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Abstract — In many of the network research or development 
projects, as well as in teaching / academia, network simulators 
today play an important role. Network simulation tools can be 
generally classified as those performing simulations off-line in 
form of batch-type tasks, and those operating in real-time, 
often with the ability to interact with the real network 
hardware and traffic. However, limited performance remains 
one of the main issues associated with most of the current real-
time simulator implementations. In this article we present a 
novel framework for constructing high performance real-time 
IP network simulators, capable of operating at gigabit speeds 
while using commodity PC hardware. Our implementation, 
based on a modified 4.4BSD operating system (OS) kernel, 
permits complex simulated network configurations to be 
constructed using basic building components: virtual nodes 
and links. Each virtual node can act as an entirely 
independent but completely functional OS image, allowing 
standard unmodified UNIX services and utilities to be used in 
the experiments, while retaining nearly the same performance 
properties as in the original OS. 
 
Index Terms — Computer networks, modeling, operating 
systems, simulation software 
 

I. INTRODUCTION 
 

etwork simulation tools are today extensively used in 
many areas of network protocol research and 
development, in academia and teaching, or for 

predicting the behavior and characteristics of complex 
network installations under different operating conditions. 
There are many driving factors in favor of using simulators, 
most notably simulations being much more economical 
than doing similar experiments with the real hardware. 
However, the cost factor alone is not the only advantage: in 
many cases (such as teaching in labs) each workplace can 
be presented with its own simulated network environment, 
which would be in most cases impossible to achieve with 
real network equipment, even with unlimited financial 
resources. Simulation results are also usually easier to 
collect, correlate and analyze, as information at all critical 
points in the observed network configuration is being 
logged and accessible on a single machine. 
 
Most of the network simulation tools and products currently 
available fall into one of the following two categories: 

 
1) Offline simulators are usually highly configurable and 
extensible tools designed to simulate processes in a network 
in virtual timescale, which is not linearly related to the real 
time. The simulations are executed in form of scheduled 
tasks, which results can be analyzed upon the simulation 
completion. Typical examples of such tools are Berkeley 
network simulator [6] and OPNet [19]. 
 
2) Real-time simulators are tools capable of creating virtual 
network topologies and simulating traffic processing effects 
in real or scaled timeframes. Such products are generally 
less flexible and extensible than their offline counterparts; 
however the major advantage of many such tools lies in 
their potential to interact with real network infrastructure 
and traffic. Therefore these types of network simulators are 
often referred to as emulators. Some tools falling in this 
category, such as ENTRAPID [1], Alpine [2] and Harvard 
NS [3], are discussed later in text. 
 
In this article we present a framework for constructing high 
performance real-time IP network simulators, based on a 
modified 4.4BSD [4] operating system kernel and network 
stack [5]. Our modifications allow simultaneous operation 
of multiple independent network stack instances within a 
single kernel. Each network stack instance can act as an 
independent virtual node, connected either to other virtual 
nodes via simulated links, or directly to the outside world 
via standard network interfaces. This allows complex 
simulated IP network configurations to be set up on a single 
machine and observed and analyzed at the level of each 
independent virtual node, link, or network interface. The 
simulator can easily interact with real networks through 
standard physical interfaces at up to gigabit speeds, 
depending on simulated network complexity and simulator 
hardware capabilities, such as CPU speed and caching 
efficiency, memory and peripheral bus bandwidth etc. 
 
The rest of the article is organized as follows. Section II 
explains the basic implementation concepts behind clonable 
network stack architecture, which presents the foundation 
for building our network simulation configurations. In 
section III, as an example, we present a simple simulation 
scenario that can be achieved using the clonable network 
stack framework. Section IV discusses the performance 
aspects of our real-time simulation environment. Previous 
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and related work is outlined in section V, followed by a 
conclusion and directions for future research outlined in 
section VI. 
 

II. CLONABLE NETWORK STACKS AND VIRTUAL IMAGES 
 
Real-time network simulators can be implemented either as 
non-transparent clouds, using complex mathematical 
models, with border outlets which present ingress / egress 
points to the simulated network, or as a collection of 
independent virtual nodes and links each one resembling 
traffic processing characteristics of appropriate objects in 
real networks. The former cloud model in some cases 
provides better performance (overall throughput), but at the 
cost of limited simulation realism or fidelity. Most notably, 
in such an implementation the transient virtual nodes and 
links cannot be observed as independent objects, as they are 
all hidden behind a monolithic mathematical model and the 
simulation engine as its executor. In other words, a 
simulated multi-hop networks will be in fact presented to 
the outside observer as a single-hop full-mesh cloud, with 
the traffic processing properties aiming to resemble as 
closely as possible the multi-hop topology, for each pair of 
ingress / egress nodes at the network edge. 
 
