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Abstract
We proposea structured approach to the problem of retrieval of imagesby content and

present a description logic that has beendevisedfor the semantic indexing and retrieval of
imagescontaining complex objects.

As other approachesdo, we start from low-level featuresextracted with imageanalysis
to detect and characterizeregionsin an image. However, in contrast with feature-basedap-
proaches,we provide a syntax to describe segmented regionsas basic objects and complex
objects as compositions of basic ones. Then we intro duce a companion extensionalseman-
tics for de¯ning reasoningservices,such asretrieval, classi¯cation, and subsumption. These
servicescan be usedfor both exact and approximate matching, using similarit y measures.

Using our logical approach asa formal speci¯cation, we implemented a completeclient-
server imageretrieval system,which allowsa userto poseboth queriesby sketch and queries
by example. A set of experiments hasbeencarried out on a testbed of imagesto assessthe
retrieval capabilities of the system in comparison with expert users ranking. Results are
presented adopting a well-establishedmeasureof quality borrowed from textual information
retrieval.

1. In tro duction

Image retrieval is the problem of selecting, from a repository of images, those imagesful-
¯lling to the maximum extent somecriterion speci¯ed by an end user. In this paper, we
concentrate on content-based image retrieval, in which criteria expressproperties of the
appearanceof the image itself, i.e., on its pictorial characteristics.

Most of the research in this ¯eld hastill now concentrated in devisingsuitable techniques
for extracting relevant cueswith the aid of imageanalysisalgorithms. Current systemsresult
e®ective when the speci¯ed properties are so-called low-level characteristics, such as color
distribution, or texture. For example, systemssuch as IBM's QBIC 1 can easily retrieve,
among others, stamps containing the picture of a brown horse in a green¯eld, when asked
to retrieve imagesof stamps with brown central area over a greenishbackground.

Nevertheless,present systemsfail at treating correctly high-level characteristics of an
image| such as, \retriev estampswith a galloping horse". First of all, most systemscannot
even allow the userto specify such queries,becausethey lack a languagefor expressinghigh-
level features. Usually, this is overcomewith the help of examples: \retriev e imagessimilar
to this one". However, examplesare quite ambiguous to interpret: which are the features

1. See e.g., http://wwwqbic.almaden.ibm.com/cgi-bin/stamps-demo

c©2002 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.



Di Sciascio, Donini & Mongiello

in the example that should appear in retrieved images? This ambiguit y producesa lot of
\false positives", as any one can experience.

Even if relevant featuresare pointed out in the example, the systemcannot tell whether
what is pointed out is the color distribution, or its interpretation | after all, a galloping
brown horseproducesa color distribution which is more similar to a running brown fox than
to a galloping white horse. In this aspect, image retrieval facesthe sameproblems of object
recognition, which is a central problem in robotics and arti¯cial vision. The only e®ective
solution overcomingthis problem is to associate to a query somesigni¯cant keywords, which
should match keywords attached in someway to imagesin the repository. Here ambiguities
in imageunderstanding are just transferred to text understanding, asnow a brown portrait
of Crazy Horse | the famous Indian chief | could be consideredrelevant.

Resorting to human experts to specify the expectedoutput of a retrieval algorithm can,
in our opinion, only worsentheseambiguities, sinceit makesthe correctnessof an approach
to depend from a subjective perception of what an imageretrieval systemshould do. What
is neededis a formal, high-level speci¯cation of the imageretrieval task. This needmotivates
the research we report here.

1.1 Con tributions of the Paper

We approach the problem of image retrieval from a knowledgerepresentation perspective,
and in particular, we refer to a framework already successfullyapplied by Woods and
Schmolze(1992) to conceptualmodeling and semantic data modelsin databases(Calvanese,
Lenzerini, & Nardi, 1998). We consider image retrieval as a knowledge representation
problem, in which we can distinguish the following aspects:

In terface: the useris givena simplevisual languageto specify (by sketch or by example)
a geometric composition of basic shapes, which we call description. The composite shape
description intuitiv ely stands for a set of images(all containing the given shapes in their
relative positions); it can be used either as a query, or as an index for a relevant classof
images,to be given somemeaningful name.

Syn tax and semantics: the system has an internal syntax to represent the user's
queriesand descriptions, and the syntax is given an extensional semantics in terms of sets
of retrievable images. In contrast with existing image retrieval systems,our semantics is
compositional, in the sensethat adding details to the sketch may only restrict the set of
retrievable images. Syntax and semantics constitute a Semantic Data Model, in which the
relative position, orientation and size of each shape component are given an explicit no-
tation through a geometric transformation. The extensional semantics allows us to de¯ne
a hierarchy of composite shape descriptions, basedon set containment between interpre-
tations of descriptions. Coherently , the recognition of a shape description in an image is
de¯ned as an interpretation satisfying the description.

Algorithms and complexit y: based on the semantics, we prove that subsumption
betweendescriptions can be carried out in terms of recognition. Then we deviseexact and
approximate algorithms for compositeshapesrecognition in an image,which arecorrect with
respect to the semantics. Ideally, if the computational complexity of the problem of retrieval
was known, the algorithms should also be optimal with referenceto the computational
complexity of the problems. Presently , we solved the problem for exact retrieval, and
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proposean algorithm for approximate retrieval which, although probably non-optimal, is
correct.

Exp erimen ts: while the study of the complexity of the problem is ongoing, the syntax,
semantics, and sub-optimal algorithms obtained so far are already su±cient to provide the
formal speci¯cation of a protot ype systemfor the experimental veri¯cation of our approach.
The protot ype hasbeenusedto carry out a set of experiments on a test databaseof images,
which allowed us to verify the e®ectivenessof the proposedapproach in comparison with
expert usersranking.

We believe that a knowledgerepresentation approach brings several bene¯ts to research
in imageretrieval. First of all, it separatesthe problem of ¯nding an intuitiv e semantics for
query languagesin image retrieval from the problem of implementing a correct algorithm
for a given semantics. Secondly, oncethe problem of imageretrieval is semantically formal-
ized, results and techniques from Computational Geometry can be exploited in assessing
the computational complexity of the formalized retrieval problem, and in devising e±cient
algorithms, mostly for the approximate image retrieval problem. This is very much in the
samespirit as¯nite model theory hasbeenusedin the study of complexity of query answer-
ing for relational databases(Chandra & Harel, 1980). Third, our languageborrows from
object modeling in Computer Graphics the hierarchical organization of classesof images
(Foley, van Dam, Feiner, & Hughes,1996). This, in addition to an interpretation of compos-
ite shapes which one can immediately visualize, opens our logical approach to retrieval of
imagesof 3D-objects constructed in a geometric language(Paquet & Rioux, 1998),which is
still to be explored. Fourth, our logical formalization, although simple, allows for extensions
which are natural in logic, such as disjunction (OR) of components. Although alternativ e
components of a complex shape are di±cult to be shown in a sketch, they could be used
to specify moving (i.e., non-rigid) parts of a composite shape. This exempli¯es how our
logical approach can shedlight to extensionsof our syntax suitable for, e.g., video sequence
retrieval.

1.2 Outline of the Paper

The rest of the paper is organized as follows. In the next section, we review related work
on image retrieval. In Section 3 we describe our formal language,¯rst its syntax, then its
semantics, and we start proving somebasic properties. In the following section, we analyze
the reasoningproblems and the semantic relations among them, and we devisealgorithms
that can solve them. Then in Section 5 we illustrate the architecture of our system and
proposesomeexamplespointing out distinguishing aspects of our approach. In Section 6
we present a set of experiments to assessretrieval capabilities of the system. Last section
draws the conclusionsand proposesdirections for future work.

2. Related Work

Content-Based Image Retrieval (CBIR) has recently becomea widely investigated research
area. Several systemsand approacheshave beenproposed;here we brie°y report on some
signi¯cant examplesand categorizethem in three main research directions.
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2.1 Feature-based Approac hes

Largest part of research on CBIR has focusedon low-level features such as color, texture,
shape, which can be extracted using image processingalgorithms and usedto characterize
an image in some feature spacefor subsequent indexing and similarit y retrieval. In this
way the problem of retrieving images with homogeneouscontent is substituted with the
problem of retrieving imagesvisually close to a target one (Hirata & Kato, 1992; Niblak
et al., 1993; Picard & Kabir, 1993; Jacobs, Finkelstein, & Salesin, 1995; Flickner et al.,
1995;Bach, Fuller, Gupta, Hampapur, Horowitz, Humphrey, Jain, & Shu, 1996;Celentano
& Di Sciascio,1998;Cox, Miller, Minka, & Papathomas,2000;Gevers & Smeulders,2000).

Among the various projects, particularly interesting is the QBIC system(Niblak et al.,
1993; Flickner et al., 1995), often cited as the ancestor of all other CBIR systems,which
allows queriesto be performed on shape, texture, color, by exampleand by sketch using as
target media both imagesand shots within videos. The system is currently embeddedas a
tool in a commercial product, Ultimedia Manager. Later versionshave intro duced an
automated foreground/background segmentation scheme. Here the indexing of an image is
made on the principal shape, with the aid of someheuristics. This is an evident limitation:
most imagesdo not have a main shape, and objects are often composedof various parts.

Other researchers, rather than concentrating on a main shape, which is typically as-
sumedlocated in the central part of the picture, have proposedto index regionsin images;
so that the focus is not on retrieval of similar images, but of similar regions within an
image. Examples of this idea are VisualSeek (Smith & Chang, 1996), NETRA (Ma
& Manjunath, 1997) and Blobworld (Carson, Thomas, Belongie, Hellerstein, & Malik,
1999). The problem is that although all thesesystemsindex regions, they lack of a higher
level description of images. Hence,they are not able to describe | and hencequery for |
more than a single region at a time in an image.

In order to improve retrieval performances, much attention has been paid in recent
years to relevance feedback. Relevance feedback is the mechanism, widely used in textual
information systems, which allows improving retrieval e®ectivenessby incorporating the
user in the query-retrieval loop. Depending on the initial query the system retrieves a set
of documents that the user can mark either as relevant or irrelevant. The system,basedon
the user preferences,re¯nes the initial query retrieving a new set of documents that should
be closer to the user's information need.

This issueis particularly relevant in feature-basedapproaches,as on onehand, the user
lacks of a languageto expressin a powerful way her information need, but on the other
hand, deciding whether an imageis relevant or not takesjust a glance. Examplesof systems
using relevance feedback include MARS (Rui, Huang, & Mehrotra, 1997), DrawSearch

(Di Sciascio& Mongiello, 1999) and PicHunter (Cox et al., 2000).

2.2 Approac hes Based on Spatial Constrain ts

This type of approach to the problem of image retrieval concentrates on ¯nding the simi-
larit y of imagesin terms of spatial relations among objects in them. Usually the emphasis
is only on relative positions of objects, which are consideredas "symbolic images" or icons,
identi¯ed with a single point in the 2D-space. Information on the content and visual ap-
pearanceof imagesare normally neglected.
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Chang, Shi, and Yan (1983) present the modeling of this type of images in terms of
2D-strings, each of the strings accounting for the position of icons along one of the two
planar dimensions. In this approach retrieval of imagesbasically reverts to simpler string
matching.

