
JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

Research

Types of software evolution and
software maintenance

Ned Chapin1,∗,†, Joanne E. Hale2, Khaled Md. Khan3,
Juan F. Ramil4 and Wui-Gee Tan5

1InfoSci Inc., Menlo Park CA 94026–7117, U.S.A.
2Department of Information Systems, Statistics, and Management Science, University of Alabama,
Tuscaloosa AL 35487–0226, U.S.A.
3School of Computing and Information Technology, University of Western Sydney, Kingswood, NSW 2747,
Australia
4Department of Computing, Imperial College, London SW7 2BZ, U.K.
5Institute of System Science, National University of Singapore, Singapore 117611, Singapore

SUMMARY

The past two decades have seen increasing sophistication in software work. Now and in the future, the work
of both practitioners and researchers would be helped by a more objective and finer granularity recognition
of types of software evolution and software maintenance activities as actually done. To these ends, this paper
proposes a clarifying redefinition of the types of software evolution and software maintenance. The paper
bases the proposed classification not on people’s intentions but upon objective evidence of maintainers’
activities ascertainable from observation of activities and artifacts, and/or a before and after comparison of
the software documentation. The classification includes taking into account in a semi-hierarchical manner
evidence of the change or lack thereof in: (1) the software, (2) the documentation, (3) the properties of the
software, and (4) the customer-experienced functionality. A comparison is made with other classifications
and typologies. The paper provides a classified list of maintenance activities and a condensed decision tree
as a summary guide to the proposed evidence-based classification of the types of software evolution and
software maintenance. Copyright 2001 John Wiley & Sons, Ltd.

KEY WORDS: software evolution management; software maintenance management; maintainer activities;
maintenance terminology; evolution terminology; software support; empirical studies

1. INTRODUCTION

Our motivations for proposing a finer grained objective classification of the types of activities involved
in software evolution and software maintenance have been primarily the following three:

∗Correspondence to: Ned Chapin, InfoSci Inc., Box 7117, Menlo Park, CA 94026–7117, U.S.A.
†E-mail: NedChapin@acm.org

Received 11 July 2000
Copyright 2001 John Wiley & Sons, Ltd. Revised 25 November 2000

4 N. CHAPIN ET AL.

• Practitioners undertake a great variety of activities in accomplishing software evolution and
software maintenance, but such variety has often been obscured by the use of broadly inclusive
terms such as ‘perfective maintenance’. As has been long reported in the field, practitioners use
diverse skill sets and operate in a wide variety of situations [1–3]. Practitioners could more easily
receive recognition for the results they achieve and the effort, skill, and knowledge they apply
if an objective evidence-based finer-grained classification were used for software evolution and
software maintenance work.

• Managers involved in software evolution and software maintenance have great difficulty in
defining, justifying, budgeting, staffing, supervising, accounting for, marshalling resources
for, and assessing the work when coarse non-objective measures are used [4]. Things not
appropriately named are often undervalued and treated as miscellaneous or trivial, since
communication about them is made more cumbersome.

• Researchers need relevant descriptive names for the types of activities they observe when
studying software evolution and software maintenance. As has been noted elsewhere, researchers
have been using the same terminology but with different meanings, and using different
terminology but with the same meanings, for common activities [5]. This complicates
researchers’ work when trying to build on the theoretical and empirical work of other researchers
in software evolution and software maintenance.

Our main objectives in proposing a refined classification for the types of software evolution and
software maintenance have been to:

• base the classification on objective evidence ascertainable from observation and/or a before and
after comparison of the software, even when the knowledge of the personnel originally involved
is no longer accessible;

• make the granularity of the proposed classification realistically reflect the actual mix of activities
observed in the practice of software evolution and software maintenance;

• extend prior work on types of software maintenance [6] and on an ontology of software
maintenance [3] to encompass software evolution as well as software maintenance;

• provide a realistic and practical classification to facilitate communication about, and the
management of, software evolution and maintenance among researchers, practitioners, and their
managers;

• supply a classification independent of the operating system, the hardware platform, the languages
of implementation, organizational practices, design methodologies, and access to the personnel
involved in doing the work; and

• offer enough consistency with existing terminology and definitions used in the field, to facilitate
acceptance of our proposed classification and provide reasonable continuity.

Early published work classifying software maintenance captured primarily practitioner concerns.
In 1972, Canning [7] summarized these in his landmark article “That Maintenance ‘Iceberg”’. As he
reported, practitioners saw maintenance narrowly as correcting errors, and broadly as expanding and
extending software functionality. Some practitioners also included accommodating to changes in the
underlying system software or hardware. To rationalize the practitioners’ varied recognition of types
of software maintenance, Swanson [8] in 1976 offered a typology of software maintenance. Swanson
based his typology on the software system’s owners’/users’ dominant objective or intention in, or

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

TYPES OF SOFTWARE EVOLUTION AND SOFTWARE MAINTENANCE 5

‘ . . . basis. . . ’ for, requesting or undertaking the maintenance work—i.e., what was seen as the cause or
purpose of the maintenance, or why was the maintenance to be done [1,2,9]. As a mutually exclusive
and exhaustive typology [10, p. 153], the three intentions for software maintenance Swanson pointed
to were, in summary:

• to perfect the system in terms of its performance, processing efficiency, or maintainability
(‘perfective maintenance’);

• to adapt the system to changes in its data environment or processing environment (‘adaptive
maintenance’); and

• to correct processing, performance, or implementation failures of the system (‘corrective
maintenance’).

Such intentions, unless specifically recorded by the personnel involved at the time of the event,
cannot in general be reliably and consistently determined after the fact from available objective
evidence. Intentions reflect a mix of the character of the maintenance and the organizational and
political context. Consider an example: In an organization, a user for over a year of a software-
implemented system, for a second time initiates a change request asking for maintenance to correct
a ‘bug’—a functionality that is still not working as was specified in the user’s requirements for the
development of the system. The vice president with budgetary authority, who denied the prior change
request for this same maintenance, approves the current change request as ‘perfective maintenance’,
not because she believes it would correct anything, but because she believes there now is a real
business need for the software to be improved to provide the requested functionality. Since the work
involves modifying the system’s GUI, the software maintenance manager assigns the change to the
team deploying the new larger but more energy-efficient monitors, in order to give the team a realistic
test case in its ‘adaptive maintenance’. When the work is completed, what type of maintenance was it?

That said, an intentions basis for a maintenance typology is appropriate for and can be used in some
kinds of valuable research, as has been well demonstrated, for instance, by Lientz and Swanson [10].
For example, Lientz and Swanson in 1980 found confirmation that software maintenance ‘. . .consists
largely of continued development. . . ’ [10, p. 151,11]. ‘Continued development’ that changes the
system’s functionality or properties as experienced by the customer of the system, is also commonly
called ‘software evolution’ [12].

2. CURRENT STATE OF THE FIELD

Swanson’s typology has been influential among researchers [13]. Many researchers have adopted
the terminology (‘corrective’, ‘adaptive’, ‘perfective’) but few researchers have used the typology
as Swanson defined it. Instead, they have given different meanings to the terms, and not agreed
among themselves on the meanings. While this freshness has sometimes been invigorating, the lack
of agreement on the meaning of commonly used terms has added to the chaos in the field by
making it difficult for researchers to build upon each other’s work. To its credit, the IEEE put out a
glossary [14] that includes the terms ‘corrective maintenance’, ‘adaptive maintenance’, and ‘perfective
maintenance’. However, the definitions given in that IEEEGlossaryare partially inconsistent with
Swanson’s definitions [8,14].

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

6 N. CHAPIN ET AL.

Ta
bl

e
I.

A
pp

ro
xi

m
at

e
co

rr
es

po
nd

en
ce

be
tw

ee
n

de
fin

iti
on

s
of

ty
pe

s.
C

or
re

sp
on

de
nc

e
w

ith
th

e
C

ha
pi

n
e
t

a
l.

de
fin

iti
on

s
ex

is
ts

on
ly

w
he

n
ob

je
ct

iv
e

ev
id

en
ce

co
nfi

rm
s

th
e

ac
tiv

ity
.

N
I—

no
t

in
cl

ud
ed

;
(A

ll)
—

im
pl

ic
it

in
al

l
in

cl
ud

ed
ac

tiv
iti

es
.

E
vi

de
nc

e-
ba

se
d

(C
ha

pi
net

a
l.)

In
te

nt
io

n-
ba

se
d

de
fin

iti
on

s
A

ct
iv

ity
-b

as
ed

de
fin

iti
on

s

C
lu

st
er

Ty
pe

S
w

an
so

n
[8

]
IE

E
E

[1
4,

23
]

IS
O

/I
E

C
14

76
4

[2
7]

K
itc

he
nh

amet
a
l.

