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Query Brokers for Distributed and Flexible Query
Evaluation

Tuyet-Trinh Vu Christine Collet

Abstract— This paper presents our work on supporting flexi-
ble query evaluation over large distributed, heterogeneous, and
autonomous sources. Flexibility means that the query evalua-
tion process can be configured according to application context-
specific, resources constraints and also can interact with its execu-
tion environment.

Our query evaluation is based onQuery Brokersas basic units
which allow the query processing to interact with its environment.
Queries are evaluated under query brokers contexts defining con-
straints of the evaluation task. Query Brokers have dynamic be-
haviors towards their execution environment. This paper focuses
on the definition and the role of query brokers in the query eval-
uation task in large-scale mediation systems. We show also how
query brokers ensure the flexibility of this task.

I. I NTRODUCTION

The increasing use of computers and the development of
communication infrastructures have led to a wide range of in-
formation sources available to access through networks. This
gives the possibility of sharing information among different
user groups and applications.

Many approaches such as data warehousing, mediation,
search engine, etc. have been proposed to give an uniform
access to multiple data sources [5]. Among them, the medi-
ation approach proposed initially in [27] for simplifying, ab-
stracting, reducing, merging and explaining data seems still be
the most suitable for querying a large number of data sources
which are structured, semi-structured and often changed. Gen-
erally speaking, in mediation systems queries are formulated
over a global schema, called also the mediation schema. These
queries, called global queries, are then rewritten on local
schemas, i.e. schemas of the component sources, and decom-
posed into sub-queries, called local queries. The sub-queries
are evaluated by their appropriated sources and intermediate re-
sults are assembled by mediators.

Many works in data integration such as [17], [7], [4], [19],
[16], [13] follow this reference mediation architecture. How-
ever, these works aim at solutions for different problems of
data integration so they have different mediation architectures
in terms of their data model, the level of distribution and auton-
omy of their sources systems. The focuses of works in [22],
[7] are on developing models for integrating heterogeneous
sources. The emphasis of work in [10] are generating wrap-
pers or translators. The authors of [17], [20] focus on problems
of reformulating global queries into local queries. The works in
[16] stress on modeling restricted capabilities of data sources as
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tables with binding patterns and optimizing queries in the pres-
ence of binding patterns. Nowaday, the augmentation of the
number of sources makes new challenges to integrate and query
data in large distributed mediation systems. As data sources are
largely distributed over network, the autonomy of sources and
the unpredictability of execution environment are more critical.

Our focus is on querying data in large-scale distributed me-
diation systems. We take into consideration the distribution
and the autonomy of sources. Such autonomous sources can
communicate their meta-information to mediators as they want.
Consequently, the knowledge of sources collected by mediators
could not be complete or not be up to date. Besides, it may be
impossible to expect the performance of a wide area network.
Therefore, the traditional query processing which is based on
statistics computed off-line and the static optimization approach
[6] is not any more suitable. Furthermore, user’s requirements
for the query processing may be different from one to others.
One may want to get results in a brief delay event if they are
not complete, others want to wait for complete and exact re-
sults, and others wish to have an approximate answer. In some
contexts such as electronic market, digital library, etc., accesses
to information are sometimes not free. Users can wish to limit
the economic access cost of their query processing. However, it
is sometimes difficult to take such decisions before the evalua-
tion of queries because users might have few knowledge of data
they query. Therefore, it might be beneficial if users can inter-
act with the query processing. They get first results and refine
some criteria of their processing queries or refine their queries.

We claim that there is a need for techniques that allow a
distributed query processing taking into consideration the ex-
ecution environment, i.e. user’s requirements, resources con-
straints, wide area communication, distribution and autonomy
of sources, etc., and interacting with this environment while ex-
ecuting queries. Such techniques allow efficiently evaluating
queries, i.e. satisfying not only common requirements of query
applications but also context-specific, in large-scale mediation
systems.