Gudivada and Raghavan (1995) consider the objects in a symbolic image associated
with vertexesin a weighted graph. Edges| i.e., lines connecting the centroids of a pair of
objects | represent the spatial relationships among the objects and are associated with a
weight depending on their slope. The symbolic image is represented as an edgelist. Given
the edgelists of a query and a databaseimage,a similarit y function computesthe degreeof
closenessbetweenthe two lists asa measureof the matching betweenthe two spatial-graphs.
The similarit y measuredepends on the number of edgesand on the comparison between
the orientation and slope of edgesin the two spatial-graphs. The algorithm is robust with
respect to scaleand translation variants in the sensethat it assignsthe highest similarit y to
an image that is a scaleor translation variant of the query image. An extended algorithm
includes also rotational variants of the original images.

More recent papers on the topic include those by Gudivada (1998) and by El-Kw ae
and Kabuka (1999), which basically proposeextensionsof the strings approach for e±cient
retrieval of subsetsof icons. Gudivada (1998) de¯nes θR-strings, a logical representation of
an image. Such representation also provides a geometry-basedapproach to iconic indexing
basedon spatial relationships betweenthe iconic objects in an image individuated by their
centroid coordinates. Translation, rotation and scalevariant imagesand the variants gener-
ated by an arbitrary composition of these three geometric transformations are considered.
The approach does not deal with object shapes, nor with other basic image features, and
considersonly the sequenceof the namesof the objects. The concatenationof the objects is
basedon the euclideandistanceof the domain objects in the imagestarting from a reference
point. The similarit y betweena databaseand a query image is obtained through a spatial
similarit y algorithm that measuresthe degreeof similarit y betweena query and a database
image by comparing the similarit y between their θR-strings. The algorithm recognizesro-
tation, scale and translation variants of the image and also subimages,as subsetsof the
domain objects. A constraint limiting the practical useof this approach is the assumption
that an image can contain at most one instance of each icon or object.

El-Kw ae and Kabuka (1999) proposea further extensionof the spatial-graph approach,
which includesboth the topologicaland directional constraints. The topologicalextensionof
the objects can be obviously useful in determining further di®erencesbetweenimagesthat
might be consideredsimilar by a directional algorithm that considersonly the locations
of objects in term of their centroids. The similarit y algorithm they propose extends the
graph-matching onepreviously describedby Gudivadaand Raghavan (1995). The similarit y
betweentwo imagesis basedon three factors: the number of commonobjects, the directional
and topological spatial constraint betweenthe objects. The similarit y measureincludes the
number of objects, the number of common objects and a function that determines the
topological di®erencebetweencorresponding objects pairs in the query and in the database
image. The algorithm retains the propertiesof the original approach, including its invariance
to scaling, rotation and translation and is also able to recognizemultiple rotation variants.
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2.3 Logic-based and Structured Approac hes

With referenceto previous work on Vision in Arti¯cial Intelligence, the use of structural
descriptions of objects for the recognition of their imagescan be dated back to Minsky's
frames, and somework by Brooks (1981). The idea is to associate parts of an object (and
generally of a scene) to the regions an image can be segmented into. The hierarchical
organization of knowledgeto be used in the recognition of an object was ¯rst proposedby
Marr (1982). Reiter and Mackworth (1989) proposeda formalism to reasonabout maps as
sketched diagrams. In their approach, the possiblerelative positions of lines are ¯xed and
highly qualitativ e (touching, intersecting).

Structured descriptions of three-dimensional images are already present in languages
for virtual reality like VRML (Hartman & Wernecke, 1996) or hierarchical object mod-
eling. However, the semantics of such languagesis operational, and no e®ort is made to
automatically classify objects with respect to the structure of their appearance.

Meghini, Sebastiani,and Straccia (2001) proposeda formalism integrating Description
Logics and image and text retrieval, while Haarslev, Lutz, and MÄoeller (1998) integrate
Description Logicswith spatial reasoning. Further extensionsof the approach are described
by Moeller, Neumann, and Wessel(1999). Both proposalsbuild on the clean integration of
Description Logicsand concrete domains of Baader and Hanschke (1991). However, neither
of the formalisms can be used to build complex shapes by nesting more simple shapes.
Moreover, the proposal by Haarslev et al. (1998) is basedon the logic of spatial relations
named RCC8, which is enough for specifying meaningful relations in a map, but it is too
qualitativ e to specify the relative sizesand positions of regions in a complex shape.

Also for Hacid and Rigotti (1999) description logics and concrete domains are at the
basisof a logical framework for image databasesaimed at reasoningon query containment.
Unfortunately, the proposedformalism cannot consider geometric transformations neither
determine speci¯c arrangements of shapes.

More similar to our approach is the proposal by Ardizzone, Chella, and Gaglio (1997),
where parts of a complex shape are described with a description logic. However, the com-
position of shapesdoesnot consider their positions, hencereasoningcannot take positions
into account.

Relative position of parts of a complex shape can be expressedin a constraint relational
calculus in the work by Bertino and Catania (1998). However, reasoning about queries
(containment and emptiness) is not consideredin this approach. Aiello (2001) proposesa
multi-mo dal logic, which provides a formalism for expressingtopological properties and for
de¯ning a distance measureamong patterns.

Spatial relation betweenparts of medical tomographic imagesare consideredby Tagare,
Vos, Ja®e,and Duncan (1995). There, medical imagesare formed by the intersection of the
image plane and an object. As the image plane changes,di®erent parts of the object are
considered. Besides,a metric for arrangements is formulated by expressingarrangements
in terms of the Voronoi diagram of the parts. The approach is limited to medical image
databasesand doesnot provide geometrical constraints.

Compositions of parts of an image are considered in the work by Sanfeliu and Fu
(1983) for character recognition. However, in recognizing characters, line compositions
are \closed", in the sensethat one looks for the speci¯ed lines, and no more. Instead in our
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framework, the shape \F" composedby three lines, is subsumedby the shape \¡" | some-
thing unacceptablein recognizingcharacters. Apart from the di®erent task, this approach
doesnot make useof an extensional semantics for composite shapes,henceno reasoningis
possible.

A logic-basedmultimedia retrieval system was proposedby Fuhr, GÄovert, and RÄolleke
(1998); the method, basedon an object-oriented logic, supports aggregatedobjects but it
is oriented towards a high-level semantic indexing, which neglects low-level features that
characterize imagesand parts of them.

In the ¯eld of computation theoriesof recognition, we mention two approachesthat have
someresemblance to our own: Biederman's structural decomposition and geometric con-
straints proposedby Ullman, both described by Edelmann (1999). Unfortunately, neither of
them appearssuitable for realistic image retrieval: the structural decomposition approach
doesnot considergeometric constraints betweenshapes,while the approach basedon geo-
metric constraints doesnot consider the possibility of de¯ning structural decomposition of
shapes,hencereasoningon them.

Starting with the reasonableassumption that the recognition of an object in a scene
can be easedby previous knowledgeon the context, in the work by Pirri and Finzi (1999),
the recognition task, or the interpretation of an image, takesadvantage of the information
a cognitive agent has about the environment, and by the representation of thesedata in a
high-level formalism.

3. Syntax and Semantics

In this section we present the formalism dealing with the de¯nition of composite shape de-
scriptions, their semantics, and someproperties that distinguish our approach from previous
ones.

We remark that our formalism dealswith image features, like shape, color, texture, but
is independent of the way features are extracted from actual images. For the interested
reader, the algorithms we used to compute image features in our implementation of the
formalism are presented in the Appendix.

3.1 Syn tax

Our main syntactic objects are basic shapes, position of shapes, composite shape descrip-
tions, and transformations. We also take into account the other features that typically
determine the visual appearanceof an image, namely color and texture.

Basic shapes aredenotedwith the letter B, and havean edgecontour e(B) characterizing
them. We assumethat e(B) is described asa single,closed2D-curve in a spacewhoseorigin
coincideswith the centroid of B. Examplesof basicshapescan be circle, rectangle, with
the contours e(circle) = ° , e(rectangle) = , but also any complete, rough contour
| e.g., the one of a ship | is a basic shape. To make our language compositional, we
consider only the external contour of a region. For example, if a region is contained in
another, as in ° , the contour of the outer region is just the external rectangle.

The possibletransformations are the simple onesthat are present in any drawing tool:
rotation (around the centroid of the shape), scaling and translation. We globally denote a
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Figure 1: The graphical interface with a query by sketch.

rotation-translation-scaling transformation as τ . Recall that transformations can be com-
posedin sequencesτ1±. . .±τn , and they form a mathematical group.

The basic building block of our syntax is a basic shape component hc, t, τ, Bi , which
represents a region with color c, texture t, and edgecontour τ (e(B)). With τ (e(B)) we
denote the pointwise transformation τ of the whole contour of B. For example, τ could
specify to place the contour e(B) in the upper left corner of the image, scaledby 1/2 and
rotated 45 degreesclockwise.

Composite shape descriptions are conjunctions of basic shape components | each one
with its own color and texture | denoted as

C = hc1, t1, τ1, B1i u ¢¢¢u hcn , tn , τn , Bn i

We do not expect end users of our system to actually de¯ne composite shapes with this
syntax; this is just the internal representation of a composite shape. The system can
maintain it while the userdraws | with the help of a graphic tool | the complex shape by
dragging, rotating and scaling basic shapes choseneither from a palette, or from existing
images(seeFigure 1).

For example, the composite shape lighted-candle could be de¯ned as

lighted-candle = hc1, t1, τ1, rectanglei u hc2, t2, τ2, circlei
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with τ1, τ2 placing the circle asa °ame on top of the candle,and textures and colorsde¯ned
accordingly to the intuition.

We remark that, to the best of our knowledge, the logic we present is the ¯rst one
combining shapesand explicit transformations in one language.

In a previous paper (Di Sciascio,Donini, & Mongiello, 2000) we presented a formalism
including nestedcomposite shapes,asit is donein hierarchical object modeling (Foley et al.,
1996,Ch.7). However, nestedcomposite shapescan always be °attened by composing their
transformations. Hencein this paper we focuson two levels: basicshapesand compositions
of basic shapes. Also, just to simplify the presentation of the semantics, in the following
section we do not present color and texture features, which we take into account from
Section 4.2 on.

3.2 Semantics

We consider an extensional semantics, in which syntactic expressionsare interpreted as
subsetsof a domain. For our setting, the domain of interpretation is a set of images¢, and
shapesand components are interpreted as subsetsof ¢. Hence,also an image databaseis
a domain of interpretation, and a complex shape C is a subset of such a domain | the
imagesto be retrieved from the databasewhen C is viewed as a query.

This approach is quite di®erent from previous logical approachesto imageretrieval that
view the image database as a set of facts, or logical assertions, e.g., the one based on
Description Logics by Meghini et al. (2001). In that setting, image retrieval amounts to
logical inference. However, observe that usually a Domain Closure Assumption (Reiter,
1980) is made for image databases:there are no regionsbut the oneswhich can be seenin
the imagesthemselves. This allows oneto considerthe problem of imageretrieval assimple
model checking | check if a given structure satis¯es a description2.

