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Oncogenes and Tumor Suppressor Genes in Prostate Cancer

William Isaacs1 and Tommi Kainu2

INTRODUCTION: CANCER GENES IN 2000

Our understanding of the genetic basis of human carcino-
genesis while far from complete has increased greatly over
the past two decades. It is now clear that there exists multi-
ple classes of cancer-associated genes which contribute to
the carcinogenic process when their functions are perturbed
by either genetic or epigenetic mechanisms. The more tradi-
tional classes of tumor suppressors (contributing to cancer
formation when inactivated) and oncogenes (procarcino-
genic when activated) are now joined by the mutator genes
which, when altered, result in a decreased ability to maintain
fidelity of the genetic code and function (e.g., genes
involved in DNA repair). These classes of genes have been
identified largely by virtue of function-altering mutations,
occurring either somatically or in the germ line, which play
a major readily discernable role in tumor development. For
prostate cancer, genes in each one of these classes have been
identified, although genes uniquely involved in prostate-
specific carcinogenesis (i.e., so-called "gatekeepers", or
genes which directly and specifically regulate growth of
prostate tumors by inhibiting their growth or promoting
their death (1)) have not been found, a situation that will
undoubtedly change as more effort is focused on this ques-
tion. Similarly, while the concept of oncogenes and tumor
suppressor genes has been very helpful in providing a basic
framework for the mechanistic understanding of carcino-
genesis, these concepts and categories need to be expanded
to include the large array of genes in which sequence varia-
tions result in more subtle contributions to the carcinogenic
process. As discussed in numerous presentations in this
issue of Epidemiologic Reviews, genetic variants that mod-
ify inherited risk for prostate cancer are being identified at a
rapid pace, and the role that these genes play needs to be
included when considering prostate cancer-associated
genes. This review will focus primarily upon more tradi-
tional tumor suppressor genes and oncogenes and the
somatic alterations in these genes that have been implicated
in prostate carcinogenesis.
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MULTISTEP CARCINOGENESIS AND PROSTATE CAN-
CER PROGRESSION

Human carcinogenesis is a complex process, one requiring
a number of steps. For prostate cancer, early evidence for this
multistep requirement was elegantly demonstrated in the stud-
ies of experimental carcinogenesis in rodent models. The pio-
neering studies of Thompson et al. (2) found that expression
of a single potent oncogene (i.e., RAS) in normal prostate cells
of the mouse is insufficient for transformation; the over-
expression of a second oncogene (myc) is necessary before
transformation becomes a frequent event. Even when express-
ing two oncogenes, not every cell becomes transformed, sug-
gesting that further steps are necessary, e.g., inactivation of
tumor suppressor genes and other growth regulatory elements.
Similarly, Rhim et al. (3) demonstrated stepwise immortaliza-
tion and transformation of human prostate epithelial cells by a
combination of HPV-18 and v-K-ras. Although in clinical
specimens of prostate cancer the requirement for multiple
steps is less easily demonstrated, the finding of multiple
genetic alterations as a common characteristic of prostate can-
cer, and human tumors in general, supports this concept (4).

Application of the multistep concept to human prostate
carcinogenesis would suggest that incidental or latent can-
cers (i.e., the clinically undetected prostate cancers found in
most aged men dying from non prostate cancer causes at
autopsy) as well as putative precursor lesions (i.e., prostatic
intraepithelial neoplasia (5)), will have undergone only a
subset of the steps, "hits", or mutations necessary for pro-
gression to the fully malignant phenotype. Furthermore, this
hypothesis would suggest that specific and discrete genetic
alterations may be associated with different stages and even
grades of prostate cancer. An example would be the poor
prognosis for men whose prostate cancers have undergone
extensive gain of sequences on the long arm of chromosome
8 (6), described below.