A. Contribution of the Paper

This paper focuses on the query evaluation task in large dis-
tributed mediation systems having a high degree of distribution
and autonomy of their component sources. It is necessary to go
beyond what has been proposed and developed in the context of
query processing in distributed database management systems
and integration systems, i.e. dynamic optimization, caching,
etc. [12], [15], [2], [29].

We proposeQuery Brokersas basic units for evaluating
queries. The query evaluation process can be compared as a
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Fig. 1. Hierarchical Mediation Architecture

set of query brokers. Each of them ensuring the evaluation of a
sub-query. The execution context is specified through Query
Brokers in order to take into consideration specific require-
ments while processing queries and to fulfill system available
resources1. This provides a mean to adapt the query evalu-
ation process to context-specific. Besides, adaptivities of the
query evaluation task are enabled by interactions of Query Bro-
ker with its execution environment, i.e. users, execution cir-
cumstances, during the evaluation phase.

B. Organization

This paper is organized as follows. Section II gives our work-
ing hypotheses. Section III presentsQuery Brokerand its func-
tional architecture. Section IV shows how the query evaluation
based on Query Brokers is flexible. We discuss related works
in section V. Finally, section VI concludes the paper.

II. WORKING HYPOTHESES

We assume a mediator-based system, i.e. a set of wrapped
sources and a mediator with the task of responding to queries
formulated on its global schema by using underlying sources.
Mediators can be hierarchically organized as shown in Figure 1.
Following this approach, a mediator is built on other mediators
and/or wrappers. Many mediators can work together to respond
to different queries. This approach is suitable to build large-
scale systems where mediators can be distributed over network.
However, communications between mediators must be taken
into consideration while processing queries. As a result, the
query processing is distributed through mediators hierarchies.
This hypothesis allows us to generalize the mediation architec-
ture, and also the query processing architecture.

As mentioned previously, the static optimization approach
is not suitable for processing queries in distributed and scal-
able mediation systems because of lack of statistics and unpre-
dictabilities of execution environment. Consequently, the query
optimization task must be repeated during the execution phase
in order to allow multiple modifications of the query evalua-
tion task. For this purpose, we consider a query processing

1System available resources mean CPU time, memory, etc. which
can be used for processing queries.
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architecture (cf. Figure 2) including the following phases: (i)
a parsing phase (parser) which syntactically and semantically
analyses queries. This phase is similar to the one of the tradi-
tional query processing; (ii) a rewriting phase (rewriter) which
translates global query into local queries on sources schemas.
This phase depends on the way mappings between schemas are
defined [3]; (iii) a preparing phase (preparation) which gener-
ates a query evaluation plan (QEP). We will present the form
of QEP in the next section; (iv) a evaluation phase (evaluator)
which communicates other components, i.e. mediators or wrap-
pers, for evaluating sub-queries. Please note that the optimiza-
tion and execution tasks are not separated. They are included
into the evaluation phase.

Our work focuses on the evaluation phase. We suppose that
there exists an algorithm such as the one in [17], [20] finding
relevant sources of a given global query and rewriting the global
query into local queries. As a result, we have a query formu-
lated on local schemas terms and our effort aims at evaluating
this query on distributed and autonomous sources in a flexible
way.

III. QUERY BROKER FOREVALUATING QUERIES

To achieve a distributed and flexible query evaluation for
large-scale mediation systems, we proposeQuery Brokersas
basic units for evaluating queries. Such brokers define (i) the
query execution context and (ii) the behaviors of query evalu-
ation towards execution circumstances. Considering the query
processing presented in Figure 2, query brokers concern two
latest phases, i.e.preparingwhich generates a query brokers
graph andevaluatingwhich evaluates a query represented by
the query brokers graph.

This section presents the role of Query Broker for evaluating
queries and its functional architecture.

A. Query Broker

Figure 3 presentsQuery Brokers(QBs) whichwrap one or
several query operators. In other words, a QB corresponds to
a sub-query and is the basic unit of the query evaluation. As a
result, a QEP is represented as a QBs graph such as the one in
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Figure 3. Our hierarchy of QBs fits the hierarchical mediation
architecture presented in Figure 1. Each mediator corresponds
to one or several query broker(s) processing sub-query(ies).

