
Type Reconstruction in the Presence of

Polymorphic Recursion and Recursive Types

Said Jahama �

Boston University
(jahama@cs.bu.edu)

A.J. Kfoury y

Boston University
(kfoury@cs.bu.edu)

December 20, 1993
Technical Report: bu-cs #93-019

Abstract

We establish the equivalence of type reconstruction with poly-

morphic recursion and recursive types is equivalent to regular semi-

uni�cation which proves the undecidability of the corresponding type

reconstruction problem. We also establish the equivalence of type re-

construction with polymorphic recursion and positive recursive types

to a special case of regular semi-uni�cation which we call positive

regular semi-uni�cation. The decidability of positive regular semi-

uni�cation is an open problem.

1 Introduction

Semi-uni�cation has developed into a powerful tool in the study of polymor-
phic type systems in recent years. Various forms of the semi-uni�cation prob-
lem, depending on the kind of terms allowed in the inequalities of an instance,

�Partly supported by NSF grant CCR-9113196. Address: Department of Computer
Science, Boston University, 111 Cummington St., Boston, MA 02215, USA.

yPartly supported by NSF grant CCR-9113196. Address: Department of Computer
Science, Boston University, 111 Cummington St., Boston, MA 02215, USA.

1

have been shown to be equivalent to the type-reconstruction problem for var-
ious polymorphically typed �-calculi and functional programming languages.
This equivalence generalizes the well-known relationship between standard
(�rst-order) uni�cation and typability in the simply-typed �-calculus. For a
sample of results in this area, the reader is referred to [6, 15, 12, 14].1

In this report, we extend the theory of semi-uni�cation to deal with poly-
morphic recursion and recursive types simultaneously. Polymorphic recur-
sion is introduced by a �xpoint constructor, �x, at the object level; recursive
types are introduced by a �xpoint constructor, �, at the type level. Recursive
types come in two varieties, with or without the restriction that � only binds
a type variable all of whose occurrences are positive. We obtain therefore
two distinct polymorphic type systems,ML+�x+� andML+�x+pos-�, the
�rst extending the second and the second extending the ML type system.

The importance of polymorphic recursion in programming languages was
�rst observed by Mycroft. Polymorphic recursion allows the de�nition of a
function F to contain recursive calls to F at di�erent types, all instances of
the same generic type. Mycroft extended the ML type system with this fea-
ture, proved the principal-type property of the resulting system, but left open
the corresponding type-reconstruction problem [19]. Subsequently, ML+�x
was studied extensively by Henglein [6], Leiss [15], and Kfoury, Tiuryn and
Urzyczyn [14], who �nally proved the type-reconstruction problem to be un-
decidable [13]. The importance of recursive types and positive recursive
types in programming language theory has been recognized for many years;
a sample of recent results, restricted to aspects of type-checking and type-
reconstruction, can be found in [1, 3, 17].

The report is organized as follows. We �rst give a precise de�nition of
recursive and positive recursive types (Section 2) and introduce the systems
ML+�x+�) and ML+�x+pos-� (Section 3). We call the two system S
and S+ for short. These two systems are in fact pared down versions which
are su�cient for our purposes here; in particular, not only have we omitted
the if-then-else and pairing constructors and other features without which
interesting programs cannot be written, but we have also omitted the let-in
constructor. The let-in constructor is the only source of polymorphism in

1This is not to diminish the importance of semi-uni�cation for other parts of theoretical
computer science. See for example [4, 9, 20] as well as the Introduction in [13]for a survey
of other application areas. Nevertheless, the greatest successes of semi-uni�cation theory
are undoubtedly in the area of polymorphic type systems.

2

standard ML, and its addition to the simply-typed �-calculus turns the type-
reconstruction from PTIME-complete to DEXPTIME-complete [8, 16, 14].
However, as shown in [14]), if polymorphic recursion is also added (via the �x
constructor), which turns type-reconstruction into an undecidable problem,
then we can omit let-in.

We then de�ne two forms of the semi-uni�cation problem (Section 4),
denoted RSUP (for regular SUP) and PRSUP (for positive-regular SUP).
We prove that RSUP and PRSUP are equivalent to type-reconstruction for
ML+�x+� and ML+�x+pos-�, respectively (Sections 5 and 6).

Having established these equivalences, we conclude that the type-reconstruction
problem forML+�x+� is undecidable and leave the problem open forML+�x+pos-
� (Section 7).

2 Types

De�nition 1 Let X and C be a countably in�nite set of type variables and
type constants respectively. The set of recursive types T� is de�ned as follows:

1. X [C � T�.

2. If �; � 2 T� then �! � 2 T�.

3. If � 2 X, � 2 T� then ��:� 2 T�.

We follow the standard convention that � ! �! � stands for (�! (�!
�)). The universal recursive types are expressions of the form 8�1 � � � 8�n:�
where �1; � � � ; �n 2 X, n � 0, and � 2 T�. Let T 8

� be the set of all universal
recursive types. The universal quanti�er \8" and the operator � bind type
variables. We identify �-convertible types (types identical up to renaming
of bound variables). A substitution is a function S : X ! T�. The notation
�[� := �] stands for the result of substituting in � all free occurrences of �
by � (after an appropriate renaming of bound variables if necessary). We
write � = �[�1 := �1; : : : ; �n := �n] for simultaneous substitution.