What are the molecular events responsible for the progres-
sion of prostate cancer, or, in other words, why and how does
prostate cancer evolve from an indolent to a life-threatening
disease? Is this evolution inevitable or are some prostate can-
cers destined never to progress to advanced disease, let alone
clinically detectable disease, regardless of the time frame pro-
vided? Conversely, are some prostate cancers capable of
metastasis very early in their natural history? Extensive effort
has been focused on these questions, as it is critical to under-
stand the mechanisms of prostate cancer progression in mol-
ecular genetic terms if therapeutic approaches aimed at
preventing or stopping this progression are to be other than
empirically based.
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CHROMOSOMAL ABNORMALITIES IN PROSTATE
CANCER CELLS

The study of somatic changes arising during prostate
tumorigenesis has progressed rapidly during the past years,
being greatly aided by the development of several novel
molecular cytogenetic technologies, including fluorescence
in situ hybridization and comparative genomic hybridiza-
tion. Together with loss of heterozygosity studies and kary-
otyping, these approaches have resulted in a comprehensive
identification of the chromosomal regions involved in
prostate tumorigenesis.

The most common chromosomal abnormalities in
prostate cancer cells include losses of 8p, lOq, 13q, and 16q
as well as gains of 7p, 7q, 8q, and Xq, as detected by com-
parative genomic hybridization (reviewed in Nupponen and
Visakorpi (7)). Additionally, allelic loss is seen at 6q, 7q,
17p, 17q, and 18q (reviewed in Isaacs and Bova (8)). In
many cases the aberrations seen in chromosomal arms con-
sist of several distinct regions of loss or gain indicating mul-
tiple target genes in these regions. For example, allelic loss
is seen at three separate regions of chromosome 13, 13ql4,
13q22, and 13q31 (9), and gain of 8q results in additional
copies of sequences at 8q21 and 8q23-24 (10). The com-
plexities of these rearrangements have made it difficult to
identify the genes targeted by these gains and losses.
However, alterations in some specific genes have been char-
acterized, and these studies are described below.
Furthermore, a few chromosomal aberrations have been
associated with clinical outcome. Such aberrations include
deletions at 7q31 (11) and 13q (12) as well as losses of 8p
and gains of 8q, which are more prevalent in recurrent can-
cers than in primary tumors (13, 14).

SPECIFIC ONCOGENE AND TUMOR SUPPRESSOR
GENE ALTERATIONS IN PROSTATE CANCER

A number of genes have been found to be mutated in
prostate cancer including TP53, PTEN, RB, ras, CDKN2,
AR (androgen receptor), and CTNNB1. ras mutations are
uncommon (<5 percent of cases) (15-18) as are point muta-
tions of RB (19), although loss of one copy of RB readily
occurs (20). To date the most consistently observed site of
point mutations is in TP53, and these mutations are common
only in advanced disease. Microsatellite instability is
uncommon but detectable in prostate cancer (21), and the
MSH2 and PMS2 genes have been found to be mutated in
prostate cancer cell lines which exhibit this phenotype (22,
23).

Oncogenes

c-myc. Gain of 8q in prostate cancers was first
described by Bova et al. (24). Gain of 8q is more prevalent
in recurrent tumors (13) as well as in metastatic lesions (25)
than in primary tumors. Accordingly, 8q gains are associated
with a short progression-free interval (6, 14, 26) and the
presence of lymph-node metastasis (27). The c-myc onco-
gene is located at 8q24, the other of the minimally amplified
regions at 8q (10, 13, 25). This well-known oncogene plays

an important role in the regulation of cellular proliferation,
differentiation, and apoptosis (reviewed in Grandori et al.
(28)). Both over-expression and amplification of c-myc have
been detected in prostate tumors (10, 29, 30). However, rel-
atively few prostate tumors show high-level amplification of
c-myc (10), indicating that there may exist other target genes
for the 8q23-24 amplification in addition to those at the
other minimally amplified region 8q21. In this respect, two
other 8q genes, PSCA and the p40 subunit of translation ini-
tiation factor 3 are found to be frequently included in the
gained regions of chromosome 8, and show increased
expression in a subset of prostate cancers (31, 32).

ERBB2. In view of the promising therapeutic potential
of the commercially available anti-ERBB2 antibody, the role
of this 17q oncogene in prostate cancer is of great interest.
Using fluorescence in situ hybridization analysis, several
groups have, however, failed to show high level amplifica-
tion of ERBB2 (33, 34), even though over-expression of the
gene is a frequent event in prostate cancer, as well as an
independent prognostic factor for the disease (35-37). An
intriguing mechanism for the role of ERBB2 in hormone-
independent prostate cancer was recently presented by Craft
et al. (38). In androgen-independent cancer cells, over-
expression of ERBB2 was able to "superactivate" the andro-
gen receptor pathway, providing a clue to how prostate
cancers can circumvent androgen deprivation therapy.
Indeed, the commercial ERBB2 antibody inhibits growth of
prostate cancer cells in a xenograft model (39).