A Query Broker is defined by:

- acontextwhich determines constraints for executing query
and meta-information driving evaluation tasks, i.e. opti-
mization, execution of sub-query wrapped by this broker
and communication with other QBs. Examples of con-
straints are limitation of execution time, acceptation of
partial results, limitation of economic access cost, etc.

- operator(s) which determines how data is processed
by this QB. Operators can bebuilt-in operators, i.e.
pre-defined operators such as algebraic operators -e.g.
selection , projection , join , union , etc.-, com-
munication operators -e.g.send , receive , etc.-, and
user-definedor external operators.

- buffer(s) which are used for separating data stream be-
tween two QBs. Buffers can have different forms, from
simple buffers for synchronizing two QBs operating at dif-
ferent speeds to more or less complicated caches for ma-
terializing intermediate results. More details of the buffer
management will be discussed in the next sub-section.

- rules (E-C-A 2) which define behaviors of QB towards
changes of execution environment, e.g. delay of ar-
rival data, inaccessible data, query refinement, etc. Us-
ing rules, QBs could change evaluation strategies, e.g.
re-schedule/re-optimization sub-queries, change the im-
plementation of certain operators such as join, etc., and
behave towards query refinements during the execution
phase.

In summary, Query Brokers decouple the execution of sev-
eral operators. This allows them working in parallel as shown
in [8]. Moreover, QBs are basic units for evaluating queries
and can be considered as points for caching intermediate re-
sults. Thus, they can be used for global query optimization, i.e.
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optimization of many queries at once. Sub-queries results can
be shared among many queries so as to ameliorate the global
performance.

B. Functional Architecture of a Query Broker

Figure 4 gives an overview of the functional architecture of a
QB. The main modules are aBuffer Manager, a Context Man-
ager, a Rule Manager, an Evaluator, and aMonitor. In the
following, we discuss these modules.

a) Buffer Manager: Buffers contain data elements which
are inputs or outputs of query operators. Buffers can have dif-
ferent strategies for adding, deleting or replacing their data el-
ements. These strategies depend on the nature of input/output
data streams, i.e. “on demand” or continuous data streams, the
performance of site locating this broker and connected sites,
etc. Buffers can adopt eitherpull modeor push mode. Push
mode means, the data stream between brokers is activated by
children brokers. Children brokers push data to its parent. Pull
mode means, parent brokers call data from their children. As a
result, our execution model is not limited to only the classical
iterator model [9] but apt to different natures of data sources
like data sensors [18].

Please note that buffers sizes and buffers strategies can be dy-
namically modified according to changes of the execution en-
vironment.Buffer Managementis responsible for instantiating
QB buffers, managing buffers properties and strategies.

b) Context Manager: As already mentioned, every QB
has a context which defines the setting for the evaluation task.
Such a QB context depends on available resources, and ap-
plication requirements.Context Managementmodule provides
tools for defining and modifying the context. It also checks the
changes of context in order to ensure its coherence.

c) Operator Evaluator: This function corresponds to the
Execution Engineof a classical query processor [6]. It uses a
library of query operators including adaptive operators. The
adaptive operators are non-blocking operators such as double-
pipelined hash join [28], XJoin [25], etc. We also consider some
special operators such asXUnion - exclusive union - which is
designed for handling the case of duplication.XUnion pro-
duces at output the data coming from only one of its inputs. It
is different from the classicalunion operator whose output is
collection of data coming from all of its input. TheXUnion
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allows us to model the union of data in the case of duplication.
As a result, making choice of data sources can be delayed until
execution time according to execution circumstances. This is
important in the case of a large distributed integration system
because of high degree of duplication of data and unpredictable
execution environment.

User-defined functions are considered as part of query oper-
ators.

d) Monitor: It is one of the most important module of
QB. It ensures the iteration of query processing. It observes the
Evaluatorin order to detect significant changes and adapt query
execution to these changes. It also communicates with users
and other brokers so as to adapt query execution to changes of
the execution environment.

