
Appeared in Proceedings of the 7th Intl. Conference on Telecommunications (ConTEL), June 2003. http://www.contel.hr/

Real-Time IP Network Simulation at Gigabit Data Rates 1

Abstract — In many of the network research or development
projects, as well as in teaching / academia, network simulators
today play an important role. Network simulation tools can be
generally classified as those performing simulations off-line in
form of batch-type tasks, and those operating in real-time,
often with the ability to interact with the real network
hardware and traffic. However, limited performance remains
one of the main issues associated with most of the current real-
time simulator implementations. In this article we present a
novel framework for constructing high performance real-time
IP network simulators, capable of operating at gigabit speeds
while using commodity PC hardware. Our implementation,
based on a modified 4.4BSD operating system (OS) kernel,
permits complex simulated network configurations to be
constructed using basic building components: virtual nodes
and links. Each virtual node can act as an entirely
independent but completely functional OS image, allowing
standard unmodified UNIX services and utilities to be used in
the experiments, while retaining nearly the same performance
properties as in the original OS.

Index Terms — Computer networks, modeling, operating
systems, simulation software

I. INTRODUCTION

etwork simulation tools are today extensively used in
many areas of network protocol research and
development, in academia and teaching, or for

predicting the behavior and characteristics of complex
network installations under different operating conditions.
There are many driving factors in favor of using simulators,
most notably simulations being much more economical
than doing similar experiments with the real hardware.
However, the cost factor alone is not the only advantage: in
many cases (such as teaching in labs) each workplace can
be presented with its own simulated network environment,
which would be in most cases impossible to achieve with
real network equipment, even with unlimited financial
resources. Simulation results are also usually easier to
collect, correlate and analyze, as information at all critical
points in the observed network configuration is being
logged and accessible on a single machine.

Most of the network simulation tools and products currently
available fall into one of the following two categories:

1) Offline simulators are usually highly configurable and
extensible tools designed to simulate processes in a network
in virtual timescale, which is not linearly related to the real
time. The simulations are executed in form of scheduled
tasks, which results can be analyzed upon the simulation
completion. Typical examples of such tools are Berkeley
network simulator [6] and OPNet [19].

2) Real-time simulators are tools capable of creating virtual
network topologies and simulating traffic processing effects
in real or scaled timeframes. Such products are generally
less flexible and extensible than their offline counterparts;
however the major advantage of many such tools lies in
their potential to interact with real network infrastructure
and traffic. Therefore these types of network simulators are
often referred to as emulators. Some tools falling in this
category, such as ENTRAPID [1], Alpine [2] and Harvard
NS [3], are discussed later in text.

In this article we present a framework for constructing high
performance real-time IP network simulators, based on a
modified 4.4BSD [4] operating system kernel and network
stack [5]. Our modifications allow simultaneous operation
of multiple independent network stack instances within a
single kernel. Each network stack instance can act as an
independent virtual node, connected either to other virtual
nodes via simulated links, or directly to the outside world
via standard network interfaces. This allows complex
simulated IP network configurations to be set up on a single
machine and observed and analyzed at the level of each
independent virtual node, link, or network interface. The
simulator can easily interact with real networks through
standard physical interfaces at up to gigabit speeds,
depending on simulated network complexity and simulator
hardware capabilities, such as CPU speed and caching
efficiency, memory and peripheral bus bandwidth etc.

The rest of the article is organized as follows. Section II
explains the basic implementation concepts behind clonable
network stack architecture, which presents the foundation
for building our network simulation configurations. In
section III, as an example, we present a simple simulation
scenario that can be achieved using the clonable network
stack framework. Section IV discusses the performance
aspects of our real-time simulation environment. Previous

Real-Time IP Network Simulation at Gigabit
Data Rates

Marko Zec and Miljenko Mikuc
Faculty of Electrical Engineering and Computing

University of Zagreb
zec@tel.fer.hr, miljenko.mikuc@fer.hr

N

Appeared in Proceedings of the 7th Intl. Conference on Telecommunications (ConTEL), June 2003. http://www.contel.hr/

Real-Time IP Network Simulation at Gigabit Data Rates 2

and related work is outlined in section V, followed by a
conclusion and directions for future research outlined in
section VI.