[3
]

E
S

F
/E

P
S

O
M

[3
3]

S
up

po
rt

T
ra

in
in

g
N

I
N

I
(A

ll)
N

I
U

se
r

su
pp

or
t

in
te

rf
ac

e
C

on
su

lti
ve

N
I

N
I

(A
ll)

N
I

U
se

r
su

pp
or

t
E

va
lu

at
iv

e∗
N

I
N

I
(A

ll)
(A

ll)
(A

ll)

D
oc

um
en

ta
tio

n
R

ef
or

m
at

iv
e

P
er

fe
ct

iv
e

P
er

fe
ct

iv
e

P
er

fe
ct

iv
e

(A
ll)

P
re

ve
nt

iv
e

U
pd

at
iv

e∗
P

er
fe

ct
iv

e
P

er
fe

ct
iv

e
P

er
fe

ct
iv

e
(A

ll)
P

re
ve

nt
iv

e

S
of

tw
ar

e
G

ro
om

at
iv

e
P

er
fe

ct
iv

e
P

er
fe

ct
iv

e
P

er
fe

ct
iv

e
E

nh
an

ce
m

en
ts

P
er

fe
ct

iv
e

pr
op

er
tie

s
en

ha
nc

em
en

t
P

re
ve

nt
iv

e
P

er
fe

ct
iv

e
P

er
fe

ct
iv

e,
or

P
re

ve
nt

iv
e,

or
P

re
ve

nt
iv

e
‡

A
nt

ic
ip

at
iv

e
or

P
re

ve
nt

iv
e

P
er

fe
ct

iv
e

en
ha

nc
em

en
t

P
re

ve
nt

iv
e

P
er

fo
rm

an
ce

P
er

fe
ct

iv
e

P
er

fe
ct

iv
e

P
er

fe
ct

iv
e

C
or

re
ct

io
ns

,o
r

A
nt

ic
ip

at
iv

e
or

en
ha

nc
em

en
t

Im
pl

em
en

ta
tio

n
ch

an
ge

P
er

fe
ct

iv
e

A
da

pt
iv

e∗
A

da
pt

iv
e

A
da

pt
iv

e
P

er
fe

ct
iv

e
C

ha
ng

ed
ex

is
tin

g
A

nt
ic

ip
at

iv
e

or
en

ha
nc

em
en

t
re

qu
ire

m
en

ts
‡

A
da

pt
iv

e

B
us

in
es

s
R

ed
uc

tiv
e

P
er

fe
ct

iv
e

P
er

fe
ct

iv
e

P
er

fe
ct

iv
e

C
ha

ng
ed

ex
is

tin
g

E
vo

lu
tiv

e
ru

le
s

en
ha

nc
em

en
t

re
qu

ire
m

en
ts

‡

C
or

re
ct

iv
e

C
or

re
ct

iv
e

C
or

re
ct

iv
e

C
or

re
ct

iv
e

C
or

re
ct

iv
e

C
or

re
ct

iv
e

E
nh

an
ci

ve
∗

P
er

fe
ct

iv
e

P
er

fe
ct

iv
e

P
er

fe
ct

iv
e

N
ew

re
qu

ire
m

en
ts

‡
E

vo
lu

tiv
e

en
ha

nc
em

en
t

∗ D
ef

au
lt

ty
pe

w
ith

in
th

e
cl

us
te

r.
‡
A

su
bt

yp
e

of
E

nh
an

ce
m

en
ts

.

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

TYPES OF SOFTWARE EVOLUTION AND SOFTWARE MAINTENANCE 7

Nearly all researchers have made modifications, especially to the definitions, some explicitly such
as [15–18] but most implicitly or tacitly such as [19–22], even when retaining the use of the terms
‘corrective’, ‘adaptive’, and ‘perfective’. The IEEE 1998 standard on software maintenance [23] uses
the three terms as part of the standard but for definitions it uses ones not fully consistent with either the
Swanson [8] or the IEEEGlossary[14] terms. Some researchers and practitioners have drawn upon the
ISO/IEC 12207 standard [24–26] that underlies the ISO/IEC 14764 standard [27], where the definitions
are again different.

Other literature, as from industry, has followed a similar pattern, such as [28–30]. Terminology
and definitions differ greatly between industries or domains, from organization to organization, and
even within an organization (e.g., [31]). Organizations’ in-practice typologies are frequently more
detailed and recognize more types or activities than the three types in the Swanson typology. These
more detailed typologies are useful in time and resource expenditure reporting, project progress
reporting, cost allocating, budgeting, doing quality assurance, supervising programmers and analysts
doing software maintenance, revising job descriptions, making skills inventories, hiring, planning staff
needs, etc.

Such commonly encountered deviations in types and their definitions suggest that the time is ripe for
a fresh classification of the types of software evolution and maintenance to meet the current concerns
and needs of researchers and of practitioners and their managers. Serious efforts in that direction have
either continued the intention-based approach, e.g. the ISO/IEC 14764 standard [27], or have drawn
upon prior work on the activities and tasks involved in doing software maintenance, e.g. [1,2,6,32].
Among the major results has been the Eur´eka Software Factory’s European Platform for Software
Maintenance (ESF/EPSOM) [33], and the software ontology [3]. Table I summarizes half a dozen
typologies. Even when the terminology, such as ‘perfective’, is the same in two or more typologies, the
definitions of those terms are different in each with few exceptions.

In the next section (Section3), we present our proposal, and follow that with its application in
Section4. After a discussion in Section5 of matters asked about by reviewers of drafts of this paper,
we close with conclusions in Section6. Readers may find it helpful to understand our definitions of 25
terms as given in AppendixA.

3. PROPOSED CLASSIFICATION

3.1. Three criteria

We base our classification on work performed on the software of the evolved or maintained system,
deliberately done as activities or processes, and observed, manifested or detected in:

• A—the software;
• B—the code; and
• C—the customer-experienced functionality.

Evidence of activities that produce these changes serves as the criteria; observation and comparison
provide the evidence. The comparison is of the relevant parts of the software as ofbeforethe alleged
evolution or maintenance, with the relevant parts of the software as ofafter the alleged evolution or
maintenance. The observation is of the activities and their artifacts. None of the criteria require or

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

8 N. CHAPIN ET AL.

Figure 1. Impact of the types of software evolution and maintenance.

depend upon personnel’s statements or recollections of intentions about, the causes of, the reasons for,
or the purposes of the software evolution or software maintenance. But the reverse is sometimes true,
that the objective evidence can sometimes be used to identify or infer the causes, purposes, intentions,
reasons, or requirements for work done.

As the recent ontology has pointed out [3], software evolution or maintenance commonly involves
several to many processes or activities that may result in from none to many changes in the software.
From the set of all changes observed, made, or detected as attempted from the evidence, a dominant
process or grouping of processes or activities typically emerges, with supporting or associated
processes or groupings usually also present. We define our proposed classification to be exhaustive with
mutually exclusive types, grouped into clusters, where any instance of software evolution or software
maintenance may involve a mix or aggregate in any order of some or all of the types, even though one
type may be deemed or observed as dominant.

The order of the types and their clusters is significant because of their different impacts, as Figure1
illustrates. One dimension is the impact of the evolution or maintenance on the customer’s ability to
function effectively using the software-implemented system in meeting its goals—i.e., the business
process impact on the customer—or how the customer does its/his/her business and the customer’s
satisfaction with the system [34]. This is drawn from left (low impact) to right (high impact). The
number of blocks suggests the likely range of the business process impact on the customer. For
instance, enhancing the software with new functionality for the customer typically has more effect
on the customer’s ability to meet its goals than does changing the non-code documentation. The other
dimension is the impact of the evolution or maintenance on the software itself. This is diagrammed top

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

TYPES OF SOFTWARE EVOLUTION AND SOFTWARE MAINTENANCE 9

(low impact) to bottom (high impact). For instance, reformatting a page of a user manual typically has
less effect on the software than does correcting (fixing) a bug.

3.2. Type clusters

In the form of a condensed decision tree, Figure2 summarizes our proposal for an objective-evidence-
based classification. The three criteria decisions—A, B, C—route to the appropriate cluster of types.
Within each cluster, the type decisions characterize the type. Because of the significance patterns
illustrated in Figure1, the decision tree in Figure2 is read from left to right for increasing impact
on either or both the software and the business processes. The types are shown in four clusters, and
within each cluster are read from bottom to top for increasing impact on either or both the software
and the customer business processes.

Type decisions in the form of questions are asked about particular evidence. Note that in Figure2,
because of the limited space available, the wording of the decisions is abbreviated from the wording
and explanations given here in the text of this paper. The associated types are shown initalics to the
right of the type decisions and are only applicable when the associated responses to the respective type
decisions are ‘Yes’. Note that no decisions are asked about management matters or quality assurance.
This is because we regarded relevant selections from those processes and activities as part of all of the
types of software evolution and software maintenance.

Since software evolution or software maintenance typically involves many processes or activities,
determining the type requires asking many of the questions in the decision tree. Progression to the right
or higher in the decision tree leaves all to the left and lower as active candidate types. For example,
if the maintenance done was the updating of the UML component diagrams but not the user manual,
then the choice on the criterion decision A is ‘Yes’ and on B and C is ‘No’. Hence, since no software
functionality or properties were changed, then the types likely done in such a situation areupdative,
reformative, evaluative, consultive, or training, or some combination of them. One of these types
may have dominated. If none dominated or a single type name was wanted, then the default choice
is whatever ‘Yes’ answer to a type decision indicates the greatest impact (i.e., that which is farthest to
the right and highest in that cluster). In this example, that cluster is ‘documentation’ and the type is
updative. The highest impact type is also the default choice when the objective evidence to discriminate
among the types is missing or moot for the type decisions within a cluster. When the objective evidence
is missing or moot for the criteria decisions A, B, and C, the default choice is the ‘No’ alternative.

Note also that no type ‘Other’ is offered, because each cluster has a designated default type for use
when the objective evidence is ambiguous. If some activity or process were done but what it was is
ambiguous from observation and the documentation evidence, then the overall default type isevaluative
because it typically is the most common type [1,35,36]. Of course, if observation and the other evidence
indicate that no activities or processes were done to or with the software other than those involved in
running it, then no type of software evolution or software maintenance occurred.

3.3. Support interface cluster

The A criterion decision ‘Did the activities change the software?’ is about the condition of the software
before and after the activity. If we read the objective evidence as ‘No’ (e.g., the software was used only
for reference), then we go to thesupport interface clusterconsisting of type decisions A-1, A-2, and

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

10 N. CHAPIN ET AL.

F
ig

ur
e

2.
D

ec
is

io
n

tr
ee

fo
r

ty
pe

s.

