 f1,...,mg be a suitable region index not in the range
of j. Since DZ(I) is computed over such extended mappings, it is suxcient to show that
valuescomputed in Formula (11) do not increasewith referenceto the valuescomputed for
C.

Let j; be the mapping for which the maximum value CZ(I) is reached. Every extension
Jj4 of j1 leadsto a minimum value minir‘jl1 in Formula (11) which is lower than CZ(I). In fact,
all posedi®erenceg12), (13), (14), are computed as maximums over a strictly greater set
of values, hencethe posesimilarities have either the samevalue, or a lower one. Regarding
color, texture, and shape similarities, adding another componert can only worsenthe values
for componerts of C, sincewe assignto all componerts the worst similarity in the group.

Now consideranother injective mapping j» that yields a non-maximum value v, < CZ([)
in Formula (11). Using the above argumert about posedi®erenceq12), (13), (14), every
extension j, leadsto a minimum value v - ws. Sincewvy < CZ(I), also every extension of
every mapping j di®erert from j; yields a value which is lessthan CZ(I). This completes
the proof. O

5. A Protot ype System

In order to substartiate our ideaswe have developed a prototype system, written in C++.
The systemis a client-server application working in a MS-Windows environment.

The client side avails of a graphical user interface that allows oneto carry out all the
operations necessaryto query the knowledge base, including a carnvas for query by sketch
composition using basic shapesand a module for query by example using new or existing
imagesas queries. The client alsoallows a userto insert new shape descriptions and images
in the knowledge base. The client has the logical structure shown in Figure 9. It is made
up of three main modules: sketch, communication and con guration.
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Figure 9: Architecture of the prototype system.
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Figure 10: The processof reclassi cation of imageswhen a new description is inserted: a)
beforeinsertion of description (No. 9); b) after insertion.

The communication module managesthe communication with the sener side, using
a simple application-level protocol. The con guration module allows one to modify the
parameters relative to the preview of imagesand shapes transferred from the server and
placed in a cache managedwith a FCFS policy for etcient display. The sketch module
allows a userto trace basic shapes as palette items, and properly insert and modify them
by varying the scaleand rotation factor. The available shapes may be basic onessuc as
ellipse, circle, rectangle, polygons or obtained by composing the basic shapes or complex
shapes de ned during previous sessionsof the application and inserted in the knowledge
base,but also shapesextracted from segmened images.

The systemkeepstrack of the transformations corresponding to the user's actions, and
usesthem in building the (internal) shape descriptions stored with the previously described
syntax. The color and texture of the drawn shapescan be setaccordingto the userrequire-
merts, asthe client interface provides a color palette and the possibility to open imagesin
JPEG format with texture corntent. The user can alsoload imagesfrom the local disk and
transmit them to the server to populate the knowledge base. Finally, the user can de ne
new objects endowving them with a textual description and insert them into the knowledge
base.

The sener side, which is also showvn in Figure 9, is composedby concurrert threads
that managethe sener-side graphical interface, the connectionsand communications with
the client applications and carry out the processingrequired by the client side. Obviously,
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Figure 11: A query and the retrieved set of images.
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the sener alsocarries out all tasks related to the insertion of imagesin the knowledgebase,
including segmemation, feature extraction and region indexing, and allows oneto properly
setthe various parametersinvolved. To this end, the serer hasthree main subcomponerts:

1. the imagefeaturesextractor that contains animage segmemation module and a region
data extraction one;

2. the image classi er that is composedby a classi er module and a module usedin the
image reclassi cation;

3. the databasemanagemen system.

The feature extractor segmets and processesmagesto extract relevant featuresfrom
ead detectedregion, which characterize the imagesin the knowledge base. Image segmen-
tation is carried out with an algorithm that starts with the extraction of relevant edgesand
then carriesout a region growing procedurethat basically mergessmaller regionsinto larger
onesaccordingto their similarity in terms of color and texture. Detected regionsobviously
have to comply with someminimal heuristics. Each region has assaiated a description of
the relevant features.