Formally, an interpretation is a pair (I ,¢), where ¢ is a set of images, and I is a
mapping from shapesand components to subsetsof ¢. We identify each image I with the
set of regionsf r1, . . . ,rng it can be segmented into (excluding background, which we discuss
at the end of this section). Each region r comeswith its own edgecontour e(r). An image
I 2 ¢ belongs to the interpretation of a basic shape component hτ,Bi I if I contains a
region whosecontour matchesτ (e(B)). In formulae,

hτ,Bi I = f I 2 ¢ j 9r 2 I : e(r) = τ (e(B))g (1)

The above de¯nition is only for exact recognition of shape components in images,due to
the presenceof strict equality in the comparison of contours; but it can be extended to
approximate recognition asfollows. Recall that the characteristic function fS of a setS is a
function whosevalue is either 1 or 0; fS(x) = 1 if x 2 S, fS(x) = 0 otherwise. We consider
now the characteristic function of the set de¯ned in Formula (1). Let I be an image; if I
belongsto hτ,Bi I , then the characteristic function computed on I has value 1, otherwise
it has value 0. To keep the number of symbols low, we use the expressionhτ,Bi I also to

2. Obviously, a Domain Closure Assumption on regions is not valid in artificial vision, dealing with two-
dimensional images of three-dimensional shapes (and scenes), because solid shapes have surfaces that
will be hidden in their images. But this is outside the scope of our retrieval problem.
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denote the characteristic function (with an argument (I) to distinguish it from the set).

hτ,Bi I(I) =

(
1 if 9r 2 I : e(r) = τ (e(B))
0 otherwise

Now we reformulate this function in order to make it return a real number in the range[0,1]
| as usual in fuzzy logic (Zadeh, 1965). Let sim(¢,¢) be a similarit y measurefrom pairs of
contours into the range[0,1] of real numbers(where 1 is perfect matching). We usesim(¢,¢)
instead of equality to compareedgecontours. Moreover, the existential quanti¯cation can
be replacedby a maximum over all possibleregions in I. Then, the characteristic function
for the approximate recognition in an image I of a basic component, is:

hτ,Bi I(I) = max
r∈I

f sim(e(r), τ (e(B))) g

Note that sim dependson translations, rotation and scaling,sincewe are looking for regions
in I whosecontour matchese(B), with referenceto the position and sizespeci¯ed by τ .

The interpretation of basic shapes, instead, includes a translation-rotation-scaling in-
variant recognition, which is commonly usedin single-shape ImageRetrieval. We de¯ne the
interpretation of a basic shape as

BI = f I 2 ¢ j 9τ 9r 2 I : e(r) = τ (e(B))g

and its approximate counterpart as the function

BI(I) = max
¿

max
r∈I

f sim(e(r), τ (e(B))) g

The maximization over all possible transformations max¿ can be e®ectively computed by
using a similarit y measuresimss that is invariant with referenceto translation-rotation-
scaling (seeSection 4.2). Similarit y of color and texture will be added as a weighted sum
in Section 4.2. In this way, a basic shape B can be used as a query to retrieve all images
from ¢ which are in BI . Therefore, our approach generalizesthe more usual approaches
for single-shape retrieval, such as Blobworld (Carson et al., 1999).

Composite shape descriptions are interpreted as sets of images that contain all com-
ponents of the composite shape. Components can be anywhere in the image, as long as
they are in the described arrangement relative to each other. Let C be a composite shape
description hτ1, B1i u ¢¢¢u hτn , Bn i . In exact matching, the interpretation is the intersection
of the sets interpreting each component of the shape:

CI = f I 2 ¢ j 9τ : I 2 \ n
i=1h(τ ± τi ), Bi i Ig (2)

Observe that we require all shape components of C to be transformed into image regions
using the sametransformation τ . This preservesthe arrangement of the shape components
relative to each other | given by each τi | while allowing CI to include every image
containing a group of regions in the right arrangement, wholly displacedby τ .

To clarify this formula, considerFigure 2: the shape C is composedby two basicshapes
B1 and B2, suitably arranged by the transformations τ1 and τ2. Suppose now that ¢
contains the image I. Then, I 2 CI becausethere exists the transformation τ , which
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Figure 2: An exampleof application of Formula (2).

globally brings C into I, that is, τ ± τ1 brings the rectangleB1 into a rectangle recognized
in I, and τ ± τ2 brings the circle B2 into a circle recognizedin I, both arranged according
to C. Note that I could contain also other shapes,not included in C.

We can now formally de¯ne the recognition of a shape in an image.

De¯nition 1 (Recognition) A shape description C is recognized in an image I if for
every interpretation (I ,¢) such that I 2 ¢ , it is I 2 CI . An interpretation (I ,¢) satis¯es
a composite shape description C if there exists an image I 2 ¢ such that C is recognized in
I. A composite shape description is satis¯able if there exists an interpretation satisfying it.

Observethat shapedescriptionscould beunsatis¯able: if two components de¯ne overlapping
regions,no image can be segmented in a way that satis¯es both components. Of course,if
composite shape descriptions are built using a graphical tool, unsatis¯abilit y can be easily
avoided, so we assumethat descriptions are always satis¯able. Anyway, unsatis¯able shape
descriptions could be easily detected, from their syntactic form, since unsatis¯abilit y can
only arise becauseof overlapping regions(seeProposition 4).

Observe also that our set-basedsemantics implies the intuitiv e interpretation of con-
junction \ u" | one could easily prove that u is commutativ e and idempotent.

For approximate matching, we modify de¯nition (2), following the fuzzy interpretation
of u as minimum, and existential as maximum:

CI(I) = max
¿

f
n

min
i=1

fh(τ ± τi ), Bi i I(I)gg (3)

Observe that our interpretation of composite shape descriptions strictly requires the pres-
enceof all components. In fact, the measureby which an imageI belongsto the interpreta-
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tion of a composite shape description CI is dominated by the least similar shape component
(the onewith the minimum similarit y). Hence,if a basicshape component is very dissimilar
from every region in I, this brings near to 03 also the measureof CI(I). This is more strict
than, e.g., Gudivada & Raghavan's (1995) or El-Kw ae & Kabuka's (1999) approaches, in
which a non-appearing component can decreasethe similarit y value of CI(I), but I can be
still above a threshold.

Although this requirement may seema strict one, it captures the way details are used
to re¯ne a query: the \dominan t" shapesare used¯rst, and, if the retrieved set is still too
large, the user adds details to restrict the results. In this re¯nement process,it should not
happen that other imagesthat match only somenew details, \p op up" enlarging the set of
results that the user was trying to restrict. We formalize this re¯nement processthrough
the following de¯nition.

Prop osition 1 (Do wn ward re¯nemen t) Let C be a composite shape description, and
let D be a refinement of C, that is D

.= C u hτ ′, B′i . For every interpretation I , if shapes
are interpreted as in (2), then DI µ CI ; if shapes are interpreted as in (3), then for every
image I it holds DI(I) · CI(I).

Proof. For (2), the claim follows from the fact that DI considersan intersection of the same
components as the one of CI , plus the set h(τ ± τ ′), B′i I . For (3), the claim analogously
follows from the fact that DI(I) computesa minimum over a superset of the valuesconsid-
ered for CI(I).

The above property makes our languagefully compositional. Namely, let C be a com-
posite shape description; we can consider the meaning of C | when usedas a query | as
the set of imagesthat can be potentially retrieved using C. At least, this will be the mean-
ing perceived by an end user of a system. Downward re¯nement ensuresthat the meaning
of C can be obtained by starting with one component, and then progressively adding other
components in any order. We remark that for other frameworks cited above (Gudivada &
Raghavan, 1995;El-Kw ae & Kabuka, 1999) this property doesnot hold. We illustrate the
problem in Figure 3. Starting with shape description C, we may retrieve (among many
others) the two imagesI1, I2, for which both CI(I1) and CI(I2) are above a threshold t,
while another image I3 is not in the set becauseCI(I3) < t. In order to be more selec-
tiv e, we try adding details, and we obtain the shape description D. Using D, we may still
retrieve I2, and discard I1. However, I3 now partially matches the new details of D. If
Downward re¯nement holds, DI(I3) · CI(I3) < t, and I3 cannot \p op up". In contrast,
if Downward re¯nement doesnot hold (as in Gudivada & Raghavan's approach) it can be
DI(I3) > t > CI(I3) becausematched details in D raise the similarit y sum weighted over
all components. In this case, the meaning of a sketch cannot be de¯ned in terms of its
components.

Downward re¯nement is a property linking syntax to semantics. Thanks to the exten-
sional semantics, it can be extendedto an even more meaningful semantic relation, namely,

3. Not exactly 0, since every shape matches every other one with a very low similarity measure. Similarity
is often computed as the inverse of a distance. Similarity 0 would correspond to infinite distance.
Nevertheless, the recognition algorithm can force the similarity to 0 when it is below a threshold.
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Figure 3: Downward re¯nement: the thin arrows denotenon-zerosimilarit y in approximate
recognition. The thick arrow denotesa re¯nement.
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Figure 4: An example of subsumption hierarchy of shapes (thick arrows), and images in
which the shapescan be recognized(thin arrows).

subsumption. We borrow this de¯nition from Description Logics (Donini, Lenzerini, Nardi,
& Schaerf, 1996), and its fuzzy extensions(Yen, 1991;Straccia, 2001).

De¯nition 2 (Subsumption) A description C subsumesa description D if for every
interpretation I , DI µ CI . If (3) is used, C subsumes D if for every interpretation I and
image I 2 ¢ , it is DI(I) · CI(I).

Subsumption takesinto account the fact that a description might contain a syntactic variant
of another, without both the user and the system explicitly knowing this fact. The notion
of subsumption extendsdownward re¯nement. It enablesalso a hierarchy of shape descrip-
tions, in which a description D is below another C if D is subsumedby C. When C and
D are usedas queries,the subsumption hierarchy makeseasyto detect query containment.
Containment can be usedto speedup retrieval: all imagesretrieved using D asa query can
be immediately retrieved also when C is usedas a query, without recomputing similarities.
While query containment is important in standard databases(Ullman, 1988), it becomes
even more important in an image retrieval setting, sincethe recognition of speci¯c features
in an image can be computationally demanding.

Figure 4 illustrates an exampleof subsumption hierarchy of basicand composite shapes
(thick arrows denote a subsumption betweenshapes), and two imagesin which shapescan
be recognized(thin arrows).

Although we did not consider a background, it could be added to our framework as a
special basic component hc, t, , backgroundi with the property that a region b satis¯es the
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background simply if their colors and textures match, with no check on the edgecontours.
Also, more than one background could be added; in that casebackground regions should
not overlap, and the matching of background regionsshould be consideredafter the regions
of all the basic shapesrecognizedare subtracted to the background regions.

4. Reasoning and Retriev al

We envisageseveral reasoningservicesthat can be carried out in a logic for imageretrieval:

1. shape recognition: Given an image I and a shape description D, decideif D is recog-
nized in I.

2. image retrieval: given a databaseof imagesand a shape description D, retrieve all
imagesin which D can be recognized.

3. imageclassi¯cation: given an imageI and a collection of descriptionsD1, . . . , Dn , ¯nd
which descriptions can be recognizedin I. In practice, I is classi¯ed by ¯nding the
most specific descriptions (with referenceto subsumption) it satis¯es. Observe that
classi¯cation is a way of \prepro cessing"recognition.

4. description subsumption (and classi¯cation): given a (new) description D and a col-
lection of descriptions D1, . . . , Dn , decide whether D subsumes(or is subsumedby)
each Di , for i = 1, . . . , n.

While services1{2 are standard in an image retrieval system,services3{4 are lessobvious,
and we brie°y discussthem below.

The processof image retrieval is quite expensive, and systemsusually perform o®-line
processingof data, amortizing its cost over several queries to be answered on-line. As an
example,all document retrieval systemsfor the web4, both for imagesand text, usespiders
to crawl the web and extract somerelevant features (e.g., color distributions and textures
in images, keywords in texts), that are used to classify documents. Then, the answering
processusessuch classi¯ed, extracted features of documents | and not the original data.