II. CLONABLE NETWORK STACKS AND VIRTUAL IMAGES

Real-time network simulators can be implemented either as
non-transparent clouds, using complex mathematical
models, with border outlets which present ingress / egress
points to the simulated network, or as a collection of
independent virtual nodes and links each one resembling
traffic processing characteristics of appropriate objects in
real networks. The former cloud model in some cases
provides better performance (overall throughput), but at the
cost of limited simulation realism or fidelity. Most notably,
in such an implementation the transient virtual nodes and
links cannot be observed as independent objects, as they are
all hidden behind a monolithic mathematical model and the
simulation engine as its executor. In other words, a
simulated multi-hop networks will be in fact presented to
the outside observer as a single-hop full-mesh cloud, with
the traffic processing properties aiming to resemble as
closely as possible the multi-hop topology, for each pair of
ingress / egress nodes at the network edge.

In contrast to the cloud approach, we propose a transparent
simulation model consisting of entirely independent virtual
nodes and links, which can be individually configured,
interconnected, accessed and observed just as their physical
counterparts in real networks. We do not claim any
paternity to such an approach, as it has been described

earlier in different variations by numerous authors (see
section V). However, our main contribution lies in a highly
efficient implementation of virtual network infrastructure,
in form of a general-purpose operating system (OS) kernel
divided into multiple independent virtual images, as shown
in Figure 1.

A typical general-purpose OS consists of multiple user
processes and a kernel, which has a primary role in
providing a standardized abstraction, protection and
scheduling layer for accessing all the system resources –
most notably the CPU, memory, file systems, diverse
physical devices, as well as the interprocess and network
communication facilities. In our initial experiments, we
have modified an open-source, 4.4BSD-based OS kernel
(FreeBSD 4.8 [7]), to allow multiple network stacks to be
simultaneously active on a system. Each network stack
instance was made fully independent of all others, so that
each instance maintained its own private routing table, set
of communication sockets and associated protocol control
blocks, etc. Further, each network interface (either physical
or virtual) could be associated with one and only one
network stack instance at a time. The network stack
virtualization experiment was extended to include optional
networking facilities, such as packet filters, traffic shapers,
bridging code and various sysctl [4] tunable variables
controlling different aspects of network stack behavior.

As UNIX systems traditionally maintain only a single
network stack within the kernel, an important design step
was choosing the optimal method for user processes to
manage multiple network stacks. One option was
modification of the standard Berkeley socket interface [4],

Kernel space

User space

NIC
hardware

Virtual image #0

U
se

r
pr

oc
es

s

Network
interface

U
se

r
pr

oc
es

s

So
ck

et

So
ck

et

TCP UDP raw ...
IP ...

features (ipfw...) ...

Network
interface

So
ck

et

Virtual image #1

U
se

r
pr

oc
es

s

Network
interface

U
se

r
pr

oc
es

s

TCP UDP raw ...
IP ...

features (ipfw...) ...

So
ck

et

Virtual image #2

U
se

r
pr

oc
es

s

Network
interface

So
ck

et

TCP UDP raw ...
IP ...

features (ipfw...) ...

NIC
hardware

NIC
hardware

Network
interface

Figure 1 – operating system components separated in isolated virtual images

Appeared in Proceedings of the 7th Intl. Conference on Telecommunications (ConTEL), June 2003. http://www.contel.hr/

Real-Time IP Network Simulation at Gigabit Data Rates 3

by extending the argument lists with the network stack
identifier. Other variation of such an approach was
proposed in [8]. However, this concept has a significant
drawback for all existing user programs have to be
modified and recompiled in order to be able to run on the
new / extended OS kernel. Therefore, an alternative
approach was chosen. Each user process control block in
the kernel was transparently extended with a tag which
associates it with a network stack instance. This tag is
inherited by subsequent processes from its parents without
any need for intervention from the programmer.
Additionally, new programming interface allowing a
process to change its network stack association was
introduced. This approach allowed for complete application
programming and binary interface (API / ABI)
compatibility to be preserved between the original and
modified OS kernel, thus mitigating any need for
modifications in the existing userland applications or
utilities.