In contrast to the cloud approach, we propose a transparent 
simulation model consisting of entirely independent virtual 
nodes and links, which can be individually configured, 
interconnected, accessed and observed just as their physical 
counterparts in real networks. We do not claim any 
paternity to such an approach, as it has been described 

earlier in different variations by numerous authors (see 
section V). However, our main contribution lies in a highly 
efficient implementation of virtual network infrastructure, 
in form of a general-purpose operating system (OS) kernel 
divided into multiple independent virtual images, as shown 
in Figure 1. 
 
A typical general-purpose OS consists of multiple user 
processes and a kernel, which has a primary role in 
providing a standardized abstraction, protection and 
scheduling layer for accessing all the system resources – 
most notably the CPU, memory, file systems, diverse 
physical devices, as well as the interprocess and network 
communication facilities. In our initial experiments, we 
have modified an open-source, 4.4BSD-based OS kernel 
(FreeBSD 4.8 [7]), to allow multiple network stacks to be 
simultaneously active on a system. Each network stack 
instance was made fully independent of all others, so that 
each instance maintained its own private routing table, set 
of communication sockets and associated protocol control 
blocks, etc. Further, each network interface (either physical 
or virtual) could be associated with one and only one 
network stack instance at a time. The network stack 
virtualization experiment was extended to include optional 
networking facilities, such as packet filters, traffic shapers, 
bridging code and various sysctl [4] tunable variables 
controlling different aspects of network stack behavior. 
 
As UNIX systems traditionally maintain only a single 
network stack within the kernel, an important design step 
was choosing the optimal method for user processes to 
manage multiple network stacks. One option was 
modification of the standard Berkeley socket interface [4], 
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by extending the argument lists with the network stack 
identifier. Other variation of such an approach was 
proposed in [8]. However, this concept has a significant 
drawback for all existing user programs have to be 
modified and recompiled in order to be able to run on the 
new / extended OS kernel. Therefore, an alternative 
approach was chosen. Each user process control block in 
the kernel was transparently extended with a tag which 
associates it with a network stack instance. This tag is 
inherited by subsequent processes from its parents without 
any need for intervention from the programmer. 
Additionally, new programming interface allowing a 
process to change its network stack association was 
introduced. This approach allowed for complete application 
programming and binary interface (API / ABI) 
compatibility to be preserved between the original and 
modified OS kernel, thus mitigating any need for 
modifications in the existing userland applications or 
utilities. 
 
The described tagging of user processes was combined with 
already existing jail [11] resource protection framework in 
FreeBSD, which resulted in user processes associated with 
one network stack being effectively invisible to the other 
processes running on the system, and vice versa. The newly 
developed framework, which combined different areas of 
resource protection mechanisms into one entity, in fact 
achieved light virtual machine functionality. Therefore we 
named each collection of network stack instance and a set 

of its associated userland processes a virtual image. Latter, 
this concept was further extended by including modification 
to the CPU scheduler, in a way that each virtual image 
could be limited in average CPU usage, so that runaway or 
maliciously constructed process or group of processes 
might be prevented from monopolizing and starving all the 
real CPU resources. This also allows system load 
monitoring to be performed on per virtual image basis, 
which provides more fine-grained control rather than 
accounting resource usage solely on physical machine level. 
Finally, a basic API for managing the virtual images was 
implemented, accompanied by a simple userland utility. 
 
The fundamental approach taken in implementation of the 
described modifications to the BSD OS kernel was the 
introduction of a new vimage kernel structure, which 
serves as a container for all virtualized variables and 
symbols. Gradually, most of the global and static symbols 
used by network stack code were replaced by their 
equivalent counterparts residing in independent vimage 
structures. Network interfaces descriptors, which have 
traditionally been maintained in a single linked list, are now 
associated with vimage structures, so that each network 
stack instance has its own list of network interfaces. Each 
network interface contains a pointer back to its vimage 
structure, so that incoming traffic can be easily 
demultiplexed to the appropriate network stack, depending 
on the interface the traffic is received on. Basic schematic 
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diagram outlining relations between most important kernel 
structures in clonable network stack implementation is 
shown in Figure 2. More deep coverage of implementation 
details falls outside the scope of this article, so curious 
readers are pointed to [17] which covers this matter more 
thoroughly. 
 