Monitoring can be seen as a learning process that allows up-
dating meta-information collected by system3 in order to ame-
liorate query execution in the future and adapting query execu-
tion to the environment.

e) Rule Manager: If a QB context defines the setting of
QB, i.e. static properties, E-C-A rules define its behaviors, i.e.
dynamic properties, dealing with changes of the execution en-
vironment.

We definebuilt-in events(E) andactions(A) that are the min-
imum set of events and actions supported by the system. Other
events and actions can be defined by users4. Rules are defined
using these events and actions. We will illustrate events, actions
and rules in the next section.

Rules can be activated by events coming from theBuffer
Manager, Context Manager, or Monitor.

IV. FLEXIBLE QUERY EVALUATION

This section shows how Query Brokers support the flexibil-
ity of query evaluation. As we already said, flexibility means
that the query evaluation process should be easily and dynami-
cally modified to respond to altered execution circumstances or
conditions. Therefore, this section comes back to the execution
context part and the rule definition part of query brokers.

A. Dynamic Execution Context

Recall that, our goal is not only satisfying common require-
ments of query applications, but also responding to applica-
tion context-specific requirements. This requirements are de-
fined through our QB context. The QB context consists of a
set of parameters. We determine four categories of parame-
ters related touser’s requirement, e.g. limitation of execution
time (timeout ), type of partial result (partial-result ),
limitation of economic cost for processing queries (cost ), in-
terested data (preference ), etc.; availability of resources,
e.g. memory-size , CPU-time , etc.;meta-information, e.g.
arrive-data-rate , source-access , etc.; and other
queryvariableswhich will be specified during query execution.

Let us underline that QB context isquery-able, i.e. users can
query QB context as data. In querying QB contexts, users can

3System means the implementation of query evaluation framework
based on Query Broker

4Users are human being or application using our query evaluation
framework

refine theirs queries, e.g. specify query variables, add new fil-
ters, handle process at a QB in order to build partial results,
etc., and redefine criteria to process queries, e.g. accept par-
tial results, modify their economic access cost, etc. As a result,
the QB context is dynamic. The modification of QB contexts
parameters can also be ensured by interactions among QBs in
the interconnected QBs graph (Figure 3). These interactions al-
low the system to “learn” about sources and refresh their meta-
information which may not be any more up to date.

B. Rule-based Approach for Dynamic Evaluation Strategies

For achieving a flexible query evaluation framework, we
adopted rule-based approach for defining behaviors of QB. E-
C-A rules allow to specify Query Brokers behaviors towards
execution circumstances. The techniques for re-scheduling and
re-optimizing queries [2], [26], [25] can be integrated in QBs
as rules.

We distinguish two types of events which arebuilt-in event
anduser-defined event. Built-in events are primary events sup-
ported by system. We classifybuilt-in eventsinto three cat-
egories: feedback event, controlled event, and internal event.
Feedback events come from QBs producing data, i.e. chil-
dren QBs in a QBs graph, and aim to propagate changes dur-
ing the evaluation phase. Controlled events come from QBs
which consume data, i.e. QBs parents in a QBs graph, and
aim at modifying QBs children context, etc. Internal events
do not participate directly in the communication between QBs
as feedback and controlled events but they make changes in
the context and activate rules that may be origin of other
feedback or controlled events. Examples of built-in events
arechanged-arrival-data , unavailable-source ,
timeout , etc.

Similarly, there are two types of actions which arebuilt-in
action and user-defined action. We classify built-in actions
into two categories: one aims to adapt the context to execution
circumstances in order to ameliorate global performance, i.e.
modify the parameters of Query Broker, e.g. buffer size, execu-
tion time, etc; the other aims to adapt execution strategies, e.g.
join methods, parallelization, execution operators order. Exam-
ples of built-in actions arere-parallel , re-schedule ,
re-optimize , update-context , etc.