The described tagging of user processes was combined with
already existing jail [11] resource protection framework in
FreeBSD, which resulted in user processes associated with
one network stack being effectively invisible to the other
processes running on the system, and vice versa. The newly
developed framework, which combined different areas of
resource protection mechanisms into one entity, in fact
achieved light virtual machine functionality. Therefore we
named each collection of network stack instance and a set

of its associated userland processes a virtual image. Latter,
this concept was further extended by including modification
to the CPU scheduler, in a way that each virtual image
could be limited in average CPU usage, so that runaway or
maliciously constructed process or group of processes
might be prevented from monopolizing and starving all the
real CPU resources. This also allows system load
monitoring to be performed on per virtual image basis,
which provides more fine-grained control rather than
accounting resource usage solely on physical machine level.
Finally, a basic API for managing the virtual images was
implemented, accompanied by a simple userland utility.

The fundamental approach taken in implementation of the
described modifications to the BSD OS kernel was the
introduction of a new vimage kernel structure, which
serves as a container for all virtualized variables and
symbols. Gradually, most of the global and static symbols
used by network stack code were replaced by their
equivalent counterparts residing in independent vimage
structures. Network interfaces descriptors, which have
traditionally been maintained in a single linked list, are now
associated with vimage structures, so that each network
stack instance has its own list of network interfaces. Each
network interface contains a pointer back to its vimage
structure, so that incoming traffic can be easily
demultiplexed to the appropriate network stack, depending
on the interface the traffic is received on. Basic schematic

"lo"

p_link

vi[0]

vi[2]
vi[1]

...

struct vimage *vi[]

vi_le
vi_name
ifnethead

vi_le
vi_name
ifnethead

vi_le
vi_name
ifnethead

"master" "bar""foo"

rt_tables[]

...

rt_tables[]

...

rt_tables[]

...

if_link
if_vip

if_name
if_unit

...

0

if_link
if_vip

if_name
if_unit

...

"fxp"
0

if_link
if_vip

if_name
if_unit

...

"lo"
0

if_link
if_vip

if_name
if_unit

...

"lo"
0

if_link
if_vip

if_name
if_unit

...

"vlan"
0

p_vimage

...

p_link
p_vimage

...

p_link
p_vimage

...

p_link
p_vimage

...
00 1 2

struct ifnet struct ifnetstruct ifnetstruct ifnetstruct ifnet

struct vimage struct vimagestruct vimage

struct proc struct procstruct procstruct proc

IN
TE

R
FA

C
ES

PR
O

C
ES

SE
S

VI
M

A
G

E
C

O
N

TR
O

L
B

LO
C

K
S

Virtual
Image #0

Virtual
Image #1

Virtual
Image #2

Figure 2 – links between kernel structures associated / separated throughout virtual images

Appeared in Proceedings of the 7th Intl. Conference on Telecommunications (ConTEL), June 2003. http://www.contel.hr/

Real-Time IP Network Simulation at Gigabit Data Rates 4

diagram outlining relations between most important kernel
structures in clonable network stack implementation is
shown in Figure 2. More deep coverage of implementation
details falls outside the scope of this article, so curious
readers are pointed to [17] which covers this matter more
thoroughly.

III. SIMULATION SCENARIOS

The basic property of each virtual image is that its network
communication facilities are independent of other virtual
images present in the system. It is therefore necessary to
provide explicit methods for establishing communication
between isolated network stacks. Our framework provides
two such facilities.

For point-to-point style communication between virtual
images, a pair of FreeBSD's standard netgraph [10]
interface nodes can be employed, with one instance residing
in each virtual image. The interface nodes can be connected
back-to-back, thus forming an efficient in-kernel traffic
path.

The alternative is using virtual Ethernet interfaces, which
can be bridged to form independent broadcast domains
spanning multiple virtual images. The bridging domains can
be either entirely hidden inside the kernel, or connected to
the outside world via one or more physical Ethernet
interfaces.