Our system can adapt this setting to composite shapes, too. In our system, a new
image inserted in the databaseis immediately segmented and classi¯ed in accordancewith
the basicshapesthat composeit, and the compositedescriptionsit satis¯es (Service3). Also
a query undergoes the sameclassi¯cation, with referenceto the queriesalready answered
(Service 4). The more basic shapes are present, the faster will the system answer new
queriesbasedon theseshapes.

More formally, given a query (shape description) D, if there exists a collection of de-
scriptions D1, . . . , Dn and all imagesin the databasewere already classi¯ed with reference
to D1, . . . , Dn , then it may su±ce to classifyD with referenceto D1, . . . , Dn to ¯nd (most
of) the imagessatisfying D. This is the usual way in which classi¯cation in Description
Logics | which amounts to a semantic indexing | can help query answering (Nebel, 1990).

For example, to answer the query asking for imagescontaining an arch, a system may
classifyarch and ¯nd that it subsumesthreePortalsGate (seeFigure 4). Then, the system

4. e.g., Altavista, QBIC, NETRA, Blobworld, but also Yahoo (for textual documents).
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can include in the answer all images in which ancient Roman gates can be recognized,
without recomputing whether these imagescontain an arch or not.

The problem of computing subsumption betweendescriptions is reducedto recognition
in the next section, and then an algorithm for exact recognition is given. Then, we extend
the algorithm to realistic approximate recognition, reconsideringcolor and texture.

4.1 Exact Reasoning on Images and Descriptions

We start with a reformulation of (2), more suited for computational purposes.

Theorem 2 (Recognition as mapping) Let C = hτ1, B1i u ¢¢¢u hτn , Bn i be a composite
shape description, and let I be an image, segmented into regions f r1, . . . ,rm g. Then C is
recognized in I iff there exists a transformation τ and an injective mapping j : f 1, . . . , ng !
f 1, . . . ,mg such that for i = 1, . . . , n it is

e(rj (i )) = τ (τi (e(Bi )))

Proof. From (2), C is recognizedin I i®

9τ [I 2
n\

i=1

h(τ ± τi ), Bi i I ] which is equivalent to 9τ [
n̂

i=1

I 2 h(τ ± τi ), Bi i I ]

Expanding h(τ ± τi ), Bi i I with its de¯nition (1) yields

9τ [
n̂

i=1

9r 2 I.e(r) = τ (τi (e(Bi )))]

and sinceregions in I are f r1, . . . ,rm g this is equivalent to

9τ [
n̂

i=1

m_

j =1

e(rj ) = τ (τi (e(Bi )))]

Making explicit the disjunction over j and conjunctions over i, we can arrange this con-
junctiv e formula as a matrix:

9τ

2

6
4

(e(r1) = τ (τ1(e(B1))) _ ¢¢¢ _ e(rm ) = τ (τ1(e(B1)))) ) ^
... _

... _
... ^

(e(r1) = τ (τn (e(Bn ))) _ ¢¢¢ _ e(rm ) = τ (τn (e(Bn )))) )

3

7
5 (4)

Now we note two properties in the above matrix of equalities:

1. For a given transformation, at most one region amongr1, . . . ,rm can be equal to each
component. This meansthat in each row, at most onedisjunct can be true for a given
τ .

2. For a given transformation, a region can match at most one component. This means
that in each column, at most one equality can be true for a given τ .
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We observe that theseproperties do not imply that regionshave all di®erent shapes,since
the equality of contours depends on any translation, rotation, and scaling. We useequality
to represent true overlap, and not just equal shape.

Properties 1{2 imply that the above formula is true i® there is an injective function
mapping each component to one region it matcheswith. To easethe comparisonwith the
formulae above we usethe samesymbol j asa mapping j : f 1, . . . , ng ! f 1, . . . ,mg. Hence,
Formula (4) can be rewritten into the claim:

9τ [9j : f 1..ng ! f 1..mg
n̂

i=1

e(rj (i )) = τ (τi (e(Bi )))] (5)

Hence,even if in the previous section the semantics of a composite shape was derived from
the semantics of its components, in computing whether an imagecontains a compositeshape
one can focus on groups of regions,one group rj (1), . . . , rj (n) for each possiblemapping j.

Observe that j injective implies m ¸ n, as one would expect. The above proposition
leaves open which one between τ or j must be chosen ¯rst. In fact, in what follows we
show that the optimal choice for exact recognition is to mix decisionsabout j and τ . When
approximate recognition will beconsidered,however, exchangingquanti¯ers is not harmless.
In fact, it can change the order in which approximations are made. We return to this
issuein the next section, when we discusshow one can devisealgorithms for approximate
recognition.

Subsumption in this simple logic for shape descriptions relies on the composition of
contours of basic shapes. Intuitiv ely, to actually decide if D is subsumedby C, we check
if the sketch associated with D | seenas an image | would be retrieved using C as a
query. From a logical perspective, the existentially quanti¯ed regions in the semantics of
shape descriptions (1) are skolemizedwith their protot ypical contours. Formal de¯nitions
follow.

De¯nition 3 (Protot ypical image) Let B be a basic shape. Its protot ypical image is
I(B) = f e(B)g. Let C = hτ1, B1i u ¢¢¢u hτn , Bn i be a composite shape description. Its
protot ypical image is I(C) = f τ1(e(B1)) , . . . , τn (e(Bn ))g.

In practice, from a composite shape description one builds its protot ypical image just ap-
plying the stated transformations to its components (and color/texture ¯llings, if present).
Recall that we envisage this protot ypical image to be built directly by the user, with the
help of a drawing tool, with basic shapes and colors as palette items. The system will
just keeptrack of the transformations corresponding to the user's actions, and usethem in
building the (internal) shape descriptionsstored with the previous syntax. The feature that
makesour proposal di®erent from other query-by-sketch retrieval systems,is precisely that
our sketcheshave also a logical meaning. So, properties about description/sketchescan be
proved, containment betweenquery sketchescan be stated in a formal way, and algorithms
for containment checking can be proved correct with referenceto the semantics.

Protot ypical imageshave someimportant properties. The ¯rst is that they satisfy (in
the senseof De¯nition 1) the shape description they exemplify | asintuition would suggest.
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Prop osition 3 For every composite shape description D, if D is satisfiable then the inter-
pretation hI , f I(D)gi satisfies D.

Proof. From Theorem 2, using an identical transformation τ and the identit y mapping for
j.

A shape description D is satis¯able if there are no overlapping regions in I(D). Since
this is obvious when D is speci¯ed by a drawing tool, we just give the following proposition
for sake of completeness.

Prop osition 4 A shape description D is satisfiable iff its prototypical image I(D) contains
no overlapping regions.

We now turn to subsumption. Observe that if B1 and B2 are basic shapes,either they
are equivalent (each onesubsumesthe other) or neither of the two subsumesthe other. If we
adopt for the segmented regionsan invariant representation, (e.g. Fourier transforms of the
contour) deciding equivalencebetween basic shapes, or recognizing whether a basic shape
appearsin an image, is just a call to an algorithm computing the similarit y betweenshapes.
This is what usual image recognizersdo | allowing for some tolerance in the matching
of the shapes. Therefore, our framework extends the retrieval of shapes made of a single
component, for which e®ective systemsare already available.

We now consider composite shape descriptions, and prove the main property of pro-
tot ypical images, namely, the fact that subsumption between shape descriptions can be
decidedby checking if the subsumercan be recognizedin the sketch of the subsumee.

Theorem 5 A composite shape description C subsumes a description D if and only if C
is recognized in the prototypical image I(D).

Proof. Let C = hτ1, B1i u ¢¢¢u hτn , Bn i , and let D = hσ1, A1i u ¢¢¢u hσm , Am i . Recall that
I(D) is de¯ned by I(D) = f σ1(e(A1)) , . . . , σm (e(Am ))g. To easethe reading, we sketch the
idea of the proof in Figure 5.

If. SupposeC is recognizedin I(D), that is, I(D) 2 CI for every interpretation (I ,¢)
such that I(D) 2 ¢. Then, from Theorem 2 there exists a transformation τ̂ and a suitable
injective function j from f 1, . . . , ng into f 1, . . . ,mg such that

e(rj (k)) = τ̂ ± τk (e(Bk )) for k = 1, . . . , n

Since I(D) is the protot ypical image of D, we can substitute each region with the basic
shape of D it comesfrom:

σj (k)(e(Aj (k))) = τ̂ ± τk (e(Bk )) for k = 1, . . . , n (6)

Now supposethat D is recognizedin an imageJ = f s1, . . . ,spg, with J 2 ¢. We prove that
alsoC is recognizedin J . In fact, if D is recognizedin J then there exists a transformation
σ̂ and another injective mapping q from f 1, . . . ,mg into f 1, . . . , pg selectingfrom J regions
f sq(1), . . . , sq(m)g such that

e(sq(h)) = σ̂ ±σh(e(Ah)) for h = 1, . . . ,m (7)
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Figure 5: A sketch of the If-proof of Theorem 5

Now composing q and j | that is, selecting the regions of J satisfying those components
of D which are usedto recognizeC | one obtains

e(sq(j (k))) = σ̂ ±σj (k)(e(Aj (k))) for k = 1, . . . , n (8)

Then, substituting equalsfor equalsfrom (6), one ¯nally gets

e(sq(j (k))) = σ̂ ± τ̂ ± τk (e(Bk )) for k = 1, . . . , n

which provesthat C too is recognizedin J , using σ̂±τ̂ as transformation of its components,
and q(j(¢)) as injective mapping from f 1, . . . , ng into f 1, . . . , pg. SinceJ is a genericimage,
it follows that DI µ CI . Since(I ,¢) is generic too, C subsumesD.

Only if. The reversedirection is easier: supposeC subsumesD. By de¯nition, this
amounts to DI µ CI for every collection of imagesI . For every I that contains I(D), then
I(D) 2 DI for Proposition 3. Therefore, I(D) 2 CI , that is, C is recognizedin I(D).

This property allows us to compute subsumption as recognition, so we concentrate on
complex shape recognition, using Theorem 2. Our concern is how to decidewhether there
exists a transformation τ and a matching j having the properties stated in Theorem 2.
It turns out that for exact recognition, a quadratic upper bound can be attained for the
possibletransformations to try .
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Theorem 6 Let C = hτ1, B1i u ¢¢¢u hτn , Bn i be a composite shape description, and let I
be an image, segmented into regions f r1, . . . ,rm g. Then, there are at most m(m ¡ 1) exact
matches between the n basic shapes and the m regions. Moreover, each possible match can
be verified by checking the matching of n pairs of contours.

Proof. A transformation τ matching exactly basic components to regions is also an
exact match for their centroids. Hencewe concentrate on centroids. Each correspondence
betweena centroid of a basic component and a centroid of a region yields two constraints
for τ . Now τ is a rigid motion with scaling, hence it has four degreesof freedom (two
degreesfor translations, one for rotation, and one for uniform scaling). Hence, if an exact
match τ exists betweenthe centroids of the basic components and the centroids of someof
the regions, then τ is completely determined by the transformation of any two centroids of
the basic shapes into two centroids of the regions.

