
Deadline Analysis of Interrupt-driven Software

Dennis Brylow Jens Palsberg

Purdue University
{brylow,palsberg}@cs.purdue.edu

ABSTRACT
Real-time, reactive, and embedded systems are widely used
throughout society (e.g., flight control, railway signaling, ve-
hicle management, medical devices, and many others). For
real-time, interrupt-driven software, timely interrupt han-
dling is part of correctness. It is vital for software verifica-
tion in such systems to check that all specified deadlines for
interrupt handling will be met. Such verification is a daunt-
ing task because of the large number of different possible
interrupt arrival scenarios. For example, for a Z86-based
microcontroller, there can be up to six interrupt sources and
each interrupt can arrive during any clock cycle. Verifica-
tion of such systems has traditionally relied upon lengthy
and tedious testing; even under the best of circumstances,
testing is likely to cover only a fraction of the state space in
interrupt-driven systems.

This paper presents a tool for deadline analysis of interrupt-
driven Z86-based software. The main idea is to use static
analysis to significantly decrease the required testing effort
by automatically identifying and isolating the segments of
code that need the most testing. Our tool combines multi-
resolution static analysis and testing oracles in such a way
that only the oracles need to be verified by testing. Each ora-
cle specifies the worst-case execution time from one program
point to another, which is then used by the static analysis
to improve precision. For six commercial microcontroller
systems, our experiments show that a moderate number of
testing oracles are sufficient to do precise deadline analysis.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software Verification

General Terms
Algorithms, Measurement, Reliability

Keywords
Real time, multi-resolution static analysis, testing oracles

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’03,September 1–5, 2003, Helsinki, Finland.
Copyright 2003 ACM 1-58113-743-5/03/0009 ...$5.00.

1. INTRODUCTION
Background. Real-time systems have become pervasive

in the world. Commerce, health care, transportation, and
telecommunication all rely increasingly on real-time sensing
and control. Particularly for applications in areas that are a
matter of life and death, the correctness of real-time software
is of paramount importance.

Correctness of real-time software can be thought of as hav-
ing two parts. The first issue is correctness of input-output
behavior, and the second is timeliness of that behavior. Ver-
ification and validation of input-output behavior has been
widely studied; there are now many static-checking tools
available, including type checkers [6], bytecode verifiers [13],
and model checkers [7], as well as numerous tools for sup-
porting the test process. Verification of timing properties
is more difficult, but steady progress has been made toward
understanding the foundations of checking the timing prop-
erties of real-time software in recent years [2, 1]. However,
major open issues still remain. These issues are due to the
low-level nature of real-time systems, with most still im-
plemented either in assembly language or at lower levels,
such as FPGAs or custom-built ASICs. Even when real-
time software is written in a higher-level language such as
C, it is desirable to check the real-time properties of the
compiled code because it can be difficult to predict the ef-
fects of the compiler. Most previous work on analysis of
assembly code [22] is not concerned with timing properties.

Our goal is to provide tool support for checking timing
properties of real-time assembly code. In this work we focus
on interrupt-driven software, where a signal from a source
outside the direct control of the software can cause com-
putation to be interrupted by control being transferred to
an interrupt handler. Typical interrupts in systems we have
analyzed occur because new sensor data is available, a signal
pulse arrives at the controller, an internal timer goes off, or
for many other reasons. The specification of an interrupt-
driven system will usually list deadlines for the handling of
each type of interrupt. It is part of the correctness of the sys-
tem that all deadlines are met. Reasoning about the timing
behavior of interrupt-driven software is complicated because
interrupts can be enabled and disabled by the software it-
self, an interrupt handler can be interrupted, and interrupts
can arrive in a myriad of different scenarios. It is critical
to know whether an interrupt arrives at a point where it is
enabled and can be handled right away, or whether it arrives
50 clock cycles later, when the system has just disabled in-
terrupt handling and will be doing other work for the next
two million clock cycles. We are seeking tool support to

answer the following question.

Deadline Analysis: Will every interrupt be
handled before the deadline?

One can approach this question in a testing-based manner:
try a suite of interrupt schedules and measure whether all
deadlines are met. Developing a good suite of interrupt
schedules is a difficult problem because of the fine granular-
ity of the timing domain. Even if a clock cycle is as long as
one microsecond, it is very difficult to engineer or discover
interrupt schedules that lead to any reasonable coverage of
the program. Statement coverage would be easy in this set-
ting, but is not a useful coverage criteria because it does not
take into account the interplay of different interrupts and the
times when they occur. Branch coverage is more accurate
but far more expensive; at every program point where an in-
terrupt is enabled, there is an implicit branch to the handler.
Covering all branches can therefore be an intractable task.
In summary, the problem with a test-based approach is that
it is difficult to test a sufficiently wide variety of schedules
to gain confidence in the software.

An alternative is a static-analysis-based approach to dead-
line verification. A good illustration of the difficulties faced
by that approach is given in our earlier paper with Damgaard
[5], which showed that for six commercial microcontrollers
the maximal stack size for interrupt-driven assembly code
could be estimated successfully by a static analysis. The
experiments of that paper also illustrated that static anal-
ysis of timing properties cannot work without information
about the behavior of external devices. For example, if the
code uses a loop to busy-wait on a new value from a port,
static analysis will view it as an infinite loop, even if the pro-
grammer knows that an external device will deliver a new
value every 100 milliseconds. Once the static analysis has
detected an infinite loop on the path from A to B, it will
determine that if an interrupt occurs when the execution is
at program point A and the handler for the interrupt has
exit point B, the handling may never terminate, let alone
meet its deadline. In summary, the static analysis approach
of [5] predictably failed to perform useful deadline analysis.

Our thesis is that we should combine static analysis and
testing. In practical terms, the fundamental challenge is:

Challenge: Can static analysis significantly de-
crease the required testing effort?

There are previous success stories of combining static anal-
ysis and testing. For example, in the area of regression test-
ing, rather than re-running the software on the whole test
suite every time a change has been made, one can use static
analysis to conservatively estimate which test inputs must
be tried again [12]. In our setting, static analysis can reduce
the required testing effort, allowing the testing effort to be
more focused, which is exactly what we desire to achieve
with a combined static-analysis/testing approach to dead-
line analysis.