A variable � is positive in a type � i� every free occurrence of � is on the
left hand side of an even number of !'s. The set of positive recursive types
T�;+ is de�ned as follows:

De�nition 2

3

1. X [C � T�;+.

2. If �; � 2 T�;+ then �! � 2 T�;+.

3. If � 2 X, � 2 T�;+ and � is positive in � then ��:� 2 T�;+.

The set of all universal positive recursive types is T 8

�;+ = f8�1 � � � 8�n:� j� 2
T�;+g:

A type � is �nite if � does not contain an occurrence of the � operator.
Let Tfin be the set of all �nite types. Notice that Tfin � T�;+ � T�. Let T � be
the set of �nite and in�nite labeled binary trees with labels over X [C [!.
A subtype of a type � 2 T � consists of a node of � and all its descendants
in �. A (possibly in�nite) type � is regular if the set of its subtypes is �nite.
Let Treg be the set of all regular types.

For a type � of the form ��:� the unfolding of � for one step results in the
type � [� := ��:�]. Every recursive type � represents an underlying regular
type obtained by unfolding � in�nitely many times. More formally there is
a map ()� : T� ! Treg. We refer the reader to [3] for an exact de�nition of
()�. It is also true that every type in Treg has a notation (not unique) in
T�. We refer the reader to [2] for the proof of this fact, the reference also
contains a detailed discussion of in�nite and regular types.

This means that, whenever appropriate, we can use properties of Treg to
prove results for T� and vice versa. In particular, we can view regular semi-
uni�cation as semi-uni�cation on recursive terms. We use this fact to prove
the undecidability of type reconstruction in system S.

There are two standard notions of equivalence of recursive types, referred
to as strong (�) and weak (�) equivalence. � � � i� �� = � �, i.e. they
represent the same regular type. For � we use the de�nition given in [3]:

De�nition 3 Let �� T��T� be the smallest equivalence relation satisfying

1. ��:� � �[� := ��:�].

2. � � �0 and � � � 0) �! � � �0 ! � 0.

3. � � �0) ��:� � ��:�0:

Observe that � � � implies � � � . However, the converse is false, for
example:

��:�! � � ��:((� ! �)! �)

4

while it is not the case that ��:� ! � � ��:((� ! �) ! �). Observe also
that the relations � and � are both decidable [3].

3 Systems S and S+

In this thesis we consider a simple language consisting of �-terms augmented
with a polymorphic �x constructor and a set of constants. Unless other-
wise noted, we refer to object constants by a; b; c; � � � and object variables
by x; y; z; � � � . The augmented �-terms considered here are de�ned by the
grammar:

M ::= x j a j (M N) j (�x M) j (�x x M)

As usual, the constructors � and �x are assumed to bind variables. We adopt
the standard notion of �-conversion, and we generally do not distinguish
between �-convertible terms.

We describe two type inference systems S and S+. The two systems di�er
on the types and the equivalence relation each uses. S uses recursive types
and the equivalence relation �, while S+ uses positive recursive types and
�.

The type inference systems S and S+ are shown in Figures 1 and 2 re-
spectively. We follow standard notation and terminology. An environment
A is a �nite set of type assumptions fx1 : �1; : : : ; xn : �ng associating at most
one type � with each object variable x. By FV (A) we denote the set of all
type variables occurring free in A. Viewing A as a partial function from ob-
ject variables to types, we may write A(x) = � to mean that the assumption
x : � is in A. An assertion is an expression of the form A ` M : � where
A is an environment,M a term and � a type. In such an assertion, the �'s
(mentioned in A) are called the environment types, and � the assigned or
derived type. Derivability in S and S+ will be denoted be the symbols `�
and `�;+, respectively.

5

VAR A ` x : � A(x) = �; � 2 T 8

�

CONST A ` a : � � is a type constant ; � 2 T�

INST
A ` M : 8�:�

A `M : �[� := �]
� 2 T�; � 2 T 8

�

GEN
A `M : �

A `M : 8�:�
� 62 FV(A); � 2 T 8

�

APP
A `M : � ! �; A ` N : �

A ` (M N) : �
�; � 2 T�

ABS
A[x : �] `M : �

A ` (�x M) : �! �
�; � 2 T�

FIX
A[x : �] `M : �

A ` (�x x M) : �
� 2 T 8

�

�
A `M : �; � � �

A `M : �
�; � 2 T�

Figure 1. System S: all environment types and derived types in T 8

� .

6

VAR A ` x : � A(x) = �; � 2 T 8

�;+

CONST A ` a : � � is a type constant ; � 2 T�;+

INST
A ` M : 8�:�

A `M : �[� := �]
� 2 T�;+; � 2 T 8

�;+

GEN
A `M : �

A `M : 8�:�
� 62 FV(A); � 2 T 8

�;+

APP
A `M : � ! �; A ` N : �

A ` (M N) : �
�; � 2 T�;+

ABS
A[x : �] `M : �

A ` (�x M) : �! �
�; � 2 T�;+

FIX
A[x : �] `M : �

A ` (�x x M) : �
� 2 T 8

�;+

�
A `M : �; � � �

A `M : �
�; � 2 T�;+

Figure 2. System S+: all environment types and derived types in T 8

�;+.

