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The metastable birth trajectory

Robert Schoen !

Abstract

The metastable model generalizes the stable population model by allowing net maternity
to change exponentially over age and time. As a result, the metastable model generates an
exponentially quadratic birth trajectory, which is characterized by a constant proportion of
births by age of mother. The metastable model is well suited to analyzing steady fertility
declines and transitions between two regimes of fixed vital rates.

1. Introduction

Demography is built on its models. The basic life table, dating from 1662, followed a
single birth cohort to the death of its last member. The life table was later conceptualized
as a stationary (zero growth) population, a view expanded by the stable population which
captures the implications of any given set of age-specific birth and death rates. Recently,
the stable population has been extended to the metastable population, which allows the
vital rates to change over time. In the stable population, constant vital rates yield (linear)
exponential growth in the number of births, while in the metastable model net maternity
that increases exponentially over age and time produces quadratic exponential growth in
births. This note describes the metastable model, specifies its underlying vital rates and
their pattern of change, and provides the model’s birth trajectory over time.

! Pennsylvania State University. E-mail: schoen@pop.psu.edu
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2. The stable model

Lotka’s stable population was the foundational model of 20" century mathematical
demography. One elegant equation, generally known as the model’s renewal or
characteristic equation, captures its essential features. That equation can be written

(D 1= /e_mp(x)f(x) dx

where the integration spans all ages x, p(x) is the probability of surviving from birth
to exact age z under the specified regime of age-specific mortality, f(z) is the force
of fertility at exact age x under the specified regime of age-specific fertility, and r, a
constant, is Lotka’s intrinsic growth rate (Lotka 1998; Preston, Heuveline, and Guillot
2001; Schoen 1988). The stable model is typically applied to a female only population.
The stable population Net Reproduction Rate (Ry) is then given by

@ Ry = / p(z) f(z) da

where the integral ranges over all reproductive ages and p(z) f(z) is the net maternity
function.

Equation (1) can be interpreted in a manner that emphasizes its renewal or regenerative
nature. Let us scale the stable population so that there is one birth in our reference year.
Then that unit birth arises from the sum, over all reproductive ages, of the e~"" births that
occurred x years ago who survived to age x under the specified mortality regime and then
gave birth in the reference year according to the specified fertility regime. The renewal
equation thus shows how an exponential birth trajectory is perpetuated by constant age-
specific fertility and mortality. The realization that constant vital rates yield a population
that grows exponentially but maintains a constant age composition is probably the most
profound insight in mathematical demography.

3. The metastable model

The stable population shows the implications of a given set of age-specific fertility and
mortality rates, but is essentially a static model. The metastable model is dynamic because
it accommodates monotonic exponential change in vital rates over age and time.

Let the metastable net maternity function be written as

3 gp(l‘,t) :p(‘r7t) f(xvt)

where ¢(x, t) is the net maternity of women age x at time ¢, p(z, t) is the probability that
women born at time ¢ — x will survive to attain age x at time ¢, and f(x, t) is the force of
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fertility for women age x at time ¢. Over time, metastable net fertility changes according
to

) p(x,t) = po(z) €' e

where ¢o(z) describes a time invariant net maternity function whose Ry = 1, r is the
intrinsic growth rate implied by ¢(x, 0), and h is a new metastable parameter that specifies
how net maternity changes over both age and time.

Equation (4) describes a realistic pattern of change that has been observed empiri-
cally and was incorporated into the Coale-Trussell Model Fertility Schedules (Coale and
Trussell 1974). When h > 0, net maternity increases exponentially over time, rising more
rapidly at higher ages than at lower ages. That is quite reasonable as higher net maternity
typically involves more higher order births, and such births occur mostly at older ages.
When h < 0 and net maternity declines exponentially over time, greater relative declines
occur at the older ages as the number of higher order births falls more rapidly. Because
net maternity changes exponentially according to h, it can quickly depart from demo-
graphically reasonable values. In empirical work, A typically has a magnitude no greater
than 0.001. In equation (4), the metastable model is expressed in terms of the net mater-
nity function, with no explicit assumptions made with regard to age-specific fertility and
mortality. In contemporary populations, mortality is quite small below the highest age at
reproduction, and mortality above the highest age at reproduction does not affect the birth
trajectory.