Our approach uses test oracles [17] for certain worst-case
execution time (WCET) questions that cannot possibly or
easily be answered by static analysis. The oracles assert to
the static analysis that if execution reaches program point
A, then it will reach program point B at most t microseconds
later. When A and B are close, then a much smaller testing
effort is required to verify such an oracle than to do the
entire deadline analysis. Moreover, if more than one oracle

Figure 1: Coloring a Flow Graph

is needed for a program, the work of validating the different
oracles can be done in parallel. Our goal is to combine static
analysis with timing oracles to improve the precision of the
deadline analysis.

Deadline analysis cannot be performed without WCET
analysis. However, most research on deadline analysis as-
sumes that WCET analysis has already been successfully
completed, and most published papers on WCET analysis
do not consider the needs of deadline analysis. Many pa-
pers in this area concentrate on estimating the execution
time from one program point to another, usually from start
to finish, sometimes even focusing on a particular input,
and they rarely handle interrupts [15, 19, 9, 10, 3, 21, 8].
Deadline analysis is more complicated than simple WCET
analysis because the interrupts can occur at any time and
their handlers can be enabled or disabled at any program
point. In deadline analysis, the starting point for the anal-
ysis is not given. It is a task of the analysis to identify the
worst-case program point at which an interrupt can occur
and then estimate the WCET to the exit point of the han-
dler for that interrupt.

In summary, deadline analysis for interrupt-driven assem-
bly code remains a difficult and little-studied problem.

Our Results. We have designed and implemented a tool
for integrated deadline and WCET analysis of interrupt-
driven assembly code. In slogan form:

deadline analysis = static analysis + testing oracles.

For six commercial microcontroller programs, each on the
order of 1000 lines of code, we found that less than 17 oracles
were sufficient. In our experience, an expert user can add
the oracles in less than an hour, in an interactive fashion,
until the deadline analysis is complete.

Our tool uses a multi-resolution analysis, which allows it
to explore difficult segments of the control flow graph in
sufficient depth to bound the latency while staving off the
intractable complexity that would arise from using such fine-
grained analysis over the whole program.

Our static analysis proceeds by building and coloring a
flow graph. Each node is given one of five colors: Green,
Magenta, Blue, Yellow, and Red. Intuitively, Green means
that all is well, Magenta means that starvation is possible,
Blue means that starvation is possible later in the computa-
tion, Yellow means that the analysis thinks that the deadline
might not be met, and Red means that the analysis is cer-
tain that the deadline cannot be met. For our test suite,

.ORG %00h ;INTERRUPT VECTOR TABLE

.WORD #IRQVC0 ; Vector IRQ0

.WORD #IRQVC1 ; Vector IRQ1

.ORG %0Ch
INIT: ;INITIALIZATION

0C CALL PROC ; Call a little procedure.
0F CALL PROC ; Call a second time.
12 LD IMR, #81h ; Enable IRQ handler 0.

OUTLP: ;OUTPUT LOOP
15 LD P3, r1 ; Contents of r1 out port 3.
17 DJNZ r1, OUTLP ; Dec r1, jump if not zero.
19 CLR IMR ;Disable interrupts.

BSYLP: ;INPUT LOOP
1B TM P2, #10h ; Check high bit on port 2.
1E JR NZ, BSYLP ; If bit 1, busy-wait.
20 LD IMR, #83h ;Enable handlers 0 and 1.

LOOP: ;MAIN PROGRAM
23 JP LOOP ; An infinite loop.

PROC: ;SUBROUTINES
26 PUSH r0 ; Pushes value onto stack,
28 POP r0 ; pops it back off. Sole
2A RET ; purpose: confuse analysis.

;INTERRUPT HANDLERS
IRQVC0: ; Both handlers do nothing.

2B IRET ; Even so, complexity that
IRQVC1: ; arises from both in play

2C IRET ; causes all five colors.

Figure 2: Example Program

no Red nodes were found, we were able to eliminate all Yel-
low nodes by adding oracles, and we observed that very few
nodes were Magenta.

Figure 1 illustrates a flow graph at the time the deadline
analysis is complete, that is, when all Yellow nodes have
been eliminated. Notice that “other Handler” can starve an
interrupt that is to be handled by “Handler”.

Our tool is intended to be used as part of a three step
process. For a given interrupt, (1) add oracles until all nodes
are green, magenta, or blue, (2) use simulation and testing
to find a WCET for the magenta clouds, and (3) combine
the WCET’s from the green, blue, and magenta clouds to
compute the WCET for handling the interrupt.

In the following section, we present a program which will
be used as a running example throughout the paper. In
Section 3 we present our notion of oracles, in Section 4 we
show our multi-resolution static analysis, in Section 5 we
discuss our experimental results, and in Section 6 we walk
the reader through a session with our tool.

2. EXAMPLE
A Program and its Flow Graph. The example pro-

gram shown in Figure 2 is a short excerpt of Z86 assem-
bly code designed to exhibit interrupt latency characteris-
tics hostile to static analysis. There are two vectored inter-
rupt handlers, IRQVC0 and IRQVC1, both of which do nothing
but execute the return-from-interrupt instruction, IRET. The
procedure PROC pushes a value from a register onto the stack,
pops it off, and returns. The main loop, LOOP branches to it-
self infinitely. The OUTLP loop outputs the bytes 255 through
1 to an external data port and terminates, while the BSYLP

loop waits until data from an external port arrives with 0
as the most significant bit.

The two-digit hexadecimal numbers along the leftmost
column of the figure are the ROM addresses that would be

Figure 3: Example Program Flow Graph

generated for this program if it were actually compiled into
machine code. We will use these addresses throughout the
rest of this section to refer to specific lines of the example.

For the example program in Figure 2, we construct the
flow graph in Figure 3. Each node in the graph has three
pieces of information:

• Code address – the value of the instruction pointer
when the processor begins executing the instruction.
The upper leftmost node in the graph (“INIT”) con-
tains address “0C”, which is the first instruction exe-
cuted by the Z86 processor on powerup.