3.1 Syntax-oriented rules for S and S+

Both system S and S+ are not syntax-oriented in the sense that there could
be more than one derivation tree for a certain assertion. In this subsection,
we give a syntax-oriented version of S and S+. This simpli�es the proofs
in this report. This sort of simpli�cation is a standard step in many papers
dealing with polymorphic recursion; see [5, 6, 14, 18]. Let �; � 2 T� and
~� = �1 � � ��n for some n � 0. We write 8~�:� � � to mean that � is an
instantiation of 8~�:�

� � �[�1 := �1; : : : ; �n := �n]; for some �1; : : : ; �n 2 T�:

7

Similarly, for �; � 2 T�;+ and ~� = �1 � � ��n. 8~�:� �+ � i�

� � �[�1 := �1; : : : ; �n := �n]; for some �1; : : : ; �n 2 T�;+:

Instantiation corresponds to a sequence of applications of rule INST and
rule � (rule � in S 0) , which leads to the following lemma.

Lemma 4

1. If A `� M : � and � � � then A `� M : � .

2. If A `�;+ M : � and � �+ � then A `�;+ M : � .

The modi�cation S 0 and S 0

+ of S and S+ respectively, shown in Figures
3 and 4, consists in removing rules INST and GEN and modifying the VAR
and FIX rules. The resulting systems are partially syntax-oriented in the
sense that the derivation of an assertion is unique up to applications of rule
(�) in S and (�) in S+. Derivability in S 0 and S 0

+ will be denoted by the
symbols `0� and `0�;+. To keep notation simple, when it is clear from the
context which system we are considering, we will simply use the symbol ` to
denote derivability in that particular system.

8

VAR A ` x : � A(x) = �; � 2 T 8

� ; � 2 T�; � � �

CONST A ` a : � � is a type constant ; � 2 T�

APP
A `M : � ! �; A ` N : �

A ` (M N) : �
�; � 2 T�

ABS
A[x : �] `M : �

A ` (�x M) : �! �
�; � 2 T�

FIX
A[x : 8~�:�] `M : �

A ` (�x x M) : �
�; � 2 T�; 8~�:� � �; ~� 62 FV(A)

�
A `M : �; � � �

A `M : �
�; � 2 T�

Figure 3. System S 0: all environment types in T 8

� . All derived types in T�.

9

VAR A ` x : � A(x) = �; � 2 T 8

�;+; � 2 T�;+; � �+ �

CONST A ` a : � � is a type constant ; � 2 T�;+

APP
A `M : � ! �; A ` N : �

A ` (M N) : �
�; � 2 T�;+

ABS
A[x : �] `M : �

A ` (�x M) : �! �
�; � 2 T�;+

FIX
A[x : 8~�:�] `M : �

A ` (�x x M) : �
�; � 2 T�;+; 8~�:� �+ �; ~� 62 FV(A)

�
A `M : �; � � �

A `M : �
�; � 2 T�;+

Figure 4. System S 0

+: all environment types in T 8

�;+. All derived types in T�;+.

10

The main result of this subsection is Lemma 5. It is similar to Lemma
5 in [14] and Lemma 5 in [6]. The proof of this lemma is adopted from the
Proof of Lemma 5 in [6].

Lemma 5 Let M be a term, A an environment, � 2 T� (resp., � 2 T�;+)
and ~� a sequence of zero or more type variables where ~� =2 FV (A):

A `� M : 8~�:� i� A `0� M : �

(resp., A `�;+ M : 8~�:� i� A `0�;+ M : �).

Proof: For the \only if" direction, we use structural induction on deriva-
tions in S and S+ . The cases where we have a single derivation are rules
CONST and VAR. For the VAR rule, assume that A(x) = 8~�:� 2 T 8

� . Ap-
plying the VAR rule in system S we have:

A `� x : 8~�:�

Using the VAR rule in S 0 and by observing that 8~�:� � � (also if � 2 T�;+
then 8~�:� �+ �) we have:

A `0� x : �

For the CONST rule, observe that if the CONST rule in S is used to obtain
A `� a : � then we can use the CONST rule in S 0 to obtain A `0� a : �. A
similar argument can be used in the case of the VAR and CONST rules in
S+.

For the FIX rule in S, assume that A `� (�x x M) : 8~�:� is derivable
using the FIX rule in S i.e.

A[x : 8~�:�] `M : 8~�:�

A ` (�x x M) : 8~�:�

By applying the FIX rule in S 0 and using the induction hypothesis we get:

A[x : 8~�:�] `M : �

We also have 8~�:� � � and by assumption, 8~� =2 FV (A). hence, we can
apply the FIX rule in S 0 to get:

A[x : 8~�:�] `M : �

A ` (�x x M) : �

11

Again, a similar argument is used for the FIX rule in S+. The inductive
proof for the other rules in S and S+ is straightforward.

