
Comparing the Pairing Efficiency over
Composite-Order and Prime-Order Elliptic

Curves

Aurore Guillevic1,2

1 Laboratoire Chiffre – Thales Communications and Security
4 avenue des Louvresses – 92622 Gennevilliers Cedex – France

2 Crypto Team – DI – École Normale Supérieure
45 rue d’Ulm – 75230 Paris Cedex 05 – France

aurore.guillevic@ens.fr

Abstract. We provide software implementation timings for pairings
over composite-order and prime-order elliptic curves. Composite orders
must be large enough to be infeasible to factor. They are modulus of 2 up
to 5 large prime numbers in the literature. There exists size recommen-
dations for two-prime RSA modulus and we extend the results of Lenstra
concerning the RSA modulus sizes to multi-prime modulus, for various
security levels. We then implement a Tate pairing over a composite or-
der supersingular curve and an optimal ate pairing over a prime-order
Barreto-Naehrig curve, both at the 128-bit security level. We use our
implementation timings to deduce the total cost of the homomorphic en-
cryption scheme of Boneh, Goh and Nissim and its translation by Free-
man in the prime-order setting. We also compare the efficiency of the
unbounded Hierarchical Identity Based Encryption protocol of Lewko
and Waters and its translation by Lewko in the prime order setting. Our
results strengthen the previously observed inefficiency of composite-order
bilinear groups and advocate the use of prime-order group whenever pos-
sible in protocol design.

Keywords: Tate pairing, optimal ate pairing, software implementation,
composite-order group, supersingular elliptic curve, Barreto-Naehrig curve.

1 Introduction

Bilinear structures of composite-order groups provide new possibilities for cryp-
tosystems. In 2005, Boneh, Goh and Nissim [7] introduced the first public-key
homomorphic encryption scheme using composite-order groups equipped with
a pairing. The scheme permits several homomorphic additions and one multi-
plication on few bits. The security relies on the subgroup decision assumption.
They applied this tool to on-line voting and universally verifiable computation.
Decryption time grows exponentially w.r.t. the input size so this approach for
homomorphic encryption is not very practical for large data but the idea was de-
veloped for other interests. In the last seven years, many cryptographic schemes

ha
l-0

08
12

96
0,

 v
er

si
on

 1
 -

13
 A

pr
 2

01
3

Author manuscript, published in "ACNS - 11th International Conference on Applied Cryptography and Network Security - 2013 (2013)"

http://hal.inria.fr/hal-00812960
http://hal.archives-ouvertes.fr

were built using composite-order groups. In 2005, an interesting Hierarchical
Identity Based Encryption (HIBE) was proposed by Boneh, Boyen and Goh [6].
It relies on the `-bilinear Diffie-Hellman exponent assumption. In 2009, Waters
introduced the Dual System Encryption method [24], resulting in very interest-
ing properties for security proofs. In 2011, Lewko and Waters published a HIBE
relying on the subgroup decision assumption. HIBE has become very practical in
the sense that the maximal hierarchy depth is not static i.e. can be augmented
without resetting all the system parameters.

The subgroup decision assumption is that given a group G of composite
order p1p2 = N (e.g. an RSA modulus), it is hard do decide whether a given
element g ∈ G is in the subgroup of order p1 without knowing p1 and p2. N
must be infeasible to factor to achieve this hardness. This results in very large
parameter sizes, e.g. log2N = 3072 or 3248 for a 128-bit security level, according
to NIST or ECRYPT II recommendations. Moreover, the pairing computation
is much slower in this setting but exact performances were not given yet. To
reduce the parameter sizes, Freeman [10] proposed to use a copy of the (e.g.
256-bit) same prime-order group instead of a group whose order (of e.g. 3072
bits) has two or more distinct primes. His paper provides conversions of protocols
and in particular of the BGN scheme, from the composite-order to the prime-
order setting. Then Lewko at Eurocrypt 2012 [19] provided a generic conversion.
These conversions achieve much smaller parameter sizes but have a drawback:
they need not only one but several pairings. More precisely, Lewko’s conversion
for the HIBE scheme needs at least 2n pairings over a prime order group (of e.g.
256-bit) instead of one pairing over a composite order group (of e.g. 3072-bit) of
n primes.

The translated protocols remain interesting because it is commonly assumed
that a pairing is much slower over a composite-order than a prime-order elliptic
curve. An overhead factor around 50 (at an estimate attributed to Scott) was
given in [10, §1] for a 80-bit security level. A detailed and precise comparison
would be interesting and useful to protocol designers and application developers.

The Number Field Sieve (NFS) algorithm is the fastest method to factor a
two prime modulus. Lenstra studied carefully its complexity and made recom-
mendations. Lenstra stated that at a 128-bit security level, an RSA modulus
can have no more than 3 prime factors of the same size, 4 factors at a 192-
bit level and 5 at a 256-bit level [17, §4]. We complete his work to obtain the
modulus sizes with more than two prime factors, at these three security levels.
We then find supersingular elliptic curves of such orders and benchmark a Tate
paring over these curves. We also implemented an optimal ate pairing over a
prime-order Barreto-Naehrig curve, considered as the fastest pairing (at least
in software). With these timings, we are able to estimate the total cost of the
protocols in composite-order and prime-order settings. We then compare the
BGN protocol [7] in the two settings and do the same for the unbounded HIBE
protocol of Lewko and Waters [20] and its translation [19, §B].

Organisation of the paper. Section 2 presents our results on the modulus sizes
with more than two prime factors, at the 128, 192 and 256-bit security level. In

2

ha
l-0

08
12

96
0,

 v
er

si
on

 1
 -

13
 A

pr
 2

01
3

Sec. 3, we present the possibilities to construct pairing-friendly elliptic curves of
composite order and our choice for the implementation. We develop a theoretical
estimation of each pairing in Sec. 4. Our implementation results are presented
in Sec. 5.

2 Parameter sizes

In this section, we extend Lenstra’s estimates [17] to RSA modulus sizes with up
to 8 prime factors. We present in Tab. 1 the usual key length recommendations
from http://www.keylength.com. The NIST recommendations are the less con-
servative ones. A modulus of length 3072 is recommended to achieve a security
level equivalent to a 128 bit symmetric key. The ECRYPT II recommendations
are comparable: 3248 bit modulus are suggested.

Table 1. Cryptographic key length recommendations, January 2013. All key sizes are
provided in bits. These are the minimal sizes for security.