• IMR value – the bits in the Interrupt Mask Register
control vectored interrupt handling by the Z86 proces-
sor. The layout of the IMR is “M.543210”, where bit
“M” controls global interrupt handling, and the lower
order bits enable the six correspondingly-numbered in-
terrupt sources. The node at INIT has IMR value “00”,
indicating that all interrupts are turned off, while the
node at LOOP has IMR value “83”, indicating that vec-
tored interrupt handling is turned on and the handlers
for interrupts 1 and 0 are enabled.

• Stack context – initially, this field contains the top el-
ement on the system stack, “{}” for an empty stack,
or “?” when the exact value on the top of the stack is
irrelevant. As we will see later, multi-resolution analy-
sis may add additional items of stack context to nodes
as needed.

Solid arrows in the graph represent possible control flow
between nodes. When the transition between two nodes in-
volves a change in the stack, the edges have been annotated
with “!” and “?”. The notation “!3” indicates an opera-
tion that pushes three bytes onto the stack – an interrupt.
(When an interrupt handler is invoked, the Z86 pushes two
bytes of return address and one byte of condition code bits
onto the stack.) The notation “?2” indicates two bytes be-
ing popped off of the stack – a return from a procedure call.

Dashed arrows in the graph represent stack summary edges,
as defined in [5].

Initial Coloring of the Example Graph. The de-
signer of the example program in Figure 2 would like to know
if the tasks corresponding to interrupts 0 and 1 will meet
their deadlines. This requires information about the mini-
mum inter-arrival time for each interrupt source. But even
before that kind of data can be considered, there is another
key piece of information that any such analysis must have:
the WCET of the program with respect to interrupt latency.
We must know the maximum possible delay between the ar-
rival of an interrupt request and subsequent handling of that
request in order to make any accurate statement about the
system’s ability to meet deadlines.

In order to perform deadline analysis for a given interrupt,
our tool classifies the nodes in the flow graph into five colors.
Three of those colors will be explained here; two more will
be covered in Section 4.

Green nodes in the graph are those from which computa-
tion will inevitably reach the handler of interest. For a green
node, we can easily compute the WCET from the node to
the handler.

Red nodes are those from which it is impossible to reach
the handler of interest. In the model of computation we are
considering, this would be a significant program error, such
as an infinite loop with interrupt handling disabled. Our
test suite of production microcontroller software contained
no such errors, so Red will not be discussed any further.

Yellow nodes are those which could not be definitively
classified as Green or Red for the handler of interest.

If we color the example system flow graph (Figure 3) with
respect to interrupt handler 1, the nodes with addresses 2C,
23, and 20 would be colored Green, as would the node for
the lowest instance of the interrupt zero handler, 2B, off of
the LOOP node. Nodes 1B and 1E would be colored Yel-
low because the tool cannot statically determine how long
it will take to complete the BSYLP loop. Finally, since the
remaining nodes in the graph above BSYLP can reach inter-
rupt handler 1 only through BSYLP, they too will be colored
Yellow in the initial round.

Eliminating all Yellow nodes in the graph would allow us
to give firm bounds on the execution time of any path in
the program leading to the interrupt handler. The Yellow
nodes fall into five basic categories:

• Nodes that are Yellow because they comprise a cycle
in the graph corresponding to an unbounded loop.

• Nodes that are Yellow because they comprise a cycle
that depends on external input. These can never be
resolved through static analysis, and will require some
form of additional information about the external en-
vironment of the controller. (For example, the node
with PC value 1B in Figure 3.)

• Nodes that are Yellow as a result of the appearance
of cycles that are artifacts of imprecision in the static
analysis, such as implicit path merging. (Cycle of 0F,
26, 28, and 2A in the example.)

• Nodes that are Yellow because the interrupt handler of
interest can be “starved” (in the classic operating sys-
tem sense) by another interrupt calling its own handler

frequently enough to prevent the processor from mak-
ing progress toward the handler of interest. (Nodes 15,
17, and 19 in the example.)

• Nodes that are Yellow only because they are “up-
stream” of other Yellow nodes. (Node 0C or 12 in
the example.)

Intuitively, Yellow represents a “don’t know” category of
nodes. The first two classes of nodes can be dealt with
through the use of oracles, as explained in the next section.
Infeasible-path Yellow nodes are eliminated using adaptive
slicing, as outlined in the section on multi-resolution analy-
sis. Starved Yellow nodes will be assigned a new color, to
be dealt with by simulation and testing. Finally, upstream
Yellow nodes will disappear when the other four classes of
Yellow nodes are eliminated.

3. TESTING ORACLES
Real-time, interrupt-driven software can contain loops that

cannot be bounded through static analysis. Synchronous
communication with off-chip resources, decisions predicated
on external data, or interaction with the user can be ex-
pressed as loops whose bounds depend on additional infor-
mation outside the realm of the system source code.

The BSYLP area of the example system is such a loop. It
is a simplified version of a busy-wait loop we have found in
several production microcontroller systems. Typically, such
a loop could be waiting for a peripheral device to signal that
it has received the last command, and can be issued further
commands. The designers of the system would know that
the manufacturer of the device guarantees the maximum
response time for this operation will be, e.g., 40mS, a fact
that cannot be ascertained from the source code. In order to
take advantage of this external information in our analysis,
we use an “oracle”, an entity that answers questions about
latency that cannot be answered by static analysis.

Syntax and Semantics of Oracles. An oracle is an
assertion of the form:

Address1 → Address2 = Latency

which says that the program will take at most Latency ma-
chine cycles to get from Address1 to Address2.

When constructing the initial control flow graph, our tool
uses the information provided by the oracle to insert time
summary edges from a node N in the graph with address
Address1 to a node M in the graph with address Address2

such that M and N have the same IMR value and stack
context. We initially anticipated needing more complex syn-
tax for specifying oracle edges, such as pattern matching on
IMR values or stack arithmetic. However, in the six produc-
tion microcontroller systems we have examined, the simple
address-matching-only edges have proven sufficient to bound
all of the loops that depend on external data.

The semantics of these time summary edges is such that
the color of the destination node can be safely extended
backward to the source node of the summary edge. This
does not in itself imply anything about maximum latency
between nodes that lie along a path from the source to the
destination. The time summary applies strictly to the max-
imum latency between two nodes touched by the time sum-
mary edge.