The classi er managesa graph that is usedto represert and hierarchically organizes
shape descriptions: basic shapes, and more complex onesobtained by conbining sud el-
emertary shapes and/or by applying transformations (rotation, scaling and translation).
The basic shapes have no parerts, sothey are at the top of the hierarchy. Images, when
inserted in the knowledgebaseafter the segmemation process,are linkedto the descriptions
in the structure depending on the most speci ¢ descriptionsthat they are able to satisfy.

The classi er module is invoked when a new description D has to be inserted in the
systemor a new query is posed. The classi er carries out a seard processin the hierarchy
to nd the exact position wherethe newdescription D (a simple or a complexone) hasto be
inserted: the position is determined considering the descriptions that the new description
is subsumedby. Once the position has beenfound, the image reclassi er comparesD with
the imagesavailable in the databaseto determine those that satisfy it; all the imagesthat
verify the recognition algorithm are tied to D. This stage only considersthe imagesthat
are tied to descriptions that are direct ancestorsof D, as outlined in Figure 10.

As usual in Description Logics, alsothe query processconsistsof a description insertion,
as both a query @ and a new description D are treated as prototypical images: a query
Q to the system is considereda new description D and added to the hierarchical data
structure; all imagesthat are connectedeither to @) or to descriptions below the query in
the hierarchical structure are returned as retrieved images.

The database managememn module simply keepstrack of imagesand/or pointers to
images.

Using the system is a straightforward task. After logon a user can draw a sketch on
the canvas combining available basic shapes, and enrich the query with color and texture
content. After that the query can be posedto the sener to obtain imagesranked according
to their similarity. Figure 11 showvs a query by sketch with two circles and the retrieved
set. The system correctly retrieves pictures of carsin which the two circles are recognized
in the samerelative positions of the sketch and represen the wheels,but alsoa snov man
with black buttons.
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Figure 12: Downward re nement (contd.): A more detailed query, picturing a car, and the
retrieved set of images.
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Figure 13: A Subsumption example: increasingthe number of objects in the query leadsto
a correct reduction in the retrieved set.
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The introduction of more details restricts the retrieved set: adding a chassisto the
previous sketch makesthe query more precise,aswell asthe retrieval results, asit is shovn
in Figure 12. This examplepoints out how we expect a userwill usethe system. He/she will
start with a genericquery with a few objects. If the number of imagesin the retrieved setis
still too large, he/she will increasethe number of details obtaining a downward re nement.

Notice that the presenceof regions/objects not included in the query is obviously ac-
cepted but not the lack of a region that was explicitly introduced in the query. The idea
underlying this approad is that there is an enormousamount of available images,and at
the current stageof researt and technology no systemcan always ensurea completerecog-
nition; yet we believe that the focus should be on reducing false positives,acceptingwithout
much concerna higher ratio of false negatives. This basically meansincreasing precision,
even at the cost of a possibly lower recall. In other words we beliewve it is preferable for a
user looking for an image corntaining a yellow car, e.g., using the sketch in Figure 12, that
he/she receivesas result of the query a limited subsetof imagescontaining almost for sure
a yellow car, than a large amount of imagescontaining cars, but also seweral imageswith
no cars at all.

Subsumption is another distinguishing feature of our system. Figure 13 shows queries
composedof basic shapesthat have been obtained by segmetiation of an image picturing
aircrafts, i.e., the aircraft is now a basic shape for the system. Here, to better emphasize
the example, only shape and position cortribute to the similarity value. The processof
subsumption is clearly highlighted: a query with just a single aircraft retrievesimageswith
one aircraft, but alsowith more than one aircraft. Adding other aircrafts in the graphical
guery correctly reducesthe retrieved set. The example also points out that the systemis
able to correctly deal with the presenceof more than one instance of an object in images,
which is not possiblein the approadesby Gudivada and Raghavan (1995) and Gudivada
(1998). On the negative side it has to be noticed that the system did not recognizethe
presenceof a third aircraft (indeed a strange one, the B2-Spirit) in the secondimage of
Figure 13-b), which was not segmened at all and consideredpart of the badkground.