As already mentioned, rules are E-C-A rules of the form:
WhenEvent , If Condition , Do Action . Defining a rule
means to describe its E-C-A components. Examples of rules
are:

Rule 1: WHEN changed_Arrival_Rate(S)
IF schedulable()
DO re_schedule()

Rule 2: WHEN changed_Arrival_Rate(S)
ON important_change()
DO update_meta()

Rule 3: WHEN timeout()
DO return_patrial_result()

The first rule is triggered bychanged Arrival Rate event
that represents the change of arrival data rate. If the operators
execution of this QB is able to re-schedule (schedulable ),
it tries to re-order the execution of query operators. The second
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rule is triggered by the same event. If an important change in
arrival data rate is detected, the meta-information is updated.
The third rule allows the system deciding to build and return
partial results when a source is inaccessible (timeout event)
in order to avoid blocking the query processing. Many rules can
be triggered at the arrival of an event, e.g. rule 1 and 2. These
rules can be executed in parallel, in consequence or only one (or
several) rules will be executed. We use a parametric execution
model such as [21] for ordering inter-related rules triggered at
the same time.

Recall that, users can define theirs own events and ac-
tions. User-defined events/actions can be defined as a compo-
sition of built-in events/actions or by users them-selves. Rules
are defined on set of built-in and user-defined events/actions.
This allows the query evaluation satisfying application context-
specific.

V. RELATED WORK

Many works on adaptive query processing have been done
such as [8], [23], [16], [13]. Nevertheless, these works only
focussed on some specific problems of an adaptive query pro-
cessing.

The work in [8] addressed the problem of parallelization in
query processing distributed over many sites performing at dif-
ferent rate. TheExchange operator is added between opera-
tors to separate their execution. Consequently, these operators
can work in parallel. Using our QB buffers are similar to using
the Exchange operator. However, providing different strate-
gies for QB buffers (cf. subsection III-B), our execution model
is not limited to the classical iterator model in [8]. This allows
us to adapt our execution model to different context in a large-
scale mediation system.

Our Query Broker framework looks like the one proposed in
[23]. However, instead of a centralized “bidder”, this evaluation
is distributed through an interconnected QBs graph. Besides,
[23] focuses on an economic model for optimizing queries
while we do not stress on a specific model. Our query evalua-
tion plan is a graph of Query Brokers which define constraints
for executing queries. The query execution phase is driven by
these constraints. As a result, our solution can satisfy not only
common requirements of query applications but also context-
specific.

Adaptive techniques such as [2], [1], [24], [14] have been
proposed for deciding the best way to execute a query faced on
changes of environment during query execution. Several works,
such as [2], [26], focus on scheduling query operators faced
on delays. The others [14], [25] concentrate to develop auto-
adaptive operators, i.e. non-blocking operators. These tech-
niques can be easily integrated in query brokers.

Moreover, different from all of above works, our goal is not
only proposing new techniques for adaptive query processing
in different contexts but also providing a framework to inte-
grate these techniques. This framework helps to build query
applications having many common requirements, and satisfying
context-specific requirements. We believe that our QB frame-
work can facilitate the construction of such an application.

VI. CONCLUSION

This paper presented the definition and role ofQuery Brokers
for evaluating queries. Query brokers aim to make a setting
(contexts) for the query execution to separate the execution of
operators, to make them work in parallel, to monitor the execu-
tion of queries and to adapt the query execution to execution cir-
cumstances. We have also discussed how query brokers ensure
the distribution and the flexibility of the query evaluation task
in distributed and scalable mediation systems. Using query bro-
kers, the query evaluation task is interactive with its execution
environment. During evaluation phase, the system (i) receives
information from its environment (events), (ii) uses this infor-
mation to determine its behavior (rules), (iii) processes iterates
overtime, generates a feedback loop between environment and
behaviors (context and rules). These three tasks of our evaluator
component fulfill the features of an adaptive query processing
defined in [11]. We believe that our approach is suitable for ex-
ecuting queries in the unpredictable environment of large-scale
mediation systems.
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