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

TYPES OF SOFTWARE EVOLUTION AND SOFTWARE MAINTENANCE 11

A-3, which because of their increasing impact are considered in that order.Evaluativeis the default
type for this cluster.

The A-1 type decision is ‘Did the activities use the software as a subject for stakeholder training?’
This training type includes such activities as conducting classes for customer personnel, doing
training ranging from on-site on-the-job to vestibule on-the-road training, and using existing training
materials, since such materials are often derived from or are part of the documentation. Since changing
organizational environments, and customer and other personnel turnover are inevitable, the importance
of training has long been recognized [10].

The A-2 type decision is ‘Did the activities use the software as a basis for consultation?’ This
consultivetype is very common because it involves such activities as fielding questions at a help desk
for customer personnel about the software, conferring with customer personnel or managers about the
effective use of a system or about the making of (proposed or possible) changes to the software, and
advising customers or managers or other stakeholders (or even researchers) about the likely time, cost,
activities, or effort needed to do requested or contemplated evolution or maintenance work.

The A-3 type decision is ‘Did the activities involve evaluating the software?’ Thisevaluativetype is
a very common type because it involves such activities as auditing, searching, examining, regression
testing, studying, diagnostic testing, providing protected testing environments, calculating metrics
about, or creating an understanding of the software without changing the software (‘getting on the
outside of it’). Since in practice such evaluative processes typically account for more than half of
the person-hours expended in software evolution and software maintenance [35,36], we propose that
evaluativebe deemed the appropriate dominant type only in instances where the aggregate of all of
the other types of maintenance is trivially small. However, this type is the default type for the support
interface cluster since it so commonly underlies other types.

3.4. Documentation cluster

If we read the objective evidence as ‘Yes’ for the lead-off A criterion decision (i.e., the software was
changed), then we go to the B criterion decision about the condition of the code. It is important to note
in making this B criterion decision that the code changed may not be in the system that was the original
focus of the work but in an associated system or one that either supplies data to the system or receives
data provided by the system. That is, the type may vary by system when a given effort ripples to or
involves more than one program or system.

If we read the objective evidence as ‘No’ for the B criterion decision ‘Did the activities change the
code?’, then we go to thedocumentation clusterconsisting of type decisions B-1 and B-2, which
because of their increasing impact are considered in that order. Activities in this cluster usually build
upon activities in the software interface cluster.

The B-1 decision is ‘Did the activities make the non-code documentation conform more closely to
the stakeholder-stated needs?’ Thisreformativetype restyles or reformulates or refines the non-code
documentation by changing its form while leaving the code untouched. This involves such activities as
altering the format or coverage of a user manual, preparing training materials, incorporating the effects
of a changed local standards manual, and changing the form or format of the non-code documentation
by modifying the use of a CASE tool.

The B-2 decision is ‘Did the activities make the non-code documentation conform more closely
to the system as implemented?’ Thisupdativetype involves updating the content and coverage, and

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

12 N. CHAPIN ET AL.

polishing the non-code documentation by such activities as replacing obsolete non-code documentation
with current accurate documentation, and filling in gaps in the non-code documentation such as by
incorporating test plans, narrative overviews, UML models, etc., without changing the code. This
updativetype is the default type for the documentation cluster.

3.5. Software properties cluster

If we read the objective evidence as ‘Yes’ for the B criterion decision (i.e., the code was changed), then
we go to the C criterion decision that asks about the changes in the system functionality sensible
by the customer. The C criterion decision is ‘Did the activities change the customer-experienced
functionality?’ If we read the objective evidence as ‘No’ for the C criterion decision, then we go to the
software properties clusterconsisting of the C-1, C-2, C-3, and C-4 type decisions, which because of
their increasing impact are considered in that order. In this cluster, note that the code changes do change
the system or software properties—e.g., refactoring—but do not change functionality as experienced by
the customer. Activities in this cluster usually build upon activities in the support interface cluster and
trigger activities in the documentation cluster.Adaptiveis the default type for the software properties
cluster.

The C-1 type decision is ‘Did the activities change maintainability or security?’ Thisgroomative
type involves source code grooming activities, such as doing recompilations, replacing components
or algorithms with more elegant ones, creating code backups, changing personal or level
access authorizations, changing source code comments or annotation lines, changing data naming
conventions, altering code readability or understandability, providing less-cryptic error messages, and
preparing source code for pretty-printing. Such ‘anti-regressive’ [37] source code grooming activities
yield current results that sometimes relate to the interaction of the system and its environment, and the
supporting infrastructure and operating procedures, but do not alter performance properties. The results
of such activities are rarely directly sensible by the customer. Their major impact is on maintainability.
For instance, a major U.S.A. site that has routinely used inspections in its quality assurance processes
found that 93% of the inspection-triggered changes to the source code improved maintainability, and
that more than two-thirds of them weregroomative[38].

The C-2 type decision is ‘Did the activities avoid or reduce future maintenance activities?’ This
preventivetype involves making changes that do not alter either the existing customer-experienced
functionality or the existing technology or resources utilized. A recent example was much of the Y2K
work done. The results of such preventive activities are rarely directly sensible by the customer. The
preventive type sometimes is an administrative tool for managing work load or budget allocations or
stakeholder relations. This type is sometimes done on a planned or ‘scheduled’ basis. Participation
in software reuse efforts, some of which may involve using COTS, can be of thepreventivetype
if they are relevant for an existing used system. Since the forecasting of future problems is usually
imprecise and often only partially accurate, work that is classified when done as preventive may, with
the benefit of subsequent additional evidence, be classified differently, usually asgroomative, adaptive,
or enhancive. The IEEEGlossarydefines preventive maintenance in an intention-based manner from
a hardware perspective [14, p. 57]. A six-person panel at ICSM 2000 focused on software preventive
maintenance, but did not reach a consensus on what it is or how to define or measure it [39].

The C-3 type decision is ‘Did the activities alter software performance characteristics or properties?’
This performancetype involves such processes as reducing the amount of internal storage used,

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

TYPES OF SOFTWARE EVOLUTION AND SOFTWARE MAINTENANCE 13

improving system up time, reducing the duration of out-of-service periods, speeding execution as by
replacing components or algorithms with faster ones, and improving system reliability and robustness.
The change in such properties is often sensible by the customer. This type is sometimes done on a
planned or ‘scheduled’ basis.

The C-4 type decision is ‘Did the activities change the technology or resources used?’ Thisadaptive
type involves such processes as making the system work on a different platform or with a changed
operating system or with a different kind of database, reallocating functions among components or
subsystems, increasing COTS utilization, changing communication protocols supported, altering the
system’s interoperability, and changing design and implementation practices such as moving to object-
oriented technology. Such activities often change system properties sensible by the customer. Note that
this adaptive type does not change the existing customer-experienced functionality, but, like the other
types in this cluster, does change the system properties or characteristics. This type is sometimes done
on a planned or ‘scheduled’ basis. In this software properties cluster,adaptiveis the default type.

3.6. Business rules cluster

If we read the evidence as ‘Yes’ for the C criterion decision (i.e., the customer-experienced
functionality was changed), then we go to thebusiness rules clusterconsisting of the D-1, D-2, and D-
3 type decisions, which because of their increasing impact are considered in that order. The activities
here are among the most frequent and most significant in software evolution and maintenance, and
usually rely upon an extensive supportive use of activities from the other clusters. All three types are
sometimes done on a planned or ‘scheduled’ basis. The default type in this cluster isenhancive.

The D-1 type decision is ‘Did the activities restrict or reduce the customer-experienced
functionality?’ Thisreductivetype, of particular significance for software evolution, involves limiting
or eliminating some business rules from the implemented repertoire, as by replacing or constraining or
removing part or all of some components or algorithms or subsystems. Data flows may be eliminated
or reduced. This type as a dominant type is relatively rare, especially with embedded software because
of the installed base, and when dominant is most often done in support of an organizational spin-off or
merger when as a consequence a reduced set of business rules are thereafter used by the customer.

The D-2 type decision is ‘Did the activities fix the customer-experienced functionality or make it
more correct?’ Thiscorrectivetype involves refining and making more specific the implementation
of the existing business rules to handle exceptions and mishandled cases better, usually by adding
additional precision to the internal logic of some components or algorithms or subsystems, or
by adding more defensive programming. This reactive ‘fix-it’ type removes defects (‘bugs’) such
as those from design shortfalls or coding errors. The type is restorative of the prior customer-
experienced functionality by compensating for invalid assumptions and for oversight ripple changes in
the data handled by the system’s interacting systems and supporting infrastructure, and sometimes by
compensating for changes in the customer’s milieu that have changed data availability. The corrective
type is done sometimes on a request basis, sometimes ad hoc on an ‘emergency’ basis, and sometimes
(as noted above) on a planned or ‘scheduled’ basis. A detailed taxonomy covering some of the activities
done in thecorrectivetype is given in [40].

The D-3 type decision is ‘Did the activities replace, add to, or extend the customer-experienced
functionality?’ This enhancivetype, of particular significance for software evolution, implements
changes and additions to the repertoire of software-implemented business rules, as by inserting new

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

14 N. CHAPIN ET AL.

components, algorithms, or subsystems, and altering existing ones to enlarge or extend their scope.
New data flows may be added and existing data flows may be redirected. The changes may affect
any part of a system’s functionality as experienced by the system’s customers, including the levels of
data digestion or abstraction, and privacy and security facilities. Because of the typically increasing
complexity of customers’ operations, theenhancivetype is usually the most common and most
significant, subject to the caveat noted earlier about theevaluativetype.Enhanciveis the default type
for the business rules cluster.