Method Date
Sym-

Asymmetric
Discrete Log Elliptic Hash

metric Key Group curve function

Lenstra / Verheul 2076 129 6790–5888 230 6790 245 257

Lenstra Updated 2090 128 4440–6974 256 4440 256 256

ECRYPT II (EU) 2031–2040 128 3248 256 3248 256 256

NIST (US) > 2030 128 3072 256 3072 256 256

FNISA (France) > 2020 128 4096 200 4096 256 256

NSA (US) – 128 – – – 256 256

RFC3766 – 128 3253 256 3253 242 –

We consider the Number Field Sieve attack (NFS, see e.g. [18] for an overview)
whose complexity is given by [17, §3.1]:

L[N] = exp(1.923(logN)1/3(log logN)2/3) (NFS) (1)

and the Elliptic Curve Method (ECM) that depends on the modulus size and
on the size of the smallest prime pi in the modulus. This attack is less efficient
for a modulus of only two prime factors but become competitive for more prime
factors. We consider that all the prime factors pi have the same size. The ECM
complexity is [17, §4]

E[N, pi] = (log2N)2 exp(
√

2(log pi)
1/2(log log pi)

1/2) (ECM). (2)

It is assumed in [17, §3.1] that a k-bit RSA modulus offers the same computa-
tional security as a symmetric cryptosystem of d-bit security and speed compa-
rable to singe DES if L[2k] = 50 · 2d−56 · L[2512] . They argue that speed-up in
symmetric implementation affects slightly the complexity thus is not taken into
account. We used this formula to compute Tab. 2. These assumptions may be

3

ha
l-0

08
12

96
0,

 v
er

si
on

 1
 -

13
 A

pr
 2

01
3

http://www.keylength.com

considered controversial, anyone can consider more conservative ones and obtain
slightly different results. Results are presented in Tab. 2.

The first line in Tab. 2 appears in [17, Tab. 1]. The threshold between NFS
and ECM is represented through bold font. We do not consider security levels
under 128 bits. For a 128-bit security level, a modulus of 3224 bits with two
prime factors (of 1612 bits) is enough to prevent the NFS attack and the attack
with ECM is much slower. This attack becomes significantly more efficient than
the NFS one against a modulus with 5 prime factors (each of the same size).
A modulus of 4040 bits instead of 3224 bits must be considered. For 8 primes
in the modulus, the size is almost doubled: 6344 bits instead of 3224 bits and
each prime factor is 793-bit long. Table 2 could be used by protocol designers
to set the size of the security parameter λ. Our Tab. 2 can also be used when
setting the parameter sizes for protocols (or security proofs) relying on the Φ-
hiding assumption. In 2010 at Crypto, Kiltz, O’Neill and Smith [15] used this
assumption to obtain a nice result about RSA-OAEP. Then at Africacrypt in
2011, Herrmann [13] explained new results about the security of this assumption.
We emphasise that setting the security parameter λ in protocols is not completely
straightforward if the modulus contains more than 3 prime factors.

Table 2. RSA-Multi-Prime modulus size from 2 (see [17, Tab. 1]) up to 8 prime factors

Equiv. AES-128 AES-192 AES-256

Nb of min max min max min max
primes log pi logN log pi logN log pi logN log pi logN log pi logN log pi logN

2 1322 2644 1612 3224 3449 6898 3959 7918 6920 13840 7694 15388

3 882 2646 1075 3225 2299 6897 2640 7920 4614 13842 5129 15387

4 694 2776 815 3260 1725 6900 1980 7920 3460 13840 3847 15388

5 687 3435 808 4040 1484 7420 1654 8270 2768 13840 3078 15390

6 682 4092 802 4812 1476 8856 1646 9876 2544 15264 2760 16560

7 677 4739 797 5579 1470 10290 1639 11473 2535 17745 2752 19264

8 673 5384 793 6344 1464 11712 1633 13064 2528 20224 2744 21952

3 Composite-order elliptic curves

For a detailed introduction to pairings, see e.g. [14, Ch. IX]. Let E be an elliptic
curve defined over a prime field Fp. A pairing is a bilinear, non-degenerate and
efficient map e : G1 × G2 → GT . From an algebraic point of view, G1 and G2

are two necessarily distinct subgroups of E(F̄p), of same order n. If n | # (Fp),
G1 ⊂ E(Fp), this is the common setup. Let k be the smallest integer such that
n | pk−1, k is the embedding degree. Then G2 ⊂ E(Fpk) and GT ⊂ F∗pk , except for
k = 1. For supersingular or some of the k = 1 curves, an efficient isomorphism
is available from G1 into G2. This gives a symmetric pairing and we can use
the notation G1 = G2 to implicitly denote the use of the isomorphism in the

4

ha
l-0

08
12

96
0,

 v
er

si
on

 1
 -

13
 A

pr
 2

01
3

pairing computation. In the remaining of this section, we will use the algebraic
interpretation of G1 and G2. In other words, we will assume that they are two
distinct subgroups of E, of same order n. The target group GT is the order-n
(multiplicative) subgroup of F∗pk . G1 and G2 have to be strong enough against
a generic attack to a discrete logarithm problem. The third group GT is more
vulnerable because computing a discrete logarithm in a finite field is easier with
the index calculus attack. Its size has to be enlarged.

Finding optimal pairing-friendly elliptic curves is an active field of research
(see the survey [11]). At a 128-bit security level, the optimal choice would be to
construct an elliptic curve whose order is a prime of 256 bits and over a prime
finite field of the same size. For an embedding degree k = 12, an element in
the third group is 3072 bit long in order to match the NIST recommendations.
Such optimal pairing-friendly curves exist [3] (Barreto-Naehrig (BN) curves),
but have a special form: the parameters p (defining the finite field), n (elliptic
curve order) and t (trace) are given by degree 4 polynomials. We have p(x) =
36x4+36x3+24x2+6x+1, n(x) = 36x4+36x3+18x2+6x+1 and t(x) = 6x2+1.

3.1 Issues in composite-order elliptic curve generation

For our particular purpose, the pairing-friendly elliptic curve order has to contain
a composite-order modulus N . Hence the order is chosen before the other curve
parameters and no special form can be imposed to N . For example, finding
such an elliptic curve over a non-prime field (e.g. in characteristic 2 or 3) is
completely infeasible at the moment. As for BN curves, all the complete pairing-
friendly elliptic curve families in the survey [11], defined by polynomials, are not
convenient.

The parameter sizes of composite-order elliptic curve are not optimal. The
curve order should be hN with h a cofactor as small as possible. Due to the
Hasse bound, the size of p (defining Fp) is the same as the size of hN . This means
that the prime field Fp already achieves the recommended size (say, 3072) to be
strong enough against an index calculus attack. Consequently, an embedding
degree k = 1 is enough. As G1 and G2 are distinct, an embedding degree of
1 means that both G1 and G2 are subgroups of E(Fp), then N2 | E(Fp) and
log2 p > 2 log2N . This mean that for a 3072 bit modulus N , p will have more
than 6144 bits. Such curves exist, for example see [16, §6] or more recently, [8].
The elliptic curve point coordinates are more than 6144 bit long.

Tate pairing computation is described in Alg. 2. It consists in a Miller loop
over the considered elliptic curve group order. A final exponentiation in F∗pk
at the end is performed to obtain a unique pairing value. Optimal ate pairing
computation on a BN curve is detailed in Alg. 1. Convenient supersingular curves
do not benefit from pairing optimisation such as ηT pairing, as the trace is zero
(in large characteristic), or decomposition of the Miller loop length, as there
is no efficiently computable endomorphism over Fp on such curves, except the
scalar multiplication. For ordinary curves with 6 | k and D = 3 (BN curves)
or 4 | k and D = 1, the complex multiplication induces an easy computable
endomorphism thus permits to reduce the Miller loop length up to a factor 4.