For the \if" direction, notice that, it is su�cient to show the following:

1. If A `0� M : � then A `� M : �.

2. If A `0�;+ M : � then A `�;+ M : �.

We prove this by producing for every rule in S 0 and S 0

+ a corresponding
derivation in S (S+ respectively). The only non trivial cases are rules VAR
and FIX. For the VAR rule in S 0 (S 0

+ respectively), assume that A(x) = 8~�:�
and 8~�:� � �. Applying the VAR rule we get:

A ` �

By using the VAR rule in S (in S+ respectively) and by Part 1 of Lemma 4
(Part 2 in the case of S+), we derive the following in S (S+ respectively):

A ` �:

Now, for the FIX rule, assume that the last rule we apply in a derivation
in S 0 is the FIX rule, i.e. :

A[x : 8~�:�] `M : �

A ` (�x x M) : �

where 8~�:� � �. We get the same derivation in S, by applying the GEN rule
as needed to get

A[x : 8~�:�] `M : 8~�:�

and then we apply the FIX rule in S to obtain

A ` (�x x M) : 8~�:�

Now, we use Part 1 of Lemma 4 to get:

A ` (�x x M) : �

A similar argument applies for S 0

+.

12

4 Positive Regular Semi-Uni�cation

As a result of the equivalence of the sets Treg and T�, we can look at a
regular substitution as a substitution from S : X ! T�. In this section, we
rede�ne regular semi-uni�cation and de�ne positive regular semi-uni�cation.
A regular (resp. positive regular) substitution S is a function S : X ! T�
(resp., S : X ! T�;+) . Every regular (resp. positive regular) substitution
S can be extended in a natural way to a function S : T� ! T� (resp.,
S : T�;+ ! T�;+) [3].

An instance � of semi-uni�cation is a �nite set of inequalities:

� = f�1 � �1; : : : ; �n � �ng

where ti; ui 2 Tfin. A regular substitution S is a regular solution of the
instance � i� there are substitutions S1; : : : ; Sn such that:

S1(S(�1)) � S(�1); : : : ; Sn(S(�n)) � S(�n)

The Regular semi-uni�cation Problem (RSUP) is the problem of deciding,
for any such instance �, whether � has a regular solution.

An instance � has a positive regular solution if there is a positive regular
substitution S : T�;+ ! T�;+ and positive regular substitutions S1; : : : ; Sn :
T�;+ ! T�;+ such that:

S1(S(�1)) � S(�1); : : : ; Sn(S(�n)) � S(�n)

The Positive Regular semi-uni�cation Problem (PRSUP) is the problem of
deciding, for any such instance �, whether � has a positive regular solution.

5 From S to RSUP and from S+ to PRSUP

Given a termM we construct an instance �M of semi-uni�cation such that :

1. M is typable in S i� �M has a regular solution.

2. M is typable in S0 i� �M has a positive regular solution.

13

The construction given here is very similar to the construction given in
Section 4.2 [14]. The proofs here di�er slightly (but still the same style)
because the syntax-oriented version given here does not have the GEN rule.
Also, constants are added here. We view our construction as an extension of
the construction given in [14] and we use most of the de�nitions related to
it.

We begin by constructing a set of equalities

�M = f�1
:
= �1; : : : ; �p

:
= �pg

where �i; �i 2 Tfin; i 2 f1; : : : ; pg. We follow the convention that any variable
occurring in M is a member of one of the two lists x0; x1; : : : and y0; y1; : : :.
Furthermore, if a variable occurs free or �x-bound then it is a member of
the list x0; x1; : : :. Otherwise, if a variable is �-bound then it is a member of
the list y0; y1; : : :. Any constant occurring in M is from the set a0; a1; : : :.

Let M1;M2; : : : ;Mn be an enumeration of all the subterms of M such
that, for k = 1; : : : ; n, if Mk is not an object variable, then Mk = (MiMj)
or (�v:Mi) or (�x v:Mi) for some i 6= j and i; j 2 f1; 2; : : : ; k � 1g. The
set fM1;M2; : : : ;Mng mentions all occurrences of the same subterm, i.e., we
may have Mi =Mj for i 6= j. Observe that M =Mn.

De�nition of �k for k = 1; : : : ; n:

Simultaneously with �k we de�ne a type expression tk with variables in V ,
by induction on k = 1; : : : ; n:

1. IfMk is the j-th occurrence of xi inM , then set �k = ; and tk = �
(j�1)
i .

(We number the occurrences, free or bound, of xi inM with 0; 1; 2; : : : ,
starting from the left end of M . If xi is bound in M , the binding
occurrence of xi, �x xi, is not counted.)

2. If Mk = yi, then set �k = ; and tk = i.

3. If Mk = ai, then set �k = ; and tk = ci.

4. If Mk = (MiMj) then set �k = �i [�j [fti
:
= tj ! �g and tk = �,

where � is a fresh auxiliary variable.

5. If Mk = (�yi:Mj) then set �k = �j and tk = i ! tj.

14

6. If Mk = (�x xi:Mj) then set �k = �j [f�i
:
= tjg and tk = �

(`)
i , where

` � 0 is the number of bound occurrences of xi in Mj (�
(0)
i ; : : : ; �

(`�1)
i

are already introduced in �1; : : : ;�k�1, corresponding to the bound
occurrences of xi).