BCL2. Amplification of chromosome 18q is present in
over a third of prostate tumors (7). The anti-apoptotic onco-
gene BCL2 is located at 18q21.3. Over-expression of BCL2
is seen frequently in recurrent tumors (40, 41), but seems
not to be caused by amplification of the gene (7). The role
BCL2 is suggested to play in prostate cancer is interesting.
Bcl-2 expression inhibits apoptosis of prostate cancer cells
subjected to androgen deprivation (42). If this hypothesis
holds true, BCL2 would present a very attractive therapeutic
target, potentially reducing the risk of recurrent cancer.

Androgen receptor. In addition to BCL2, the androgen
receptor gene (AR) has been implicated in recurrence of
prostate cancer. Visakorpi et al. (13) found frequent amplifi-
cation of chromosome arm Xq in recurrent tumors, whereas
Xq is very rarely amplified in primary tumors. The group
went on to confirm that the AR gene was the target of this
amplification (43). Amplification leading to over-expression
of AR after androgen deprivation therapy is an understand-
able way of how prostate tumor cells overcome the decreased
levels of circulating androgens. An additional means of
enhancing androgen receptor signaling after androgen depri-
vation prostate cancer cells develop is activating mutations in
AR (44, 45), although these tend to be rare.

Tumor suppressor genes

Chromosome 8. The genetic regions exhibiting allelic
loss or chromosomal deletions most frequently in prostate
cancer are two separate sites on chromosome 8p, 8p23, and
8pl2-p22 (10, 24, 46). Loss of 8p appears to be an early
event in prostate cancer development, as prostate intraepi-
thelial neoplasias also show loss of heterozygosity at this
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location (47). However, no clear candidates for the specific
genes involved have appeared, although several genes,
including NKX3A, MSR1, N33, and PTK2B have been
actively investigated (48, 49).

TP53. TP53 mutations are uncommon in localized dis-
ease but become quite frequent in deposits of metastatic
prostate cancer, particularly those to bone (50-55).
Observed heterogeneity of TP53 mutations within different
tumors in the same gland, and within different regions of the
same gland, appears to be a somewhat unique feature of
prostate cancer (56, 57). Furthermore, loss of heterozygos-
ity and point mutation of TP53 do not appear to be tightly
coupled in this disease (58). A large number of studies have
examined the prognostic significance of nuclear p53 protein
immunostaining in both localized and advanced prostate
cancer (59-73), and although the results are somewhat dis-
parate, two conclusions can be drawn: 1) p53 staining tends
to be very heterogeneous, resulting in problems for scoring
and interpretation of staining results and inconsistencies due
to sampling biases, and 2) in general, tumors with positive
p53 staining are associated with a worse prognosis.

PTEN. A series of studies have examined prostate can-
cer specimens for alterations in the dual function phos-
phatase gene (PTEN) and found that this gene is inactivated
by a combination of mechanisms including hemi- and
homozygous deletion (74-79), point mutation (74, 75, 78),
and promoter methylation (79). These changes are observed
most commonly in advanced disease and may play a role in
the acquisition of metastatic potential. However,
McMenamin et al. (80) demonstrated that the majority of
clinically localized prostate cancers had abnormal PTEN
protein expression, with one in five cases being completely
negative.

Wu et al. (81) demonstrated that in prostate cancer cells
lines with inactivated PTEN, the AKT/phosphoinositide 3-
kinase pathway is constitutively activated due to increased
accumulation of the PTEN substrate PIP3. Activation of this
pathway results in suppression of apoptosis and increased
cell survival. These findings have stimulated extensive
interest in these pathways as novel therapeutics targets in
advanced prostate cancer.