For the example program, we use a time summary oracle
to specify that the BSYLP loop takes at most 320,000 machine
cycles (40mS on the example architecture). The input to the
oracle is:

[0x001B] -> [0x0020] = 320000

The resulting change to the graph can be shown as follows:

The time summary edge from 1B to 20 (which is already
a Green node) allows 1B to be recolored Green. This in
turn causes 1E to be recolored Green as well, so this oracle
edge has eliminated BSYLP as an obstacle to determining
maximum interrupt latency for the entire program.

Three Uses of Oracles. In our experiments, we have
used oracles in three ways:

• External event delays – bounds for loops that rely on
data external to the system, such as bytes arriving on
the input ports of the processor.

• Internal loop bounds – many of the for-loop style con-
structs could be bounded using well-known static anal-
ysis techniques [14, 9]. However, implementing the
proper structural loop analysis for assembly language
source, without any annotations from the programmer,
could be far more expensive than simply ascertaining
the loop bounds manually (many of these loops are
trivially bounded by casual examination of the code)
and employing our sufficiently general time summary
oracle. This would not be a preferred use of this tool
in practice. An industrial strength version of the tool
would infer these bounds statically, or interactively
assist the programmer in annotating the code with
proper bounds. Our current tool leaves this for future
work.

• Internal data dependent loop bounds – a small number
of loops in the production programs relied not on im-
mediate constants near the top of the loop, but rather
on data elsewhere in the program. The most common
example of this was a display routine that iterated over
a zero-terminated ASCII string. Techniques exist to
automatically infer these kinds of bounds, but none
were already implemented for Z86 assembly language,
so we chose to manually ascertain the bounds on these
loops, and insert equivalent time summary edges.

Fully two thirds of the input we provided to our time
summary oracle were loop bounds that could either be stati-
cally checked as annotations or statically inferred by a more
advanced tool. The remaining third of the input was for
external event delays of the kind that could not possibly
be determined statically. A very small number of the input

items were for loops dependent on internal data, which could
probably be determined with a very thorough flow analysis
of all registers in the program.

The interface our tool provides to assist the user in giving
these assertions to the oracle is quite straightforward. Af-
ter initial coloring of the graph, the tool produces a list of
border yellow nodes – yellow nodes that are one edge away
from Green nodes. Typically, these will be branch or jump
instructions that comprise the bottom of a loop. In the case
of the example program, our tool would produce the result,

Border Yellow instructions:

L001E: JR NZ, L001B

directing the user to the BSYLP loop.
The truthfulness of assertions made by the user to the ora-

cle are taken for granted by the current system. In practice,
one would want to concentrate system testing or simulation
on these areas to gain confidence in the validity of the asser-
tions. However, the key point to be made is that the static
analysis has greatly reduced the sheer volume of program
states that must be tested. In each of the production mi-
crocontrollers we analyzed, there were fewer than 20 overall
assertions to the oracle, each of which covered only a handful
of nodes in the graph, out of tens or hundreds of thousands
of nodes in the graph overall.

Static analysis can reduce the size of the latency testing
problem from an utterly intractable scale down to a sub-
set of the program small enough that one could conceivably
use exhaustive simulation to ascertain the remaining WCET
information, or apply other finer-grained and less-scalable
analyses.

4. MULTI-RESOLUTION ANALYSIS
When initially constructing the control flow graph of a

program, our tool uses static analysis to glean the possible
IMR values and top elements of the stack for each node.
Abstracting away the rest of the machine state implicitly
merges control flow paths, thereby allowing the size of the
graph to remain tractable – typically much less than a mil-
lion nodes, rather than the 227 nodes which is the worst case
for this model. (7 bits of IMR, 8 bits of stack element, and
12 bits of PC = 27 bits per node.) However, the imprecision
of having nodes distinguished by only one element of stack
context (analogous to 1-CFA in flow analysis parlance [18]),
can result in artificial cycles appearing in the control flow
graph.

Such is the case in the example program, where proce-
dure PROC is called twice within a segment where interrupt
handling is disabled. Ignoring for a moment the question of
how to bound latency from node 12, the INIT segment of
the graph would still be colored Yellow because of the path
[0F,00,{}], [26,00,{12}], [28,00,{?}], [2A,00,{0F}], and back
to [0F,00,{}]. This is a false path, which does not corre-
spond to genuine control flow – the second call to PROC will
return to the originating call site, not the previous call site.

In the following subsections we present our approach to
multi-resolution analysis which improves precision of the
control flow graph, thereby eliminating many false paths.

Multi-Resolution via Adaptiveness. False paths are
a well known problem in control flow analysis; one solution is
to employ k-CFA with larger values of k. However, it could

be disastrous to recompute the entire control flow graph
with a higher value of k, as this quickly causes the graph to
explode in size for interrupt-driven software. Our tool uses a
multi-resolution analysis, where the value of k (the amount
of stack context used to distinguish nodes), is increased only
in the areas of the graph where it is necessary to alleviate
ambiguity in latency analysis. Thus, nodes like [28,00,{?}]
in the example are adaptively sliced into non-Yellow nodes
with greater stack context, [28,00,{?,0F}] and [28,00,{?,12}]:

This approach is inspired by Plevyak and Chien [16]. In-
dependently of our work, Guyer and Lin [11] have also used
multi-resolution analysis.

This multi-resolution analysis takes place automatically;
the tool iteratively identifies nodes that are both border yel-
low and stack popping instructions (POP, RET, and IRET),
and adaptively slices these nodes and their associated graph
segments to the necessary depth. This technique represents
a substantial savings in graph complexity, reducing the size
of the graph by 20% to 60% compared to running the anal-
ysis of the production programs with a fixed, non-adaptive
k-CFA. However, the reduction in graph size can come at the
cost of increased analysis time. While our multi-resolution
analysis reduces the number of nodes and edges in the graphs
in all cases, when compared with the running time of straight
k-CFA, it runs faster in some cases, but slower in others. In
two cases, the multi-resolution analysis is an order of mag-
nitude slower than straight k-CFA. This wide variation in
relative run times is highly dependent on the structure of the
program under analysis – the depth that the adaptive slicing
must go to in order to disambiguate latency, the number of
call sites involved, and the lengths of the subroutines being
sliced are all factors in the cost of multi-resolution analysis.
For this reason, we have included a command-line option
which tells the tool to use straight k-CFA with a specific k,
rather than automatic multi-resolution analysis, so that the
user can choose whichever method performs better for their
given program input.