Instead of �n and tn, we also write �M and tM .

The only di�erence between �M here and in [14] is that we add constants
here and we do not allow polymorphic abstraction. We de�ne subsets V0; V1
of the variables occurring in �M as follows:

V0 = f�
(0)
i ; : : : ; �

(`�1)
i j there are ` � 0 free or bound occurrences of xi in Mg

[fi j yi occurs in Mg

[f�i j �i occurs in �Mg

V1 = f�i j xi occurs in Mg

For � 2 T� [T�;+ and ~� a �nite sequence (possibly empty) of type vari-
ables, we de�ne body(8~�:�) = �.

In what follows S denotes a map from V to T� and S+ denotes a map
from V to T�;+. such that, for every � not occurring in �M , S(�) = � and
S+(�) = �. We further restrict S and S+ so that, for every �i 2 V1; S(�i) 2
T 8

� and S+(�i) 2 T 8

�;+ and for every � 2 V0, S(�) 2 T� and S+(�) 2 T�;+.
With every such S and S+ we associate the maps �S from V to T� and �S+
from V to T�;+ respectively, satisfying the condition that, for every a 2 V ,
�S(a) = body(S(a)) and �S+(a) = body(S+(a)).

Given a term M , the symbol �M denotes a partial order on object
variables relative to M . For every x 2 fx0; x1; x2; : : :g and every y 2
fy0; y1; y2; : : :g:

x �M y i� both x and y are bound in M and the (�x) binding of
x is in the scope of the �-binding of y.

We now de�ne what it means for S and S+ to be a regular solution
(positive regular solution, respectively) for �k. Notice that such a solution
is not the same as a solution for an instance of semi-uni�cation.

De�nition 6 S is a regular solution for �k for k = 1; : : : ; n i� the following
conditions hold:

15

1. For every equality �i
:
= �i 2 �k S(�i) � S(�i).

2. For every �i; �
(j)
i occurring in �M , S(�i) � S(�

(j)
i).

3. For all �i occurring in �M , the bound variables of S(�i) are precisely
the set:
FV(�S(�i)) �

S
fFV(�S(j)) j xi �M yjg

De�nition 7 S+ is a positive regular solution for �k for k = 1; : : : ; n i� the
following conditions hold:

1. For every equality �i
:
= �i 2 �k, S+(�i) � S+(�i).

2. For every �i; �
(j)
i occurring in �M , S+(�i) �+ S+(�

(j)
i).

3. For all �i occurring in �M , the bound variables of S(�i) are precisely
the set:
FV(�S+(�i)) �

S
fFV(�S+(j)) j xi �M yjg

The following lemma is an extension of Lemma 12 in [14].

Lemma 8 Let M be a term. Then:

1. If there is an environment A and a type � 2 T� such that A `0� M : � ,
then �M has a regular solution S such that body(S(tM)) � � and
S(�i) � A(xi) for every i.

2. If there is an environment A and a type � 2 T�;+ such that A `0�;+ M :
� , then �M has a positive regular solution S+ such that body(S+(tM)) �
� and S+(�i) � A(xi) for every i.

3. If S is a regular solution of �M , then A `0� M : � for some environment
A and � 2 T� such that � � body(S(tM)) and A(xi) � S(�i) for every
i.

4. If S+ is a positive regular solution of �M , then A `0�;+ M : � for
some environment A and � 2 T�;+ such that � � body(S(tM)) and
A(xi) � S(�i) for every i.

16

Proof: First we observe the following facts about derivations in systems S 0

and S 0

+:

� If A ` N : � is an assertion in a derivation and v is an x- or y-variable,
then A(v) is de�ned i� either v is free in M or v is bound in M and N
is in the scope of the binding of v.

� If A[xi : 8~�:�] ` N : � is the assertion immediately preceding an
application of FIX that discharges the type assumption (xi : 8~�:�), we
can assume that the bound type variables ~� are precisely:

~� = FV(�) �
[
fFV(A(yj)) j A(yj) de�ned:g

Let M1;M2; : : : ;Mn be an enumeration of all the subterms of M . The
proof of Parts 1 and 2 is by induction on k = 1; : : : ; n. The proofs of Parts
1 and 2 are very similar, and we show the inductive proof of Part 1 only.
For Part 1 we need to show that for every k = 1; : : : ; n, if A `0� Mk : � for
some environment A and a type � 2 T�, then �k has a solution S such that
body(S(tk)) � � , S(�i) � A(xi) for every xi, and S(i) � A(yi) for every yi.
For the basis step, we need to consider the following cases:

1. M1 is the j-th occurrence of xi in M.

2. M1 = yi.

3. M1 = ai .

In the three cases above it is straightforward to see that there is a regular
solution S for �1 such that body(S(t1)) � � , S(�i) � A(xi) for every xi, and
S(i) � A(yi) for every yi. For the induction step, we just show one case
as an example, the other cases are similar. Assume that Mk = (�x xi:Mj)
and Mk `0� � which implies that A(xi) = 8~�:� and Mj ` �, by the FIX
rule of system S. By induction hypothesis, there is a solution S for �j such
that body(S(tj)) � � and S(xi) � A(�i). We can easily adjust S(tj) to force
S(tj) � A(�i). Hence, from Step 6 of the construction of �k, we can easily
check that S is a solution for �k satisfying all the conditions of Part 1.