III. SIMULATION SCENARIOS 
 
The basic property of each virtual image is that its network 
communication facilities are independent of other virtual 
images present in the system. It is therefore necessary to 
provide explicit methods for establishing communication 
between isolated network stacks. Our framework provides 
two such facilities. 
 
For point-to-point style communication between virtual 
images, a pair of FreeBSD's standard netgraph [10] 
interface nodes can be employed, with one instance residing 
in each virtual image. The interface nodes can be connected 
back-to-back, thus forming an efficient in-kernel traffic 
path. 
 
The alternative is using virtual Ethernet interfaces, which 
can be bridged to form independent broadcast domains 
spanning multiple virtual images. The bridging domains can 
be either entirely hidden inside the kernel, or connected to 
the outside world via one or more physical Ethernet 
interfaces. 
 
Using the concept of virtual nodes and links, it is possible 
to configure and simulate complex network topologies; 
however in this article we are limited to presenting only a 

simple example. In our example, the simulated network 
consists of three virtual nodes named east, west and north, 
as shown in Figure 3. The nodes east and west are each 
assigned one of the two physical Ethernet interfaces present 
in the host system. The physical Ethernet interfaces are 
attached to two isolated LAN segments, on which external 
hosts tindy1 and tpx30 are connected. Virtual nodes west 
and north are linked through an internal virtual Ethernet 
segment, and east is linked to north through a point-to-point 
netgraph tunnel, which also includes an ng_dummy [13] 
traffic shaper. An instance of routing daemon is started in 
each virtual node, allowing dynamic propagation of routing 
information throughout the simulated network. 
 
The following shell script can be used to configure the 
simulator in accordance with the described topology: 
 
#!/bin/csh 
 
# create virtual images and start routing daemons 
foreach vi_name (east west north) 
 vimage -c $vi_name 
 vimage $vi_name routed 
end 
 
# assign the eth interfaces to nodes east and west 
vimage -i west fxp0 
vimage west ifconfig fxp0 161.53.19.89/24 
vimage -i east fxp1 
vimage east ifconfig fxp0 192.168.3.1/24 
 
# configure internal eth. interfaces 
ifconfig ve0 create link 0:0:0:0:0:a 
ifconfig ve1 create link 0:0:0:0:0:b 
vimage -i west ve0 
vimage -i north ve1 
vimage west ifconfig ve0 192.168.1.1/24 
vimage north ifconfig ve0 192.168.1.2/24 
 
# do bridging between west and north 
sysctl \ 
net.link.ether.bridge_cfg="west.ve0,north.ve0" 
sysctl net.link.ether.bridge=1 
 
# link north and east 
ngctl mkpeer iface inet inet 
ngctl mkpeer ng0: dummy inet upper 
ngctl name ng0:inet dummy0 
ngctl mkpeer dummy0: iface lower inet 
vimage -i north ng0 
vimage -i east ng1 
vimage north ifconfig ng0 192.168.2.2 192.168.2.1 
vimage east ifconfig ng0 192.168.2.1 192.168.2.2 
 
# configure traffic shaping on link north-east 
ngctl msg dummy0: setcfg \ 
"{ upstream={ bw=128000 dly=20 ber=100000 }}" 
ngctl msg dummy0: setcfg \ 
"{ downstream={ bw=128000 dly=20 ber=100000 }}" 
 
 
A simple verification that the above script correctly 
implements the network topology presented in Figure 3 
could be obtained by tracing the IP route from external host 
tpx30 to tindy1. The external hosts must however either 
accept RIP updates from the simulator, or have statically 
configured routes in order to be able to communicate with 
each other. 
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tpx30>tracert 161.53.19.227 
 
Tracing route to 161.53.19.227 over a maximum of 
30 hops 
 
  1    <1 ms    <1 ms    <1 ms  192.168.3.1 
  2    39 ms    39 ms    39 ms  192.168.2.2 
  3    40 ms    39 ms    39 ms  192.168.1.1 
  4    39 ms    40 ms    39 ms  161.53.19.227 
 
Trace complete. 
 