5

ha
l-0

08
12

96
0,

 v
er

si
on

 1
 -

13
 A

pr
 2

01
3

Pairing computation over curves of embedding degree 2 needs multiplications
over Fp and Fp2 with log2 p = 1536. Pairing computation over curves of embed-
ding degree 1 needs multiplications over Fp with log2 p = 3072. Recently in [26] it
was shown that self-pairings on these particular curves may be speed-up thanks
to the distortion map. Zhao et. al. gave efficient formulas of Weil pairing with
denominator elimination thanks to the distortion map, although k = 1 instead
of k = 2. Such ordinary k = 1 curves with efficient endomorphisms are rare. Few
constructions are proposed in [8]. More work is needed to determine if pairings
on these curves are competitive with k = 2 curves.

As mentioned in recent works, some properties (cancelling, projecting) are
achieved with only composite-order elliptic curves or only asymmetric pairings.
More precisely, at Asiacrypt 2012, Seo [22] presented results on the impossibility
of projecting pairings in certain cases. Then the only possible instantiation is
to choose an ordinary composite-order elliptic curve. Such constructions are
possible, see e.g. Boneh, Rubin and Silverberg paper [8] but this seems to be the
worst case in terms of parameter sizes and efficiency.

3.2 Our choices

If we want to reduce the size of p (hence of G1), we can choose a supersingular
elliptic curve of embedding degree k = 2. This means that G1 ⊂ E(Fp), G2 *
E(Fp) and both G1 and G2 are subgroups of E(Fp2).

G1 and G2 ⊂ E(Fp2) N2 | #E(Fp2)
|

G1 ⊂ E(Fp) N | #E(Fp), N2 - #E(Fp)

A supersingular elliptic curve of given subgroup order and embedding degree 2
is easy to construct:

1. Let N be a composite-order modulus.
2. Find the smallest integer h, 4 | h, such that hN − 1 is prime.
3. Let p = hN − 1. The elliptic curve E(Fp) : y2 = x3 − x is supersingular, of

order hN = p+ 1 and embedding degree 2.

As p = 3 mod 4, −1 is not a square in Fp. If Fp2 = Fp[Z]/(Z2 + 1), a distor-
tion map is available: φ : E(Fp2) → E(Fp2), (x, y) 7→ (−x, Zy). In particular,
φ(G1) = G2 and the pairing is symmetric. As mentioned above, the improved
pairing variant denoted ηT is not possible as this supersingular curve has trace 0
(#E(Fp) = p+1). We implemented a Tate pairing on this curve. The parameter
sizes for a security level equivalent to AES-128 are summarised in Tab. 3. We
assume that the points on the elliptic curves are in compressed representation.

4 Theoretical estimation

In this section we will estimate the number of multiplications over the base field
for each pairing in Tab. 3.

6

ha
l-0

08
12

96
0,

 v
er

si
on

 1
 -

13
 A

pr
 2

01
3

Table 3. Parameter sizes for prime order and composite order pairing-friendly elliptic
curves, minimum and maximum in theory, according to Tab. 2

Elliptic curve, size of G1 size of elts in G1 emb. size of size of elts in GT
order order log2N log2 p deg. elts in G2 k log2 p

min – max min – max k min – max

BN, prime order 256 256 – 269 12 512 – 538 3072 – 3224

su
p

er
si

n
g
u
la

r
cu

rv
e

Prime order 256 1322 – 1612

2

A
s

fo
r

el
ts

in
G

1

2644 – 3224

C
o
m

p
o
si

te
o
rd

er

2 primes 2644 – 3224 > 2646 – > 3226 > 5292 – > 6452
3 primes 2646 – 3225 > 2648 – > 3227 > 5296 – > 6454
4 primes 2776 – 3260 > 2778 – > 3262 > 5556 – > 6524
5 primes 3435 – 4040 > 3437 – > 4042 > 6874 – > 8084
6 primes 4092 – 4812 > 4094 – > 4814 > 8188 – > 9628
7 primes 4739 – 5579 > 4741 – > 5581 > 9482 – > 11162
8 primes 5384 – 6344 > 5386 – > 6346 > 10772 – > 12692

4.1 Prime order BN curve

We aim to implement a state of the art optimal ate pairing on a BN curve.
We use various techniques described e.g. in [21,5]. A careful operation count
is detailed in Alg. 1 since it may be of independent interest. We use the finite
field arithmetic described in [9] and [12] for speeding up the pairing final expo-
nentiation and exponentiations in GT . Operation counts in Tab. 4 describe our
choices according to recommendations made in [9]. The arithmetic operations in
Fp are denoted Mp for a multiplication, Sp for a square, Ip for an inversion and
HW denotes the Hamming weight. For exponentiation in Fpk , SΦ6(p2) denotes
the improved squaring formula from [12]. Details are provided in Alg. 1 which

Table 4. Approximation of arithmetic operations in finite field extensions

Mp12 = 3Mp6 + 5Ap6 + 1MY → 54Mp Sp12 = 2Mp6 + 4Ap6 + 2MY → 36Mp

Mp6 = 6Mp2 + 13Ap2 + 2Mβ → 18Mp Sp6 = 2Mp2 + 3Sp2 + 10Ap2 + 2Mβ → 12Mp

Mp2 = 3Mp + 5Ap + 1Mα → 3Mp Sp2 = 2Mp + 4Ap + 2Mα → 2Mp

computes eOptAte(P,ψ6(Q)) = f
p12−1

r with
f = f6x+2,ψ6(Q)(P)·`[6x+2]ψ6(Q),πp(ψ6(Q))(P)·`[6x+2]ψ6(Q)+πp(ψ6(Q)),−π2

p(ψ6(Q))(P)

with ψ6 the sextic twist map, πp the p-power Frobenius and πp2 the p2-power
Frobenius.

4.2 Supersingular curve

A Tate pairing may not benefit from the previous optimisations. We can still
simplify the Miller loop thanks to the even embedding degree (k = 2). The
denominators cancel in the final exponentiation thus we can remove them in the

7

ha
l-0

08
12

96
0,

 v
er

si
on

 1
 -

13
 A

pr
 2

01
3

Algorithm 1: Optimal ate pairing eOptAte(P,ψ6(Q))
p12−1

n on a BN curve

Input: E(Fp), P (xP , yP) ∈ E(Fp)[n], Q(xQ, yQ) ∈ E
′
(Fp2)[n], t, x

Output: eOptAte(P,ψ6(Q)) ∈ µn ⊂ F∗p12
1 R(XR : YR : ZR)← (xQ : yQ : 1); f ← 1; s← 6x+ 2
2 for m← blog2(s)c − 1, . . . , 0 do
3 (R, `)← g(R,P) 6Mp2 + 5Sp2 + 4Mp = 32Mp