The ability of the systemto retrieve complex objects also in imageswith seweral other
di®eren objects, that is with no \main shapes", can be anyway seenin Figure 14. Here a
real image is directly submitted as query. Notice that in this casethe systemhasto carry
out the segmetmation processon the °y, and detect the composing shapes.

6. Exp erimen ts and Results

In orderto assesshe performanceof the proposedapproac and of the systemimplemerting
it, we have carried out an extensive set of experiments on a test dataset of images. It is
well known that evaluating performancesof an image retrieval systemis dizcult because
of lack of ground truth measures.To easethe possibility of a comparison, we adopted the
approach rst proposedby Gudivadaand Raghavan (1995). The experimental framework is
hencelargely basedon the one proposedthere, which relies on a comparisonof the system
performancesversusthe judgemert of human experts.

It should be noticed that in that work test images were iconic images, which were
classi ed only in terms of spatial relationships betweenicons; in our experiments images
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Figure 14: A query by example and retrieved images.
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Figure 15: A sample of the imagesusedin the experiments.
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arereal and classi cation hasbeencarried out on all imagefeatures,including color, texture,
shape, scale,orientation and spatial relationships.

The test data set consistsof a collection of 93 images; a sample of them is shown in
Figure 15, while the complete set is available at URL.:

http://www-ictserv.p oliba.it/disciascio/jair _images.hm.

Images have beenacquired using a digital camera, combining 18 objects, either simple
objects (i.e., a single shape) or composite ones, of variable size and color. All imageshad
size 1080 £ 720 pixels, 24 bits/pixel. It should be noticed that actually there were more
than 18 di®erent objects, but we consideredvery similar variants of an object, e.g., two
penswith a di®erert color, as a single test object.

We selectedfrom the test data set 31 imagesto be usedasqueries. The query setformed
two logical groupings.

The rst one (namely queries 1 through 15 and queries27, 30 and 31) had as primary
objective testing the performanceof the systemusing as query single objects composedby
various shapes. That is, assessinghe ability of the systemto detect and retrieve images
cortaining the sameobject, or objects similar to the query.

The query imagesin the secondgroup (remaining imagesin the test data set) pictured
two or more objects and they were chosento assesghe ability of the systemto detect and
retrieve imagesaccordingto spatial relationships existing betweenthe objects in the query.

Obviously the di®erencebetweenqueriescontaining single objects composedby seweral
shapes, and queriescortaining two or more objects, is just a cognitive one: for our system
all queriesare composite shapes. However, we obsened that performanceschangedfor the
two groupings.

We then separately asked v e volunteers to classify in decreasingorder, according to
their judgmernt, the 93 imagesbasedon their similarity to eat image of the selectedquery
set. The volunteers had never usedthe system and they were only brie°y instructed that
rank orderings had to be basedon the degreeof conformanceof the databaseimageswith
the query images. They were allowed to group imageswhen consideredequivalent, and for
ead query, to discard imagesthat were judged wholly dissimilar from the query.

Having obtained v e classi cations, which werenot univocal, we createdthe nal ranking
merging the previous similarity rankings accordingto a minimum ranking criterion. The
“nal ranking of ead image with respect to a query was determined as the minimum one
amongthe v e available.

As an example consider the classi cation of Query nr.1, which is showvn in Table 1.
Notice that imagesgrouped together in the samecell have beengiven the samerelevance.
Here Image 2 was ranked in third position by users1,4, and 5, but asusers2 and 3 ranked
it in fourth position, it was nally ranked in position four. Notice that for image 24 the
samecriterion leadsto its withdrawal from ranked images. This approad limits the weight
that imagesbadly classi ed by single usershave on the nal ranking.

Then we submitted the sameset of 31 queriesto the system, whoseknowledgebasewas
loaded only with the 93 imagesof the test set.