Fixing any pair of basic components B1, B2, let p1, p2 denote their centroids. Also,
let rj (1), rj (2) be the regions that correspond to B1, B2, and let v j (1), v j (2), denote their
centroids. There is only onetransformation τ solving the point equations(each onemapping
a point into another) (

τ (τ1(p1)) = v j (1)
τ (τ2(p2)) = v j (2)

Hence, there are only m(m ¡ 1) such transformations. For the secondclaim, once a τ
matching the centroids is found, one checks that the edge contours of basic components
and regions coincide, i.e., that τ (τ1(e(B1))) = e(rj (1)), τ (τ2(e(B2))) = e(rj (2)), and for
k = 3, . . . , n that τ (τk (e(Bk )) coincideswith the contour of someregion e(rj (k)).

Recalling Formula (5) in the proof of Theorem 2, this meansthat we can eliminate the
outer quanti¯er in (5) using a computed τ , and concludethat C is recognizedin I i®:

9j : f 1..ng ! f 1..mg
n̂

i=1

e(rj (i )) = τ (τi (e(Bi )))

Observe that, to prune the above search, once a τ has been found as above, one can
check for k = 3, . . . , n that τ (τk (centr(Bk ))) coincideswith a centroid of someregion rj ,
beforechecking contours.

Basedon Theorem 6, we can devisethe following algorithm:

Algorithm Recognize(C,I);
input a composite shape description C = hτ1, B1i u ¢¢¢u hτn , Bn i , and

an image I, segmented into regionsr1, . . . ,rm

output True if C is recognizedin I, Falseotherwise
begin
(1) compute the centroids v 1, . . . ,vm of r1, . . . ,rm

(2) compute the centroids p1, . . . ,pn of the components of C
(3) for i, h 2 f 1, . . . ,mg with i < h do

compute the transformation τ such that τ (p1) = v i and τ (p2) = vh ;
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if for every k 2 f 1, . . . , ng
τ (τk (e(Bk ))) coincides(for somej) with a region rj in I

then return True
endfor
return False

end

The correctnessof Recognize(C,I) follows directly from Theorems2 and 6. Regarding
the time complexity, step (1) requires to compute centroids of segmented regions. Several
methods for computing centroids are well known in the literature (Jahne, Haubecker, &
Geibler, 1999). Hence, we abstract from this detail, and assumethere exists a function
f (Nh , Nv) that bounds the complexity of computing one centroid, where Nh , Nv are the
horizontal and vertical dimensionsof I (number of pixels). We report in the Appendix how
we compute centroids, and concentrate on the complexity in terms of n, m, and f (Nh , Nv).

Theorem 7 Let C = hτ1, B1i u ¢¢¢u hτn , Bn i be a composite shape description, and let I be
an image with Nh £ Nv pixels, segmented into regions f r1, . . . ,rm g. Moreover, let f (Nh , Nv)
be a function bounding the complexity of computing the centroid of one region. Then C can
be recognized in I in time O(m ¢f (Nh , Nv) + n + m2 ¢n ¢Nh ¢Nv).

Proof. From the assumptions,Step (1) can be performed in time O(m¢f (Nh , Nv)). Instead,
Step (2) can be accomplishedby extracting the n translation vectors from the transforma-
tions τ1, . . . ,τn of the components of C. Therefore, it requires O(n) time. Finally, the
innermost check in Step (3) | checking whether a transformed basic shape and a region
coincide | can be performed in O(Nh ¢Nv), using a suitable marking of pixels in I with
the region they belong to. Hence,we obtain the claim.

Sincesubsumption betweentwo shape descriptionsC and D can be reducedto recogniz-
ing C in I(D), the sameupper bound holds for checking subsumption between composite
shape descriptions, with the simpli¯cation that also Step (1) can be accomplishedwithout
any further feature-level image processing.

4.2 Appro ximate Recognition

The algorithm proposed in the previous section assumesan exact recognition. Since the
target of retrieval are real images, approximate recognition is needed. We start by re-
considering the proof of Theorem 2, and in particular the matrix of equalities (4). Using
the semantics for approximate recognition (3), the expandedformula for evaluating CI(I)
becomesnow the following:

max
¿

min

8
><

>:

maxf sim(e(r1), τ (τ1(e(B1)))) , . . . , sim(e(rm ), τ (τ1(e(B1))))) g
...

...
...

maxf sim(e(r1), τ (τn (e(Bn ))) , . . . , sim(e(rm ), τ (τn (e(Bn )))) g

9
>=

>;

Now Properties 1{2 stated for exact recognition can be reformulated as hypothesesabout
sim, as follows.
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1. For a given transformation, we assumethat at most one region among r1, . . . ,rm is
maximally similar to each component. This assumption can be justi¯ed by supposing
its negation: if there are two regions both maximally similar to a component, then
this maximal value should be a very low one, lowering the overall value becauseof the
external minimization. This meansthat in maximizing each row, we can assumethat
the maximal value is given by one index among 1, . . . ,m.

2. For a given transformation, we assumethat a region can yield a maximal similarit y for
at most onecomponent. Again, the rationale of this assumption is that when a region
yields a maximal similarit y with two components in two di®erent rows, this value can
be only a low one, which propagatesalong the overall minimum. This meansthat in
minimizing the maxima from all rows, we can considera di®erent region in each row.

We remark that also in the approximate casetheseassumptionsdo not imply that regions
have all di®erent shapes,sincesim is a similarit y measurewhich is 1 only for true overlap,
not just for equal shapes with di®erent pose. The assumptionsjust state that sim should
be a function \near" to plain equality.

The above assumptionsimply that we can focus on injective mappings from f 1..ng into
f 1..mg also for the approximate recognition, yielding the formula

max
¿

max
j :{1::n}→{1::m}

n
min
i=1

f sim(e(rj (i )), τ (τi (e(Bi )))) g

The choicesof τ and j for the two maxima are independent, hencewe can considergroups
of regions¯rst:

max
j :{1::n}→{1::m}

max
¿

n
min
i=1

f sim(e(rj (i )), τ (τi (e(Bi )))) g (9)

Di®erently from the exact recognition, the choiceof an injective mapping j doesnot directly
lead to a transformation τ , sincenow τ dependson how the similarit y of transformed shapes
is computed, that is, the choice of τ dependson sim.

In giving a de¯nition of sim, we reconsiderthe other imagefeatures(color, texture) that
were skipped in the theoretical part to easethe presentation of semantics. This will intro-
duce weighted sumsin the similarit y measure,where weights are set by the user according
to the importance of the features in the recognition.

Let sim(r,hc, t, τ, Bi ) be a similarit y measurethat takesa region r (with its color c(r)
and texture t(r)) and a component hc, t, τ, Bi into the range [0,1] of real numbers (where 1
is perfect matching). We note that color and texture similarities do not depend on trans-
formations, hencetheir intro duction doesnot changeAssumptions 1{2 above. Accordingly,
Formula (9) becomes

max
j :{1::n}→{1::m}

max
¿

n
min
i=1

f sim(rj (i ),hc, t, (τ ± τi ), Bi i )g (10)

This formula suggeststhat from all the groups of regions in an image that might resemble
the components, weshouldselectthe groupsthat present the higher similarit y. In arti¯cially
constructed examplesin which all shapesin I and C resemble each other, this may generate
an exponential number of groups to be tested. However, we can assumethat in realistic

230



Str uctured Kno wledge Represent ation f or Image Retriev al

imagesthe similarit y betweenshapesis selective enoughto yield only a very small number
of possible groups to try . We recall that in Gudivada's approach (Gudivada, 1998) an
even stricter assumption is made, namely, each basic component in C does not appear
twice, and each region in I matches at most one component in C. Hence our approach
extends Gudivada's one, also for this aspect | besidesthe fact that we consider shape,
scale,rotation, color and texture of each component.

In spite of the assumptions made, ¯nding an algorithm for computing the \b est" τ
in Formula (10) proved for us a di±cult task. The problem is that there is a continuous
spectrum of τ to be searched, and that the best τ may not be unique. We observed that
when only single points are to be matched | instead of regions and components | our
problem simpli¯es to Point Pattern Matching in Computational Geometry. However, even
recent results in that research area are not complete, and cannot be directly applied to
our problem. Cardoze and Schulman (1998) solve the nearly-exact point matching with
e±cient randomized methods, but without scaling. They also observe that best match is
a more di±cult problem than nearly-exact match. Also Chew, Goodrich, Huttenlo cher,
Kedem, Kleinberg, and Kravets (1997) propose a method for best match of shapes, but
they analyzeonly rigid motions without scaling.

Therefore, we adopt some heuristics to evaluate the above formula. First of all, we
decomposesim(r,hc, t, τ, Bi ) as a sum of six weighted contributions.

Three contributions are independent of the pose: color, texture and shape. The val-
ues of color and texture similarit y are denoted by simcolor (c(r), c) and simtextur e(t(r), t),
respectively. Similarit y of the shapes (rotation-translation-scale invariant) is denoted by
simshape(e(r), e(B)). For each feature, and each pair (region, component) we compute a
similarit y measureas explained in the Appendix. Then, we assign to all similarities of a
feature | say, color | the worst similarit y in the group. This yields a pessimisticestimate
of Formula (10); however, for such estimate the Downward Re¯nement property holds (see
next Theorem 8).

The other three contributions depend on the pose, and try to evaluate how the pose
of each region in the selectedgroup is similar to the posespeci¯ed by the corresponding
component in the sketch. In particular, simscale(e(r), τ (e(B)) represents how similar in scale
are the region and the transformed component, while simr otation (e(r), τ (e(B)) denoteshow
e(r) and τ (e(B) are similarly (or not) rotated with referenceto the arrangement of the
other components. Finally, simspatial (e(r), τ (e(B)) denotesa measureof how coincident are
the centroids of the region and the transformed component.

In summary, we get the following form for the overall similarit y betweena region and a
component:

sim(r,hc, t, τ, Bi ) = simspatial (e(r), τ (e(B)) ¢α +

simshape(e(r), e(B)) ¢β +

simcolor (c(r), c) ¢γ +

simr otation (e(r), τ (e(B)) ¢δ +

simscale(e(r), τ (e(B)) ¢η +

simtextur e(t(r), t) ¢ε
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wherecoe±cients α, β, γ, δ, η, ε weight the relevanceeach feature hasin the overall similarit y
computation. Obviously, we imposeα+ β + γ + δ+ η+ ε = 1, and all coe±cients are greater
or equal to 0. The actual valuesgiven to thesecoe±cients in the implemented system are
reported in Table 2 in Section 6.

Becauseof the di±culties in computing the best τ , we do not compute a maximum over
all possibleτ 's. Instead, weevaluate whether there can be a rigid transformation with scaling
from τ1(e(B1)) , . . . , τn (e(Bn )) into rj (1), . . . , rj (n), through similarities simspatial , simscale,
and simr otation . There is a transformation i® all these similarities are 1. If not, the lower
the similarities are, the less\rigid" the transformation should be to match components and
regions. Hence,instead of Formula (10) we evaluate the following simpler formula:

max
j :{1::n}→{1::m}

n
min
i=1

f sim(rj (i ),hc, t, τi , Bi i )g (11)

interpreting posesimilarities in a di®erent way. We now describe in detail how we estimate
posesimilarities.

Let C = hc1, t1, τ1, B1i ) u ¢¢¢u hcn , tn , τn , Bn i ), and let j be an injective function from
f 1..ng into f 1..mg, that matchescomponents with regionsf rj (1), . . . , rj (n)g respectively.

4.2.1 Spatial Similarity

For a given component | say, component 1 | we compute all anglesunder which the other
components are seenfrom 1. Formally, let αci1h

be the counter-clockwise-oriented anglewith
vertex in the centroid of component 1, and formed by the lines linking this centroid with
the centroids of component i and h. There are n(n ¡ 1)/2 such angles.