The proofs of Parts 3 and 4 is also by induction on k. We show the proof
of Part 3 and we omit the proof of Part 4 because it is very similar.

17

For Part 3, we need to show that if S is a regular solution of �k, then
there is an environment A and type � 2 T� such that: A `0� Mk : � , � �
body(S(tk)), A(xi) � S(�i) for every xi, and A(yi) � S(i) for every yi.
For the basis step, again, we need to consider the three cases mentioned
above. It is straightforward to see that the basis step is correct. For the
induction step, again we only consider one case as an example. Assume
that Mk = (�x xi:Mj). Observe that if S is a solution for �k then it is a
solution for �j. Assume that S(tj) � 8~�:� and S(tk) � � . From Step 6
of the construction, we can conclude that S(tj) � S(�i) and 8~�:� � � . By
induction hypothesis, there is an environment A such that A `0� Mj : � and
A(xi) � 8~�:�. Let B = A� [8~�:�]. Using the FIX rule of system S 0 we can
conclude that B `� Mk : � .

We now de�ne an instance �M of semi-uni�cation such that �M has a
solution in the sense of semi-uni�cation i� �M has a solution.

De�nition of �M :

LetM be a term and let �M = f�1
:
= �1; : : : ; �p

:
= �pg be the set of equalities

obtained as described above. Let q be the largest index such that �q occurs
in �M .

1. �M contains the inequality (T;U) where:

T = (�q+1 ! �q+1)! � � � ! (�q+p ! �q+p)

U = (�1 ! �1)! � � � ! (�p ! �p)

where �q+1; : : : ; �q+p are fresh auxiliary variables.

2. For every �i; �
(j)
i where �i 2 V1, �M contains the inequality (Tij; Uij)

where:

Tij = �i ! k1 ! � � � ! k`

Uij = �
(j)
i ! k1 ! � � � ! k`

where fk1 ; : : : ; k`g = fm j xi �M ymg.

3. �M contains no other inequality.

Lemma 9 If M is a term, Then:

18

1. For any S : V ! T 8

� , �S is a regular solution of �M (in the sense
of semi-uni�cation) i� S is a regular solution of �M (in the sense of
de�nition 6).

2. For any S+ : V ! T 8

�;+, �S+ is a positive regular solution of �M (in the
sense of semi-uni�cation) i� S+ is a positive regular solution of �M in
the sense de�nition 7).

Proof: This reproduces the proof of Lemma 13 in [14] with the necessary
terminological changes. Consider the inequality (T;U) introduced in part 1 of
the de�nition of �M . �S is a regular (resp. positive regular) solution of �M in
the sense of de�nition 6 (resp. de�nition 7) i� �S is a regular (resp. positive
regular) solution of f(T;U)g in the sense of semi-uni�cation. Consider an
inequality (Tij; Uij) introduced in part 2 of de�nition 6 (resp. de�nition 7)

of �M . It is readily checked that S(�i) � S(�
(j)
i) (resp. S(�i) �+ S(�

(j)
i))

and the bound variables of S(�i) are:

FV(�S(�i)) �
[
fFV(�S(j)) j xi �M yjg

i� S is a regular (resp. positive regular) solution of f(Tij; Uij)g in the sense
of semi-uni�cation.

6 From RSUP to S and from PRSUP to S+

In this section, we use the same construction given in Section 4.3 of [14] and
we reproduce most of the text of Section 4.3 with the necessary modi�cations.
We begin with a technical trick which is used to force an object variable to be
assigned a particular �nite type (or a substitution instance of it). Let z be an
object variable and � a �nite type. Type variables are named �0; �1; �2; : : :,
corresponding to which we introduce object variables v0; v1; v2; : : : . Type
constants are named c0; c1; c2; : : :, corresponding to which we introduce object
constants a0; a1; a2; : : : . We de�ne a �-term, denoted hz : � i, by induction
on �nite types

1. if � = ci for i 2 f1; : : : ; ng, then
hz : � i = �u1:�u2: u1(u2z)(u2ai)

2. if � = �i for i 2 ! then
hz : � i = �u1:�u2: u1(u2z)(u2vi)

19

3. if � = �1 ! �2 then
hz : � i = �z0:�z1:�z2:�u: z0hz1 : �1ihz2 : �2i(u(zz1))(uz2)

It is clear from the induction above that: FV (hz : � i) = fzg [fvij�i 2
FV (�)g. The following lemma, which is an extension of Lemma 14 in [14],
explains the crucial property of the term hz : � i.

Lemma 10 Let � 2 Tfin be an arbitrary �nite type such that

FV (�) � f�1; : : : ; �`g:

1. Let � 0; �1; : : : ; �` be arbitrary recursive types. The term hz : � i is typable
in S in the environment A:

A = fz : � 0; v1 : �1; : : : ; v` : �`g

i.e., A `� hz : � i : � 00 for some � 00 2 T�, i� � 0 � � [�1 := �1; : : : ; �` :=
�`].