The behavior of the system obviously dependson the con guration parameters, which
determine the relevanceof the various featuresinvolved in the similarity computation. The
con guration parametersfed to the systemwere experimentally determined on a test bed of
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user ranking
1st 2nd 3rd 4th 5th
1 1 44, 88 2, 3, 68, 80 26 24
2 1 44, 88 3, 68, 80 2, 26
3 1 44, 88 3, 68, 80 2, 26
4 1 44, 88 2, 3, 68, 80 26 24
5 1 44, 88 2, 3, 68, 80 24 26
final 1 44,88 3, 68, 80 2, 26

Table 1: Usersrankings for query nr.1

Parameter Value
Fourier descriptors  threshold 0.98
Circular  symmetry threshold 0.99
Spatial similarit y threshold 0.30
Symmetry maxima threshold 0.10
Spatial similarit y weight « 0.30
Spatial similarit y sensitivit y faz 90.0
spatial similarit y sensitivit y fy 0.40
shap e similarit y weight 3 0.30
shap e similarit y sensitivit y fz 0.005
shap e similarit y sensitivit y fy 0.20
color similarit y weight ~ 0.11
color similarit y sensitivit y fz 110.0
color similarit y sensitivit y fy 0.40
rotation  similarit y weight § 0.11
rotation  similarit y sensitivit y fz 90.0
rotation  similarit y sensitivit y fy 0.40
texture similarit y weight e 0.07
texture similarit y sensitivit y fz 110.0
texture similarit y sensitivit y fy 0.40
scale similarit y weight n 0.11
scale similarit y sensitivit y fz 0.50
scale similarit y sensitivit y fy 0.40
global similarit y threshold 0.70

Table 2: Con guration parameters,grouped by feature type.

approximately 500 imagesbefore starting the test phase. They are showvn in Table 2. The
parameters reported here are described in the Appendix. Notice that, dealing with well-
de ned objects, we gave an higher relevance to shape and spatial features and a reduced
relevanceto scale,rotation, color and texture.

The resulting classi cation gave us what was called a system-provided ranking. Wethen
adopted the Rnorm as quality measureof the retrieval e®ectiveness. Rnorm has been rst
introduced in the LIVE-Pro ject (Bollmann, Jochum, Reiner, Weissmann, & Zuse, 1985)
for the evaluation of textual information retrieval systemsand it has been used in the
experiments of the above referencedpaper by Gudivada and Raghavan. To make the paper
self-cortained we recall here how Rnorm IS de ned.

Let G bea nite setofimageswith a user-de nedpreferencerelation , that is complete
and transitiv e. Let ¢ 5" be the rank ordering of GG induced by the user preferencerelation.
Also, let ¢ Y5 be a system-provided ranking. The formulation of Rporm is:

Sti S~
S%ax

Rnorm (¢ syS) = % ¢(1+ )

where ST is the number of image pairs where a better image is ranked by the system
aheadof a worseone; S~ is the number of pairs where a worseimage is ranked ahead of a
better oneand S, is the maximum possiblenumber of S*. It should be noticed that the
calculation of ST, S—, and S™ is basedon the ranking of image pairs in ¢ SYS relative to
the ranking of corresponding image pairs in ¢ YS",
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Query nr. Image nr. Ryporm
11 1 0.92
12 2 0.92
13 3 0.93
4 4 0.95
15 5 0.99
16 6 0.94
17 7 0.93
18 10 0.93
19 11 0.95
+10 12 0.74
t11 13 0.60
t12 14 0.84
113 15 0.83
14 18 0.99
115 20 0.91
16 25 0.89
17 26 0.80
18 27 1.00
19 28 0.74
20 31 1.00
21 33 1.00
22 34 0.99
23 35 0.91
24 36 0.89
25 37 1.00
26 39 0.99
t27 41 0.93
28 42 0.98
29 50 1.00
130 78 0.88
131 79 1.00

Average Ryporm 0.92

Table 3: Rporm Values. (yindicates single-object queries)

Rnorm Values are in the range [0,1]; a value of 1 corresponds to a system-provided
ordering of the databaseimagesthat is either identical to the one provided by the human
experts or has a higher degree of resolution, lower values correspond to a proportional
disagreemeh betweenthe two.