Using the concept of virtual nodes and links, it is possible
to configure and simulate complex network topologies;
however in this article we are limited to presenting only a

simple example. In our example, the simulated network
consists of three virtual nodes named east, west and north,
as shown in Figure 3. The nodes east and west are each
assigned one of the two physical Ethernet interfaces present
in the host system. The physical Ethernet interfaces are
attached to two isolated LAN segments, on which external
hosts tindy1 and tpx30 are connected. Virtual nodes west
and north are linked through an internal virtual Ethernet
segment, and east is linked to north through a point-to-point
netgraph tunnel, which also includes an ng_dummy [13]
traffic shaper. An instance of routing daemon is started in
each virtual node, allowing dynamic propagation of routing
information throughout the simulated network.

The following shell script can be used to configure the
simulator in accordance with the described topology:

#!/bin/csh

create virtual images and start routing daemons
foreach vi_name (east west north)
 vimage -c $vi_name
 vimage $vi_name routed
end

assign the eth interfaces to nodes east and west
vimage -i west fxp0
vimage west ifconfig fxp0 161.53.19.89/24
vimage -i east fxp1
vimage east ifconfig fxp0 192.168.3.1/24

configure internal eth. interfaces
ifconfig ve0 create link 0:0:0:0:0:a
ifconfig ve1 create link 0:0:0:0:0:b
vimage -i west ve0
vimage -i north ve1
vimage west ifconfig ve0 192.168.1.1/24
vimage north ifconfig ve0 192.168.1.2/24

do bridging between west and north
sysctl \
net.link.ether.bridge_cfg="west.ve0,north.ve0"
sysctl net.link.ether.bridge=1

link north and east
ngctl mkpeer iface inet inet
ngctl mkpeer ng0: dummy inet upper
ngctl name ng0:inet dummy0
ngctl mkpeer dummy0: iface lower inet
vimage -i north ng0
vimage -i east ng1
vimage north ifconfig ng0 192.168.2.2 192.168.2.1
vimage east ifconfig ng0 192.168.2.1 192.168.2.2

configure traffic shaping on link north-east
ngctl msg dummy0: setcfg \
"{ upstream={ bw=128000 dly=20 ber=100000 }}"
ngctl msg dummy0: setcfg \
"{ downstream={ bw=128000 dly=20 ber=100000 }}"

A simple verification that the above script correctly
implements the network topology presented in Figure 3
could be obtained by tracing the IP route from external host
tpx30 to tindy1. The external hosts must however either
accept RIP updates from the simulator, or have statically
configured routes in order to be able to communicate with
each other.

north

west east
fxp0 161.53.19.89 /24

ve0 192.168.1.1 /24

ve0 192.168.1.2 /24

192.168.2.2 /30 ng0

ng0 192.168.2.1 /30

fxp0 192.168.3.1 /24

ng_dummy
20 ms delay

128 Kbps
BER 10E-5

161.53.19.227 /24

tindy1 tpx30

192.168.3.101 /24

Network Simulator

virtual Ethernet
internal segment

Figure 3 – a simple network simulation topology

Appeared in Proceedings of the 7th Intl. Conference on Telecommunications (ConTEL), June 2003. http://www.contel.hr/

Real-Time IP Network Simulation at Gigabit Data Rates 5

tpx30>tracert 161.53.19.227

Tracing route to 161.53.19.227 over a maximum of
30 hops

 1 <1 ms <1 ms <1 ms 192.168.3.1
 2 39 ms 39 ms 39 ms 192.168.2.2
 3 40 ms 39 ms 39 ms 192.168.1.1
 4 39 ms 40 ms 39 ms 161.53.19.227

Trace complete.

Different queuing disciplines and traffic shaping
implementations generally account for the most basic
functions of any network simulator. In the above example, a
simple ng_dummy traffic shaper was used. This
implementation features FIFO / drop-tail queuing based
bandwidth limiting and delay simulation, together with bit
error-rate (BER) and rudimentary phantom traffic /
congestion simulation. More advanced network-layer traffic
classification and queuing policies, such as worstcase-fair
weighted-fair queuing (WF2Q) or random early detection
(RED) can be simulated using dummynet [9] facility, which
is integrated in the base FreeBSD system. Both ng_dummy
and dummynet shapers could be mixed in the same
simulation configuration, if desired.