4 f ← f2 · ` Sp12 + 13Mp2 = 36 + 39 = 75Mp

5 if sm = 1 then
6 (R, `)← h(R,Q, P) 10Mp2 + 3Sp2 + 4Mp = 40Mp

7 f ← f · ` 13Mp2 = 39Mp

8 Q1 ← πp(Q) Mp2 = 3Mp

9 Q2 ← πp2(Q) 2Mp

10 (R, `)← h(R,Q1, P) 6Mp2 + 5Sp2 + 4Mp = 32Mp

11 f ← f · ` 13Mp2 = 39Mp

12 (R, `)← h(R,Q2, P) 6Mp2 + 5Sp2 + 4Mp = 32Mp

13 f ← f · ` 13Mp2 = 39Mp

l. 8 to l. 13: 147Mp

Miller Loop: 147Mp + log2(6x+ 2) · 107Mp + HW(6x+ 2) · 79Mp

14 f ← fp
6−1 3Mp6 + 2Sp6 + 10Mp2 + 3Sp2 + 2Mp + 2Sp + Ip = 118Mp + Ip

15 f ← fp
2+1 10Mp +Mp12 = 64Mp

16 if x < 0 then

17 a← f6|x|−5 log2(6x+ 5)SΦ6(p2)
+ HW(6x+ 5)Mp12

18 else (fp
6

= f−1)

19 a← (fp
6

)6x+5

20 b← ap 5Mp2 = 15Mp

21 b← ab Mp12 = 54Mp

22 Compute fp, fp
2

and fp
3

5Mp2 + 10Mp + 5Mp2 = 40Mp

23 c← b · (fp)2 · fp
2

SΦ6(p2) + 2Mp12 = 126Mp

24 c← c6x
2+1 log2(6x2 + 1)SΦ6(p2)

+ HW(6x2 + 1)Mp12

25 f ← fp
3

· c · b · (fp · f)9 · a · f4 7Mp12 + 5SΦ6(p2)
= 468Mp

Exponentiation f ← f (p6−1)(p2+1)(p4−p2+1)/n:

(885+18 log2(6x+5)+54HW(6x+5)+18 log2(6x2 +1)+54HW(6x2 +1))Mp+Ip
26 return f

computations. Details are provided in Alg. 2 with ψ2 the distortion map from
G1 into G2.

The algorithm for a supersingular elliptic curve of composite order is the
same as Alg. 2. In addition, we take n = N the modulus, hence log2 n = 3072 for
example. By construction, the cofactor h will be as small as possible, resulting
in very cheap final exponentiation, e.g. log2 h = 12. We detail in Tab. 5 the
different estimations for a pairing computation.

8

ha
l-0

08
12

96
0,

 v
er

si
on

 1
 -

13
 A

pr
 2

01
3

Algorithm 2: Tate pairing eTate(P,ψ2(Q))
p2−1

n on a supersingular curve

Input: E(Fp) : y2 = x3 + ax, P (xP , yP), Q(xQ, yQ) ∈ E(Fp)[n], n
Output: eTate(P,ψ2(Q)) ∈ µn ⊂ F∗p2

1 R(XR : YR : ZR)← (xP : yP : 1); f ← 1; for m← blog2(n)c − 1, . . . , 0 do
2 (R, `)← g(R,Q) 8Mp + 6Sp
3 f ← f2 · ` Sp2 +Mp2 = 5Mp

4 if nm = 1 then
5 (R, `)← h(R,P,Q) 11Mp + 3Sp
6 f ← f · ` Mp2 = 3Mp

Miller loop: log2 n · (13Mp + 6Sp) + HW(n) · (14Mp + 3Sp)
7 f ← fp−1 2Mp + Ip

8 f ← f (p+1)/n = fh log2 h Sp2 + HW(h)Mp2

9 return f Final exp.: log2 h Sp2 + HW(h)Mp2 + 2Mp + Ip

Table 5. Estimations for pairings on prime-order and composite-order elliptic curves,
assuming that for a composite-order supersingular curve, log2N is as in Tab. 2,
HW(N) = log2N/2, log2 h = 12 and HW(h) = 5, and for a BN curve, log2 n =
log2 p = 256, HW(x) = 4,HW(6x+ 5) = 10,HW(6x2 + 1) = 33.

Curve Pairing
nb Miller loop Final exp. (+ Ip)

primes min – max min – max

BN opt. ate 1 7204 Mp 6669 Mp

su
p

er
si

n
g
u
la

r
(S

sC
)

Tate

1 4224Mp + 1728Sp 3730Mp – 4745Mp

2 52880Mp + 19830Sp– 64480Mp + 24180Sp
3 52920Mp + 19845Sp– 64500Mp + 24187Sp
4 55520Mp + 20820Sp– 65200Mp + 24450Sp
5 68700Mp + 25762Sp– 80800Mp + 30300Sp 41Mp + Ip
6 81840Mp + 30690Sp– 96240Mp + 36090Sp
7 94780Mp + 35542Sp–111580Mp + 41842Sp
8 107680Mp + 40380Sp–126880Mp + 47580Sp

5 Implementation results

We implemented in C the above pairings (Tab. 3), we compiled with gcc 4.4.3 and
ran the software implementation on a 2.6 GHz Intel Celeron 64 bits PC with 1 GB
RAM and Ubuntu 10.04.4 LTS OS. The developed code is part of a proprietary
library, the LibCryptoLCH developed at Thales Communications & Security
(France). The finite field arithmetic uses the Montgomery representation and
the modular multiplication is written in x86-64 assembly language. Our timings
are competitive compared to others proprietary generic libraries such as the one
used at Microsoft Research [1]. In this paper, They develop a C library then add
different optimised assembly part of code for x86 and ARMv7 processors. They
run their library on a x86-64, Intel Core2 E6600 @ 2.4 GHz, Windows 7 (64-bit)
and on a ARM, dual-core Cortex A9 @ 1GHz, Windows device. They obtain
a pairing on average at 55.19 ms (ARM) and 6.31 ms (x86-64) in projective

9

ha
l-0

08
12

96
0,

 v
er

si
on

 1
 -

13
 A

pr
 2

01
3

coordinates and 51.01 ms (ARM) and 5.92 ms (x86-64) in affine coordinates, over
a BN curve of 254 bit prime order group. Our timings are slightly slower than
other state-of-the-art ones can be ([21,2]) because our software is not optimised
for a particular sparse prime number which might result in very specific and
optimised modular reduction.

Results are presented in Fig. 1. We did not plot our timings on a BN curve
as the spots would be on the x axis because of the scale. We present in Tab. 6
our results for a BN curve, a prime-order and a composite two-prime order
supersingular curve. The first line shows our results of an implementation of
an optimal ate pairing on a Barreto-Naehrig curve, see for example [23,5,21]
on how to implement it efficiently. We choose a quite sparse but still random
parameter x = 0x580000000000100d resulting in quite sparse prime order and
prime field. Our modular reduction is not optimised for this value. Our extension
field is optimised for towers built with binomials with small coefficients. For
instance the first extension is built as Fp2 ' Fp[X]/(X2 + 1) as p ≡ 3 mod 4
which allows a fast reduction mod X2+1 in the Karatsuba multiplication. The
second extension is built as Fp12 ' Fp2 [Y]/(Y 6 − 2) resulting in fast polynomial
reduction too. Our implementation perform a pairing in 5.05 ms in average which
is comparable to the 5.73 ms over an x86-64 Intel Core2 E6600 of the Microsoft
Research Team [1, Tab.2].