Table 3 shows results for ead query and the nal average Rnorm=0.92. Taking a closer
look at results, for the rst group of queries (single compound objects) the averagevalue
was Rnorm=0.90, and Rnorm=0.94 for the secondgrouping (various compound objects).
(The complete set of result for users'ranking and systemranking is available in the online
appendix).

As a comparison,the average Rnorm resulted 0.98in the system preseried by Gudivada
and Raghavan (1995), where 24 iconic images were used both as queries and database
images,and similarit y wascomputed only on spatial relationships betweenicons. We remark
herethat our systemworks on real imagesand computessimilarit y on seweral imagefeatures,
and we believe that results prove the ability of the systemto catch to a good extent the
usersinformation need, and make re ned distinctions betweenimageswhen searding for
composite shapes. Furthermore, our algorithm is able to correctly deal with the presence
of more than oneinstance of an object in images,which is not possiblein other approaces
(Gudivada, 1998). It is also noteworthy that, though the parameters setting has beenthe
object of seweral experimerts, it cannot be consideredoptimal yet, and we believe that there
is room for further improvemert in the system performance,asit is also pointed out in the
following paragraph.

Obviously the system can fail when segmetation does not provide accurate enough
results. Figure 16 shows results for Query 11, which was the one with the worst Rnorm-.
Here the system not only did not retrieve all imagesusershad consideredrelevant, but
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Figure 16: Query results for query 11, which had the lowest Rpor m=0.60.

more important wrongly confusedthe sugar-drop with a wrist-watch, which resulted in a
false positive. As a matter of fact in various imagesthe sweet-dropsresulted not properly
segmered. Nevertheless,highly relevant imageswere successfullyretrieved and the wrongly
retrieved one was slightly above the selectionthreshold.

Another obsenation we made was that human users, when comparing a query with a
single object, were much more driven by the color than any other feature, including the
spatial positioning. This appearedin various queriesand is again clearly visible using as
exampleresults for Query 11. Here usersselectedin the highest relevanceclassonly images
with the samecolor sugar-drop, and gave a lower ranking to images(with sugar-drops)with
closer spatial relationships but di®erert colors. This obsenation may be signi cant in the
related eld of object recognition.

A nal commen. With referenceto the systembehavior in terms of retrieval time, we
did not carry out a systematictesting, asit dependson seweral variables: number of images
in the database,number of objects in the query, but more important depth in the hierarchy
- as the seart time decreasesas more basic shapes are available. Limiting our analysis
to the databaseloaded with the 93 test images,the systemrequired on average 12 secsto
answer a query, on a machine with Celeron400MHz CPU and 128 MB RAM running both
the client and the sener.
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7. Conclusion

We proposeda Knowledge Represemation approac to Image Retrieval. We started from
the obsenation that current sketch-basedimage retrieval systemslack of a compositional
query language| that is, they are not able to handle queriesmadeby seweral shapes,where
the position, orientation and size of the shapesrelative to eat other is meaningful.

To recover this, we proposed a languageto describe composite shapes, and gave an
extensional semarics to queries, in terms of sets of retrieved images. To cope with a
realistic setting from the beginning, we also generalizedthe semariics to fuzzy membership
of an image to a description. The composition of shapesis made possibleby the explicit
use in our language of geometric transformations (translation-rotation-scale), which we
borrow form hierarchical object modeling in Computer Graphics. We believe that this
is a distinguishing feature of our approacd, that signi cantly extends standard invariant
recognition of single shapes in image retrieval. The extensional semartics allows us to
properly de ne subsumption (i.e., containment) betweenqueries.

Borrowing also from Structured Knowledge Represemation, and in particular from De-
scription Logics, we stored shape descriptions in a subsumption hierarchy. The hierarchy
provides a semaric index to the imagesin a database. The logical semariics allowed us
to de ne other reasoningservices:the recognition of a shape arrangemen in an image, the
classi cation of an image with referenceto a hierarchy of descriptions, and subsumption
betweendescriptions. Thesetasks are aside,but canspeedup, the main one, which is Image
Retrieval.

We proved that subsumption in our simple logic can be reduced to recognition, and
gave a polynomial-time algorithm to perform exact recognition. Then, for a realistic ap-
plication of our setting we extended the algorithm to approximate recognition, weighting
shape features (orientation, size, position), color and texture.