4. APPLICATION

Table I, presented previously, summarizes a comparison of our proposal with five other ways of
distinguishing types of software maintenance. Our proposal is a classification based upon objective
evidence about activities.

Maintainers do their work differently in different organizations and in different work assignments.
Hence, in seeking activities to observe and in seeking objective evidence of activities for identifying
types of software evolution and software maintenance, some preparation can save time and improve
accuracy. Three preparation actions are normally worthwhile:

• ascertaining what activities are specified by the local standard operating practices (SOP) manual
or equivalent if any, and the extent to which its dictates are and have been enforced;

• determining what are and have been the documentation practices; the documentation situation is
often similar or tied to the activities noted in the SOP;

• obtaining access to relevant documentation; documentation may be centralized or dispersed, hard
copy or soft, existent or missing, filed, loaned out, in use, archived, etc.

With a variety of activities carried out, many of the types of software evolution and software
maintenance can to some degree be observed, even when some particular type appears to be dominant.
The question then is what are the relationships among the types? Figure3 illustrates the relationships
in a simple manner, where those higher up are more significant because they have more impact on the
customer or the software or both. The key to understanding the relationships goes back to the three
criteria decisions A, B, and C. All three must always be asked. Responding ‘No’ to any one of them
identifies a respective cluster of types where at least one of the type decisions may earn a ‘Yes’ for
some type. It also for the A and B criteria decisions takes us on to ask the next criterion decision, B or
C respectively. In addition, responding either ‘No’ or ‘Yes’ to either the B or C criteria decision is also
effectively invoking the ‘No’ response cluster associated with the A or B criteria decisions respectively.

While that explanation sounds complicated, the process is simple—it is just how far we ride up in
Figure3, which is equivalent to sweeping through portions of the tree in Figure2. Consider an example.
A maintainer, after studying the documentation including the source code, rewrote the source code for
one module, and without changing any other documentation, compiled the revised module, tested it,
and installed it in the production library. The only consequence the customer saw was a faster response
time.

Question: what type of software evolution or software maintenance was this? From the evidence
reported, criterion A is ‘Yes’, criterion B is ‘Yes’, and criterion C is ‘No’. In the properties cluster, the
evidence gives us a ‘Yes’ for theperformancetype in the software properties cluster. But the evidence
also points to theevaluativetype and it is in the support interface cluster. Note also that this example

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

TYPES OF SOFTWARE EVOLUTION AND SOFTWARE MAINTENANCE 15

Figure 3. Relationships among types, where E indicates software evolution, and M indicates software maintenance.

does also qualify as software evolution as well as software maintenance. In Figure3, we locate the two
types, and note thatperformanceis higher thanevaluative. This means that we would have expected
in this example to see evidence of thetraining, consultive, reformative, updative, groomative, and
preventivetypes, but no evidence of theadaptive, reductive, corrective, or enhancivetypes.

This helps us ask potentially fruitful questions. Are the missing types missing because of oversight
in observation or in examining the objective evidence, or because they indicate activities not done?
Was it right that no customer training was needed, or that neither the supervisor or the customer was
consulted with? How was the work authorized? Has the supervision of the maintainer been lax? Have
the directions in the local SOP manual been slighted? Why have the test results not been put into the
documentation? Was the budget or schedule too lean to get all the work done? Was there a follow-on
project to fill in the missing pieces, like updating the documentation? With work like this, what is the
effect upon software maintainability, and is that what the organization wants?

Consider another example. Two maintainers were assigned to take care of a change request. They
examined the system to estimate what portions would be affected for the customer’s proposed changes,
and then conferred with their manager and the customer about the likely level of effort (cost and time)
required. The result was some negotiation with their manager and the customer and about the deadline
and scope of the project before the approval came to go ahead. The maintainers first put in time in
building comprehension of both the client and the two servers comprising the system, updated part

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

16 N. CHAPIN ET AL.

of the documentation, replaced a system chart with a UML static view, and generated some new data
layouts. With the to-be-changed portion of the client software targeted, the maintainers cleaned up
an instance of initialization coding without changing its function, obtained faster response from the
database server by changing the date representation needed for access, and reduced the performance
delays the customer had expressed some concern about by increasing the application server’s queue’s
capacity. Focusing on the customer’s proposed changes, the maintainers deleted the code that treated
returning former suppliers separately, and inserted data definitions and code to process data on a new
class of suppliers. Also, the maintainers fixed the irregular truncation of place names the customer
had complained about in passing. Finally, the maintainers prepared a change to the user manual, and
showed the customer liaison person how to be sure that instances of the new class of suppliers were
properly flagged. After compiling, testing, and debugging the software, the maintainers ran regression
tests in order to get acceptance by SQA (software quality assurance) and IS (information systems)
auditing. The maintainers informed their manager that the assignment was ready for release, and that
with their manager’s approval, the modified software was ready to be put into production with an update
of the configuration management data. The maintainers also reported to their manager a less than a 1%
increase in system size and no change in the average cyclomatic number for the software modules.

Question: what type of software evolution or software maintenance was this? All three responses
on the criteria decisions are ‘Yes’ so the example qualifies as both software evolution and software
maintenance. When we examined the documentation before and after, what stood out most? From the
sketch given and using Figures2 and3, we can find evidence of 11 types with only thepreventive
type not supported by the evidence. Even though getting a grasp on the code and regression testing the
work appeared to have accounted for the most person-hours (evaluative), what had the most software
and business impact was the minor increase in functionality gained by the customer. Therefore, within
the business rules cluster, we seek the type that yields the best fit with the evidence. In this example,
enhanciveis the dominant type of both software evolution and software maintenance. Note, however,
that both practitioners and their managers, as well as researchers, may be interested in all of the types
individually identifiable in any given work situation, for the insight and management opportunities they
may reveal, such as noted in the previous example.

Finally, consider still another example. A maintainer was assigned to install three upgraded COTS
components, the first of which implements a hardware upgrade. Each COTS component was received
from a different vendor, but all are used in one system. In attempting the installation on the test version
of the system, the maintainer found that one of the upgrades was incompatible with the other two, and
that those other two would not work with the existing in-use version of the third. After considerable
diagnostic testing runs, and obtaining an ‘its your problem’ response from the vendor of the third
component, the maintainer got approval to write a wrapper for one of the upgraded COTS components
in order to fit with the continued use of the existing version of the third component. After successful
regression testing, the maintainer had the configuration management data updated and the new wrapper
recorded. The change, since it would be nearly transparent to the customer, was put into production at
the time of the next scheduled release of a version of the system, and the documentation was updated.

Question: what type of software evolution or software maintenance was this? The responses on
the three criteria questions were A ‘Yes’, B ‘Yes’, and C ‘No’. The evidence supports theconsultive,
evaluative, updative, andadaptivetypes of software maintenance as having being done, and qualifies
as an instance of software evolution. As Figure3 indicates, the dominant type here wasadaptive.
Management is likely to be interested in seeing how the personnel time was spent across the various

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

TYPES OF SOFTWARE EVOLUTION AND SOFTWARE MAINTENANCE 17

types in maintaining this COTS-using system. A finer granularity view can help in the management of
the personnel skill resources available in relation to other resource availability and the demands from
other work being done.

We offer AppendixB as an assistance in assessing observations on software evolution and software
maintenance activities and the documentation evidence for such activities. AppendixB is organized
in three sets of columns. The left column shows the type name, the middle column shows ticks for
each relevant cluster, and the right column lists the activity. AppendixB is ordered alphabetically
by the activity, and the listing is far from exhaustive. Since activities can be described in multiple
ways, sometimes the same activity is listed in different ways, such as ‘regression testing’ and ‘testing,
regression’, or such as ‘comprehending the system’ and ‘grasping the system’.

5. DISCUSSION

The term ‘evolution’ has been used since the early 1960s to characterize the growth dynamics
of software. Halpern [11] in 1964 applied it to software implementing programming systems, for
example. The term ‘evolution’ in relation to application systems took hold more slowly, with an
early mention being in 1970 and a paper being published the next year [41]. In 1985, Lehman and
Belady, keying off their study of several major systems, identified five laws of evolution as intrinsic
to ‘E-system’ software—i.e., software being used in real-world domains and having stakeholders—
because of evolutionary pressures present during development and during the continuing processes
aimed at maintaining the system and its cost-effectiveness and acceptability to its stakeholders within
a changing environment [34]. Responding to these pressures typically results in an asymmetric or
clumpy growth in system functionality [42]. Software evolution has been further studied and three
additional laws describing its phenomenology at a high level have been advanced [43]. Low-level and
mid-level descriptions of it have drawn primarily from studies of software maintenance [44,45]. Some
studies have focused on techniques for accomplishing software change (the ‘how’), and others on the
phenomena of software change and its drivers and consequences (the ‘why’) [46].

As Bennett and Rajlich have pointed out, software evolution currently has no one widely accepted
definition, but some researchers and a small proportion of practitioners currently use the term ‘software
evolution’ as a preferred substitute for the term ‘software maintenance’ [19,47]. Others prefer a narrow
view that software evolution occurs when eitherenhanciveor reductivemaintenance is carried out
[34,43]. The current common view ([12], and see Figure3) is that software evolution occurs when
the software maintenance done is of theenhancive, corrective, or reductivetypes (any of the business
rules cluster), or it changes software properties sensible by the customer, i.e., it is of theadaptive
or performancetypes. This objective-evidence basis for identifying software evolution is, we believe,
easier to apply and generally more useful than an intentions-based typology.

