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Abstract

We study the generalization abilities of networks that are composed of boolean
nodes, i.e., nodes that implement only basic boolean functions: and, or and not.

Themajority of the network learning a gorithmsproposed so far generate networks
where each node implements a threshold function and are inappropriate for the gener-
ation of boolean networks from training set data. We propose an agorithm that, given
atraining set, generates aboolean network of small complexity that iscompatiblewith
thetraining set. The algorithm, inspired in techniques used in thelogic synthesis com-
munity for the design of VLS circuits, generates both the connectivity pattern and the
architecture of the network. Furthermore, the resulting network can be implemented
insilicon in a straightforward way.

Experimental results obtained in a set of problems from the machine learning
literature show that the generalization performed by boolean networks synthesized
with thisa gorithm compares favorably with the generalization obtained by alternative
learning algorithms. Some of these results and examples of the layout of networks
obtai ned using the algorithm are presented and discussed.



1 Introduction

We address the problem of supervised single concept learning in an attribute based descrip-
tion language. In this setting, a concept C is a subset of the input space, /. From a set of
examples extracted from S' according to some distribution and labeled positive or negative
according to whether they belong or not to C, the learning agorithm outputs an hypothesis,
H , that isan approximation as good as possible to the target concept, C. Thishypothesisis
then used to classify other examplesthat may or may not have been presented in thetraining
phase.

The focus of our research is to study whether or not boolean networks can be used
to perform the classification task described above. For this particular purpose, we define
bool ean networks as networkswhere each node computes a primitive bool ean function (and,
or, not. Evaluating the power of boolean networks in classification tasks isimportant for a
variety of reasons. Inthefirst place, itisimportant, from atheoretical point of view, to study
the situations in which networks composed of threshold gates (the ones most commonly
considered in the neural networks literature) are more powerful than boolean networks. 1f
boolean networks proveto be adequate for somelearning tasksthismay have great practical
impact because, unlike threshold gate networks, the hardware implementation of boolean
networks using digital circuit design techniquesis easy and inexpensive.

We consider the case where the attributes are binary valued or can be encoded in some
binary valued code and the domain is hoise free. In section 3 we propose an algorithm that
generates boolean networks compatible with the data present in the training set. From the
many boolean networks that are compatible with this data, we search for one that has small
complexity, as measured by the number of literalsin amulti-level implementation®.

Thisapproach is equivalent to the use of an Occam’s razor bias and can be justifiedin a
moreformal way by using the concept of capacity of afamily of concepts. Morespecificaly,
assumethe concept to belearned correspondsto aboolean function in some set of functions,
Sy, and that 51, 55...5n_1 can be defined obeylng 51 C 52 C...5v_-1 C Sy. Theoretica
results[3] have shown that if thelearner outputsone function f7 that is compatiblewith the
training set, then the generalization accuracy is a decreasing function of the VC-dimension
of S5, where k isthe smallest integer such that f € 5%2. Since the definition implies that
VC-dim(5;) < VC-dim(S5;41) if S; C 5541 the learner should always output a function
compatible with the training set that is contained in S, for k as small as possible. In our
setting, it is natural to take S, as the set of boolean functions implementable by a boolean

Thenumber of literalsis aconvenient measureof the complexity of aboolean network andiswell correlated
with the size of its physical implementation. It is simply the sum of the number of inputs for all the primitive
logic gatesin the network.

2The V C-dimension of aset of functions Sy issimply the maximum integer m such that functionsin Sy, can
induce 2™ different dichotomiesin any set of m examplestaken from .



network with no more that £ literals. A similar argument for the preference for networks
with few literals could be made using the Minimal Description Length Principle (MDLP)
of Rissanen [15].