Using our logical approadc as a formal speci cation, we built a prototype system using
state-of-the-art technology, and set up experiments both to assesghe etcacy of our pro-
posal, and to ne tune all parametersand weights that shav up in approximate retrieval.
The results of our experimerts, although not exhaustive, show that our approad can catch
to a good extent the usersinformation needand make re ned distinctions betweenimages
when searting for composite shapes.

We believe that this proposal opensat least three directions for future researd. First,
the language for describing composite shapes could be enriched either with other logic-
oriented connectives| e.g., alternative componerts corresponding to an OR in composi-
tions | or to sequencef shape arrangemerts, to cope with objects with internal move-
merts in video sequenceetrieval. Second,techniquesfrom Computational Geometry could
be usedto optimize the algorithms for approximate retrieval, while a study in the complex-
ity of the recognition problem for composite shapes might prove the theoretical optimality
of the algorithms. Finally, large-scaleexperiments might prove usefulin understanding the
relative importance attributed by end usersto the various features of a composite shape.
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App endix A.

In this appendix we brie°y revisethe methods we usedfor the extraction of image features.
We alsodescribe the smoothing function © and the way we compute similarity for the image
featuresthat wereintroducedin Section4.2.

A.1 Extraction of Image Features

In order to deal with objects in an image, segmetation is required to obtain a partition
of the image. Sewral segmemation algorithms have been proposedin the literature; our
approad doesnot depend on the particular segmetation algorithm adopted. It is anyway
obvious that the better the segmemation, the better our systemwill work. In our system
we useda simple algorithm that mergesedgedetection and region growing.

lllustration of this technique is beyond the scope of this paper; we limit here to the
description of image features computation, which assumea successfulsegmemation. To
make the description self-cortained we start de ning a genericcolorimageasf 'l (x,y)j 1 -
z - Np,1- y- Nyg, where Ny, Ny arethe horizontal and vertical dimensions,respectively,
and 'I (z,y) is a three-componerts tuple (R, G, B). We assumethat the image I has been
partitioned in m regions(rj), = 1,...,m satisfying the following properties:

2 J= S(ri),iZ 12,....m

2. 842f1,2,...,mg, rj isanonempty and connectedset
2\ r=,i®i6j

2 ead region satis es heuristic and physical requiremerts.

We characterize ead region r; with the following attributes: shape, position, size, ori-
erntation, color and texture.

Shape. Givena connectedregion a point moving along its boundary generatesa complex
function de ned as: z(t) = =(t) + jy(t), t = 1,..., Ny, with Ny the number of boundary
sample points. Following the approac proposedby Rui, She,and Huang (1996) we de ne
the Discrete Fourier Transform (DFT) of z(t) as:

Z(k) = z(t)e ' N = M(k)e WK
t=1

with k= 1,..., Ny,

251



Di Sciascio, Donini & Mongiello

In order to addressthe spatial discretization problem we compute the Fast Fourier
Transform(FFT) of the boundary z(t); usethe rst (2N.+ 1) FFT coezcients to form a
dense,non-uniform set of points of the boundary as:

Re _j 2mtk
Zdense(t) = Z(k)e = Mo
k=—N_

with t = 1,..., Ngense-

We then interpolate these samplesto obtain uniformly spacedsamples zynis (£), t =
0,..., Nunif . Wecompute againthe FFT of zyni¢ (¢) obtaining Fourier coexcients Zynir (k),
k=i N, ..., Nc. The shape-featureof aregionis hencecharacterizedby a vector of 2N + 1
complex coexcients.

Position and Size. Position is determined as the region certroid computed via momert
invariants (Pratt, 1991). Sizeis computed as the mean distance between region certroid
and points on the contour.