The term ‘maintenance’ has been a term used for making deliberate modifications of the software
part of systems implemented at least in part with software, since the early 1960s. The terms ‘change’
or ‘modification’ were common if the activities were done by the personnel who had done the original
development of the software [48,49]. ‘Maintenance’ was associated with change or modification made
by other personnel to existing software for which they had not carried out the development. In the
1973 to 1975 time frame, IBM reorganized the way it supported making changes to its software
products and helping customers use them, largely freeing the development personnel from subsequent
support activities. That model has continued to influence the group of activities that comprise ‘software

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

18 N. CHAPIN ET AL.

maintenance’, although many other terms have been and are being used as substitutes for ‘software
maintenance’, such as ‘operational support’ or ‘continuous development’.

Both increased competition and the Internet are increasing the need for fast software evolution and
software maintenance. As time to market and organizational responsiveness become more important,
software modification activities and processes using them are being adapted to gain faster change.
However, just substituting new current data into the software supporting the web site (effectively just
changing values of the input data for processing) no more qualifies as either maintenance or evolution
than does handling batch data arising from sales paid for by credit card tenders.

Sometimes quick maintenance is required. For example, an organization active in international
politics may have to modify how it presents data on its web site several times during a day. To the
webmaster and the maintainer support staff, the situation often appears like continuous change in the
software, with releases made on-the-fly. What the customer can access from one hour to the next
may be very different, including its form and content, with still or video graphics, sound or none,
animation or none, changed colours, and in varied layouts. Less severe but usually at a larger scale
are business or government organizations that have to make fast responses to changing environmental
or competitive conditions, such as in modifying systems to support new products or services, and
revised terms of product or service availability. Without updated software meeting customers’ current
needs, the organization becomes vulnerable to falling behind its competition [50]. Our proposed types
of software evolution and software maintenance are as applicable to such quick response software
evolution and software maintenance situations as they are to the common traditional situations and to
embedded software modification.

Our proposed types of software evolution and software maintenance can extend, as noted earlier,
into what has been called software ‘development’. For example, while producing the initial version of
a system, correcting an oversight logic bug detected during unit testing qualifies ascorrectivesoftware
maintenance (the correction was to existing software), but not as software evolution (the correction
was in a first version of the system and not used by the customer). Narrowly, development has been
the initial creation of a system implemented with software written from scratch. Yet in practice in
industry, business, and government a broader usage is common. The broader usage includes creating
systems assembled from components (such as COTS) with some interactions among the components
mediated by freshly written middleware, wrappers, or ‘glue code’. And the broader usage also includes
classifying as development all software projects estimated to require more than some specified amount
of either person time or calendar time. We have seen the person-time threshold set as low as half a
person-day, and the calendar-time threshold set as low as one calendar day. Low thresholds result in
officially classifying most software maintenance projects as instances of development, but in terms of
the activities done and what they are done on or with, they are still actually software maintenance.

Business rules pervade software [51,52]. While this is easily and widely recognized in some specific
domains, such as in payroll processing, it is far less obvious in many others. For example, the
management and performance of a GUI are mostly implementations of business rules. When expressed
in software, a business rule has a simple underlying basic structure: a logical case predicate leading to
particular transformations. Each part becomes elaborated and customized to the situation, with nesting
common. In general, the data for the predicate have to be accessed and their values validated. Each
transformation takes in validated data ultimately traceable to the system’s input, and produces data
ultimately traceable to the system’s output. Hence, changes in the software expression of business
rules results in changes in the customer-experienced functionality, and they are its dominant effector.

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

TYPES OF SOFTWARE EVOLUTION AND SOFTWARE MAINTENANCE 19

Because business rules affect how a customer accomplishes its/his/her mission, task, or function, they
may have proprietary or even trade secret status. Our proposal classifies the activities making such
changes into three types,reductive, corrective, andenhancive, all in the business rules cluster.

Our proposed types of software evolution and software maintenance are independent of one of
the concerns expressed in the ontology report [3], the matter termed there as ‘scenarios’. The types
proposed here cut through not only the two scenarios treated in that report, but also nearly all of the
possible scenarios, assuming that neither total outsourcing nor the combination of total retirement and
replacement are regarded as either evolution or maintenance.

Also, what the ontology report [3] terms ‘modification activity’ is found in the types comprising
our documentation, software properties, and business rules clusters. What the ontology paper terms
‘investigation activity’ is split in our proposal. The general investigation activities are in theevaluation
type in the support interface cluster. The focused ones, depending upon their focus, are in the types
comprising our documentation, software properties, and business rules clusters.

The choice of names for the types of software evolution and software maintenance has been a
matter of concern. The ‘support interface’ cluster, for example, got its name because some of the
activities in the types are at the interface between the maintainers and other maintainers, managers of
maintainers, and the system stakeholders, especially the customers. Projects are started and finished in
these activities, and the continuing supportive training, assistance, and consultation are here too.

On names for the types, we followed the lead of Swanson [8], preferring to use adjectives ending in
. . . ive. This has led us to coin a term ‘groomative’, that we offer as an adequately descriptive adjective
for grooming the software. Also, we have dropped ‘perfective’ to make our proposal more precise
and useful both to practitioners and their managers, and to researchers. We recognize that previous
attempts at the redefinition of terms have been widely ignored, as for example [14,15,28]. We hope
that our proposal will be better accepted and be found to be useful.

Also, we have redefined the meaning of two terms used by Swanson [8], ‘adaptive’ and ‘corrective’
by eliminating the intention component and narrowing the applicability to software properties and
business rules respectively. We propose these two redefinitions in spite of realizing that the many
previous attempts to modify the intentional definitions of ‘adaptive’ and ‘corrective’ have not been
greeted with success, and that our proposal may contribute to further confusion. We persist in these
two redefinition proposals for three reasons:

• we believe the acceptance of two newly coined terms for these types of maintenance would
probably gain even less acceptance;

• the terms help provide some continuity with popular usage, as noted earlier; and
• these two types,correctiveandadaptive, along withenhancive, get the most attention.

Furthermore, we have not used the term ‘features’ because its current varied meanings seem well
entrenched. Thus, a feature may be an aspect of the system functionality experienced by the customer. It
may be a group of software behaviours. It may be a system property, such as running under a particular
version of a particular operating system. A feature may even be an unfixed software defect or ‘bug’ in
the view either of some customers or of some software suppliers.

Finally, we point out a major limitation of our proposal. As a detailed analysis can easily show, the
use of the proposed criteria decisions even in their three levels can lead to far more than just a dozen
types, if additional type decisions be inserted. With the classification we propose, specialized situations
will likely warrant identifying subtypes. For example, one manager told us he considersevaluativeas a

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

20 N. CHAPIN ET AL.

combination of three subtypes: familiarization, testing, and annual system auditing, because these are
relevant in his organization in the management and accounting or personnel time utilization. Identifying
subtypes permits customization that can make our proposal more flexible and useful.

6. CONCLUSIONS

In this paper on types of software evolution and software maintenance, we have proposed:

• recognizing types based on objective evidence, instead of based on intentions;
• pointing to the software, the code, and the customer-experienced functionality as key

determinants of the types;
• providing a somewhat finer granularity for the types, with four named general types (as

‘clusters’) instead of the current total of three types (corrective, adaptive, and perfective);
• providing a detailed granularity for the types, with 12 named types;
• identifying observable activities or evidence that distinguish the 12 named types;
• extending type applicability to both software evolution and software maintenance;
• organizing the types to reflect their business process and software impacts; and
• approaching the classification of activities in an illuminating way for practitioners and their

managers, as well as for researchers.

We rely on a common observation for the defence of our choice of objective evidence about activities
as the basis for the classification. Carrying out different activities well calls upon different skill sets. In
practice, because of human variability, different people with their different skill sets achieve different
results, different qualities of results, and they achieve them with different productivities and at different
speeds. Results, quality, productivity, and time taken are key concerns of maintainers, their managers,
and empirical researchers. Our types proposal helps these people communicate more effectively about
those key concerns, as we have shown in Section4.

While we summarize in AppendixA our working definitions of some terms, our proposal in
this paper does more than distinguish types of software evolution and software maintenance. It also
effectively offers definitions of both software evolution and software maintenance as being processes
which are recognizable, given the context, from their constituent activities.