Then, we compute the correspondent anglesfor region rj (1), namely, anglesβ dj (i )j (1)j (h)
with vertex in the centroid of rj (1), formed by the lines linking this centroid with the
centroids of regions rj (i ) and rj (h) respectively. A pictorial representation of the anglesis
given in Figure 6.

Then we let the di®erence¢ spatial (e(rj (1)), τ1(e(B1)) be the maximal absolutedi®erence
betweencorrespondent angles:

¢ spatial (e(rj (1)), τ1(e(B1)) = max
i;h=2;:::;n;i 6=h

fj αci1h
¡ β dj (i )j (1)j (h)

jg

Wecomputean analogousmeasurefor components 2,. . . ,n, and then weselectthe maximum
of such di®erences:

¢ spatial [j] =
n

max
i=1

f ¢ spatial (e(rj (i )), τi (e(Bi ))g (12)

where the argument j highlights the fact that this measure depends on the mapping
j. Finally, we transform this maximal di®erence| for which perfect matching yields 0
| into a minimal similarit y | perfect matching yields 1 | with the help of the func-
tion © described in the Appendix. This minimal similarit y is then assigned to every
simspatial (e(rj (i )), τi (e(Bi )), for i = 1, . . . , n.

Intuitiv ely, our estimatemeasuresthe di®erencein the arrangement of centroids between
the composite shape and the group of regions. If there exists a transformation bringing
components into regionsexactly, every di®erenceis 0, and so simspatial raisesto 1 for every
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Figure 6: Representation of angles used for computing spatial similarit y of component 1
and region rj (1).
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Figure 7: Representation of anglesused for computing rotation similarit y of component 1
and region rj (1).

component. The morean arrangement is scatteredwith referenceto the other arrangement,
the higher its maximum di®erence.The reasonwhy we usethe maximum of all di®erences
as similarit y for each pair component-region will be clear when we prove later that this
measureobeys Downward Re¯nement property.

4.2.2 Rotation Similarity

For every basicshape onecan imagine a unit vector with origin in its centroid and oriented
horizontally on the right (as seenon the palette). When the shape is usedas a component
| say, component 1 | also this vector is rotated according to τ1. Let ~h denote such a
rotated vector. For i = 2, . . . , n let γci1~h

the counter-clockwise-oriented angle with vertex in

the centroid of component 1, and formed by ~h and the line linking the centroid of component
1 with the centroid of component i.

For region rj (1), the analogous~u of ~h can be constructed by ¯nding the rotation phase
for which cross-correlationattains a maximum value (seeAppendix). Then, for i = 2, . . . , n
let δ dj (i )j (1)~u

be the angleswith vertex in the centroid of rj (1), and formed by ~u and the line

linking the centroid of rj (1) with the centroid of rj (i ). Figure 7 clari¯es the angleswe are
computing.

Then we let the di®erence¢ r otation (e(rj (1)), τ1(e(B1)) be the maximal absolutedi®erence
betweencorrespondent angles:

¢ r otation (e(rj (1)), τ1(e(B1)) = max
i=2;:::;n

fj γci1~h
¡ δ dj (i )j (1)~u

jg

If there is more than oneorientation of rj (1) for which cross-correlationyields a maximum |
e.g., a squarehas four such orientations | then we compute the above maximal di®erence
for all such orientations, and take the best di®erence(the minimal one).
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Figure 8: Sizesand distancesfor scalesimilarit y computation of component 1 and region
rj (1).

We repeat the processfor components 2 to n, and we select the maximum of such
di®erences:

¢ r otation [j] =
n

max
i=1

f ¢ r otation (e(rj (i )), τi (e(Bi ))g (13)

Finally, as for spatial similarit y, we transform ¢ r otation [j] into a minimal similarit y with
the help of ©. This minimal similarit y is then assignedto every simr otation (e(rj (i )), τi (e(Bi )),
for i = 1, . . . , n.

Observe that also thesedi®erencesdrop to 0 when there is a perfect match, hencethe
similarit y raises to 1. The more a region has to be rotated with referenceto the other
regions to match a component, the higher the rotational di®erences.Again, the fact that
we use the worst di®erenceto compute all rotational similarities will be exploited in the
proof of Downward Re¯nement.

4.2.3 Scale Similarity

We concentrate again on component 1 to easethe presentation. Let m1 be the size of
component 1, computedasthe meandistancebetweenits centroid and points on the contour.
Moreover, for i = 2, . . . , n, let d1i be the distance betweenthe centroid of component 1 and
the centroid of component i. In the image, let Mj (1) be the size of region rj (i ), and let
Dj (1)j (i ) be the distance between centroids of regions j(1) and j(i). Figure 8 pictures the
quantities we are computing.

We de¯ne the di®erencein scalebetweene(rj (1)) and τ1(e(B1) as:

¢ scale(e(rj (1)), τ1(e(B1)) = max
i=2;:::;n

( ¯
¯
¯
¯
¯
1 ¡

minf Mj (1)/Dj (1)j (i ),m1/d1i g

maxf Mj (1)/Dj (1)j (i ),m1/d1i g

¯
¯
¯
¯
¯

)
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Werepeat the processfor components 2 to n, and weselectthe maximum of such di®erences:

¢ scale[j] =
n

max
i=1

f ¢ scale(e(rj (i )), τi (e(Bi ))g (14)

Finally, asfor the other similarities, we transform ¢ scale[j] into a minimal similarit y with
the help of ©. This minimal similarit y is then assignedto every simscale(e(rj (i )), τi (e(Bi )),
for i = 1, . . . , n.

4.2.4 Discussion of Pose Similarities

Using the sameworst di®erencein evaluating posesimilarities of all components may appear
a somewhatdrastic choice. However, we wereguided in this choiceby the goal of preserving
the Downward Re¯nement property, even if we had to abandonthe exact recognition of the
previous section.

Theorem 8 Let C be a composite shape description, and let D be a refinement of C, that
is, D

.= Cu hc′, t′, τ ′, B′i . For every image I, segmented into regions r1, . . . ,rm , if C
I(I) and

DI(I) are computed as in (11) using similarities defined above, then it holds DI(I) · CI(I).

Proof. Every injective function j used to map components of C into I can be extended to
a function j′ by letting j′(n + 1) 2 f 1, . . . ,mg be a suitable region index not in the range
of j. SinceDI(I) is computed over such extended mappings, it is su±cient to show that
valuescomputed in Formula (11) do not increasewith referenceto the valuescomputed for
C.

Let j1 be the mapping for which the maximum value CI(I) is reached. Every extension
j′1 of j1 leadsto a minimum valueminn+1

i=1 in Formula (11) which is lower than CI(I). In fact,
all posedi®erences(12), (13), (14), are computed as maximums over a strictly greater set
of values,hencethe posesimilarities have either the samevalue, or a lower one. Regarding
color, texture, and shape similarities, adding another component can only worsenthe values
for components of C, sincewe assignto all components the worst similarit y in the group.

Now consideranother injectivemapping j2 that yields a non-maximum valuev2 < CI(I)
in Formula (11). Using the above argument about posedi®erences(12), (13), (14), every
extension j′2 leads to a minimum value v′2 · v2. Sincev2 < CI(I), also every extension of
every mapping j di®erent from j1 yields a value which is lessthan CI(I). This completes
the proof.

5. A Protot yp e System

In order to substantiate our ideaswe have developed a protot ype system, written in C++.
The system is a client-server application working in a MS-Windows environment.

The client side avails of a graphical user interface that allows one to carry out all the
operations necessaryto query the knowledge base, including a canvas for query by sketch
composition using basic shapes and a module for query by example using new or existing
imagesasqueries. The client alsoallows a user to insert new shape descriptionsand images
in the knowledgebase. The client has the logical structure shown in Figure 9. It is made
up of three main modules: sketch, communication and con¯guration.
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Figure 9: Architecture of the protot ype system.
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Figure 10: The processof reclassi¯cation of imageswhen a new description is inserted: a)
before insertion of description (No. 9); b) after insertion.

The communication module managesthe communication with the server side, using
a simple application-level protocol. The con¯guration module allows one to modify the
parameters relative to the preview of imagesand shapes transferred from the server and
placed in a cache managedwith a FCFS policy for e±cient display. The sketch module
allows a user to trace basic shapes as palette items, and properly insert and modify them
by varying the scaleand rotation factor. The available shapes may be basic onessuch as
ellipse, circle, rectangle, polygons or obtained by composing the basic shapes or complex
shapes de¯ned during previous sessionsof the application and inserted in the knowledge
base,but also shapesextracted from segmented images.

The system keepstrack of the transformations corresponding to the user's actions, and
usesthem in building the (internal) shape descriptionsstored with the previously described
syntax. The color and texture of the drawn shapescan be set accordingto the user require-
ments, as the client interface provides a color palette and the possibility to open imagesin
JPEG format with texture content. The user can also load imagesfrom the local disk and
transmit them to the server to populate the knowledge base. Finally, the user can de¯ne
new objects endowing them with a textual description and insert them into the knowledge
base.

The server side, which is also shown in Figure 9, is composed by concurrent threads
that managethe server-sidegraphical interface, the connectionsand communications with
the client applications and carry out the processingrequired by the client side. Obviously,
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Figure 11: A query and the retrieved set of images.
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the server alsocarriesout all tasks related to the insertion of imagesin the knowledgebase,
including segmentation, feature extraction and region indexing, and allows one to properly
set the various parametersinvolved. To this end, the server hasthree main subcomponents:

1. the imagefeaturesextractor that contains an imagesegmentation module and a region
data extraction one;

2. the image classi¯er that is composedby a classi¯er module and a module usedin the
image reclassi¯cation;

3. the databasemanagement system.

The feature extractor segments and processesimagesto extract relevant features from
each detected region, which characterize the imagesin the knowledgebase. Image segmen-
tation is carried out with an algorithm that starts with the extraction of relevant edgesand
then carriesout a region growing procedurethat basically mergessmaller regionsinto larger
onesaccording to their similarit y in terms of color and texture. Detected regionsobviously
have to comply with someminimal heuristics. Each region has associated a description of
the relevant features.

The classi¯er managesa graph that is used to represent and hierarchically organizes
shape descriptions: basic shapes, and more complex onesobtained by combining such el-
ementary shapes and/or by applying transformations (rotation, scaling and translation).
The basic shapes have no parents, so they are at the top of the hierarchy. Images, when
inserted in the knowledgebaseafter the segmentation process,are linked to the descriptions
in the structure depending on the most speci¯c descriptions that they are able to satisfy.

The classi¯er module is invoked when a new description D has to be inserted in the
system or a new query is posed. The classi¯er carries out a search processin the hierarchy
to ¯nd the exact position wherethe new description D (a simple or a complexone) hasto be
inserted: the position is determined considering the descriptions that the new description
is subsumedby. Once the position has beenfound, the image reclassi¯er comparesD with
the imagesavailable in the databaseto determine those that satisfy it; all the imagesthat
verify the recognition algorithm are tied to D. This stage only considersthe imagesthat
are tied to descriptions that are direct ancestorsof D, as outlined in Figure 10.

As usual in Description Logics,alsothe query processconsistsof a description insertion,
as both a query Q and a new description D are treated as protot ypical images: a query
Q to the system is considereda new description D and added to the hierarchical data
structure; all imagesthat are connectedeither to Q or to descriptions below the query in
the hierarchical structure are returned as retrieved images.

The database management module simply keeps track of images and/or pointers to
images.