 
Different queuing disciplines and traffic shaping 
implementations generally account for the most basic 
functions of any network simulator. In the above example, a 
simple ng_dummy traffic shaper was used. This 
implementation features FIFO / drop-tail queuing based 
bandwidth limiting and delay simulation, together with bit 
error-rate (BER) and rudimentary phantom traffic / 
congestion simulation. More advanced network-layer traffic 
classification and queuing policies, such as worstcase-fair 
weighted-fair queuing (WF2Q) or random early detection 
(RED) can be simulated using dummynet [9] facility, which 
is integrated in the base FreeBSD system. Both ng_dummy 
and dummynet shapers could be mixed in the same 
simulation configuration, if desired. 
 
Independently of traffic shaping / queuing facility used, it is 
necessary to ensure low delay jitter and smooth dequeuing 
of network traffic, in order to obtain acceptable simulation 
quality. This is particularly important at higher data rates, 
both because of TCP windowing scheme and overall 
throughput being highly sensitive on end-to-end 
transmission delays, and due to limited queue depths 
available at different stages of packet forwarding paths 
inside the simulator. On the other hand, forcing the system 
into extremely frequent polling of simulation queues could 
lead to CPU resources being wasted and in the end result in 
overall system performance being degraded. Unfortunately 
there's no universal rule of thumb determining the optimal 
polling rate, but based on our experience we can 
recommend using 1000 Hz or 2000 Hz for most application, 
which translates to delay granularity / average jitter of 1 ms 
/ 0.5 ms and 0.5 ms / 0.25 ms respectively. For smooth 
simulations at speeds exceeding 100 Mbit/s even higher 
polling frequency may be required, however the upper limit 
depends on the simulator hardware performance and the 
topological complexity of the simulated network. The 
polling frequency must be fixed at the time of kernel 
compilation using the standard BSD kernel configuration 
file. 
 
An important property inherent to the proposed simulation 
framework is isochronous timing across all virtual nodes. 
This simplifies correlation and comparative analyses of 
traffic traces performed simultaneously in different virtual 
nodes, in contrast to real networks, where it is extremely 
difficult or in many cases impossible to achieve clock 
synchronism for timestamping purposes among distributed 
network nodes, at least not with an acceptable accuracy for 
traffic rates in range of or exceeding100 Mbit/s. 

IV. PERFORMANCE 
 
Enabling high performance real-time network simulation 
was one of the key design goals behind the proposed 
concept of virtual OS images and clonable network stacks. 

Our objective was to implement the required modifications 
to the 4.4BSD network stack without introducing 
significant performance degradations, compared to the 
original (unmodified) stack. To determine the actual 
performance properties of our simulation framework, we 
performed a series of simple tests. The experiments and 
measurements were executed on the same referent hardware 
in two different scenarios, as shown in Figure 4. 
The objective of the first test was comparing the 
performance between the original and modified 4.4BSD 
network stack. The test involved measuring loopback TCP 
throughput using the common netperf [12] throughput 
measurement tool, with both the sending and receiving 
process residing in the same machine. In case of the 
modified network stack, both the sender and the receiver 
were located in the same virtual image. The TCP 
throughput test was repeated for different maximum 
transmission unit (MTU) values set on the loopback 
interface. 
 
The results of this test, as shown in Figure 5, suggest that 
the extensions / modifications to the network stack had only 
a slight impact on the maximum TCP throughput. For MTU 
value of 1500 octets, the throughput achieved using the 
modified kernel was around 93% of values observed on the 
standard system. However, it should be noted that during 
the test traffic passed through the network stack twice: once 
when data was transmitted by the sending process, and once 
when the same data was received by the other process. It is 
clear that the one-way throughput degradation must be even 
less significant, and can be estimated as square root of the 
obtained throughput ratio between standard and modified 
stack for both sending and receiving side processing. 
Therefore, for MTU=1500 we can estimate one-way 
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maximum TCP throughput of the modified network stack to 
be around 96.5% of the standard (unmodified) system. 
 
In the second test scenario we measured the maximum TCP 
throughput as a function of the number of virtual hops. As 
shown in Figure 6a, the throughput asymptotically 
decreases with each additional transient hop. This is a 
natural consequence of the fact that the simulator has to 
perform the complete set of IP switching tasks as defined in 
[14] for each single packet in each individual virtual node. 
It should be noted that in described scenario the simulator 
not only switched the packets between the virtual nodes, but 
also terminated the TCP sessions on edge nodes. Despite 
this additional processing load, the simulator was able to 
operate around gigabit data rates for the smaller number of 
transient virtual hops. As our referent platform was 
relatively limited in terms of RAM bandwidth, CPU speed 
and cache size, compared to current top-notch IA-32 

systems available on the market, migrating to more 
powerful hardware would certainly yield even better results. 
 