The multi-resolution analysis is guaranteed to terminate
because the control flow graphs have a bounded stack size,
which is verified by a previous phase of the tool [5]. The full
details of the adaptive slicing can be found in [4].

Magenta and Blue Nodes. We have resolved unbounded
loops, and external and internal data-dependent loops us-
ing oracles. We have used multi-resolution analysis to slice
apart Yellow nodes which appear as the result of implicit
path merging. We now have only interrupt starvation Yel-
low nodes to contend with.

Because these nodes are Yellow for a fundamentally dif-
ferent reason than the other nodes we have colored thus far,
we designate a new color.

• Magenta nodes are those which are one edge away from
either Green or Magenta nodes in the graph, AND are
one edge away from a non-Green interrupt handler.

We set aside these Magenta nodes as a special case for
which maximum latency of the Green interrupt handler can-
not be bounded without additional, detailed meta-knowledge
about the characteristics of the other non-Green interrupt
handlers involved (knowledge such as inter-arrival times of
interrupts, jitter, etc). These nodes are also different in that
the straightforward oracle-inserted time summary edges can-
not help render these nodes Green, even if we provide the
oracle with bounds on the WCET of the segment of Magenta
nodes. This is because each Magenta node can be starved,
since the non-Green interrupt handler can in the worst case
execute so frequently that the computation does not make
progress from the Magenta node.

The WCET of contiguous clusters, or “clouds”, of Ma-
genta nodes cannot be reasoned about at the individual node
level, unlike all of the other analyses we have mentioned thus
far. For this reason, we are forced to leave the Magenta cloud
bounding problem to a future step of the deadline analysis
process. Fortunately, our analysis has revealed that on av-
erage, fewer than 2% of the nodes in our production micro-
controller suite are Magenta; in several cases, there are no
Magenta nodes at all.

The previously Yellow nodes which were upstream from
Magenta nodes are now also assigned a new color.

• Blue nodes are those for which we can precisely bound
the WCET to reach a cloud of Magenta nodes.

Intuitively, Blue nodes are well-behaved segments of the
graph which would be Green if there were not a Magenta
cloud of potential interrupt starvation between them and
the Green handler, see Figure 1.

The algorithm for coloring the graph can be summarized
in CTL notation. We use H to denote a predicate that is
true for a node when it represents the first instruction of the
interrupt handler of interest.

UltraGreen ≡ H
Green ≡ AF (UltraGreen)

Magenta ≡ EF (Green) ∧ EX(handler 6∈ H)
Blue ≡ AF (Magenta)
Red ≡ ¬EF (UltraGreen)

Y ellow ≡ ¬(Red ∨Green ∨Magenta ∨Blue)

A comprehensive explanation of the algorithm and its im-
plementation can be found in [4].

Returning to the control flow graph from Figure 3, we
see that the three nodes at 15, 17, and 19 are colored Ma-
genta. The interrupt handler nodes, 2B, hanging off of the
Magenta section are considered Blue. The entire segment
above OUTLP, with the help of the slicing explained in the
previous section, is colored Blue.

The entire flow graph of the example program is now
Green, Blue, or Magenta. All edges in the graph are anno-
tated with execution cycles; all timing information is taken
from Zilog Inc.’s Z86 reference manual, Z86E30/E31/E40
Preliminary Product Specification. WCET in the graph can
be calculated by a recursive traversal in which WCET (B) =
max(WCET (A) + edgeAB), where A ranges over all nodes
that connect directly to node B, and edgeAB is the cost of
the edge from A to B. Running this traversal over the Green
nodes in the example program produces a WCET of 320010
machine cycles between the Magenta node at 19 and the in-
terrupt handler at 2C. The same calculation over the Blue

Program Lines IRQs Purpose
CTurk 1367 2 Agricultural control
GTurk 1687 2 Agricultural control
ZTurk 1612 2 Agricultural control
DRop 1162 3 Reverse osmosis control
Rop 1172 3 Reverse osmosis control
Serial 795 3 RS-485 Network
Micro00 84 2 Example from ICSE01
ICSE01 55 1 Example from ICSE01
FSE03 35 2 Example for this paper

Figure 4: Benchmark Characteristics

nodes reveals a maximum WCET of 102 machine cycles from
the start of the program to the start of the Magenta nodes.

Combining this information with additional knowledge
about the Magenta section, e.g., it will take at most 200
cycles to get from 12 to 1B through the Magenta section,
bounds the maximum interrupt latency to be 320312 cycles.

5. EXPERIMENTAL RESULTS
The following sections present our experiments applying

our tool to a suite of commercially available microcontroller
systems. Following these results, we present a narrative of
a representative session with our tool, starting from a fresh
program, and iterating with our tool until all nodes are ei-
ther Green, Blue, or Magenta.

Benchmark Characteristics. The benchmarks we have
used, see Figure 4, are a collection of real-time, interrupt-
driven systems programmed in Z86 assembly language and
lent to us for analysis by Greenhill Manufacturing, Ltd.
(www.greenhillmfg.com).

These systems operate on a descendant of the Z80 pro-
cessor, the Z86E30 microcontroller, with 256 bytes of RAM,
4K of program ROM, and a 12MHz clock. The resources
available to such a chip are moderate at best, but this is
true of millions of units of similar 4-, 8- and 16-bit embed-
ded systems sold every year. The software for these systems
was written by hand, in Z86 assembly language, and varies
in size from about 800 to 1600 lines of code. The prototypes
for each of these systems underwent months of testing prior
to actual production, but the overall properties of these sys-
tems were still poorly understood, largely due to the lack of
proper analysis tools like the one we present here.

The test suite also includes the example program from
Figure 2, called “FSE03”, as well as examples from [5], called
“ICSE01,” and “Micro00.”

Measurements. The results shown in Figure 5 give the
final percentages of nodes by color after our tool completed
the analysis. For clarity of presentation, we have numbered
the interrupt sources in the tables as “IRQ1”, “IRQ2”, and
IRQ3. This does not imply any kind of priority relationship
between the various interrupt sources, nor are these the ac-
tual interrupt source numbers from the Z86 processor; they
are simply organized into columns. (E.g., Cturk has inter-
rupt handlers for Z86 IRQ3, IRQ4, and IRQ5, and these
are labeled 1st, 2nd, and 3rd IRQ respectively in the table.)
Note that our tool rounds percentages down in most cases,
or up in the case of percentages less than 1%, so the tables
in Figure 5 may not total precisely to 100%.