Table 6. Timings for exponentiation in milliseconds (ms), Ate and Tate pairings on
prime order n and composite order n = n1 · · ·ni elliptic curves for different security
levels.

Pairing log2 n log2 ni log2 p
k· Miller F.

Pairing
Exp. gpi Exp. Exp. gpi

log2 p Loop Exp. G1 G1 G2 GT GT

BN,o.ate 256 – 256 3072 2.35 2.70 5.05 0.55 – 1.91 5.16 –
269 – 269 3228 3.22 3.80 7.29 0.77 – 2.56 5.98 –

(1), Tate 256 – 1536 3072 19.70 20.50 40.20 8.30 – – 2.20 –
(2), Tate 1024 512 1036 3072 56.88 0.10 56.98 24.38 13.12 – 7.81 3.9
(2), Tate 2048 1024 2059 4118 392.50 0.40 392.90 172.5 86.25 – 50.63 25.8
(2), Tate 3072 1536 3083 6166 1295.6 0.7 1296.3 586.2 301.8 – 166.10 81.9
(3), Tate 3072 1024 3083 6166 1275.6 0.7 1276.3 556.9 222.5 – 174.88 60.1

Last year Zhang et al. in [25] published an optimised implementation of
composite-order bilinear pairings on GPU. They obtained a very efficient exe-
cution time of 17.4 ms, 11.9 ms and 8.7 ms per pairing in average with a 1024
bit modulus on three different GPU [25, §8]. With PBC library on an Intel Core
2 E8300 CPU at 2.83 GHz and 3GB RAM they obtained 171.1 ms. With our
library on an Intel Celeron as specified above, we obtain 57 ms for a pairing over
a 1024 bit modulus order elliptic curve and 393 ms for a 2048 bit modulus or-
der. This means our library is two times faster than PBC in this setting, mostly
because of our x86-64 implementation of the multiplication in Fp.

For this 128-bit security level, a pairing on an elliptic curve of composite
order with two primes is 254 times slower than over a prime-order elliptic curve
(1.27 s compared to 5.05 ms). The Miller loop is very expensive, indeed it runs

10

ha
l-0

08
12

96
0,

 v
er

si
on

 1
 -

13
 A

pr
 2

01
3

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Number of primes in N = p1p2 · · · pi

ti
m

e
(s

),
su

p
er

si
n
g
u
la

r
cu

rv
e

Tate Pairing, max sizes

Tate pairing, min sizes

[m]P ∈ E(Fp), max sizes

[m]P ∈ E(Fp), min sizes

gm ∈ µN ⊂ Fp2 , max sizes

gm ∈ µN ⊂ Fp2 , min sizes

Fig. 1. Execution time on average for a scalar multiplication on E(Fp), an exponen-
tiation in µN ⊂ Fp2 and a Tate pairing over a composite-order supersingular curve.

over N without any possible optimisation as explained in Sec. 3.1. The final ex-
ponentiation is very cheap because it consists in f (p−1)h = (fp ·f−1)h computed
with one inversion, one multiplication, one Frobenius map and one very small
exponentiation (h is only a dozen bits) in Fp2 .

5.1 Application to BGN cryptosystem

In 2005, Boneh, Goh and Nissim published in [7] a somewhat homomorphic
encryption scheme which can add several times different ciphertexts, perform one
multiplication then continue to add ciphertexts. Freeman proposed a conversion
in a prime-order setting in [10]. We compare the two settings. Our results show
that the whole protocol is much slower on a composite-order elliptic curve, as
presented in Tab. 7.

Protocol Setup(τ)

1. Generate two random τ -bit primes p1, p2 and set N = p1p2.
2. Generate a (symmetric) bilinear pairing e : G1×G1 → GT with G1 and GT

of order N .
3. Pick two random generators g1, u1 ← G1 and set u1(p1) = up21 ⇒ u1(p1) is a

random generator of the subgroup of order p1 of G1. We denote by G1(p1) this
subgroup. Set gT = e(g1, g1) as generator of GT and hT = e(g1, u1(p1)) = gp2T
as generator of the subgroup GT (p1) of order p1 of GT .

4. PK = (N,G1, GT , e, g1, u1(p1), gT , hT). SK = p1.

11

ha
l-0

08
12

96
0,

 v
er

si
on

 1
 -

13
 A

pr
 2

01
3

Encrypt(PK,m): m ∈ N,m < p2. Pick a random r ← {0, 1, . . . , N − 1}. The
ciphertext is c = gm1 · ur1(p1) ∈ G1 .

Homomorphic Addition (c1, c2) mod N , ∈ G1. Pick a random r ← {0, 1, . . . ,
N − 1}. c = c1 · c2 · ur1(p1) = gm1+m2 mod N

1 · ur′1(p1) ∈ G1 .

Decrypt(SK, c ∈ G1): We have cp1 = (gm1 · ur1(p1))
p1 = (gp11)m. Compute the

discrete log of cp1 in base gp11 . This is very slow or m must be very small (few
bits).
Homomorphic Multiplication (c3, c4) mod N (once). Pick a random r ←
{0, 1, . . . , N − 1}. c = e(c3, c4) · hrT = gm3·m4 mod N

T · hr′T ∈ GT .
Homomorphic Addition (c5, c6) mod N ∈ GT . Pick a random r ← {0, 1, . . . ,
N − 1}. c = c5 · c6 · hrT = gm5+m6 mod N

T · hr′T ∈ GT .
Decrypt(SK, c ∈ GT). Compute cp1 then its discrete log of in base gp1T .

Implementation. In the Encrypt step of the BGN protocol, a random r is
picked in {0, 1, . . . , N − 1} with N = p1p2 the RSA modulus. Then ur1(p1) is
computed. The size of r is up to 3072 bits. We used the same curve as in Tab.
6, line with log2N = 3072 and log2 pi = 1536. We assumed that to compute
several pairings on the same curve, we compute each Miller loop, then multiply
the outputs and apply a unique final exponentiation. There are four distinct
products of two or three pairings in the second protocol.

Table 7. Timings for the BGN protocol over a composite order elliptic curve and its
equivalent over a prime order elliptic curve for a security level equivalent to AES-128.
We don’t consider a discrete log computation because this is not the scope of our paper,
see e.g. [4] for efficient DL computation in this particular setting.