Independently of traffic shaping / queuing facility used, it is
necessary to ensure low delay jitter and smooth dequeuing
of network traffic, in order to obtain acceptable simulation
quality. This is particularly important at higher data rates,
both because of TCP windowing scheme and overall
throughput being highly sensitive on end-to-end
transmission delays, and due to limited queue depths
available at different stages of packet forwarding paths
inside the simulator. On the other hand, forcing the system
into extremely frequent polling of simulation queues could
lead to CPU resources being wasted and in the end result in
overall system performance being degraded. Unfortunately
there's no universal rule of thumb determining the optimal
polling rate, but based on our experience we can
recommend using 1000 Hz or 2000 Hz for most application,
which translates to delay granularity / average jitter of 1 ms
/ 0.5 ms and 0.5 ms / 0.25 ms respectively. For smooth
simulations at speeds exceeding 100 Mbit/s even higher
polling frequency may be required, however the upper limit
depends on the simulator hardware performance and the
topological complexity of the simulated network. The
polling frequency must be fixed at the time of kernel
compilation using the standard BSD kernel configuration
file.

An important property inherent to the proposed simulation
framework is isochronous timing across all virtual nodes.
This simplifies correlation and comparative analyses of
traffic traces performed simultaneously in different virtual
nodes, in contrast to real networks, where it is extremely
difficult or in many cases impossible to achieve clock
synchronism for timestamping purposes among distributed
network nodes, at least not with an acceptable accuracy for
traffic rates in range of or exceeding100 Mbit/s.

IV. PERFORMANCE

Enabling high performance real-time network simulation
was one of the key design goals behind the proposed
concept of virtual OS images and clonable network stacks.

Our objective was to implement the required modifications
to the 4.4BSD network stack without introducing
significant performance degradations, compared to the
original (unmodified) stack. To determine the actual
performance properties of our simulation framework, we
performed a series of simple tests. The experiments and
measurements were executed on the same referent hardware
in two different scenarios, as shown in Figure 4.
The objective of the first test was comparing the
performance between the original and modified 4.4BSD
network stack. The test involved measuring loopback TCP
throughput using the common netperf [12] throughput
measurement tool, with both the sending and receiving
process residing in the same machine. In case of the
modified network stack, both the sender and the receiver
were located in the same virtual image. The TCP
throughput test was repeated for different maximum
transmission unit (MTU) values set on the loopback
interface.

The results of this test, as shown in Figure 5, suggest that
the extensions / modifications to the network stack had only
a slight impact on the maximum TCP throughput. For MTU
value of 1500 octets, the throughput achieved using the
modified kernel was around 93% of values observed on the
standard system. However, it should be noted that during
the test traffic passed through the network stack twice: once
when data was transmitted by the sending process, and once
when the same data was received by the other process. It is
clear that the one-way throughput degradation must be even
less significant, and can be estimated as square root of the
obtained throughput ratio between standard and modified
stack for both sending and receiving side processing.
Therefore, for MTU=1500 we can estimate one-way

TCP

netperf
client

netperf
server

Virtual image #0

IP

TCP

netperf
client

Virtual image #0

IP

ng0

Virtual image #1

IP

 ng1ng0

TCP

netperf
server

Virtual image #n

IP

 ng0

Lo
op

ba
ck

 te
st

N
et

w
or

k
si

m
ul

at
io

n

Referent machine:

AMD Athlon @ 1200 MHz, 100
MHz FSB

256 MByte SDRAM
FreeBSD 4.7-RELEASE

Figure 4 – "loopback" (top) and "multiple
virtual hops" (bottom) testbed scenarios

Appeared in Proceedings of the 7th Intl. Conference on Telecommunications (ConTEL), June 2003. http://www.contel.hr/

Real-Time IP Network Simulation at Gigabit Data Rates 6

maximum TCP throughput of the modified network stack to
be around 96.5% of the standard (unmodified) system.