Giventhat the objectiveisto generate abool ean network with asfew literalsas possible,
it would seem that general purpose logic synthesis techniques could be used to synthesize
a compact network given the data in the training set. Regrettably, this is not the case.
Classical logic synthesis algorithms can be divided in two types: synthesis of two-level
networks and synthesis of multi-level networks. Many agorithms for the synthesis of
minima two-level networks (i.e., and-or networks) have been proposed [4, 10] and they
could, in principle, be used to generate minimal networks given the data in the training
set. In this process, they are able to use the extra freedom allowed by the fact that not
all input combinations are present in the training set to obtain compact implementations.®
However, efficiency problemsrelated with the particular form in which the dataisavailable
in learning problems makes it unfeasibleto usethemin al but the smallest of the problems.
Multi-level synthesis algorithms|[6, 2] are even less efficient and much worst at using the
extra degrees of freedom allowed by missing input combinations.

2 Definitions

Let B = {0,1}. A completely specified Boolean function, f, isamapping from B™ — 5.
An uncompletely specified boolean function is a partia mapping from B™ — 5. In both
cases, the mapping specifies which points of B” are mapped to 1 (the on-set of f, fON)
and which are mapped to 0 (the off-set of f,fO*F). For uncompletely specified functions,
points of B” not specified in the mapping are said to belong to the don't-care set of f.
A completely specified function ¢ is avalid implementation of an incompletely specified
function, f, iff fOFF C ¢OFF and fON C ¢ON.

Let{z1, ...z, } betheinput variablesand { y1, ...y, } beintermediatevariables. A litera
iseither avariable or its negation. A cube isa conjunction of literals where no two literals
corresponding to the same variable appear. A point of 57 isaminterm and it corresponds
to acube with n literals. A digoint normal form (DNF) for f isarepresentation for f asa
sum of cubes®. The support of afunction is the set of variables that are explicit inputs to
that function.

Let f be defined by (fOV, fOFF fPC) the on-set, off-set and don’t care set respec-
tively. Inthissetting, fOV and fO¥ are specifically given aslists of minterms, thepositive

3It isin this processthat generalization to unseen parts of the input space actually takes place. By choosing
value of the output in a point not present in the learning set the minimization algorithm is performing induction.

“We will generally denote disjunction by the + sign and omit the conjunction sign when describing boolean
expressions.



and negative examples. Let ¢ € f© betheith mintermin f©V and ¢ the jth element

in fOFF Finaly let f€ = fON U fOFF = fDC and let ¢), be the kth element of f€. We
assume there is no noise and therefore fOFF n fON — ),

A Boolean network is represented by a directed acyclic graph (DAG). Associated with
each node of the graphisavariable, y; and arepresentation of alogic function, f; such that
y; = f;. Thereisadirected edge e;; from y; to y; if f; depends explicitly on y; or ;. y; is
afanout node of y; if there exists adirected edge e;; and a fanin node if there is a directed
edge €;;-

3 Thesynthesisalgorithm

The agorithm presented here uses some ideas presented in [13] but uses a very different
approach for hidden node selection. The approach proposed incrementally selects a set of
hidden unit functions such that the implementation of a function compatible with f over
the new variables defined by these functionsis simpler. For that, we start by defining the
conditionsunder which aset of functions can beused asanew support for theimplementation
of function f.

3.1 Sdection of hidden node functions

Consider a boolean function f(z1, ..., z,,) and the directed acyclic graph that corresponds
to somevalid implementationof f. A cutset of thisgraphisa set of nodesthat, if removed,
leaves no path from the input nodes to the output node. A set of nodes R = {y1, ..., yx} de-
fined by thefunctionsinV' = { f1, ..., fx} canbeacutset for thegraph corresponding to some
valid implementation of f iff f can be implemented as f(z1,...,z,.) = g(h(z1,...,2,))
where g : B¥ — B and h : B — B* isthe function that transforms {z1, ..., z,,} into
(y1 = fa(za, oy 20), ooy Uk = fr(z1, ..., 2,)). A necessary and sufficient condition for R
tobeacutsetisthat H(fON)n H(fOFF) = ) where H(X ) istheimage of X by h.

Finding ~ such that H(fON)n H(f9F¥) = () can be done using different techniques.
Since the mintermsin the on and off set of f can be explicitly listed the foll owing approach
is used: consider amatrix O where each column corresponds to an element of YV and
each row corresponds to an element of fOFF, To every element of @ in row r and column
¢, 0,. weassociate an fOV minterm e} and an fOFF minterme; .