Operation Composite-order E.C. [7, §3] Prime-order E.C. [10, §5]

Encrypt or Add 1 exp. in G1 1300 ms 1 exp. in G1 and G2 3.8 ms

Decrypt Cp1 ∈ G1 645 ms
π1: 4 exp. in G1 4.0 ms
π2: 4 exp. in G2 11.2 ms

Multiply
1 pairing

3364 ms
1 exp. in G1 and G2 119.8 ms

+ 1 exp. in GT + 4×(3 pairings)

Encrypt
1 exp. in GT 409 ms

1 exp. in G1 and G2 87.8 ms
or Add + 4×(2 pairings)

Decrypt (without DL) Cp1 ∈ GT 204 ms πt(C) 16 exp. in GT 108.8 ms

The arithmetic on the composite-order elliptic curve E(Fp) is more than 3
times slower than in GT ⊂ Fp2 , this means that the encryptions and exponen-
tiations of decryption in GT are more efficient. The converse is observed over
a prime-order elliptic curve. This protocol over an optimal prime-order elliptic
curve is dramatically faster than over a composite-order elliptic curve. More pre-
cisely, the exponentiation of the decryption step is 161 times faster in G1, 57
times faster in G2 and 2 times faster in GT over a prime-order elliptic curve than
over a composite-order one.

12

ha
l-0

08
12

96
0,

 v
er

si
on

 1
 -

13
 A

pr
 2

01
3

5.2 Application to Hierarchical Identity Based Encryption

In this section, we detail and implement the Hierarchical Identity Based En-
cryption (HIBE in the following) of Lewko and Waters published at Eurocrypt
2011 [20] and compare it with its translation in the prime-order setting due to
Lewko [19].

Lewko-Waters HIBE scheme. We only recall the Setup, KeyGen, Encrypt,
Delegate and Decrypt steps. For a complete description of the scheme, see [20].

Setup(λ → PP, MSK). The setup algorithm takes as input the security
parameter λ (e.g. see Tab. 2 to select an appropriate λ) and chooses a bilinear
group G1 of order N = p1p2p3, where p1, p2, p3 are distinct primes. Let G1(pi)

denote the subgroup of order pi in G1. The algorithm then chooses g, u, h, v, w
uniformly randomly from G1(p1), and α uniformly randomly from ZN . It sets
the public parameters as:

PP := {N,G1, g, u, h, v, w, e(g, g)α} .

The master secret key is α.
KeyGen((I1, . . . , Ij), MSK, PP) → SKI . The key generation algorithm
chooses uniformly at random values r1, . . . , rj , y1, . . . , yj from ZN . It also chooses
random values λ1, . . . , λj ∈ ZN subject to the constraint that α = λ1 + λ2 +
. . .+ λj . The secret key is created as:

Ki,0 := gλiwyi , Ki,1 := gyi , Ki,2 := vyi(uIih)ri , Ki,3 := gri ∀i ∈ {1, . . . , j} .

Encrypt(M, (I1, . . . , Ij), PP), → CT. The encryption algorithm chooses s,
t1, . . ., tj uniformly randomly from ZN . It creates the ciphertext as:

C := Me(g, g)αs, C0 := gs,

Ci,1 := wsvti , Ci,2 := gti , Ci,3 := (uIih)ti ∀i ∈ {1, . . . , j} .

Delegate(PP, SK, Ij+1) → SK
′
. Ij+1 denotes the identity of a group un-

der Ij in the hierarchy. The delegation algorithm takes in a secret key SK =
{Ki,0,Ki,1,Ki,2,Ki,3 ∀i ∈ {1, . . . , j}} for (I1, I2, . . . , Ij) and a level j + 1 iden-

tity Ij+1. It produces a secret key SK
′

for (I1, . . . , Ij+1) as follows. It chooses

y
′

1, . . . , y
′

j+1 and r
′

1, . . . , r
′

j+1 ∈ ZN uniformly at random, λ
′

1, . . . , λ
′

j+1 ∈ ZN
randomly up to the constraint that λ

′

1 + . . .+ λ
′

j+1 = 0 and computes:

K
′

i,0 := Ki,0 · gλ
′
i · wy

′
i , K

′

i,1 := Ki,1 · gy
′
i , K

′

i,2 := Ki,2 · vy
′
i (uIih)r

′
i ,

K
′

i,3 := Ki,3 · gr
′
i ∀i ∈ {1, . . . , j + 1},

where Kj+1,1,Kj+1,2,Kj+1,3 are defined to be the identity element in G1.

13

ha
l-0

08
12

96
0,

 v
er

si
on

 1
 -

13
 A

pr
 2

01
3

Decryption(CT, SK)→M. The decryption algorithm takes in a secret key
SK = {Ki,0,Ki,1,Ki,2,Ki,3 ∀i ∈ {1, . . . , j}} for (I1, I2, . . . , Ij) and a ciphertext
CT encrypted to (I1, . . . , I`). Assuming (I1, . . . , Ij) is a prefix of (I1, . . . , I`),
the message is decrypted as follows. The decryption algorithm computes:

B :=

j∏
i=1

e(C0,Ki,0)e(Ci,2,Ki,2)

e(Ci,1,Ki,1)e(Ci,3,Ki,3)
.

The message is then computed as M = C/B.

Table 8. Lewko and Waters HIBE scheme over a composite order bilinear group.

Operation
Randomness

Computation
Timing j = 3

complexity Tab. 6

Setup
N = p1p2p3, 5 elts

1 pairing 1.27 s∈ G1(p1), 1 elt ∈ ZN
KeyGen 3j − 1 elts in ZN 7j exp. in G1 11.55 s

Encrypt j + 1 elts ∈ ZN
4 + 4j exp. in G1,

8.96 s
1 exp. in GT

Delegate
3j + 2 elts in ZN 7(j + 1) exp. in G1 15.40 s

j → j + 1

Decryption – 4j pairings 5.08 s

Lewko HIBE translation in prime order bilinear group. We also studied
the Lewko HIBE translation in prime order bilinear group. We only consider
in Tab. 9 the Setup, Encrypt, KeyGen, Delegate and Decrypt steps written
only from practical point of view, with m = 6. For a complete description of
the scheme with m = 10 for the security proof, see [19, §B.3] and [19, §2.2] for
notations. Moreover the scheme in [19] is described with a symmetric pairing. We
apply the protocol to an asymmetric pairing to improve its practical efficiency.
There are two possible approaches. We can set the secret keys in G1 and the
ciphertexts in G2 to optimise the needs in secured memory which can be quite
expensive in constrained devices. Or we can set in G2 the secrets keys (with
double secured memory) and set in G1 the ciphertexts to improve the bandwidth.
We will choose this second option.