This last test involved measurement of round trip time 
(RTT) as a function of number of virtual hops. The results 
show that each virtual hop contributes to the increase of 
overall RTT approximately linearly, as shown in Figure 6b. 
From the presented data it can be easily calculated that in 
one node the process of switching a single packet lasts 
approximately 1.25 microseconds in average, which 
corresponds to a maximum theoretical aggregate throughput 
of 800.000 packets per second for the whole system. 
However, in reality the impact of many different factors, 
such as device driver and interrupt processing overhead 
[15], system bus congestions, CPU cache trashing etc. 
would result in lower effective throughputs. 
 
The tests have proven our framework is capable of 
performing simulation at gigabit speeds for network 
topologies with limited end-to-end hop count. In case when 
highly complex topological configurations need to be 
simulated, it is possible to combine multiple machines into 
an integrated network simulation cluster. This could allow 
obtaining high overall throughput and performance if the 
CPU power on a single box would become a bottleneck. 
When constructing such clustered simulators, multiple 
independent logical links could be multiplexed over a single 
physical link between different machines, since the support 
for IEEE 802.1Q virtual LAN (VLAN) tagging has been 
incorporated into the simulation framework. 
 
The clustering approach described above provides a simple 
methodology for ensuring aggregate throughput scaling in 
cases where CPU power is scarce. Unfortunately, the 
current simulator implementation cannot take any 
advantage of symmetric multiprocessing (SMP) hardware, 
since FreeBSD version 4.8, our simulator is based on, does 
not support multiple simultaneous threads of execution 
within the kernel. In the future this is likely to change with 

Figure 6 - a) maximum TCP throughput as a function of number of virtual hops (left); b) round trip time for ICMP 
echo / reply packets as a function of number of virtual hops (right) 

Figure 5 – maximum loopback TCP throughput 
on standard and modified network stack 
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the migration to FreeBSD 5.0 code base, which provides 
much finer-grained locking of critical sections within the 
kernel, and thereby the foundation for presumably efficient 
SMP support. 
 

V. RELATED WORK 
 
As mentioned earlier in the text, the idea of constructing 
network simulators by reusing and extending an existing 
network stack implementation is not entirely new. Further 
we outline the main concepts behind some of the previously 
published works in this area. 
 
The ENTRAPID [1] protocol development environment 
introduced a model of multiple virtualized networking 
kernels, which in effect present a reentrant variants of the 
standard 4.4BSD network stack in multiple instances, 
running as threads in a specialized user process. Such an 
attempt of network stack virtualization in the user space 
successfully accomplished its primary goal of providing a 
flexible network simulation tool. However, this is achieved 
at the cost of poor overall performance compared to the real 
in-kernel network stack implementation on the same 
hardware, combined with very limited compatibility to the 
standard software applications relying on network 
communication. Another example that followed this 
approach is the Alpine simulator project [2]. 
 
The Harvard network simulator [3] created the illusion of 
having multiple independent kernel routing tables by 
providing transparent IP address remapping between user 
and kernel space. While the kernel still maintained a single 
routing table with unique (non-overlapping) entries, a 
translation table had to be established for each virtual node, 
which had to be consulted on each userland-to-kernel 
network transaction. Although such an approach provided 
far better performance than the ENTRAPID architecture, it 
still had many limitations. The performance was 
significantly constrained by numerous translation lookups 
that had to be performed on each kernel-to-userland packet 
transition, and vice versa. However, probably the biggest 
advantage of the Harvard architecture is the ability to use 
the existing UNIX network applications in virtualized 
environment without any modifications, while the 
ENTRAPID and Alpine required at best some porting 
efforts and replacement of standard system libraries, up to 
the point when porting become entirely impossible. The 
Harvard simulator is conceptually the closest to our 
framework, because of the ability to transparently support 
unmodified userland applications on the modified kernel. 
 