Consider now aboolean function f;. Thisfunction will havethe value 1 for some points
in f¢ and the value O for the remaining ones. Let f;™ C f© bethe set of mintermsin f¢
that cause function f; to havethevalueland f;~ = f©\ f7 theset of mintermsin f© that
cause function f; to have thevalue 0.



Givena fON minterm (ef) and a f**" one (e;), the value of node y; can be used to
distinguish between them iff one of the following two conditions holds:

Q) el e ffne eff
b) ef € f7 Ae; € [

In the first case, function f; assumes value 1 for minterm ef and O for e~ whilein the
second the oppositeistrue.

We will say that function f; covers element O,.. of O if f; has different values for e
and e, i.e, if either @) or b) above holds. A given function will, in general, cover severa
elements of O. In particular f; will cover all elementsin the columns that correspond to
mintermsin fON N £ and the rows that correspond to mintermsin fO£¥ 0 f=. It will
also cover al eementsin the columns fON N f~ and rows fO¥F n f*. If the order of the
rows and columnsis properly rearranged, the set of elementsin O that are covered looks
like two rectangles with the corners touching. Figure 1 showsthe elements of the © matrix
covered by function f;.

Rectangle

% Co-rectangle

OFF _ +

Figure 1: Elementsof O covered by function f;

A set of functions V' = { f1, f..., fr.} isacover for O if dl elementsin the O matrix
are covered by at least onefunctionin V. Inthiscase, h(z1,...z,) = (f1, ..., f) satisfies
H(fONYn H(fOFF) = (, thenodes y; = f; are a cutset for a graph of some redlization
of f andthevariablesy; = f; can be used as a support for implementing function f. The
cover V = {l1,lp...,1,} where; = z; orl; = z; for: = 1,...,niscaled atrivia cover.

The choice of an appropriate set of hidden unit functions can now be put as follows:
From W, the set of candidate functions, select a set V such that:

1. V covers .

2. The cost of implementing the functions in V' plus the cost of implementing f as
f=g¢(y1, ..., yx) isminimal.



Assuming the cost of each f; iseasy to compute, the problem with this criterion is that
the evaluation of the cost of implementing f as g(y1, ..., yx) is difficult to compute.

The heuristic approach we take is based on the assumption that functions realized over
asmaller number of variables are easier to implement.

Therefore, we use the following heuristic: select V' such that |V'| is minimal. This
algorithm will lead, in some cases, to sub-optimal solutions, but we found that, for many
functionsof interest, it leads to compact implementations. Thisapproach isreasonableif the
functions f1, fo..., f,, areeasy toimplement and of comparable complexity. Inour approach
we consider as candidate functions only functions that can be represented as conjunctions
of existing literals. However, even with thisrestriction, there are still too many potentia
candidates. The next section describes how arestricted set of candidate cubes is generated.

3.2 Selection of candidate cubes

The selection of an appropriate set of candidate cubes, W, can be donein several different
ways. However, no efficient algorithmwill generate all interesting cubeswithout generating
many othersthat are irrelevant for the problem at hand.

The agorithm we use for the selection of useful cubes is based on the concept of
algebraic divisor of an expression. Let £y bea DNF expression for f. A cube c isadivisor
of Fy if Ey can be expressed as £y = E,c + E, when all the operations involved are
performed algebraically and £, isnot null. A cube c isamaximal cubedivisor of £ if E,
cannot be reexpressed as £, = ¢' ), where ¢’ isacube, i.e., if £, iscube free®.

The following example illustrates these concepts: let £y = abe + abd + be. The
maximal cube divisors are ab, abe, abd, ¢, be. An aternative but equivalent way to define
maximal cube divisorsis to consider the cube/literal matrix: a matrix where each column
correspondsto aliteral in the expression and each line corresponds to acube. An entry in
row r, column ¢ is 1 if the cube that correspondsto row r hastheliteral that correspondsto
column c. Figure 2 shows the cube/literal matrix for £;.