In the second test scenario we measured the maximum TCP
throughput as a function of the number of virtual hops. As
shown in Figure 6a, the throughput asymptotically
decreases with each additional transient hop. This is a
natural consequence of the fact that the simulator has to
perform the complete set of IP switching tasks as defined in
[14] for each single packet in each individual virtual node.
It should be noted that in described scenario the simulator
not only switched the packets between the virtual nodes, but
also terminated the TCP sessions on edge nodes. Despite
this additional processing load, the simulator was able to
operate around gigabit data rates for the smaller number of
transient virtual hops. As our referent platform was
relatively limited in terms of RAM bandwidth, CPU speed
and cache size, compared to current top-notch IA-32

systems available on the market, migrating to more
powerful hardware would certainly yield even better results.

This last test involved measurement of round trip time
(RTT) as a function of number of virtual hops. The results
show that each virtual hop contributes to the increase of
overall RTT approximately linearly, as shown in Figure 6b.
From the presented data it can be easily calculated that in
one node the process of switching a single packet lasts
approximately 1.25 microseconds in average, which
corresponds to a maximum theoretical aggregate throughput
of 800.000 packets per second for the whole system.
However, in reality the impact of many different factors,
such as device driver and interrupt processing overhead
[15], system bus congestions, CPU cache trashing etc.
would result in lower effective throughputs.

The tests have proven our framework is capable of
performing simulation at gigabit speeds for network
topologies with limited end-to-end hop count. In case when
highly complex topological configurations need to be
simulated, it is possible to combine multiple machines into
an integrated network simulation cluster. This could allow
obtaining high overall throughput and performance if the
CPU power on a single box would become a bottleneck.
When constructing such clustered simulators, multiple
independent logical links could be multiplexed over a single
physical link between different machines, since the support
for IEEE 802.1Q virtual LAN (VLAN) tagging has been
incorporated into the simulation framework.

The clustering approach described above provides a simple
methodology for ensuring aggregate throughput scaling in
cases where CPU power is scarce. Unfortunately, the
current simulator implementation cannot take any
advantage of symmetric multiprocessing (SMP) hardware,
since FreeBSD version 4.8, our simulator is based on, does
not support multiple simultaneous threads of execution
within the kernel. In the future this is likely to change with

Figure 6 - a) maximum TCP throughput as a function of number of virtual hops (left); b) round trip time for ICMP
echo / reply packets as a function of number of virtual hops (right)

Figure 5 – maximum loopback TCP throughput
on standard and modified network stack

Appeared in Proceedings of the 7th Intl. Conference on Telecommunications (ConTEL), June 2003. http://www.contel.hr/

Real-Time IP Network Simulation at Gigabit Data Rates 7

the migration to FreeBSD 5.0 code base, which provides
much finer-grained locking of critical sections within the
kernel, and thereby the foundation for presumably efficient
SMP support.

V. RELATED WORK

As mentioned earlier in the text, the idea of constructing
network simulators by reusing and extending an existing
network stack implementation is not entirely new. Further
we outline the main concepts behind some of the previously
published works in this area.

The ENTRAPID [1] protocol development environment
introduced a model of multiple virtualized networking
kernels, which in effect present a reentrant variants of the
standard 4.4BSD network stack in multiple instances,
running as threads in a specialized user process. Such an
attempt of network stack virtualization in the user space
successfully accomplished its primary goal of providing a
flexible network simulation tool. However, this is achieved
at the cost of poor overall performance compared to the real
in-kernel network stack implementation on the same
hardware, combined with very limited compatibility to the
standard software applications relying on network
communication. Another example that followed this
approach is the Alpine simulator project [2].

The Harvard network simulator [3] created the illusion of
having multiple independent kernel routing tables by
providing transparent IP address remapping between user
and kernel space. While the kernel still maintained a single
routing table with unique (non-overlapping) entries, a
translation table had to be established for each virtual node,
which had to be consulted on each userland-to-kernel
network transaction. Although such an approach provided
far better performance than the ENTRAPID architecture, it
still had many limitations. The performance was
significantly constrained by numerous translation lookups
that had to be performed on each kernel-to-userland packet
transition, and vice versa. However, probably the biggest
advantage of the Harvard architecture is the ability to use
the existing UNIX network applications in virtualized
environment without any modifications, while the
ENTRAPID and Alpine required at best some porting
efforts and replacement of standard system libraries, up to
the point when porting become entirely impossible. The
Harvard simulator is conceptually the closest to our
framework, because of the ability to transparently support
unmodified userland applications on the modified kernel.