Entirely different approach was taken in design and 
implementation of the Netbed [18] simulation environment. 
A large cluster of PC-s, running FreeBSD or Linux 
operating systems, is used to simulate (or more precisely to 
create) complex experimental networks. The network 
topologies are constructed by combining real PCs as 
network nodes distributed in either local or remote physical 

clusters, together with either real or emulated WAN links, 
using dummynet traffic shapers for simulating WAN 
effects. The main operational issue of such a system is 
management of huge number of nodes that have to be 
individually reconfigured for inclusion in specific 
experimental network, which becomes growingly difficult 
task as the PC clusters get more geographically distributed. 
Netbed software currently controls 168 and another 50 PCs 
at two research centers respectively. Each PC is equipped 
with five network cards, which are all connected together 
via high-end LAN switches, either for simulation or control 
and management purposes. It is obvious that construction 
and maintenance of such a system also requires significant 
financial resources, as well as a dedicated team of 
operators. 
 

VI. CONCLUSIONS AND FUTURE RESEARCH 
 
We have presented a highly efficient network simulation 
framework that, in our opinion, includes many of the 
advantages of previously known real-time simulation 
systems. Most notably, the simulator allows each virtual 
node to operate as an independent yet fully functional 
UNIX router or end node, while making no sacrifices 
regarding the overall throughput and performance 
compared to the unmodified UNIX OS running on the same 
hardware. The full compatibility with the standard UNIX 
OS functionality makes our simulator a viable tool for 
broad range of tests and simulation scenarios on all network 
layers above and including the IP layer. Currently the 
support for simulation of link-layer protocols and media 
other than Ethernet and simple point-to-point is not 
provided. With reasonable efforts, it should be relatively 
simple to build a basic Frame Relay switch emulator using 
the netgraph framework. 
 
It is worth mentioning that our framework is not limited 
only to network simulation applications. As the 
implemented extensions and modifications did not hinder 
the general-purpose nature of the underlying operating 
system and its kernel, our platform can potentially find use 
in supporting diverse virtual hosting scenarios or creating 
virtual private network (VPN) provisioning appliances. 
 
At the time of this writing, the simulator code is only a 
framework as described in this article, and not a complete 
software package. There are many possible directions for 
further research and improvement. As the simulator 
currently provides support only for IPv4 protocol suite, one 
logical development step would be inclusion of the 
emerging IPv6 protocol into the simulator code, as well as 
other commonly used protocols, such as IPX, AppleTalk 
etc. 
 
Currently, the only option for constructing and managing 
simulated network environments is the use of UNIX shell 
commands and scripts, similar to the example given in 
section III. To simplify the configuration of more complex 
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topologies, it would be desirable to implement a graphical 
user interface (GUI) for managing the simulator. A parser 
for definition files in common format (such as ns) generated 
by some already existing tools could present a less 
demanding alternative to development of proprietary GUI. 
However, a dedicated GUI environment designed to 
manage the simulator throughout all operating phases - 
from initial constructing of the simulated network 
environment through conducting and controlling different 
test modes - would in our opinion present the most 
appropriate solution. The development and introduction of 
such a GUI front end could enable wider use of the 
described simulator framework especially in teaching / 
academia, where students are often discouraged by the 
syntax and "complexity" of command-line based tools. 
Moreover, the introduction of GUI front end could enable 
more complex simulations to be executed in less time and 
with fewer efforts. 
 
In order to stay synchronized with the latest advances in OS 
technology (especially in SMP support), as the development 
emphasis in FreeBSD OS shifts towards the next major 
release / branch, our simulator should be migrated to 
FreeBSD 5.0 kernel. This is not a trivial task to accomplish 
due to major architectural differences between 4.7 and 5.0 
branches. However, such a migration could also present an 
opportunity to restructure the resource partitioning scheme 
from the current monolithic one into a more modular 
model, in line with the concept of resource containers [16]. 
The modular model would allow system administrators to 
freely combine selected system resources, such as network 
stack instance, CPU time share limit, user processes, 
filesystems, virtual / real memory etc. into a custom virtual 
image, in contrast to the current implementation where all 
the resources contained in a virtual image are hard-coded 
and cannot be configured at the run time. 
 
Finally, the simulator should be thoroughly tested and 
evaluated with real Gigabit Ethernet equipment. 
Unfortunately, the appropriate hardware (high-end PCs, 
Gigabit Ethernet network cards and LAN switches) were 
not available at the time of preparing this article.  
 
Our simulator framework is redistributable under a liberal 
BSD-style license. It can be downloaded from 
http://www.tel.fer.hr/zec/BSD/vimage/ in form of patches 
against the FreeBSD 4.8-RELEASE kernel source, plus 
sources for an additional management utility. Accordingly, 
the simulator framework could be conveniently evaluated 
and adjusted or extended for special purpose applications, if 
desired. 
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