Using the system is a straightforward task. After logon a user can draw a sketch on
the canvas combining available basic shapes, and enrich the query with color and texture
content. After that the query can be posedto the server to obtain imagesranked according
to their similarit y. Figure 11 shows a query by sketch with two circles and the retrieved
set. The system correctly retrievespictures of cars in which the two circles are recognized
in the samerelative positions of the sketch and represent the wheels,but also a snow man
with black buttons.
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Figure 12: Downward re¯nement (contd.): A more detailed query, picturing a car, and the
retrieved set of images.
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Figure 13: A Subsumption example: increasingthe number of objects in the query leadsto
a correct reduction in the retrieved set.
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The intro duction of more details restricts the retrieved set: adding a chassis to the
previous sketch makesthe query more precise,aswell as the retrieval results, as it is shown
in Figure 12. This examplepoints out how we expect a userwill usethe system. He/she will
start with a genericquery with a few objects. If the number of imagesin the retrieved set is
still too large, he/she will increasethe number of details obtaining a downward re¯nement.

Notice that the presenceof regions/objects not included in the query is obviously ac-
cepted but not the lack of a region that was explicitly intro duced in the query. The idea
underlying this approach is that there is an enormousamount of available images,and at
the current stageof research and technology no systemcan always ensurea completerecog-
nition; yet we believe that the focusshould be on reducing falsepositives,acceptingwithout
much concern a higher ratio of false negatives. This basically meansincreasing precision,
even at the cost of a possibly lower recall. In other words we believe it is preferable for a
user looking for an image containing a yellow car, e.g., using the sketch in Figure 12, that
he/she receivesas result of the query a limited subsetof imagescontaining almost for sure
a yellow car, than a large amount of imagescontaining cars, but also several imageswith
no cars at all.

Subsumption is another distinguishing feature of our system. Figure 13 shows queries
composedof basic shapes that have beenobtained by segmentation of an image picturing
aircrafts, i.e., the aircraft is now a basic shape for the system. Here, to better emphasize
the example, only shape and position contribute to the similarit y value. The processof
subsumption is clearly highlighted: a query with just a single aircraft retrievesimageswith
one aircraft, but also with more than one aircraft. Adding other aircrafts in the graphical
query correctly reducesthe retrieved set. The example also points out that the system is
able to correctly deal with the presenceof more than one instance of an object in images,
which is not possiblein the approaches by Gudivada and Raghavan (1995) and Gudivada
(1998). On the negative side it has to be noticed that the system did not recognizethe
presenceof a third aircraft (indeed a strange one, the B2-Spirit) in the secondimage of
Figure 13-b), which was not segmented at all and consideredpart of the background.

The abilit y of the system to retrieve complex objects also in imageswith several other
di®erent objects, that is with no \main shapes", can be anyway seenin Figure 14. Here a
real image is directly submitted as query. Notice that in this casethe system has to carry
out the segmentation processon the °y, and detect the composing shapes.

6. Exp erimen ts and Results

In order to assessthe performanceof the proposedapproach and of the systemimplementing
it, we have carried out an extensive set of experiments on a test dataset of images. It is
well known that evaluating performancesof an image retrieval system is di±cult because
of lack of ground truth measures.To easethe possibility of a comparison,we adopted the
approach ¯rst proposedby Gudivada and Raghavan (1995). The experimental framework is
hencelargely basedon the one proposedthere, which relies on a comparisonof the system
performancesversusthe judgement of human experts.

It should be noticed that in that work test images were iconic images, which were
classi¯ed only in terms of spatial relationships between icons; in our experiments images
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Figure 14: A query by exampleand retrieved images.
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Figure 15: A sampleof the imagesusedin the experiments.
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are real and classi¯cation hasbeencarried out on all imagefeatures,including color, texture,
shape, scale,orientation and spatial relationships.

The test data set consists of a collection of 93 images; a sample of them is shown in
Figure 15, while the complete set is available at URL:

http://www-ictserv.p oliba.it/disciascio/jair images.htm.

Imageshave beenacquired using a digital camera,combining 18 objects, either simple
objects (i.e., a single shape) or composite ones,of variable size and color. All imageshad
size 1080 £ 720 pixels, 24 bits/pixel. It should be noticed that actually there were more
than 18 di®erent objects, but we consideredvery similar variants of an object, e.g., two
penswith a di®erent color, as a single test object.

We selectedfrom the test data set 31 imagesto be usedasqueries. The query set formed
two logical groupings.

The ¯rst one (namely queries1 through 15 and queries27, 30 and 31) had as primary
objective testing the performanceof the system using as query single objects composedby
various shapes. That is, assessingthe abilit y of the system to detect and retrieve images
containing the sameobject, or objects similar to the query.

The query imagesin the secondgroup (remaining imagesin the test data set) pictured
two or more objects and they were chosento assessthe abilit y of the system to detect and
retrieve imagesaccording to spatial relationships existing betweenthe objects in the query.

Obviously the di®erencebetweenqueriescontaining single objects composedby several
shapes,and queriescontaining two or more objects, is just a cognitive one: for our system
all queriesare composite shapes. However, we observed that performanceschangedfor the
two groupings.

We then separately asked ¯v e volunteers to classify in decreasingorder, according to
their judgment, the 93 imagesbasedon their similarit y to each image of the selectedquery
set. The volunteers had never used the system and they were only brie°y instructed that
rank orderings had to be basedon the degreeof conformanceof the databaseimageswith
the query images. They were allowed to group imageswhen consideredequivalent, and for
each query, to discard imagesthat were judged wholly dissimilar from the query.

Having obtained ¯v eclassi¯cations, which werenot univocal, wecreatedthe ¯nal ranking
merging the previous similarit y rankings according to a minimum ranking criterion. The
¯nal ranking of each image with respect to a query was determined as the minimum one
among the ¯v e available.

As an example consider the classi¯cation of Query nr.1, which is shown in Table 1.
Notice that imagesgrouped together in the samecell have beengiven the samerelevance.
Here Image 2 was ranked in third position by users1,4, and 5, but as users2 and 3 ranked
it in fourth position, it was ¯nally ranked in position four. Notice that for image 24 the
samecriterion leadsto its withdrawal from ranked images. This approach limits the weight
that imagesbadly classi¯ed by single usershave on the ¯nal ranking.

Then we submitted the sameset of 31 queriesto the system,whoseknowledgebasewas
loaded only with the 93 imagesof the test set.

The behavior of the system obviously depends on the con¯guration parameters, which
determine the relevanceof the various features involved in the similarit y computation. The
con¯guration parametersfed to the systemwereexperimentally determined on a test bed of
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user ranking
1st 2nd 3rd 4th 5th

1 1 44, 88 2, 3, 68, 80 26 24
2 1 44, 88 3, 68, 80 2, 26
3 1 44, 88 3, 68, 80 2, 26
4 1 44, 88 2, 3, 68, 80 26 24
5 1 44, 88 2, 3, 68, 80 24 26

final 1 44, 88 3, 68, 80 2, 26

Table 1: Usersrankings for query nr.1

Parameter Value

Fourier descriptors threshold 0.98
Circular symmetry threshold 0.99
Spatial similarit y threshold 0.30
Symmetry maxima threshold 0.10
Spatial similarit y weigh t α 0.30
Spatial similarit y sensitivit y fx 90.0
spatial similarit y sensitivit y fy 0.40
shap e similarit y weigh t β 0.30
shap e similarit y sensitivit y fx 0.005
shap e similarit y sensitivit y fy 0.20
color similarit y weigh t γ 0.11
color similarit y sensitivit y fx 110.0
color similarit y sensitivit y fy 0.40
rotation similarit y weigh t δ 0.11
rotation similarit y sensitivit y fx 90.0
rotation similarit y sensitivit y fy 0.40
texture similarit y weigh t ε 0.07
texture similarit y sensitivit y fx 110.0
texture similarit y sensitivit y fy 0.40
scale similarit y weigh t η 0.11
scale similarit y sensitivit y fx 0.50
scale similarit y sensitivit y fy 0.40
global similarit y threshold 0.70

Table 2: Con¯guration parameters,grouped by feature type.

approximately 500 imagesbefore starting the test phase. They are shown in Table 2. The
parameters reported here are described in the Appendix. Notice that, dealing with well-
de¯ned objects, we gave an higher relevance to shape and spatial features and a reduced
relevanceto scale,rotation, color and texture.

The resulting classi¯cation gave us what wascalled a system-provided ranking. We then
adopted the Rnor m as quality measureof the retrieval e®ectiveness.Rnor m has been ¯rst
intro duced in the LIVE-Pro ject (Bollmann, Jochum, Reiner, Weissmann,& Zuse, 1985)
for the evaluation of textual information retrieval systems and it has been used in the
experiments of the above referencedpaper by Gudivada and Raghavan. To make the paper
self-contained we recall here how Rnor m is de¯ned.

Let G be a ¯nite set of imageswith a user-de¯nedpreferencerelation ¸ that is complete
and transitiv e. Let ¢ usr be the rank ordering of G induced by the user preferencerelation.
Also, let ¢ sys be a system-provided ranking. The formulation of Rnor m is:

Rnor m (¢ sys) =
1
2

¢(1 +
S+ ¡ S−

S+
max

)

where S+ is the number of image pairs where a better image is ranked by the system
aheadof a worseone;S− is the number of pairs where a worse image is ranked aheadof a
better one and S+

max is the maximum possiblenumber of S+. It should be noticed that the
calculation of S+, S−, and Smax is basedon the ranking of image pairs in ¢ sys relative to
the ranking of corresponding image pairs in ¢ usr .
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Query nr. Image nr. Rnorm

†1 1 0.92
†2 2 0.92
†3 3 0.93
†4 4 0.95
†5 5 0.99
†6 6 0.94
†7 7 0.93
†8 10 0.93
†9 11 0.95
†10 12 0.74
†11 13 0.60
†12 14 0.84
†13 15 0.83
†14 18 0.99
†15 20 0.91
16 25 0.89
17 26 0.80
18 27 1.00
19 28 0.74
20 31 1.00
21 33 1.00
22 34 0.99
23 35 0.91
24 36 0.89
25 37 1.00
26 39 0.99
†27 41 0.93
28 42 0.98
29 50 1.00
†30 78 0.88
†31 79 1.00

Average Rnorm 0.92

Table 3: Rnor m values. (yindicates single-object queries)

Rnor m values are in the range [0,1]; a value of 1 corresponds to a system-provided
ordering of the databaseimagesthat is either identical to the one provided by the human
experts or has a higher degreeof resolution, lower values correspond to a proportional
disagreement betweenthe two.

Table 3 shows results for each query and the ¯nal averageRnor m =0.92. Taking a closer
look at results, for the ¯rst group of queries (single compound objects) the averagevalue
was Rnor m =0.90, and Rnor m =0.94 for the secondgrouping (various compound objects).
(The complete set of result for users' ranking and system ranking is available in the online
appendix).

As a comparison,the averageRnor m resulted 0.98 in the systempresented by Gudivada
and Raghavan (1995), where 24 iconic images were used both as queries and database
images,and similarit y wascomputedonly on spatial relationshipsbetweenicons. Weremark
herethat our systemworks on real imagesand computessimilarit y on several imagefeatures,
and we believe that results prove the abilit y of the system to catch to a good extent the
users information need, and make re¯ned distinctions between imageswhen searching for
composite shapes. Furthermore, our algorithm is able to correctly deal with the presence
of more than one instance of an object in images,which is not possiblein other approaches
(Gudivada, 1998). It is also noteworthy that, though the parameters setting has been the
object of several experiments, it cannot be consideredoptimal yet, and we believe that there
is room for further improvement in the systemperformance,as it is also pointed out in the
following paragraph.