APPENDIX A. DEFINITIONS OF TERMS

We found that some definitions helped us communicate more clearly in working out and using our
proposed classification. We summarize our working definitions below:

• softwareor computer software—the non-hardware part, including associated documentation,
of a system being implemented or implemented in part with a computer or an embedded
processor [53];

• software maintenanceor maintenance—the deliberate application of activities and processes,
whether or not completed, to existing software that modify either the way the software directs
hardware of the system, or the way the system (of which the software is a part) contributes to the
business of the system’s stakeholders, together with the associated quality assurance activities
and processes, and with the management of the activities and processes, and often done in the
context of software evolution (note that, in contrast to the IEEEGlossarydefinition [14] and the

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

TYPES OF SOFTWARE EVOLUTION AND SOFTWARE MAINTENANCE 21

IEEE maintenance standard definition [23], ‘post-deployment’ or ‘after-delivery’ status for the
software is not part of our definition; activities involving existing software during ‘development’
before its delivery (sometimes called turnover or transition) qualify as software maintenance
activities [54], but may not qualify as software evolution activities);

• software evolution—the application of software maintenance activities and processes that
generate a new operational software version with a changed customer-experienced functionality
or properties from a prior operational version, where the time period between versions may last
from less than a minute to decades, together with the associated quality assurance activities and
processes, and with the management of the activities and processes; sometimes used narrowly
as a synonym for software maintenance, and sometimes used broadly as the sequence of states
and the transitions between them of software from its initial creation to its eventual retirement
or abandonment;

• documentation—the human-readable text and/or graphics (tangible such as on paper and
intangible such as displayed on a monitor) specifying or describing computer software (e.g.,
requirements, data layouts, configuration management listings, regression test plans, change
requests or work orders, user manuals, source code, etc.);

• non-code documentation—all documentation except the code;
• source code—this subset of the documentation is the human-readable form of the directions to

the computer or processor that can be translated, compiled or interpreted to produce object code,
microcode, or machine language useable by the hardware in producing the functionality and
performance of the system;

• code—the source code and/or object code and/or machine code and/or microcode;
• stakeholder—the person, persons, part or parts of an organization, organization, or customer that

has an interest in and may be affected by the functionality or performance of a system;
• customer—the person, persons, part or parts of an organization, or organization that uses the

functionality or performance of a system for satisfying its goals, mission, or function (i.e.,
accomplishing its business), and is usually the primary stakeholder of the system;

• user—a customer or one of the personnel of a customer;
• customer-experienced functionality—the collection of system functions apparent to the

customer; or the features and facilities provided to the customer by the system and implemented
through the data provided by or on behalf of the customer to the system, and the data provided
to or on behalf of the customer from the system, together with the timing and conditions under
which the data flows occur between the system and the customer (such as responding to a query
about the quantity of obsolete stock on hand); as distinct from data and/or services provided to
or done by or for the system undetectable by the customer (such as the lengthening of an internal
stack from a push of a subroutine address onto it);

• business—the work a person or organization does, such as a profession or occupation, and with
which the person or organization is occupied, such as doing research, collecting taxes, measuring
solar flares, refining petroleum, etc. (note that we do not limit the use of the term ‘business’ to
only for-profit work such as selling souvenirs to tourists);

• business rule—a step or set of steps in a process or procedure or guide (algorithmic or heuristic)
used by a customer for doing its business, work, or function, and often embodied in whole or in
part in the software of a system [51,55], as for example, how much of a particular stock item to
reorder and when to reorder it, or how to select the font style for names in a research report; and

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

22 N. CHAPIN ET AL.

• software property—a static or dynamic characteristic or attribute of a system or of its
performance, such as its speed, its size, its language of implementation, its design methodology,
its use of information technology resources, its recovery facility, etc.; sometimes called system
property or system characteristic.

APPENDIX B. TYPES FOR SOME FREQUENTLY OBSERVED ACTIVITIES

In TableB1, the activities are listed in alphabetic sequence in the right-hand column. The columns to
the left show the cluster and the type within that cluster for each item in the right-hand column. The list
of activities is far from exhaustive; only some of the more frequently observed activities are listed. The
word ‘functionality’ is used as a shortening of the phrase ‘customer-experienced functionality’. The
clusters are: SI—support interface, D—documentation, SP—software properties, and BR—business
rules.

Table B1. Type and cluster for some frequently observed activities.

Cluster

Type SI D SP BR Activity

A
Enhancive — — — ✓ Adding component or algorithm implementing functionality
Enhancive — — — ✓ Algorithm replacement, adding or changing functionality

Groomative — — ✓ — Algorithm replacement, functionality, properties unchanged
Performance — — ✓ — Algorithm replacement, properties added or changed

Needs specifics — — — — Analysing done (as a part of what activities?)
Groomative — — ✓ — Annotation in code, revision, or addition
Consultive ✓ — — — Answering questions about the software
Consultive ✓ — — — Assisting personnel about the software
Corrective — — — ✓ Assumption modified or replaced
Evaluative ✓ — — — Auditing the software or information system

Groomative — — ✓ — Authorizing changes for personnel security
Preventive — — ✓ — Avoiding future maintenance by taking pre-emptive action

B
Updative — ✓ — — Backup creation or replacement or update of documentation

Corrective — — — ✓ Bug fixing where code deemed to have been working OK
Enhancive — — — ✓ Business rule added
Corrective — — — ✓ Business rule fixed that had been deemed as working OK
Reductive — — — ✓ Business rule removed
Enhancive — — — ✓ Business rule replaced

C
Evaluative ✓ — — — Calculating metrics as on complexity, through-put, etc.

Reformative — ✓ — — CASE tool usage change for non-code documentation
Training ✓ — — — Class instruction, done or received, from existing materials

Groomative — — ✓ — Code clean up or styling change
Updative — ✓ — — Code backup creation or replacement or update

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

TYPES OF SOFTWARE EVOLUTION AND SOFTWARE MAINTENANCE 23

Table B1. Continued.

Cluster

Type SI D SP BR Activity

Needs specifics — — — — Coding done (as a part of what activities?)
Corrective — — — ✓ Coding error fixed where had been deemed as working OK

Groomative — — ✓ — Comments in the code, added or revised or restyled
Adaptive — — ✓ — Communication protocols changed

Enhancive — — — ✓ Components replacement, adding or changing functionality
Groomative — — ✓ — Components replacement, functionality, properties unchanged

Performance — — ✓ — Components replacement, properties added or changed
Evaluative ✓ — — — Comprehending the software, system, work order, etc.
Consultive ✓ — — — Conferring about software, work order, or change request

Groomative — — ✓ — Configuration file changed
Evaluative ✓ — — — Configuration management data changed, corrected, updated

Updative — ✓ — — Content conforming change made in non-code documentation
Needs specifics — — — — Conversion of data format, layout, data codes (part of what?)

Evaluative ✓ — — — Conversion of system status from development to maintenance
Enhancive — — — ✓ COTS component functionality changed

Groomative — — ✓ — COTS component, no change in functionality or technology
Performance — — ✓ — COTS component performance changed

Adaptive — — ✓ — COTS component, technology or resources changed
Reformative — ✓ — — Coverage of user manual, non-code documentation changed

D
Adaptive — — ✓ — Databases changed or added

Enhancive — — — ✓ Data flow added or redirected
Reductive — — — ✓ Data flow eliminated or reduced
Corrective — — — ✓ Data flow fixed that had been deemed as working OK

Needs specifics — — — — Data layout done (as a part of what activities?)
Needs specifics — — — — Debugging (as a part of what activities?)
Needs specifics — — — — Defensive programming or defensive design (use on what?)

Corrective — — — ✓ Design defect fixed where had been deemed OK
Adaptive — — ✓ — Design methodology changed, code changed to implement

Needs specifics — — — — Designing done (as a part of what activities?)
Evaluative ✓ — — — Diagnostic testing

Needs specifics — — — — Documenting done (as a part of what activities?)
Updative — ✓ — — Documenting done with kind undetermined

Performance — — ✓ — Down time frequency or duration or severity changed
Performance — — ✓ — Duration of out-of-service changed

E
Evaluative ✓ — — — Environment for testing set up or changed
Corrective — — — ✓ Error fixed where code had been deemed as working OK

Groomative — — ✓ — Error message changed
Consultive ✓ — — — Estimating working time, cost, resources, or computer time

Needs specifics — — — — Examining test results (what kind of testing?)
Evaluative ✓ — — — Examining the software, work order, operating situation, etc.
Enhancive — — — ✓ Exception handling changed

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

24 N. CHAPIN ET AL.

Table B1. Continued.

Cluster

Type SI D SP BR Activity

Corrective — — — ✓ Exception handling fixed where had been deemed OK
Adaptive — — ✓ — Execution mode changed (e.g., to distributed)

Performance — — ✓ — Execution speed changed
Performance — — ✓ — External storage utilization changed

F
Evaluative ✓ — — — Familiarization with the software, work order, resources, etc.
Evaluative ✓ — — — Field testing done

Reformative — ✓ — — Form of non-code documentation changed
Preventive — — ✓ — Future maintenance avoidance by pre-emptive action

G
Updative — ✓ — — Gaps, filling in non-code documentation

Evaluative ✓ — — — Gathering data about the system and its software
Evaluative ✓ — — — Getting on the outside of the software or work order

Updative — ✓ — — Graphic non-code documentation updating
Evaluative ✓ — — — Grasping the system

Groomative — — ✓ — Grooming the code
Reformative — ✓ — — Grooming the non-code documentation

H
Consultive ✓ — — — Help desk service provided
Evaluative ✓ — — — Handoff or handover of system to maintenance

I
Enhancive — — — ✓ Inserting component or algorithm implementing functionality
Evaluative ✓ — — — Install for operation or test run

Training ✓ — — — Instruction done or received from existing materials
Needs specifics — — — — Integration testing (properties or business rules?)

Performance — — ✓ — Internal storage utilization changed
Adaptive — — ✓ — Interoperability changed

Corrective — — — ✓ Invalid assumption modified or replaced

J
Consultive ✓ — — — Joint maintenance activities with customer personnel

K
Needs specifics — — — — Kick out of errors (what kind of testing?)

L
Groomative — — ✓ — Level of security authorization change
Groomative — — ✓ — Linkage library file changed
Reformative — ✓ — — Local SOP manual change, adapting non-code documentation
Groomative — — ✓ — Local SOP manual change, code styling

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

TYPES OF SOFTWARE EVOLUTION AND SOFTWARE MAINTENANCE 25

Table B1. Continued.

Cluster

Type SI D SP BR Activity

M
Consultive ✓ — — — Making estimates for managers, customers, etc.