Entirely different approach was taken in design and
implementation of the Netbed [18] simulation environment.
A large cluster of PC-s, running FreeBSD or Linux
operating systems, is used to simulate (or more precisely to
create) complex experimental networks. The network
topologies are constructed by combining real PCs as
network nodes distributed in either local or remote physical

clusters, together with either real or emulated WAN links,
using dummynet traffic shapers for simulating WAN
effects. The main operational issue of such a system is
management of huge number of nodes that have to be
individually reconfigured for inclusion in specific
experimental network, which becomes growingly difficult
task as the PC clusters get more geographically distributed.
Netbed software currently controls 168 and another 50 PCs
at two research centers respectively. Each PC is equipped
with five network cards, which are all connected together
via high-end LAN switches, either for simulation or control
and management purposes. It is obvious that construction
and maintenance of such a system also requires significant
financial resources, as well as a dedicated team of
operators.

VI. CONCLUSIONS AND FUTURE RESEARCH

We have presented a highly efficient network simulation
framework that, in our opinion, includes many of the
advantages of previously known real-time simulation
systems. Most notably, the simulator allows each virtual
node to operate as an independent yet fully functional
UNIX router or end node, while making no sacrifices
regarding the overall throughput and performance
compared to the unmodified UNIX OS running on the same
hardware. The full compatibility with the standard UNIX
OS functionality makes our simulator a viable tool for
broad range of tests and simulation scenarios on all network
layers above and including the IP layer. Currently the
support for simulation of link-layer protocols and media
other than Ethernet and simple point-to-point is not
provided. With reasonable efforts, it should be relatively
simple to build a basic Frame Relay switch emulator using
the netgraph framework.

It is worth mentioning that our framework is not limited
only to network simulation applications. As the
implemented extensions and modifications did not hinder
the general-purpose nature of the underlying operating
system and its kernel, our platform can potentially find use
in supporting diverse virtual hosting scenarios or creating
virtual private network (VPN) provisioning appliances.

At the time of this writing, the simulator code is only a
framework as described in this article, and not a complete
software package. There are many possible directions for
further research and improvement. As the simulator
currently provides support only for IPv4 protocol suite, one
logical development step would be inclusion of the
emerging IPv6 protocol into the simulator code, as well as
other commonly used protocols, such as IPX, AppleTalk
etc.

Currently, the only option for constructing and managing
simulated network environments is the use of UNIX shell
commands and scripts, similar to the example given in
section III. To simplify the configuration of more complex

Appeared in Proceedings of the 7th Intl. Conference on Telecommunications (ConTEL), June 2003. http://www.contel.hr/

Real-Time IP Network Simulation at Gigabit Data Rates 8

topologies, it would be desirable to implement a graphical
user interface (GUI) for managing the simulator. A parser
for definition files in common format (such as ns) generated
by some already existing tools could present a less
demanding alternative to development of proprietary GUI.
However, a dedicated GUI environment designed to
manage the simulator throughout all operating phases -
from initial constructing of the simulated network
environment through conducting and controlling different
test modes - would in our opinion present the most
appropriate solution. The development and introduction of
such a GUI front end could enable wider use of the
described simulator framework especially in teaching /
academia, where students are often discouraged by the
syntax and "complexity" of command-line based tools.
Moreover, the introduction of GUI front end could enable
more complex simulations to be executed in less time and
with fewer efforts.