Vectors of group elements are considered and denoted v = (v1, . . . , vm) ∈ Fmr
(with r the prime subgroup order of an elliptic curve), and for g1 ∈ G1 (recall
that this is an elliptic curve and not a finite field despite the multiplicative
notation),

gv1 = (gv11 , g
v2
1 , . . . , g

vm
1) ∈ Gm1 . (3)

Moreover, for any a ∈ Fr and v,w ∈ Fmr , we have:

gav1 = (gav11 , gav21 , . . . , gavm1), gv+w
1 = (gv1+w1

1 , gv2+w2
1 , . . . , gvm+wm

1) . (4)

14

ha
l-0

08
12

96
0,

 v
er

si
on

 1
 -

13
 A

pr
 2

01
3

The corresponding pairing is defined as follows, with e a one dimensional bilinear
pairing:

em(gv1 , g
w
2) =

m∏
i=1

e(gvi1 , g
wi
2) = e(g1, g2)v·w ∈ GT ⊂ F∗pk . (5)

The pairing em costs m pairings e. More precisely, as em is a product of m
pairings, it costs m Miller loops then one final exponentiation if we set e to be
a (variant of a) Tate pairing.
Setup(λ → PP, MSK). The setup algorithm takes in the security parameter λ
and chooses a bilinear group G1 of sufficiently large prime order r and a generator
g1, G2 of same prime order r and a generator g2 and GT of same order r and
let gT = e(g1, g2) a generator for GT . let e : G1 ×G2 → GT denote the bilinear
map. We set m = 6. Hence

em = e6 : G6
1 ×G6

2 → GT
(gv1 , g

w
2) 7→

∏6
i=1 e(g

vi
1 , g

wi
2)

The algorithm samples random dual orthonormal bases, (D,D∗) ← Dual(Fmr).
Let d1, . . . ,d6 denote the elements of D and d∗1, . . . ,d

∗
6 denote the elements of

D∗. They satisfy the property di · d∗i = ψ ∈ F∗r∀i and di · d∗j = 0(mod r)
for i 6= j. It also chooses random exponents α1, α2, θ, σ, γ, ξ ∈ Fr. The public
parameters are

PP =
{
G1, G2, GT , r, e(g1, g2)α1d1·d∗

1 , e(g1, g2)α2d2·d∗
2 , gd1

1 , . . . , gd6
1

}
,

and the master secret key is

MSK =
{
α1, α2, g

d∗
1

2 , g
d∗
2

2 , g
γd∗

1
2 , g

ξd∗
2

2 , g
θd∗

3
2 , g

θd∗
4

2 , g
σd∗

5
2 , g

σd∗
6

2

}
.

KeyGen((I1, . . . , Ij), MSK, PP) → SKI . The key generation algorithm
chooses uniformly at random values ri1, r

i
2 ∈ Fr for 1 6 i 6 j. It also chooses

random values y1, . . . , yj ∈ Fr and w1, . . . , wj ∈ Fr up to the constraint that
y1 + y2 + . . . + yj = α1 and w1 + w2 + . . . + wj = α2. For each 1 6 i 6 j it

computes Ki := g
yid

∗
1+wid

∗
2+r

i
1Iiθd

∗
3−r

i
1θd

∗
4+r

i
2Iiσd

∗
5−r

i
2σd

∗
6

2 ∈ G2. The secret key is
created as:

SKI :=
{
g
γd∗

1
2 , g

ξd∗
2

2 , g
θd∗

3
2 , g

θd∗
4

2 , g
σd∗

5
2 , g

σd∗
6

2 ,K1, . . . ,Kj ∈ G2

}
.

Encrypt(M, (I1, . . . , Ij), PP), → CT. The encryption algorithm chooses
s1, s2 and ti1, t

i
2 for 1 6 i 6 j uniformly randomly from Fr. It computes

C0 := Me(g1, g2)α1s1d1·d∗
1e(g1, g2)α2s2d2·d∗

2 ∈ GT

(note that e(g1, g2)α1d1·d∗
1 and e(g1, g2)α2d2·d∗

2 are in PP). It computes also

Ci := g
s1d1+s2d2+t

i
1d3+Iiti1d4+t

i
2d5+Iti2d6

1

15

ha
l-0

08
12

96
0,

 v
er

si
on

 1
 -

13
 A

pr
 2

01
3

for 1 6 i 6 j. The ciphertext is CT := {C0 ∈ GT , C1, . . . , Cj ∈ G1}.
Delegate(PP, SKI , Ij+1) → SKI|Ij+1

. The delegation algorithm chooses

random values ωi1, ω
i
2 ∈ Fr for 1 6 i 6 j + 1. It also chooses random val-

ues y
′

1, . . . , y
′

j ∈ Fr and w
′

1, . . . , w
′

j ∈ Fr up to the constraint that y
′

1 + y
′

2 +

. . . + y
′

j+1 = 0 and w
′

1 + w
′

2 + . . . + w
′

j+1 = 0. The delegation algorithm

takes in a secret key SKI with elements denoted as above. It computes K
′

i :=

Ki · g
y
′
iγd

∗
1+w

′
iξd

∗
2+ω

i
1Iiθd

∗
3−ω

i
1θd

∗
4+ω

i
2Iiσd

∗
5−ω

i
2σd

∗
6

2 ∈ G2 for 1 6 i 6 j and Kj+1 :=

g
y
′
j+1γd

∗
1+w

′
j+1ξd

∗
2+ω

j+1
1 Ij+1θd

∗
3−ω

j+1
1 θd∗

4+ω
j+1
2 Ij+1σd

∗
5−ω

j+1
2 σd∗

6

2 ∈ G2. SKI|Ij+1
is

formed as{
g
γd∗

1
2 , g

ξd∗
2

2 , g
θd∗

3
2 , g

θd∗
4

2 , g
σd∗

5
2 , g

σd∗
6

2 (from SKI), K
′

1, . . . ,K
′

j ,Kj+1 ∈ G2

}
.

Decryption(CT, SKI) →M. Assuming (I1, . . . , Ij) is a prefix of (I1, . . . , I`),
the decryption algorithm computes B :=

∏j
i=1 em(C0,Ki) . The message is then

computed as M = C0/B.
Each step is summarised in Tab. 9. We chose a hierarchy depth of j = 3.

Table 9. Lewko HIBE scheme translation over prime order bilinear group.

Operation
Randomness

Computation
Timing Tab. 6

complexity j = 3,m = 6

Setup
r, 2m2 elts in Fr for 1 pairing e, 2 exp. in GT , m2

127 ms
(D,D∗), 6 elts ∈ Fr exp. in G1, m(m+ 2) exp. in G2

KeyGen 2j + 2(j − 1) elts ∈ Fr
j ·m2 exp. in G2,

206 ms
some mult. in Fp and G2

Encrypt 2 + 2j elts in Fr
j ·m2 exp. in G1, 2 exp.

70 ms
in GT , some mult. in Fp

Delegate
2(j + 1) + 2j elts in Fr (j + 1)m2 exp. in G2 80 ms

j → j + 1

Decryption – j ·m pairings e 45.0 ms

We can say that this instantiation (Tab. 9) is 10 times more efficient than with
a composite-order elliptic curve (Tab 8) for Setup, 56 times for KeyGen, 128
times for Encrypt, 192 times for Delegate and 112 times for Decryption. In
other words, the important operations of delegation, encryption and decryption
are more than hundred times faster over a prime-order bilinear curve with an
asymmetric pairing compared to a composite-order supersingular curve with a
symmetric pairing.