Groomative — — ✓ — Message changed about errors
Evaluative ✓ — — — Metrics collection or calculation

Updative — ✓ — — Model revision in non-code documentation
Adaptive — — ✓ — Mode of execution changed (e.g., to distributed)

Performance — — ✓ — Mode of use changed (e.g., to multi-user)

N
Updative — ✓ — — Narrative documentation updating
Updative — ✓ — — Non-code documentation, making conform to code

Reformative — ✓ — — Non-code documentation, making fit customer stated need

O
Needs specifics — — — — Obsolete code removal or replacement (what was the effect?)

Updative — ✓ — — Obsolete non-code documentation removal or replacement
Training ✓ — — — One-on-one teaching

Consultive ✓ — — — On-the-job assistance given or received
Consultive ✓ — — — On-site assistance provided or received

Adaptive — — ✓ — Operating system changed
Performance — — ✓ — Out of service durations changed

Consultive ✓ — — — Outsourcing of maintenance, advising on
(mgt. assumed) — — — — Outsourcing of maintenance, management of

Consultive ✓ — — — Outsourcing of maintenance, routine interaction with

P
Adaptive — — ✓ — Platforms changed, added or discontinued

Groomative — — ✓ — Polishing the code
Reformative — ✓ — — Polishing the non-code documentation
Reformative — ✓ — — Preparing or revising training materials re a system
Groomative — — ✓ — Pretty-printing of code
Preventive — — ✓ — Problem avoidance by taking pre-emptive action

Training ✓ — — — Product training, done or received
Evaluative ✓ — — — Program comprehension
Corrective — — — ✓ Programming error fixed where been deemed as working OK

Adaptive — — ✓ — Protocols changed

Q
Consultive ✓ — — — Query response, determining or making

R
Groomative — — ✓ — Readability, changing the code for
Reformative — ✓ — — Readability, changing the non-code documentation for
Reformative — ✓ — — Recompilation to get fresh source listing

Adaptive — — ✓ — Redevelopment of software portion of system

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

26 N. CHAPIN ET AL.

Table B1. Continued.

Cluster

Type SI D SP BR Activity

Needs specifics — — ✓ — Refactoring (what was the result?)
Reformative — ✓ — — Reformating documentation but not the code
Reformative — ✓ — — Reformulating the non-code documentation

Evaluative ✓ — — — Regression testing
Performance — — ✓ — Reliability change

Reductive — — — ✓ Removing component or algorithm implementing functionality
Enhancive — — — ✓ Replacing component or algorithm implementing functionality
Updative — ✓ — — Replacing obsolete non-code documentation content

Consultive ✓ — — — Reporting to managers or stakeholders about the software
Adaptive — — ✓ — Resource change incorporated or implemented

Reformative — ✓ — — Restyling the non-code documentation
Consultive ✓ — — — Return of system from outsourcer

Needs specifics — — — — Reuse insertion in this system (what was the effect?)
Preventive — — ✓ — Reuse, preparing software for, but involving this system

Reformative — ✓ — — Revising the non-code documentation, but not updating it
Updative — ✓ — — Revising the non-code documentation by updating it

Reformative — ✓ — — Revising or preparing training materials re a system
Needs specifics — — — — Rewriting software (what code, or non-code documentation?)

Performance — — ✓ — Robustness change

S
Evaluative ✓ — — — Searching for things in the documentation

Groomative — — ✓ — Security access changed
Enhancive — — — ✓ Security functions added or replaced

Performance — — ✓ — Service availability changed
Evaluative ✓ — — — Simulating operating conditions, as when testing
Evaluative ✓ — — — Software comprehension

Reformative — ✓ — — SOP manual change, adapting non-code documentation to
Groomative — — ✓ — SOP manual change, code styling

Performance — — ✓ — Speed of execution changed
Performance — — ✓ — Storage utilization changed

Evaluative ✓ — — — Stress testing
Evaluative ✓ — — — Studying the software, system, product, work order, etc.

T
Training ✓ — — — Teaching courses from existing materials
Adaptive — — ✓ — Technology change incorporated or implemented

Needs specifics — — — — Testing done (as a part of what activities?)
Evaluative ✓ — — — Testing, either diagnostic or regression
Evaluative ✓ — — — Testing environment set up or changed

Updative — ✓ — — Test plan incorporation in non-code documentation
Evaluative ✓ — — — Test plan preparation for regression or diagnostic testing

Training ✓ — — — Training done or received
Reformative — ✓ — — Training materials, preparation, or revision

Evaluative ✓ — — — Transfer of system, receiving from development

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

TYPES OF SOFTWARE EVOLUTION AND SOFTWARE MAINTENANCE 27

Table B1. Continued.

Cluster

Type SI D SP BR Activity

Consultive ✓ — — — Transfer of system to outsourcer
Evaluative ✓ — — — Transition of system, receiving from development
Evaluative ✓ — — — Turnover of system, receiving from development
Consultive ✓ — — — Turnover of system to outsourcer

U
Needs specifics — — — — Unit testing (re properties or business rules?)

Adaptive — — ✓ — Upgrading of platform, hardware or software
Updative — ✓ — — Updating of security documentation to reflect actual situation

Enhancive — — — ✓ Updating of security implementation but not personnel access
Groomative — — ✓ — Updating of security re personnel access

Performance — — ✓ — Up time of system changed
Performance — — ✓ — Use mode changed (e.g., to multi-user)

V
Groomative — — ✓ — Visibility changed into software

W
Corrective — — — ✓ Work around created
Consultive ✓ — — — Work around explained or distributed

Needs specifics — — — — Write code (as a part of what activities?)
Needs specifics — — — — Write documentation (as a part of what activities?)

X
Needs specifics — — — — XP (extreme) software being changed (what done or how?)

Y
Preventive — — ✓ — Y2K work that does not change externally seen functionality

Z
Groomative — — ✓ — Zero-out or wipe clean of memory work area

ACKNOWLEDGEMENTS

This paper is a revision, extension, elaboration and expansion of a paper by one of the authors [6] published by
the IEEE Computer Society Press. We thank the reviewers for their stimulating comments.

REFERENCES

1. Chapin N. The job of software maintenance.Proceedings Conference on Software Maintenance–1987. IEEE Computer
Society Press: Los Alamitos CA, 1987; 4–12.

2. Parikh G. The several worlds of software maintenance—a proposed software maintenance taxonomy.ACM SIGSOFT
Software Engineering Notes1987;12(2):51–53.

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

28 N. CHAPIN ET AL.

3. Kitchenham BA, Travassos GH, Mayrhauser Av, Niessink F, Schneidewind NF, Singer J, Takada S, Vehvilainen R, Yang H.
Toward an ontology of software maintenance.Journal of Software Maintenance1999;11(6):365–389.

4. Drucker PF.Management. Harper & Row, Publishers: New York NY, 1974; 464–516.
5. ICSM. Empirical studies and management sessions.Proceedings International Conference on Software Maintenance. IEEE

Computer Society Press: Los Alamitos CA, 2000; 117–276.
6. Chapin N. Software maintenance types—a fresh view.Proceedings International Conference on Software Maintenance.

IEEE Computer Society Press: Los Alamitos CA, 2000; 247–252.
7. Canning RG. That maintenance ‘iceberg’.EDP Analyzer1972;10(10):1–14.
8. Swanson EB. The dimensions of maintenance.Proceedings 2nd International Conference on Software Engineering. IEEE

Computer Society: Long Beach CA, 1976; 492–497.
9. Chapin N. Do we know what preventive maintenance is?Proceedings International Conference on Software Maintenance.

IEEE Computer Society Press: Los Alamitos CA, 2000; 15–17.
10. Lientz BP, Swanson EB.Software Maintenance Management. Addison-Wesley Publishing Co.: Reading MA, 1980; 214

pp.
11. Halpern M. The evolution of the programming system.Datamation1964;10(7):51–53.
12. ISPSE.Proceedings of the International Symposium on Principles of Software Evolution, ISPSE 2000. IEEE Computer

Society Press: Los Alamitos CA, 2001; 332 pp.
13. Swanson EB, Chapin N. Interview with E. Burton Swanson.Journal of Software Maintenance1995;7(5):303–315.
14. IEEE.IEEE Standard Glossary of Software Engineering Terminology. Institute of Electrical and Electronics Engineers:

New York NY, 1990: 83 pp.
15. Kemerer CF, Slaughter SA. Determinants of software maintenance profiles: an empirical investigation.Journal of Software

Maintenance1997;9(4):235–251.
16. Martin J, McClure CL.Software Maintenance: The Problem and Its Solution. Prentice-Hall, Inc.: Englewood Cliffs NJ,

1983; 472 pp.
17. Parikh G (ed.)Techniques of Program and System Maintenance(2nd edn). QED Information Sciences, Inc.: Wellesley MA,

1988; 463 pp.
18. Perry WE.Managing Systems Maintenance. Q.E.D. Information Sciences, Inc.: Wellesley MA, 1981; 371 pp.
19. Arthur LJ.Software Evolution. John Wiley & Sons, Inc.: New York NY, 1988; 254 pp.
20. Bendifallah S, Scacchi W. Understanding software maintenance work.IEEE Transactions on Software Engineering1987;

SE-13(3):311–323.
21. Gustafson DA, Melton AC, An KH, Lin I. Software maintenance models.Technical Report, Department of Computing and

Information Sciences, Kansas State University, Manhattan KS, 1990; 14 pp.
22. Martin RJ, Osborne WM.Guidance on Software Maintenance(NBS Special Publication 500–106). National Bureau of

Standards: Washington DC, 1983; 66 pp.
23. IEEE.IEEE Standard for Software Maintenance(IEEE Std 1219–1998). Institute for Electrical and Electronic Engineers:

New York NY, 1998; 47 pp.
24. ISO/IEC.Information Technology—Software Life Cycle Processes, ISO/IEC 12207. International Standards Organization:

Geneva, Switzerland, 1995.
25. Pigoski TM.Practical Software Maintenance. John Wiley & Sons, Inc.: New York NY, 1997; 384 pp.
26. Polo M, Piattini M, Ruiz F, Calero C. MANTEMA: A software maintenance methodology based on the ISO/IEC 12207

standard.Proceedings 4th International Software Engineering Standards Symposium. IEEE Computer Society Press: Los
Alamitos CA, 1999; 76–81.