Percentage Green Percentage Blue
Prog IRQ1 IRQ2 IRQ3 IRQ1 IRQ2 IRQ3

CTurk 100% 5% . 0% 87% .
GTurk 100% 2% . 0% 94% .
ZTurk 100% 2% . 0% 94% .
DRop 99% 62% 40% 1% 36% 58%
Rop 99% 66% 37% 1% 32% 60%
Serial 100% 54% 49% 0% 44% 49%
Micro00 56% 45% . 38% 49% .
ICSE01 100% . . 0% . .
FSE03 100% 28% . 0% 57% .

Percentage Magenta Percentage Yellow
Prog IRQ1 IRQ2 IRQ3 IRQ1 IRQ2 IRQ3

CTurk 0% 7% . 0% 0% .
GTurk 0% 3% . 0% 0% .
ZTurk 0% 3% . 0% 0% .
DRop 1% 1% 1% 0% 0% 0%
Rop 1% 1% 2% 0% 0% 0%
Serial 0% 1% 1% 0% 0% 0%
Micro00 5% 5% . 0% 0% .
ICSE01 0% . . 0% . .
FSE03 0% 14% . 0% 0% .

Figure 5: Results With Completed Oracles

Adaptive Slicing fixed k-CFA
Program Max k Nodes Edges Nodes Edges
CTurk 9 35750 51329 63904 84594
GTurk 10 140817 184724 215603 272421
ZTurk 10 127892 168104 190813 241118
DRop 5 19206 25244 46246 58510
Rop 5 21837 28731 54900 69597
Serial 3 8158 10753 19352 24775
Micro00 1 339 619 339 619
ICSE01 1 46 74 46 74
FSE03 2 18 33 21 33

Figure 6: Adaptive Slicing vs. Fixed k-CFA

Yellow nodes were completely eliminated, and the per-
centages of Green and Blue were quite high. The amount of
Magenta present in the final graphs was uniformly low, less
than 2% of the overall graph size on average. Several of the
benchmarks had 0% Magenta for a given IRQ, which means
our tool can safely and completely bound interrupt latency
for those particular handlers from anywhere in the program.

Our analysis tool is implemented in Java, and took less
than the 128 Megabytes of available RAM to complete the
analysis in all cases. The running time of the tool increases
as the number of oracle assertions allows the tool to slice
deeper into the graphs. Run-time varied from less than 2
seconds up to an hour for the largest benchmark (with full
multi-resolution analysis), with an average run-time of 15
minutes overall. The current implementation has been opti-
mized toward rapid prototyping and easy debugging of the
tool, with little regard for running time and space require-
ments. It is expected that an industrial-strength version of
the tool could easily be constructed to run in far less time.

Figure 6 shows the sizes of the graphs generated by the
analysis, both with adaptive slicing, and with a fixed k-

Number of Summary Edges
Program Total External Internal Data
CTurk 15 5 9 1
GTurk 17 5 11 1
ZTurk 17 5 11 1
DRop 16 6 9 1
Rop 16 6 9 1
Serial 2 1 1 0
Micro00 0 0 0 0
ICSE01 1 0 1 0
FSE03 1 1 0 0

Figure 7: Oracle Information Provided

CFA, where the value for k is fixed to the depth needed by
the adaptive slicing.

As mentioned earlier, this technique represents a sub-
stantial savings in graph complexity, with multi-resolution
graphs 20% to 60% smaller than the equivalent fixed k-
CFA graphs. While the fixed k-CFA graphs can be con-
structed substantially faster in some cases, the reduction in
Yellow nodes offered by the multi-resolution analysis is usu-
ally far more valuable. When using the tool to iteratively
discover time summary assertions for reducing Yellow nodes,
(as demonstrated in the next section,) anything that causes
larger graphs potentially creates more Yellow nodes, adding
more noise to the output of the tool, and making the entire
process increasingly difficult.

Figure 7 characterizes the number and types of assertions
that were provided to the time summary oracle in order to
eliminate all Yellow nodes in the test suite.

In all cases, there was only one contiguous Magenta cloud
for each program that had any Magenta nodes.

Assessment. The complete elimination of Yellow nodes
from the control flow graphs of the commercial microcon-
trollers was our primary goal, and this has been accom-
plished by our tool.

The high percentage of Green and Blue nodes makes it
possible to completely bound interrupt latency for some of
the interrupt sources in some of the benchmarks, and brings
us much closer to completely bounded latency in the others.

The low percentage of Magenta nodes in the graphs, com-
bined with the fact that Magenta nodes are constrained to
a single, contiguous cloud in all of the benchmarks, gives us
high hopes of being able to automatically bound these most
troublesome parts of the graph in the future. The only case
where Magenta levels reached a double digit percentage was
the FSE03 example program, which was constructed to have
a prominent Magenta segment. In many cases, the Magenta
section is small enough that we could expect the total un-
interrupted WCET of the Magenta cloud to be less than
the minimum period of the interfering interrupt handler(s),
which would make it relatively easy to reason about these
sections with a simple worst-case response time analysis [20]
or by detailed simulation and testing.

The number of time summary oracle assertions necessary
to eliminate Yellow nodes from our benchmarks is small and
manageable. Well over half of the assertions are of the type
that we believe could be automatically inferred by simple
local data flow analysis.

6. USER EXPERIENCE
In this section, we detail the complete process of starting

with a raw program, and iterating with our tool to add
assertions to the time summary oracle until all Yellow nodes
are eliminated.