The renewal equation of any closed population can be written

5) o(t) = / ot - ) o, t) da

where ¢(t) represents the number of births at time ¢ and the integral spans all ages. Let
the “trial” metastable birth trajectory be given by

6) g(t) = g(0)exp {(r +8)t + hf}

where the birth trajectory is a quadratic exponential augmented by two linear exponential
terms. Inserting equation (6) into equation (5) and using equation (4) yields the relation-
ship

2
) 1= /eXp [—saz + h;] wo(z) dx

with the integral again ranging over all reproductive ages. In equation (7), all of the
time varying functions have dropped out, leaving a Lotka-like equation that serves to
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specify s, the second metastable parameter. Parameter s determines the model’s constant
distribution of births by age of mother. Substantively, s reflects the additional growth in
births produced by the interaction between the changing rates of net maternity and the
changing age composition of the metastable population.

Equation (6) shows that the metastable birth trajectory grows (positively or negatively)
according to a function dominated by a quadratic exponential, where h is the quadratic
growth parameter. Supplementary terms add linear exponential growth according to rates
7 and s.

The metastable population accommodates any type of monotonic net maternity change
consistent with equation (4), and h can generally be chosen by the analyst. The stable
population is the special case of a metastable population with 2 = 0. (From equation (6),
s = 0 when h = 0. In general, s is positive, negative, or zero as h is positive, negative,
or zero.) Values for h, r, and (¢ suffice to specify a metastable population. As is the case
with the stable population, the metastable model is fully described by explicit, closed
form equations. It can be viewed as being in dynamic equilibrium, since the metastable
functional relationships and fixed distribution of births by age of mother are preserved as
the size, composition, and vital rates of the population change over time in a regular and
systematic manner.

4. History and applications

A number of demographers have sought to construct models that related changing
vital rates to the resultant birth trajectory. In a pioneering work, Coale (1972) approached
that question in several ways. In quasi-stable models (previously developed with Paul
Demeny), the implications of constant fertility and declining mortality were examined.
Coale further explored models with fertility that increased exponentially over time, uni-
formly at all ages. He found that a quadratic exponential birth sequence resulted, but
could not express that trajectory in closed form. Feichtinger and Vogelsang (1978) and
Vogelsang and Feichtinger (1979) pursued the matter further, but a closed form solution
eluded them as well.

At Johns Hopkins University in the 1990s, Young Kim and I were exploring the
implications of patterned changes in rates, largely using discrete models, i.e. Leslie
matrices. Zenas Sykes, then retired, had worked closely with Young Kim in the past,
and had found a very nice relationship we called the “Sykes transform.” That enabled any
Leslie matrix to be written as the product of (i) its dominant eigenvalue, (ii) a diagonal
matrix containing its dominant right eigenvector, (iii) a base row stochastic matrix (whose
elements in all rows sum to 1), and (iv) the inverse of the diagonal eigenvector matrix in
(i1) (Sykes 1973). One morning I was fiddling with some Leslie matrices trying to write
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their product analytically. I happened to try expressing the Leslie matrix that projected
a population from time ¢ — 1 to time ¢, denoted A, by KIFK~*, where F was a row
stochastic Leslie matrix and K was a diagonal matrix, like the Sykes matrix in step (ii)
above. The product of those A; matrices from time 1 through time ¢ simplified, yielding
the product K* (FK’l)t K. That allowed the long term consequences of rates chang-
ing in that particular way to be expressed in a concise, closed form expression. From that
result flowed the metastable model and the “trial” birth trajectory used in the previous
section. It also revealed the objective of Coale’s search. If fertility rates increase expo-
nentially over both age and time, rather than over time alone, a closed form solution for
the birth trajectory arises. We presented those results in several papers, including Schoen
and Kim (1994) and Kim and Schoen (1996).

Some years later, when I was at Penn State University, I read several excellent papers
on gradual declines to stationarity by Li and Tuljapurkar (1999; 2000) and by Goldstein
(2002). It struck me that the metastable model could also be applied to the analysis of
momentum under gradual declines to zero growth. Working with my student, Stefan Jon-
sson, I developed that idea in Schoen and Jonsson (2003). Schoen (2006) explored the
metastable model further, elaborating the model’s features and noting the formal connec-
tion between the metastable birth trajectory and the normal curve. As a tool in applied
demographic work, metastable models are particularly useful in analyzing steady fertility
declines and for incorporating periods of transition between two regimes of fixed vital
rates.
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