p16 (CDKN2A). The finding of frequent homozygous
deletions in a wide variety of cancer cell lines focused atten-
tion upon the CDKN2A gene, a negative regulator of cell
cycle progression located at chromosome arm 9p21 (82). A
relatively high frequency of homozygous (approximately 20
percent) (83) and hemizygous losses of CDKN2A have been
observed in clinical specimens of prostate cancer (84),
although point mutations appear to be uncommon (85). In
the case of loss of heterozygosity, loss events in the vicinity
of CDKN2A are more common in metastatic deposits of
prostate cancer (43 percent versus 20 percent in primary
tumors), and in a small but detectable fraction of tumors
(approximately 15 percent) CDKN2A shows evidence of
inactivation by promoter methylation (84). Whether all of
the allelic loss events at 9p21 in prostate cancer are associ-
ated with CDKN2A inactivation, or whether they reflect
inactivation of a neighboring gene (e.g., pi5), has not been
determined.

p27 (CDKN1B). A number of studies indicate that
reduced levels of the cyclin kinase inhibitor (p27) are asso-
ciated with a more aggressive prostate cancer phenotype
(86-89), although the mechanism of this down regulation is
not clear. Interestingly, Kibel et al. (90) described a homozy-
gous deletion of CDKN1B in a lethal case of prostate cancer
and a high frequency of loss of heterozygosity of CDKN1B
in advanced prostate cancers in general. Thus, it is possible
that, in addition to increased ubiquitin-mediated p27 protein
degradation that has been demonstrated in colon and other
cancers, in prostate cancer at least a subset of lesions may
inactivate this gene via deletion. Thomas et al. (91) sug-
gested the use of p27 protein expression analysis in biopsy
specimens from patients with clinically localized cancer to
preoperatively identify men with a high risk of recurrence.

GSTP1. GSTP1, which codes for the phase II detoxifi-
cation enzyme glutathione S-transferase n, has been found
to be extensively methylated in the promoter region in a
completely cancer-specific fashion, with concomitant
absence of expression (92). In fact, this epigenetic event,
being found in over 90 percent of all prostate cancers as well
as in prostatic intraepithelial neoplasia lesions, is the most
common genomic alteration yet observed in prostate cancer.
The mechanism by which this region becomes specifically
methylated in prostate cancer, and the basis for its apparent
selection in the carcinogenic pathway, is unclear at present.
As this enzyme is a key part of an important cellular path-
way to prevent damage from a wide range of carcinogens,
the inactivation of this activity may result in increased sus-
ceptibility of prostate tissue to both tumor initiation and pro-
gression resulting from an increased rate of accumulated
DNA damage. Indeed, reactivation of this or a similar cellu-
lar defense pathway, perhaps by dietary intervention, has
been proposed as a treatment strategy aimed at blocking the
progression of initiated prostate cancer foci.

Metastasis suppressor genes: CDH1, KAI1, MAP2K4.
Aberrations in two genes have been associated with
metastatic prostate cancer. The CDH1 gene for the cell
adhesion molecule E-cadherin on 16q has been extensively
studied in prostate cancer progression. Reduced expression
of E-cadherin or its accessory protein a-catenin are frequent
events in advanced prostate cancer (93). Although, allelic
loss at 16q is common in prostate cancers, reduced expres-
sion of E-cadherin seems not to be caused by this mecha-
nism (94). The KA11 gene at l lp l l .2 shows decreased
expression in metastases and suppresses metastasis in an
animal model (95). The down-regulation of the gene is not
caused by mutation or allelic loss (96) but, rather, by post-
transcriptional events. More recently, the gene coding for
mitogen-activated protein kinase kinase 4 (MAP2K4) has
been implicated as an important prostate cancer metastasis
suppressor gene (97).

FUTURE DIRECTIONS

Many questions remain in this area. Genes responsible for
prostate-specific carcinogenesis, if such genes exist, remain
to be identified. Susceptibility genes identified through stud-
ies of prostate cancer families should be helpful in this
regard. Little is known about the ethnic- and race-specific
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patterns of gene mutation which may be important in
explaining variation in prostate cancer incidence and mortal-
ity rates that exist in different populations, and how such pat-
terns may be affected by environmental exposure. New
technologies, such as cDNA microarrays, should provide a
systematic description of the alterations in gene expression
profiles that accompany prostate carcinogenesis, which
would be of great help in prioritizing genes for further muta-
tion or polymorphism studies. Additionally, high throughput,
chip-based sequencing and genotyping technologies should
provide unprecedented access to the variations in genomic
DNA that are responsible for prostate cancer development.
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