Obviously the system can fail when segmentation does not provide accurate enough
results. Figure 16 shows results for Query 11, which was the one with the worst Rnor m .
Here the system not only did not retrieve all images users had consideredrelevant, but
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Figure 16: Query results for query 11, which had the lowest Rnor m =0.60.

more important wrongly confusedthe sugar-drop with a wrist-watch, which resulted in a
false positive. As a matter of fact in various imagesthe sweet-drops resulted not properly
segmented. Nevertheless,highly relevant imagesweresuccessfullyretrievedand the wrongly
retrieved one was slightly above the selectionthreshold.

Another observation we made was that human users,when comparing a query with a
single object, were much more driven by the color than any other feature, including the
spatial positioning. This appeared in various queries and is again clearly visible using as
exampleresults for Query 11. Here usersselectedin the highest relevanceclassonly images
with the samecolor sugar-drop,and gave a lower ranking to images(with sugar-drops)with
closerspatial relationships but di®erent colors. This observation may be signi¯cant in the
related ¯eld of object recognition.

A ¯nal comment. With referenceto the system behavior in terms of retrieval time, we
did not carry out a systematic testing, as it dependson several variables: number of images
in the database,number of objects in the query, but more important depth in the hierarchy
- as the search time decreasesas more basic shapes are available. Limiting our analysis
to the databaseloaded with the 93 test images,the system required on average12 secsto
answer a query, on a machine with Celeron400MHz CPU and 128MB RAM running both
the client and the server.
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7. Conclusion

We proposeda Knowledge Representation approach to Image Retrieval. We started from
the observation that current sketch-basedimage retrieval systemslack of a compositional
query language| that is, they are not able to handle queriesmadeby several shapes,where
the position, orientation and sizeof the shapesrelative to each other is meaningful.

To recover this, we proposed a language to describe composite shapes, and gave an
extensional semantics to queries, in terms of sets of retrieved images. To cope with a
realistic setting from the beginning, we alsogeneralizedthe semantics to fuzzy membership
of an image to a description. The composition of shapes is made possibleby the explicit
use in our language of geometric transformations (translation-rotation-scale), which we
borrow form hierarchical object modeling in Computer Graphics. We believe that this
is a distinguishing feature of our approach, that signi¯cantly extends standard invariant
recognition of single shapes in image retrieval. The extensional semantics allows us to
properly de¯ne subsumption (i.e., containment) betweenqueries.

Borrowing also from Structured KnowledgeRepresentation, and in particular from De-
scription Logics, we stored shape descriptions in a subsumption hierarchy. The hierarchy
provides a semantic index to the images in a database. The logical semantics allowed us
to de¯ne other reasoningservices:the recognition of a shape arrangement in an image, the
classi¯cation of an image with referenceto a hierarchy of descriptions, and subsumption
betweendescriptions. Thesetasksare aside,but can speedup, the main one,which is Image
Retrieval.

We proved that subsumption in our simple logic can be reduced to recognition, and
gave a polynomial-time algorithm to perform exact recognition. Then, for a realistic ap-
plication of our setting we extended the algorithm to approximate recognition, weighting
shape features (orientation, size,position), color and texture.

Using our logical approach as a formal speci¯cation, we built a protot ype system using
state-of-the-art technology, and set up experiments both to assessthe e±cacy of our pro-
posal, and to ¯ne tune all parameters and weights that show up in approximate retrieval.
The results of our experiments, although not exhaustive, show that our approach can catch
to a good extent the usersinformation needand make re¯ned distinctions betweenimages
when searching for composite shapes.

We believe that this proposal opensat least three directions for future research. First,
the language for describing composite shapes could be enriched either with other logic-
oriented connectives | e.g., alternativ e components corresponding to an OR in composi-
tions | or to sequencesof shape arrangements, to cope with objects with internal move-
ments in video sequenceretrieval. Second,techniquesfrom Computational Geometry could
be usedto optimize the algorithms for approximate retrieval, while a study in the complex-
it y of the recognition problem for composite shapesmight prove the theoretical optimalit y
of the algorithms. Finally, large-scaleexperiments might prove useful in understanding the
relative importance attributed by end usersto the various features of a composite shape.
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App endix A.

In this appendix we brie°y revisethe methods we usedfor the extraction of image features.
We alsodescribe the smoothing function © and the way we compute similarit y for the image
features that were intro duced in Section 4.2.

A.1 Extraction of Image Features

In order to deal with objects in an image, segmentation is required to obtain a partition
of the image. Several segmentation algorithms have been proposed in the literature; our
approach doesnot depend on the particular segmentation algorithm adopted. It is anyway
obvious that the better the segmentation, the better our system will work. In our system
we useda simple algorithm that mergesedgedetection and region growing.

Illustration of this technique is beyond the scope of this paper; we limit here to the
description of image features computation, which assumea successfulsegmentation. To
make the description self-contained we start de¯ning a genericcolor imageasf

¡!
I (x, y) j 1 ·

x · Nh ,1 · y · Nvg, whereNh , Nv are the horizontal and vertical dimensions,respectively,
and

¡!
I (x, y) is a three-components tuple (R,G,B). We assumethat the image I has been

partitioned in m regions(ri ), i = 1, . . . ,m satisfying the following properties:

² I =
S

(ri ), i = 1,2, . . . ,m

² 8 i 2 f 1,2, . . . ,mg, ri is a nonempty and connectedset

² ri \ rj = ; i® i 6= j

² each region satis¯es heuristic and physical requirements.

We characterize each region ri with the following attributes: shape, position, size, ori-
entation, color and texture.

Shape. Given a connectedregion a point moving along its boundary generatesa complex
function de¯ned as: z(t) = x(t) + jy(t), t = 1, . . . , Nb, with Nb the number of boundary
samplepoints. Following the approach proposedby Rui, She,and Huang (1996) we de¯ne
the Discrete Fourier Transform (DFT) of z(t) as:

Z(k) =
NbX

t=1

z(t)e
−j 2πtk

Nb = M (k)ej µ(k)

with k = 1, . . . , Nb.
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In order to address the spatial discretization problem we compute the Fast Fourier
Transform(FFT) of the boundary z(t); use the ¯rst (2Nc + 1) FFT coe±cients to form a
dense,non-uniform set of points of the boundary as:

zdense(t) =
NcX

k=−Nc

Z(k)e
−j 2πtk

Nb

with t = 1, . . . , Ndense.
We then interpolate these samples to obtain uniformly spacedsampleszunif (t), t =

0, . . . , Nunif . We compute again the FFT of zunif (t) obtaining Fourier coe±cients Zunif (k),
k = ¡ Nc, . . . , Nc. The shape-featureof a region is hencecharacterizedby a vector of 2Nc+ 1
complex coe±cients.

Position and Size. Position is determined as the region centroid computed via moment
invariants (Pratt, 1991). Size is computed as the mean distance between region centroid
and points on the contour.

Orientation. In order to quantify the orientation of each region ri we use the same
Fourier representation, which stores the orientation information in the phasevalues. We
obviously deal also with special caseswhen the shape of a region has more than one sym-
metry, e.g., a rectangle or a circle. Rotational similarit y betweena referenceshape B and
a given region ri can then be obtained ¯nding maximum valuesvia cross-correlation:

C(t) =
1

2Nc + 1

2NcX

k=0

ZB (k)Zr i(k) ¢ej 2π
2Nc

kn with t 2 0, . . . ,2Nc

Color. Color information of each region ri is stored, after quantization in a 112 values
color space,as the mean RGB value within the region:

Rr i =
X

p∈r i

R(p) Gr i =
X

p∈r i

G(p) Br i =
X

p∈r i

B(p)

Texture. We extract texture information for each region ri with a method based on
the work by Pok and Liu (1999). Following this approach, we extract texture features
convolving the original grey level image I(x, y) with a bank of Gabor ¯lters, having the
following impulse response:

h(x, y) =
1

2πσ2
¢e−

x2+ y2

2σ2 ¢ej 2¼(Ux+V y)

where (U, V ) represents the ¯lter location in the frequency-domain, λ is the central fre-
quency, σ is the scalefactor, and θ the orientation, de¯ned as:

λ =
p

U2 + V 2 θ = arctanU/V

The processingallows to extract a 24-components feature vector, which characterizes
each textured region.
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A.2 Functions for Computing Similarities

Smo othing function ©. In all similarit y measures,we usethe function ©(x, fx, fy). The
role of this function is to changea distancex (in which 0 corresponds to perfect matching)
to a similarit y measure (in which the value 1 corresponds to perfect matching), and to
\smooth" the changesof the quantit y x, depending on two parametersfx, fy.

©(x, fx, fy) =

8
><

>:

fy + (1 ¡ fy) ¢cos( ¼x
2·f x ) if 0 · x < fx

fy ¢

"

1 ¡
arctan[

π·(x−fx) ·(1 −fy)
fx·fy

]

¼

#

if x > fx

where fx > 0 and 0 < fy < 1.

The input data to the approximate recognition algorithm are a shape description D,
containing n components hck , tk , τk , Bk i and an imageI segmented into m regionsr1, . . . ,rm .
The algorithm provides a measurefor the approximate recognition of D in I.

The ¯rst step of the algorithm in Section 4.2 considersall the m regions the image is
segmented into and all the n components in the shapedescription D and ¯nds | if any | all
the groupsof n regionsrj (k) satisfying the higher shapesimilarit y with the shapecomponents
of D. To this purpose we compute shape similarit y, based on the Fourier representation
previously intro duced, as vector of complex coe±cients. Such measuredenoted with simss

is invariant with respect to rotation, scaleand translation and is computed as the cosine
distancebetweenthe two vectors. The similarit y givesa measurein the range[0,1] assuming
the higher similarit y simss = 1 for perfect matching.

Given the vectorsX and Y of complex coe±cients describing respectively the shape of
a region ri and the shape of a component Bk , X = (x1, . . . , x2Nc) and Y = (y1, . . . , y2Nc)

simss(Bk , ri ) =
P 2Nc

l=1 xlylq P 2Nc

l=1 x2l £
P 2Nc

l=1 y2l

Shap e Similarit y. The quantit y simshape measuresthe similarit y between shapes in
the composite shape description and the regions in the segmented image.

simshape = ©(
n

max
k=1

[1 ¡ simss(Bk , rj (k))], fxshape, fyshape)

Color Similarit y. The quantit y simcolor measuresthe similarit y in terms of color
appearancebetween the regions and the corresponding shapes in the composite shape de-
scription. In the following formula, ¢ color (k).R denotes the di®erencein the red color
component between the k-th component of D and the region rj (k), and similarly for the
greenand the blue color components.

¢ color (k) =
q

[¢ color (k).R]2 + [¢ color (k).G]2 + [¢ color (k).B]2

Then the function © takesthe maximum of the di®erencesto obtain a similarit y:

simcolor = ©(
n

max
k=1

f ¢ color (k)g, fxcolor , fycolor )
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Texture Similarit y. Finally, simtextur e measuresthe similarit y between the texture
features in the components of D and in the corresponding regions.

¢ textur e(k) denotesthe sum of di®erencesin the texture components between the k-th
component of D and the region rj (k) and dividing by the standard deviation of the elements.

simtextur e = ©(
n

max
k=1

¢ textur e(k), fxtextur e, fytextur e)
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