In the cube/literal matrix, arectangle is a set of columns and rows such that all inter-
sections have a 1. The maximal cube divisors are given by the conjunction of the literals
in the columns that correspond to maximal rectangles, i.e., rectangles that are not properly
contained in any other rectangle. This concept is closely related with the concept of a
co-kernel, introduced in [5],

Define f = (fOFF, fON fPC) and let f = (fON, fOFF ] £PC) pe the function we
want to reexpress as g(h(..)).. The cubes that we select as candidates are:

1. Cubes that are maximal cube divisorsof £ where £ isan expression of afunction
compatiblewith f obtained by two-level minimization.

SFor this particular purpose we assumethat £, is cubefreeif £, = 1.
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Figure 2: Cube/literal matrix for E; = abe + abd + be.

2. Cubesthat are maximal cube divisors of E= where E= isan expression for afunction
compatiblewith f obtained by two-level minimization.

The two-level minimization required for this step obtains a DNF expression for f
with few cubes and is performed by the algorithm described in [12], athough any two-
level minimizer like ESPRESSO [4] could, in principle, be used. However, the algorithm
described in[12] was devel oped specifically for two-level minimizationin situationswhere
the function can be described by two sets of minterms and is much more efficient than
genera purpose two-level minimizers.

3.3 Solving theset covering problem

Selectingaset V- C W of minimal cardinality that covers O is a difficult problem. More
precisely, let M be amatrix with as many rows as eements of O (|fOV| x | fOFF| rows)
and as many columns as candidate cubes. Element A;; of M is1if the jth cube coversthe
ith element of . We want to select a set of columnsof minimal cardinality such that every
row has at least a1 in one of the selected columns. This problem is NP-complete [9] and
we need to solve an instance of high dimension. Therefore, an exact solution is hopelessly
costly, in most cases. Several agorithms have been proposed for obtaining a good solution
for this problem. For example, the covering agorithm used in ESPRESSO [4] is able to
find an approximate solution for fairly large sized problems in reasonable time. However,
one of the steps of thisalgorithm isto find a maximal independent set of rows and use this
set to compute alower bound in the size of V. For our case, where the number of rows can
exceed 100000 this approach is unfeasible. For experimental purposes, we used a simple
branch and bound a gorithm approach that uses the fact that al columns have the same cost
to bound the search tree in an efficient way.



This approach is successful in solving exactly the smaller problems but takes an in-
ordinate amount of time for the larger ones. In some cases, it actually finds the absolute
minimum solution in a reasonable time but takes a long time to prove that the solution is
optimal. To solve this problem the search terminates when a pre-determined amount of
timeis elapsed and the algorithm returns the best solution found so far.

34 Outer loop

The algorithm starts with a network with two levels. The function of the nodes in the
first level is obtained by listing the conjunctions that correspond to the positive examples.
The output node is a disjunction of the variables computed by the first level nodes. By
construction, this network will be correct for al the examplesin the training set.

We then select set of candidate cubes defined over the input variables, W, and, from
this set, a minimal non-trivial cover V- = { f1, fo, ..., fr} C W. After creating a node in
the network for each y; € V, function f is then expressed as a function of y1...,yx by a
procedure similar to the one performed to build the first network.

This process is iterated until either all nodes are single cubes, no valid cover can be
selected from the available candidates or further transformations lead to a deterioration of
the size of the network.

4 Results

Totest the performance of the a gorithmwe used thefoll owing set of 8 test concepts. Carry4
isthe value of the carry bit output when two 4 bit integers are added. Xor8 isthe exclusive
or of 8 inputs. The next three concepts accept a compact multi-level representation (as do
the previous two) and are listed in the appendix. Finaly, the last three have been selected
from the UCI machine learning database [11] and they satisfy the following criterion: two
class classification with discrete valued input attributes. Discrete multi-valued attributes
were encoded using a one-hot encoding.

The performance of the agorithm (MIFES) was compared with the performance of two
aternative machine learning algorithms: areimplementation of 1D3 [14] and the cascade-
correlation agorithm [8].