6 Conclusion

We studied interesting protocols based on composite-order or prime-order ellip-
tic curves. The composite order must be infeasible to factor. For each elliptic

16

ha
l-0

08
12

96
0,

 v
er

si
on

 1
 -

13
 A

pr
 2

01
3

curve, a discrete logarithm must be impossible to compute (in reasonable time).
We justified the sizes of the composite orders when more than two primes are
present in the modulus. We analysed the Number Field Sieve complexity and the
Elliptic Curve Method to find the size bounds. We then compared the cost of the
homomorphic encryption scheme of Boneh, Goh and Nissim over a composite-
order and its counterpart over a prime-order pairing-friendly elliptic curve given
by Freeman. In the former case, a pairing took 3 s, compared to 13 ms in the
latter case. Even with 12 pairings instead of one in the Multiply step of the pro-
tocol, the prime-order translation remained 28 times faster. We also compared
the unbounded HIBE protocol of Waters and Lewko and its translation given by
Lewko. The prime-order setting is between 10 times to 192 times faster than the
composite-order setting. Despite useful properties of bilinear composite-order
structures to design new protocols, the resulting schemes are not very compet-
itive compared to protocols relying on other assumptions which in particular,
need prime-order bilinear structures with asymmetric pairings. Some special
protocols need extra properties such as cancelling and projecting pairings. Only
composite-order groups or supersingular curves achieve these properties.

We recommend to avoid the needs of composite-order groups whenever pos-
sible. Moreover, we did not investigate multi-exponentiation techniques to com-
pute simultaneously several pairings on the same elliptic curve, neither did we
use the Frobenius map to decompose exponents when performing exponentiation
in Fp12 . Hence some speed-up are still available for protocols in the prime-order
setting.

Acknowledgements. Thanks to Damien Vergnaud for his help in this paper. We
thank the reviewers of the ACNS Conference for their useful comments. This
work was supported in part by the French ANR-09-VERS-016 BEST Project.

References

1. T. Acar, K. Lauter, M. Naehrig, and D. Shumow. Affine pairings on ARM. In
M. Abdalla and T. Lange, editors, Pairing 2012, volume 7708 of LNCS, pages
203–209. Springer, 2012.

2. D. F. Aranha, K. Karabina, P. Longa, C. H. Gebotys, and J. López. Faster explicit
formulas for computing pairings over ordinary curves. In EUROCRYPT, volume
6632 of LNCS, pages 48–68, 2011.

3. P. S. Barreto and M. Naehrig. Pairing friendly elliptic curves of prime order. In
SAC 2005, volume 3897 of LNCS, pages 319–331, 2006.

4. D. J. Bernstein and T. Lange. Computing small discrete logarithms faster. In
INDOCRYPT, pages 317–338, 2012.

5. J.-L. Beuchat, J. E. G. Dı́az, S. Mitsunari, E. Okamoto, F. Rodŕıguez-Henŕıquez,
and T. Teruya. High-speed software implementation of the optimal ate pairing over
Barreto–Naehrig curves. In M. Joye, A. Miyaji, and A. Otsuka, editors, Pairing,
number 6487 in LNCS, pages 21–39. Springer, 2010.

6. D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with
constant size ciphertext. In R. Cramer, editor, EUROCRYPT, volume 3494 of
LNCS, pages 440–456. Springer, 2005.

17

ha
l-0

08
12

96
0,

 v
er

si
on

 1
 -

13
 A

pr
 2

01
3

7. D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts.
In J. Kilian, editor, TCC, volume 3378 of LNCS, pages 325–341. Springer, 2005.

8. D. Boneh, K. Rubin, and A. Silverberg. Finding composite order ordinary elliptic
curves using the Cocks-Pinch method. Journal of Number Theory, 131(5):832 –
841, 2011.

9. A. J. Devegili, C. O. hÉigeartaigh, M. Scott, and R. Dahab. Multiplication and
squaring on pairing-friendly fields. Cryptology ePrint Archive, Report 2006/471,
2006.

10. D. Freeman. Converting pairing-based cryptosystems from composite-order groups
to prime-order groups. In H. Gilbert, editor, EUROCRYPT, volume 6110 of LNCS,
pages 44–61. Springer, 2010.

11. D. Freeman, M. Scott, and E. Teske. A taxonomy of pairing-friendly elliptic curves.
J. Cryptology, 23(2):224–280, 2010.

12. R. Granger and M. Scott. Faster squaring in the cyclotomic subgroup of sixth
degree extensions. In P. Q. Nguyen and D. Pointcheval, editors, Public Key Cryp-
tography, volume 6056 of LNCS, pages 209–223. Springer, 2010.

13. M. Herrmann. Improved cryptanalysis of the multi-prime Φ-hiding assumption. In
AFRICACRYPT, pages 92–99, 2011.

14. G. S. Ian F. Blake and N. P. Smart. Advances in Elliptic Curve Cryptography.
Cambridge University Press, 2005.

15. E. Kiltz, A. O’Neill, and A. Smith. Instantiability of RSA-OAEP under chosen-
plaintext attack. In CRYPTO, pages 295–313, 2010.

16. N. Koblitz and A. Menezes. Pairing-based cryptography at high security levels. In
Cryptography and Coding, volume 3796 of LNCS, pages 13–36. Springer, 2005.

17. A. K. Lenstra. Unbelievable security. matching AES security using public key
systems. In C. Boyd, editor, ASIACRYPT, volume 2248 of LNCS, pages 67–86,
2001.

18. A. K. Lenstra and H. W. J. Lenstra, editors. The development of the number field
sieve, volume 1554 of Lecture Notes in Mathematics. Springer Berlin Heidelberg,
1993.

19. A. Lewko. Tools for simulating features of composite order bilinear groups in the
prime order setting. In D. Pointcheval and T. Johansson, editors, EUROCRYPT,
volume 7237 of LNCS, pages 318–335. Springer, 2012.

20. A. B. Lewko and B. Waters. Unbounded HIBE and attribute-based encryption.
In EUROCRYPT, pages 547–567. Springer, 2011.

21. M. Naehrig, R. Niederhagen, and P. Schwabe. New software speed records for
cryptographic pairings. In M. Abdalla and P. S. Barreto, editors, LATINCRYPT,
volume 6212 of LNCS, pages 109–123. Springer, 2010.

22. J. H. Seo. On the (im)possibility of projecting property in prime-order setting. In
ASIACRYPT, pages 61–79, 2012.

23. F. Vercauteren. Optimal pairings. IEEE Transactions on Information Theory,
56(1):455–461, 2010.

24. B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In S. Halevi, editor, CRYPTO, volume 5677 of LNCS, pages
619–636. Springer, 2009.

25. Y. Zhang, C. Xue, D. Wong, N. Mamoulis, and S. Yiu. Acceleration of composite
order bilinear pairing on graphics hardware. In T. Chim and T. Yuen, editors,
Information and Communications Security, volume 7618 of LNCS, pages 341–348.
Springer, 2012.

26. C. Zhao, F. Zhang, and D. Xie. Faster computation of self-pairings. IEEE Trans-
actions on Information Theory, 58(5):3266–3272, 2012.

18

ha
l-0

08
12

96
0,

 v
er

si
on

 1
 -

13
 A

pr
 2

01
3

	Comparing the Pairing Efficiency over Composite-Order and Prime-Order Elliptic Curves