We choose one of the moderately sized benchmarks, Rop.
The initial run of the tool takes 23 seconds and outputs:

Border Yellow instructions:

L0667: JR ULT, L0680

L0675: JR ULT, L0680

L00D2: JR EQ, L00E3

L066C: JR UGT, L067C

L067A: JR ULE, L0681

L0312: JR C, L0308

L062D: JR ULE, L061C

L0268: JR UGE, L02B7

L0080: JR EQ, L00F2

L02BA: JR UGE, L02C3

L034C: JR EQ, L0354

L0396: PUSH %FBh

L04E6: DJNZ r14, L04E0

Edges = 24503 Green Yellow Magenta Blue

Nodes = 18559 12522 6029 2 6

Percent = 67% 32% 1% 1%

The list of potential Yellow nodes is long for the initial run,
because it is not trivial for the tool to distinguish between
key Yellow loops that must be broken and loop instructions
that happen to be on the Yellow border for other reasons.

Looking through some of the tool’s suggested locations
in the code, the user’s attention is immediately drawn to a
potential loop to bound.

The DJNZ instruction at L04E6 is part of a double loop that
debounces the input from a mechanical switch attached to
the system. The design of the system specifies that this
mechanical contact should not bounce for more than 10mS
when in good working order.

The double loop is actually two intertwined loops (which
would be difficult to implement in most higher level lan-
guages), but can be bounded with a pair of assertions to the
time summary oracle:

[0x04E0]->[0x04E8]=80000 ; Debounce. (10mS) [E]

[0x04DC]->[0x04E8]=80000 ; Debounce. (10mS) [E]

The syntax on the left describes the source and destina-
tion nodes, and the length of time to assert. To the right
of the semi-colon, a comment documents the reason for the
assertion, and the time translated into seconds. (80,000 ma-
chine cycles equals 10 milliseconds with an 8MHz clock.)

The user reruns the tool, with the new oracle assertions.
After 31 seconds, the tool responds:

Border Yellow instructions:

L0667: JR ULT, L0680

L0675: JR ULT, L0680

L00D2: JR EQ, L00E3

L066C: JR UGT, L067C

L067A: JR ULE, L0681

L0312: JR C, L0308

L062D: JR ULE, L061C

L0268: JR UGE, L02B7

L0080: JR EQ, L00F2

L02BA: JR UGE, L02C3

L034C: JR EQ, L0354

L0396: PUSH %FBh

L04DA: JR NZ, L04D6

Edges = 24513 Green Yellow Magenta Blue

Nodes = 18559 12528 6023 2 6

Percent = 67% 32% 1% 1%

Note that the node total has remained the same, but six
nodes that were Yellow are now Green. The DJNZ instruction
at L04E6 is no longer listed as a border yellow node, and a
new border node is listed in its place. The tool also outputs
the number of Red nodes in the graph, if any, but none of
these graphs contained Red nodes.

The loop at L04DA is a holding pattern that waits for the
human operator to release one of the push buttons. The
user interface segments of this microcontroller system are
only executed when the system is in a programming mode,
so attention to interrupt handlers is not important here.
The user assumes that no one is pushing the button, and
the branch will never be taken.

The loop at L0312 waits on an external device that the
microcontroller has synchronous communication with. The
manufacturer guarantees a maximum 40mS delay before the
device responds.

The loop at L062D has an immediately visible bound, but
calls several levels of complex subroutines. This is the sort
of loop that would be extremely tedious to estimate by hand
with any accuracy, but which could probably be automat-
ically bounded by a simple local data flow analysis around
the loop and its subroutines. For now, the user puts in an
outrageous overestimate of 3 full seconds; this area should
be simulated in depth in order to tighten this estimate later.

The jump instruction JR EQ, L0354 at L034C is part of a
loop that writes ASCII strings to a connected LCD panel
one byte at a time. The number of iterations for the loop
is dependent upon the length of the string passed into the
subroutine, but the system is designed to have a 16 char-
acter LCD display, and none of the zero-terminated ASCII
string constants in the program are longer than 17 charac-
ters. The subroutine called from within the loop is Green
from some other call sites, so with some work, the user can
conservatively bound the loop to be 17 characters times at
most 40mS, for a total of 680 mS.

The oracle is provided with the next set of assertions. The
bracketed letters on the far right of the comment are per-
sonal notes about the type of assertion. An “[E]” indicates
“external delay loops,” which are impossible to statically
bound. An “[A]” indicates an assertion that we expect later
versions of the tool to infer automatically. The letter “[D]”
indicates a data-dependent loop which would require a very
clever data flow analysis to automatically bound.

[0x04D6]->[0x04DC]=30 ; No button press. [E]

[0x061C]->[0x062F]=24000000 ; Punt. (3sec) [A]

[0x0308]->[0x0314]=320000 ; Display. (40mS) [E]

[0x033D]->[0x0354]=5440000 ; 17 char (680mS) [D]

This run takes 36 seconds, and has significantly pared
down the number of suggested border nodes to look at. The
PUSH instruction continues to appear in the list only because

some other Yellow obstacle is preventing the slicer from iden-
tifying the correct segment to which additional stack context
should be added.

Border Yellow instructions:

L0396: PUSH %FBh

L0608: DJNZ r12, L0601

L0650: JR ULE, L063F

L042A: JR Z, L041C

Edges = 25044 Green Yellow Magenta Blue

Nodes = 18992 16470 2431 2 89

Percent = 86% 12% 1% 1%

The loop at L042A is part of another software debouncing
area. The user will assume no button press.

The loop at L0650 is a twin to the loop at L062D above, so
the user duplicates the assertion edge with new source and
destination addresses.

The DJNZ instruction at L0608 is part of a nested loop
that was designed to wait 20mS before sending more data
to a peripheral chip.

More assertions are added, and the tool is rerun.

[0x0420]->[0x0427]=46 ; No button press. [E]

[0x0420]->[0x042C]=66 ; No button press. [E]

[0x063F]->[0x0652]=24000000 ; Punt. (3sec) [A]

[0x0601]->[0x060A]=166086 ; EEPROM write (20mS) [A]

[0x0603]->[0x060A]=166086 ; EEPROM write (20mS) [A]

Border Yellow instructions:

L0396: PUSH %FBh

L05E5: DJNZ r13, L05D8

L05F6: DJNZ r13, L05EA

Edges = 25088 Green Yellow Magenta Blue

Nodes = 19020 17562 1367 2 89

Percent = 92% 7% 1% 1%

After 39 seconds of analysis, the percentage of Green nodes
has topped 90%, and the remaining Yellow nodes are in the
single digit range. The user is in the home stretch now.