Orientation. In order to quarntify the orientation of ead region r; we use the same
Fourier represertation, which storesthe orientation information in the phasevalues. We
obviously deal also with special caseswhen the shape of a region has more than one sym-
metry, e.g., a rectangle or a circle. Rotational similarity betweena referenceshape B and
a given region r; can then be obtained nding maximum valuesvia cross-correlation:

Kl j 2Zkn .,
Zg (k) Zy () ¢ 28" with ¢t 2 0,..., 2N,

1
o) = 5
k=0

Ne+ 1

Color. Color information of ead region r; is stored, after quantization in a 112 values
color space,asthe mean RGB value within the region:

X X X
Rri = R(p) Gri = G(p) Bri = B(p)
per; per; per;

Texture. We extract texture information for ead region r; with a method basedon
the work by Pok and Liu (1999). Following this approad, we extract texture features
cornvolving the original grey level image I(x,y) with a bank of Gabor lters, having the
following impulse response:

12+ yz .
e~ 22 ¢ 27{Ux+Vy)

h(z,y) = o’

where (U, V) represetts the TIter location in the frequency-domain, X is the certral fre-
guency, o is the scalefactor, and # the orientation, de ned as:

P
A= U2+ V2 f#=arctanU/V

The processingallows to extract a 24-componerts feature vector, which characterizes
ead textured region.
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A.2 Functions for Computing Similarities

Smoothing function ©. In all similarity measureswe usethe function ©(x, fz, fy). The
role of this function is to changea distance = (in which 0 correspondsto perfect matching)
to a similarity measure (in which the value 1 corresponds to perfect matching), and to
\smooth" the changesof the quartity x, depending on two parameters fz, fy.

8 ) :
2 fy+. (i fy)eeosGyy) , if0- w<fx

©(l‘, fa:,fy) = S fy ¢ 1 arctan[%] if 2> fx

where fx > 0and 0 < fy < 1.

The input data to the approximate recognition algorithm are a shape description D,
containing n components hey, ty, 7, Bki and animage I segmeted into m regionsry, ... ,rm.
The algorithm provides a measurefor the approximate recognition of D in 1.

The rst step of the algorithm in Section 4.2 considersall the m regionsthe image is
segmetted into and all the n componerts in the shape descriptionD and nds | ifany| all
the groupsof n regionsr; () satisfying the higher shape similarit y with the shape componerts
of D. To this purposewe compute shape similarity, based on the Fourier represettation
previously intro duced, as vector of complex coetcients. Sudh measuredenoted with simsgs
is invariant with respect to rotation, scaleand translation and is computed as the cosine
distance betweenthe two vectors. The similarity givesa measurein the range[0,1] assuming
the higher similarity simgs = 1 for perfect matching.

Given the vectors X and Y of complex coexcients describing respectively the shape of
aregion r; and the shape of a componert By, X = (z1,...,zon,) @nd Y = (y1,...,¥2N,)

P
2N,
. _ 1=1 LIYI
simss(B, 1) = 4 L
2Nc 1;2 £ 2Nc 2
I=1 L I=1 Y

Shape Similarit y. The quantity simshape measuresthe similarity betweenshapesin
the composite shape description and the regionsin the segmered image.

Simshape = ©(rknnf-1x[1 i simss(Bk, T (k))]7 fmshapea fyshape)

Color Similarit y. The quantity simgoor Measuresthe similarity in terms of color
appearancebetweenthe regions and the corresponding shapesin the composite shape de-
scription. In the following formula, ¢ oor(k).R denotesthe di®erencein the red color
componert betweenthe k-th componert of D and the region r; ), and similarly for the
greenand the blue color componernts.

q
¢ colork) = [¢ color (k)R> + [¢ cotor (k).G1* + [€ color (k). B]?

Then the function © takesthe maximum of the di®erencedo obtain a similarity:

SiMcolor = ©(T13~1Xf ¢ color(k)gy fcolor s fycolor)
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Texture Similarit y. Finally, simiexwur e measuresthe similarity betweenthe texture
featuresin the componens of D and in the corresponding regions.

¢ textur e(k) denotesthe sum of di®erencedn the texture componerts betweenthe k-th
componert of D and the regionr; ) and dividing by the standard deviation of the elemerts.

. n
S1Mtextur e = ©(T_alx¢ textur e(k)a fJUtextur e fytextur e)
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