2. Let � 0; �1; : : : ; �` be arbitrary positive recursive types. The term hz : � i
is typable in S+ in the environment A:

A = fz : � 0; v1 : �1; : : : ; v` : �`g

i.e., A `�;+ hz : � i : � 00 for some � 00 2 T�;+, i� � 0 � � [�1 :=
�1; : : : ; �` := �`].

Proof: We give the proof of Part 1 of the lemma and leave Part 2 for the
reader since the proofs are very similar. The proof is by induction on � . For
the basis step, � = �i or � = ci where i 2 f1; : : : ; `g. It is easily checked that
hz : � i is typable in A i� � 0 � � [�1 := �1; : : : ; �` := �`], i.e., i� � 0 � �i.

For the induction step, assume that hz1 : �1i and hz2 : �2i are typable in
S in the environment

A = fz1 : �
0

1; z2 : �
0

2; v1 : �1; : : : ; v` : �`g

i� � 0j � �j [�1 := �1; : : : ; �` := �`] for j = 1; 2. It is now readily checked that
if � = �1 ! �2 then the term hz : � i is typable in S in the environment

B = fz : � 0; v1 : �1; : : : ; v` : �`g

i� � 0 � � 01 ! � 02. Hence, hz : � i is typable in B i� � 0 � � [�1 := �1; : : : ; �` :=
�`], by the induction hypothesis.

20

Lemma 11 Consider an instance � of semi-uni�cation of the form

� = f(�1; �1); : : : ; (�n; �n)g

which mentions only type variables �1; : : : ; �`. De�ne the term M as:

M � �x x:�v1 : : : �v`:�z1 : : : �zn: N; where

N � z0hz1 : �1i : : : hzn : �niE1 : : :En; where

Ei � �y0:�w1 : : : �w`:�y1 : : : �yn: y0(xw1 : : : w`y1 : : : yn)hyi : �ii

for i = 1; : : : ; n.

1. M is typable in S i� � has a regular solution.

2. M is typable in S+ i� � has a positive regular solution.

Proof: Here we just show the proof of Part 1 of the lemma. The proof
is just a reproduction of the proof of Lemma 13 in [14] with the neces-
sary modi�cations. For the left to right implication, suppose that M is
typable. This means that N is typable in an environment A assigning types
to x; v1; : : : ; v`; z0; z1; : : : ; zn. Except for the type of x (which is in T 8

�) , these
are all in T� . Assume that the types assigned to v1; : : : ; v` are �1; : : : ; �`, re-
spectively. Because hzi : �ii is typable in A, for i = 1; : : : ; n, the environment
A must contain the type assumption zi : �0i where

�0i � �i[�1 := �1; : : : ; �` := �`]

by Lemma 10. Hence, the type � assigned to �v1 : : : �v`:�z1 : : : �zn: N is of
the form:

� = �1 ! : : :! �` ! �01 ! : : :! �0n ! '

where ' depends on the type of z0. Moreover, for each i = 1; : : : ; n, the term:

y0(xw1 : : : w`y1 : : : yn)hyi : �ii

is also typable, in an appropriately extended environment. It follows that
the type �i assigned to the i-th occurrence of x is of the form:

�i = �i1 ! : : :! �i` ! �i1 ! : : :! �ii�1 ! � 0i ! �ii+1 ! : : :! �in ! i

21

for some regular types �ij, with j 6= i; �ij and
i, and where

� 0i � �i[�1 := �1; : : : ; �` := �`]

by Lemma 10. Each �i is an instance of � | more precisely, there is a
substitution Si : T� ! T� such that Si(�) � �i and, in particular, Si(�0i) � � 0i
for i = 1; : : : ; n. Hence, the substitution:

[�1 := �1; : : : ; �` := �`]

is a regular solution of the instance �.

For the converse, suppose that � has a solution, i.e, there are regular
types �1; : : : ; �` and substitutions S1; : : : ; Sn : T� ! T� such that:

Si(�
0

i) � � 0i for i = 1; : : : ; n; where

�0i � �i[�1 := �1; : : : ; �` := �`] and

� 0i � �i[�1 := �1; : : : ; �` := �`]:

We shall show that M is typable in S. Let A = f(vi : �i)ji = 1; : : : ; `g and
de�ne the environment:

Ai = A [f(wj : �j)jj = 1; : : : ; `g [f(yi : �
0

i)g [f(yj : �j)jj 6= ig

for i = 1; : : : ; n, where �j and �j are arbitrary regular types. By Lemma 10,
it must be the case that Ai `� hyi : �ii : for some open type . It then
follows that:

Ai [f(x : �i); (y0 : �! ! �)g `� y0(xw1 : : : w`y1 : : : yn)hyi : �ii : �

where � and � are new type variables and:

�i = �1 ! : : :! �` ! �1 ! : : :! �i�1 ! � 0i ! �i+1 ! : : :! �n ! �

Hence Ei is typable in A [fx : �ig. Let B = A [f(zi : �0i)ji = 1; : : : ; ng. By

Lemma 10, the term hzi : �ii is typable in B. De�ne now C = B [fx : ~8:�g
where

~8:� = ~8:�1 ! : : :! �` ! �01 ! : : :! �0n ! �

22

where ~8 stands for \quantify all variables in � except for �." Applying the
substitution Si to �, we obtain the type:

Si(�1)! : : :! Si(�`)! Si(�
0

1)! : : :! Si(�
0

n)! �

Now take �j = �jSi and, for j 6= i; �j = �0jSi in the environment Ai above
and we see that C `� x : �i. Hence, for an appropriate ',

C [fz0 : 'g `� N : �

because every hzi : �ii is typable in C, and so is every Ei, for i = 1; : : : ; n.
After repeated abstractions:

fz0 : '; x : ~8:�g `� �v1 : : : �v`:�z1 : : : �zn:N : �1 ! : : :! �` ! �01 ! : : :! �0n ! �

and, �nally, by application of the GEN rule repeatedly, followed by the FIX
rule once:

fz0 : 'g `� M : ~8:�

which proves that M is typable in S.

7 Decidability Results

Regular semi-uni�cation on arbitrary trees is undecidable. The proof of this
result is in [4]. This result is further restricted to semi-uni�cation on binary
trees in [7] which leads to the following:

Theorem 12 Type Reconstruction in system S is undecidable.

Proof: The proof is directly obtained by the undecidability of regular semi-
uni�cation [4] and the equivalence of regular semi-uni�cation to regular semi-
uni�cation on binary trees [7].

We have to leave open the decidability of Type Reconstruction in system
S+ and the decidability of PRSUP.

References

[1] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM
Transactions on Programming Languages and Systems, 15(4):575{631,
93.

23

[2] Courcelle B. Fundemental properties of in�nite trees. Theoretical Com-
puter Science, 25:48{80, 1983.

[3] F. Cardone and M. Coppo. Type inference with recursive types: Syntax
and semantics. Information and Computation, 92:48{80, 1991.

[4] J. D�orre and W. Rounds. On subsumption and semiuni�cation in feature
algebras. In Proceedings of IEEE 5th Annual Symposium on Logic in
Computer Science, pages 300 { 310, 1990.

[5] P. Giannini and S. Ronchi Della Rocca. Characterization of typings
in polymorphic type discipline. In Proceedings of IEEE 3rd Annual
Symposium on Logic in Computer Science, pages 61 { 71, 1988.

[6] F. Henglein. Type inference with polymorphic recursion. ACM Trans-
actions on Programming Languages and Systems, 15(2):254{290, 93.

[7] S. Jahama and A.J. Kfoury. A general theory of semi-uni�cation. Tech-
nical Report 93-018, Boston University, Department of Computer Sci-
ence, December 1993.

[8] P. Kanellakis and J.C. Mitchell. Polymorphic uni�cation and ml typing.
In Proceedings of 16th ACM Symposium on Principles of Programming
Languages, pages 105 { 115, 1989.

[9] D. Kapur, D. Musser, P. Narendran, and J. Stillman. Semi-uni�cation.
In Nori and Kumar, editors, Proceedings of 8th Conference on Founda-
tions of Software Technology and Theoretical Computer Science, LNCS
338, pages 435 { 454. Springer Verlag, 1988.

[10] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. The hierarchy of �nitely typed
functional programs. In Proceedings of IEEE 2nd Annual Symposium
on Logic in Computer Science, pages 225 { 235, 1987.

[11] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. On the computational power of
universally polymorphic recursion. In Proceedings of IEEE 3rd Annual
Symposium on Logic in Computer Science, pages 72 { 81, 1988.

[12] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. An analysis of ml typability. In
Arnold, editor, 15th Colloquium on Trees in Algebra and Programming,
CAAP 90, LNCS 431, pages 206 { 220. Springer Verlag, 1990.

24

[13] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. The undecidability of the
semi-uni�cation problem. In Proceedings of the 22nd Annual ACM Sym-
posium on Theory of Computing, Baltimore, pages 468 { 476, 1990.

[14] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. Type-reconstruction in the
presence of polymorphic recursion. ACM Transactions on Programming
Languages and Systems, 15(2):290{311, 93.

[15] H. Leiss. Semi-uni�cation and type inference for polymorphic recursion.
Research Report INF 2-ASE-5-89, Siemens, M�unchen, 1989.

[16] H.G. Mairson. Deciding ml typability is complete for deterministic ex-
ponential time. In Proceedings of 17th ACM Symposium on Principles
of Programming Languages, pages 382 { 401, 1990.

[17] N.P. Mendler. Inductive types and type constraints in the second-order
lambda calculus. Annals of Pure and Applied Logic, 51:159{172, 1991.

[18] J.C. Mitchell. Polymorphic type inference and containment. Information
and Computation, 76(2/3):211 { 249, 1988.

[19] A. Mycroft. Polymorphic type schemes and recursive de�nitions, lncs
167. In Paul and Robinet, editors, International Symposium on Pro-
gramming, pages 217 { 228. Springer Verlag, 1984.

[20] P. Pudl�ak. On a uni�cation problem related to kreisel's conjecture. Com-
mentationes Mathematicae Universitatis Carolinae, Prague, Czechoslo-
vakia, 29(3):551 { 556, 1988.

25