27. ISO/IEC. Software Engineering—Software Maintenance, ISO/IEC FDIS 14764:1999(E). International Standards
Organization: Geneva, Switzerland, 1999; 38 pp.

28. Chapin N. Software maintenance: A different view.AFIPS Conference Proceedings of the 1985 National Computer
Conference, vol. 54. AFIPS Press: Reston VA, 1985; 328–331.

29. Grady RB. Measuring and managing software maintenance.IEEE Software1987;4(9):35–45.
30. Reutter J. Maintenance is a management problem and a programmer’s opportunity.AFIPS Conference Proceedings of the

1981 National Computer Conference, vol. 50. AFIPS Press: Reston VA, 1981; 343–347.
31. Kajko-Mattsson M. Common concept apparatus with corrective software maintenance.Proceedings International

Conference on Software Maintenance. IEEE Computer Society Press: Los Alamitos CA, 1999; 287–296.
32. Haworth DA, Sharpe S, Hale DP. A framework for software maintenance: A foundation for scientific inquiry.Journal of

Software Maintenance1992;4(2):105–117.
33. Harjani D-R, Queille J-P. A process model for the maintenance of large space systems software.Proceedings Conference

on Software Maintenance. IEEE Computer Society Press: Los Alamitos CA, 1992; 127–136.
34. Lehman MM, Belady LA.Program Evolution: The Process of Software Change. Academic Press: New York NY, 1985;

560 pp.
35. Corbi TA. Programming understanding: Challenge for the 1990s.IBM System Journal1989;28(2):294–306.

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

TYPES OF SOFTWARE EVOLUTION AND SOFTWARE MAINTENANCE 29

36. Chapin N. Software maintenance life cycle.Proceedings Conference on Software Maintenance—1988. IEEE Computer
Society Press: Los Alamitos CA, 1988; 6–13.

37. Lehman MM. Programs, cities, students, limits to growth?Imperial College of Science and Technology Inaugural Lecture
Series1970;9:211–229. Reprinted in [34, ch. 7].

38. Votta LG. Is software worth preserving? The future through the past (keynote presentation).International Conference on
Software Maintenance, 2000. http://www.brincos.com [10 November 2000].

39. ICSM. Panel 2: preventive maintenance! Do we know what it is?Proceedings International Conference on Software
Maintenance. IEEE Computer Society Press: Los Alamitos CA, 2000; 11–19.

40. Kajko-Mattsson M. Taxonomy of problem management activities.Proceedings 5th European Conference on Software
Maintenance and Reengineering. IEEE Computer Society Press: Los Alamitos CA, 2001; 1–10.

41. Couch RF. Evolution of a toll MIS—Bell Canada.Management Information Systems: Selected Papers from MIS
Copenhagen 70—An IAG Conference, Goldberg W, Nielsen TH, Johnsen E, Josefsen H (eds.) Auerbach Publishers Inc.:
Princeton NJ (Studentlitteratur, Sweden), 1971; 163–188.

42. Hsi I, Potts C. Studying the evolution and enhancement of software features.Proceedings International Conference on
Software Maintenance. IEEE Computer Society Press: Los Alamitos CA, 2000; 143–151.

43. Lehman MM. Rules and tools for software evolution planning and management.Preprints of FEAST 2000 International
Workshop on Feedback and Evolution in Software and Business Processes. Imperial College, London, 2000; 53–68.
http://www.doc.ic.ac.uk/˜ mml/f2000 [27 December 2000].

44. Burd E, Munro M. An initial approach toward measuring and characterising software evolution.Proceedings 6th Working
Conference on Reverse Engineering, WCRE’99. IEEE Computer Society Press: Los Alamitos CA, 1999; 168–174.

45. Tomer A, Schach SR. The evolution tree: A maintenance-oriented software development model.Proceedings 4th European
Conference on Software Maintenance and Reengineering. IEEE Computer Society Press: Los Alamitos CA, 2000; 209–
214.

46. Lehman MM, Ramil RF, Kahen G. Evolution as a noun and evolution as a verb.Workshop on Software and Organisation
Co-evolution. Imperial College, London, UK. http://www.doc.ic.ac.uk/˜ mml/feast [27 December 2000].

47. Bennett KH, Rajlich VT. Software maintenance and evolution: a roadmap.Proceedings of the 22nd International
Conference on Software Engineering. ACM Press: New York NY, 2000; 75–87.

48. Leeds HD, Weinberg GM.Computer Programming Fundamentals. McGraw-Hill Book Co.: New York NY, 1961; 384 pp.
49. Brandon DH.Management Standards for Data Processing. D. Van Nostrand Co., Inc.: Princeton NJ, 1963; 143–148.
50. Chapin N. Software maintenance characteristics and effective management.Journal of Software Maintenance1993;

5(2):91–100.
51. Rosca D, Greenspan S, Feblowlitz M, Wild C. A decision making methodology in support of the business rules lifecycle.

Proceedings 3rd IEEE International Symposium on Requirements Engineering (RE’97). IEEE Computer Society Press:
Los Alamitos CA, 1997; 236–246.

52. Anderson E, Bradley M, Brinko R. Use case and business rules.Addendum to the 1997 ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications. ACM Press: New York NY, 1997; 85–87.

53. Rosen S. Software.Encyclopedia of Computer Science. Van Nostrand Reinhold: New York NY, 1992; 1214–1216.
54. McClure CL.Managing Software Development and Maintenance. Van Nostrand Reinhold: New York NY, 1981; Part 2.
55. Huang H, Tsai W-T, Bhattacharya S, Chen XP, Wang Y, Sun J. Business rule extraction techniques for COBOL programs.

Journal of Software Maintenance1998;10(1):3–35.

AUTHORS’ BIOGRAPHIES

Ned Chapin is an Information Systems Consultant with InfoSci Inc. in Menlo Park
in California. His decades of experience include all phases of the software life cycle
and cover industrial, business, financial, non-profit and governmental organizations. He
has also worked in roles from Lecturer to Professor of Information Systems at various
universities. Ned’s interests span a wide range including software maintenance and
evolution, database technology, systems analysis and design, and software management.
He is a Registered Professional Engineer, and a Certified Information Systems Auditor.
His MBA is from the Graduate School of Business of the University of Chicago, and his
PhD is from Illinois Institute of Technology. His e-mail is NedChapin@acm.org

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

30 N. CHAPIN ET AL.

Joanne E. Hale is an Assistant Professor of Management Information Systems at
The University of Alabama. Her research interests include software maintenance,
software cost estimation, and component-based development and reuse. The National
Science Foundation, ExxonMobil, and Texas Instruments have supported her research
efforts, and her research has been published in theJournal of Software Maintenance,
IEEE Transactions on Software Engineering, IEEE Software, Journal of Management
Information Systems and IEEE Transactions on Systems, Man, and Cybernetics. She
earned her PhD in Management Information Systems from Texas Tech University, and
her MA in Statistics and BS in Engineering from the University of Missouri. Her e-mail
is jhale@cba.ua.edu

Khaled Md. Khan is a Lecturer in the School of Computing and Information Technology
at the University of Western Sydney in Australia. During the past ten years, he has
taught computer science at various universities in Europe, Africa, and Asia. Khaled’s
major research interests include software maintenance processes, characterization of
security properties of software components, software metrics, and software quality. His
undergraduate and postgraduate degrees are in Computer Science and Informatics from
the University of Trondheim in Norway. His e-mail is Md.Khan@acm.org

Juan F. Ramil is a Research Associate and a PhD candidate in the Department of
Computing at Imperial College in London. Since 1996, he has been working on the
FEAST (Feedback, Evolution And Software Technology) projects. Previously, he worked
for nine years in the petroleum industry on the design and implementation of plant
automation projects in Venezuela. Juan’s research interests include the management of
software maintenance and evolution, and effort estimation in the evolution context. Since
1997, he has authored or co-authored 30 papers. He holds anIngeniero degreeCum
Laudein Electronics and aMagister in Business Engineering, both from Sim´on Bolı́var
University in Caracas, Venezuela. His e-mail is ramil@doc.ic.ac.uk

Wui-Gee Tan is a Program Manager with the Institute of Systems Science at the
National University of Singapore. He returned to academia in 1986 after working for
more than 13 years in industry in various information technology roles. His teaching
and research interests include software maintenance management and software project
management. Wui-Gee received his BSc(Hons), GradDip in Business Administration, and
MSc (Computer Science) from the National University of Singapore, and his PhD from the
Queensland University of Technology in Australia. His e-mail is wuigee@iss.nus.edu.sg

Copyright 2001 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract.2001;13:3–30

	1 INTRODUCTION
	2 CURRENT STATE OF THE FIELD
	3 PROPOSED CLASSIFICATION
	3.1 Three criteria
	3.2 Type clusters
	3.3 Support interface cluster
	3.4 Documentation cluster
	3.5 Software properties cluster
	3.6 Business rules cluster

	4 APPLICATION
	5 DISCUSSION
	6 CONCLUSIONS
	APPENDIX A. DEFINITIONS OF TERMS
	APPENDIX B. TYPES FOR SOME FREQUENTLY OBSERVED ACTIVITIES