For each problem, aset of exampleswas created and 5 independent runswere performed.
In each run afixed fraction of the examples was selected to be in the training set and the
resulting classification rule (boolean network, decision tree or threshold gate network) was
tested in the complete set (including the examples present in the training set). The same
training data and validation procedure was used for each of the methods. The size of the
training sets used to learn each of the concepts was fixed either according to a simple



empirical rule or set equal to values previously used in other experiments[16].

While it is true that previous bounds on the sample complexity of learning could, in
principle, have been used to set these values, we found it hard to use them given the
looseness of the bounds known to the authors for the number of different boolean functions
implementable by a network of a given complexity, r.

For example, the expression derived in [1], m > 2(In(r) + In(%)) and the best bounds
presented in [7] for r lead to a minimum number of 1360 examplesto PAC-learn the Xor8
concept withe = § = 0.1.

Table 1 liststheresultsobtained. The second, third and fourth column list the number of
input variables, the average size of the training sets and the number of examples available.
The last 3 columns show the average accuracy for each of the methods.

Concept #inputs | Training | Testing || MIFES | ID3 | CasCor
carry4 8 134 256 96.3 | 952 96.5
xor8 8 134 256 1000 | 611 904
smi2 12 327 4000 100.0 | 889 84.7
smi8 18 605 4000 789 | 841 78.9
strl8 18 605 4000 949 | 879 86.5
tictactoe 27 232 958 983 | 87.2 931
krkp 38 594 2398 979 | 982 95.9
mushroom 122 974 8124 99.8 | 9938 99.1
Average 958 | 87.8 90.7

Table 1: Accuracy in the set of concepts selected.

Theseresultsshow that the quality of the generalization obtai ned by the bool ean network
is comparable and, in many cases, better, than the one obtained by aternative approaches.
These dternative approaches are not the best ones proposed to these problems, but they
are general purpose robust learning a gorithms and we believe the comparison shows that
boolean networks trained with this or other agorithms are viable alternatives for problems
of thistype. In some cases (xor8, tictactoe) the results are the best known to the authorsfor
algorithmsthat are not specially biased to perform well in these concepts.

The CPU time spent in the different examples varied wildly. Due to the limitations
inherent to the algorithm used to solve the set covering problem, MIFES was run with a
timeout value that varied with the size of the covering problem to be solved. 1D3 was by
far the fastest algorithm and MIFES the slowest. The Cascade-Correlation algorithm was
in between but many times slower than 1D3.

The synthesisalgorithm isintegrated in the Berkeley Logic Synthesis System (SIS) and

8



it isstraightforward to generate the layout of boolean networks obtained using the learning
algorithm. Figure 3 shows the layout obtained for one run of the tic-tac-toe problem using
astandard cell technology. In 1.5 technology, thisimplementation of the boolean network
takes an area of 0.31 square millimiters.

Figure 3. Layout for one network obtained for the tic-tac-toe problem.

5 Conclusions

The results presented show that, for some problems, boolean networks generated from
training set data can be an interesting aternative to threshold gate networks. The approach
is speciadly interesting when an hardware implementation is desired and high speed and
small size are important characteristics. The type of problems that can be tackled by the
current version of the algorithm is restricted to concepts defined by boolean or discretely
valued attributes and low noise levels.

The agorithm proposed in this paper has some limitationsthat should be addressed in
future work in this area

The present version cannot handle continuously valued attributes in an efficient way.
Methods based on the bisection of continuous ranges or in discrete coding are currently
being studied.

The solution of the set covering problem by a branch and bound algorithm is very
expensive and, in many cases, leads to inadequate results when the search is stopped after a
specified time. Approaches that aim at obtaining an approximate solution with reasonable
computational resources should be tried. Input attribute noise and class noise are handled
in avery primitive way. Algorithms for the identification and remova of outliers can be
used to surpass thislimitation.



Appendix

Description of the functions used in the results section:

sSml12: f(z1...x12) = (z122 + 324 + T526)(L728 + ToT10 + 211212)

sml8: f(x1...x18) = (x122 + 3xa + ws2e)(w728 + Tox10 + T11212) (213214 + 15216 + T17218)

Stri8: f(zi...z18) = (212223 + 24x526 + T72829) (210211212 + T13214215 + L16217218)
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