In order to stay synchronized with the latest advances in OS
technology (especially in SMP support), as the development
emphasis in FreeBSD OS shifts towards the next major
release / branch, our simulator should be migrated to
FreeBSD 5.0 kernel. This is not a trivial task to accomplish
due to major architectural differences between 4.7 and 5.0
branches. However, such a migration could also present an
opportunity to restructure the resource partitioning scheme
from the current monolithic one into a more modular
model, in line with the concept of resource containers [16].
The modular model would allow system administrators to
freely combine selected system resources, such as network
stack instance, CPU time share limit, user processes,
filesystems, virtual / real memory etc. into a custom virtual
image, in contrast to the current implementation where all
the resources contained in a virtual image are hard-coded
and cannot be configured at the run time.

Finally, the simulator should be thoroughly tested and
evaluated with real Gigabit Ethernet equipment.
Unfortunately, the appropriate hardware (high-end PCs,
Gigabit Ethernet network cards and LAN switches) were
not available at the time of preparing this article.

Our simulator framework is redistributable under a liberal
BSD-style license. It can be downloaded from
http://www.tel.fer.hr/zec/BSD/vimage/ in form of patches
against the FreeBSD 4.8-RELEASE kernel source, plus
sources for an additional management utility. Accordingly,
the simulator framework could be conveniently evaluated
and adjusted or extended for special purpose applications, if
desired.

REFERENCES

[1] X. W. Huang, R. Sharma, S. Keshaw, “The ENTRAPID

Protocol Development Environment”, in Proc. of the IEEE
INFOCOM , 1999.

[2] D. Ely, S. Savage, D. Wetherall: "Alpine: A User-Level
Infrastructure for Network Protocol Development", in Proc.

of the 3rd USENIX Symposium on Internet Technologies and
Systems, 2001.

[3] S. Y. Wang, H. T. Kung: “A Simple Methodology for
Constructing Extensible and High-Fidelity TCP/IP Network
Simulators”, in Proc. of the IEEE INFOCOM, 1999.

[4] M. K. McKusick et al.: “The design and implementation of
the 4.4BSD operating system”, Addison-Wesley, 1996.

[5] G. R. Wright, W. R. Stevens: "TCP/IP Illustrated, Volume 2:
The Implementation" Addison-Wesley, 1994.

[6] S. McCanne, S. Floyd: "The Network Simulator NS-2", online
document, http://www.isi.edu/nsnam/ns/

[7] The FreeBSD Documentation Project: "FreeBSD Handbook",
online document, http://www.freebsd.org/doc/handbook/

[8] R. Scandariato, F. Risso: "Advanced VPN support on
FreeBSD systems", in Proc. of the 2nd European BSD
Conference, 2002.

[9] L. Rizzo: "Dummynet: a simple approach to the evaluation of
network protocols", ACM Computer Communication
Review, 1997.

[10] J. Elischer, A. Cobbs: "The Netgraph Networking System",
online document,
ftp://ftp.whistle.com/pub/archie/netgraph/index.html

[11] P. H. Kamp, R. Watson: "Jails: Confining the Omnipotent
root", in Proc. of the 2nd International SANE Conference,
2000.

[12] netperf: http://www.netperf.org/
[13] "ng_dummy: A simple netgraph traffic shaping node", online

document, http://www.tel.fer.hr/zec/BSD/ng_dummy/
[14] F. Baker et al.: "Requirements for IP Version 4 Routers",

Internet Standard RFC1812, 1995.
[15] M. Zec, M. Mikuc, M. Žagar: "Estimating the Impact of

Interrupt Coalescing Delays on Steady State TCP
Throughput", in Proc. of the 10th SoftCOM Conference,
2002.

[16] G. Banga, P. Druschel, J. C. Mogul: "Resource containers: A
new facility for resource management in server systems", in
Proc. of the Symposium on Operating System Design and
Implementation (OSDI), 1999.

[17] M. Zec: "Implementing a Clonable Network Stack in the
FreeBSD kernel", to appear in Proc. of the 2003 USENIX
Annual Technical Conference

[18] B. White et al.: "An Integrated Experimental Environment for
Distributed Systems and Networks", in Proc. of the 5th
Symposium on Operating Systems Design and
Implementation (OSDI), 2002.

[19] Opnet modeler, OPNET Technologies, Inc.,
http://www.mil3.com/products/modeler/home.html