Both of the suggested DJNZ instructions belong to loops
with obvious bounds. While somewhat tedious, the user is
able to total up the execution time of the dozen instructions
in the bodies of the loops, and multiply them by the bounds.

[0x05EA]->[0x05F8]=144 ; RDLP1 (8*18cyc=18uS) [A]

[0x05D8]->[0x05E7]=1200 ; SENDBF (8*150c =150uS) [A]

Border Yellow instructions:

L0396: PUSH %FBh

L0490: DJNZ r14, L048D

Edges = 28728 Green Yellow Magenta Blue

Nodes = 21837 21242 504 2 89

Percent = 97% 2% 1% 1%

After a 1 minute, 19 second analysis, the program has
97% Green nodes.

The next border node belongs to a loop with obvious
bounds calling a 40mS subroutine. There are two very sim-
ilar loops with slightly different bounds on the page above
L0490. The user adds assertions for all three.

[0x048D]->[0x0492]=1601000 ; DSPBCK 5x (201mS) [A]

[0x046C]->[0x0471]=1601000 ; DSPBCK 5x (201mS) [A]

[0x0445]->[0x044A]=1280800 ; DSPBCK 4x (161mS) [A]

The final run of the tool takes 1 minute, 26 seconds, but
produces zero Yellow nodes.

Edges = 28731 Green Yellow Magenta Blue

Nodes = 21837 21746 0 2 89

Percent = 99% 0% 1% 1%

The user has presented 16 assertions to the oracle, 10
of those based upon manual inspection of the code, rather
than external design criteria. The remaining simulation and
testing of the system should aim to validate and/or tighten
these unchecked assertions.

While the two Magenta nodes in the system seem to be a
small window of opportunity for interrupt starvation, they
comprise an infinite loop with a non-Green interrupt source
turned on. In other words, the system turns off all other
interrupts, and waits for a particular, different interrupt to
occur before returning to normal operation. Thus, deadline
analysis for this system and this particular interrupt handler
depends ultimately upon knowing the upper bound on the
time the system will have to wait for this other interrupt
source to be triggered.

Overall understanding of this system’s timing behavior
has increased as a result of our tool. Testing and simulation
can concentrate on the lines of code for which we have pro-
vided assertions, and on the Magenta nodes, both of which
comprise a tiny fraction of the total state space for the code.
Our tool produces simple flow graphs that depict the colors
of code regions, or can dump the graph in a flat file format
suitable for import into other visualization tools.

7. CONCLUSION
For interrupt-driven assembly code, our tool makes it sig-

nificantly easier to perform deadline analysis. We use static
analysis to reduce the required testing effort to concentrate
on the validity of certain testing oracles. Our multi-resolution
analysis allows for compact and efficient representation of
timing properties while smoothly incorporating the oracles.
For each of our test programs, less than 17 oracles are suffi-
cient, and these can be added in an interactive fashion until
the deadline analysis is complete. In our experience, an ex-
pert user can go from a bare program of about 1000 lines of
assembly code to a completed deadline analysis in less than
an hour, not counting the testing of the oracles.

While the current incarnation of the tool uses a Z86 front
end, the abstractions used in the graph analysis are appli-
cable to a wide range of other processors which use bit-
maskable, vectored interrupt handling, such as the Motorola
68000 family and many RISC DSP chips.

Future work includes improvements in (1) discovery of
loop variables bounds, (2) static analysis of magenta clouds,
based on specifications of minimum inter-arrival times for in-
terrupts, and (3) the interface for visualization of the graph.

Acknowledgments. We thank Mayur Naik, Krishna
Nandivada, John Regehr, Michael Richmond, Ben Titzer
and the anonymous reviewers for helpful comments on drafts
of the paper. We thank Greenhill Manufacturing, Ltd., for
the use of their proprietary software as test input. We were
supported by a National Science Foundation ITR Award
number 0112628.

8. REFERENCES
[1] R. Alur and D. L. Dill. A theory of timed automata.

Theoretical Computer Science, 126(2):183–235, 1994.

[2] R. Alur and T. A. Henzinger. Logics and models of
real time: A survey. In Real-Time: Theory in Practice,
Springer LNCS 600, pp.74–106, 1992.

[3] G. Bernat, A. Burns, and A. Wellings. Portable
WCET analysis using Java byte code. In Proc. ERTS
2000, pp.81–88, Jun 2000.

[4] D. W. Brylow. Static Analysis of Interrupt-Driven
Software. PhD thesis, Purdue University, 2003.

[5] D. W. Brylow, N. Damgaard, and J. Palsberg. Static
checking of interrupt driven software. In Proc. ICSE
2001, pp.47–56, June 2001.

[6] L. Cardelli. Type systems. In The Computer Science
and Engineering Handbook, chapter 103,
pp.2208–2236. CRC Press, Boca Raton, FL, 1997.

[7] E. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, Cambridge, MA, Jan 2000.

[8] M. Corti, R. Brega, and T. Gross. Approximation of
WCET for preemptive multitasking systems. In Proc.
LCTES 2000, Springer LNCS 1985, pp.178–198, 2000.

[9] J. Engblom and A. Ermedahl. Modeling complex flows
for WCET analysis. In Proc. RTSS 2000, Nov 2000.

[10] J. Engblom and B. Jonsson. Processor pipelines and
their properties for static WCET analysis. In Proc.
EMSOFT 02, Springer LNCS 2491, pp.334–348, 2002.

[11] S. Z. Guyer and C. Lin. Client-driven pointer analysis.
In Proc. SAS 03, pp.214–236, 2003.

[12] M. J. Harrold, J. A. Jones, T. Li, D. Liang, and
A. Gujarathi. Regression test selection for Java
software. In Proc. OOPSLA 01, pp.312–326. ACM,
2001.

[13] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, April 1999.

[14] S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[15] S. Petters and G. Färber. Making WCET analysis for
hard real-time tasks on state of the art processors
feasible. In Proc. RTCSA 99, pp.442–449, 1999.

[16] J. Plevyak and A. A. Chien. Precise concrete type
inference for object-oriented languages. In Proc.
OOPSLA 94, pp.324–340. ACM, 1994.

[17] D. J. Richardson, S. L. Aha, and T. O. O’Malley.
Specification-based test oracles for reactive systems.
In Proc. ICSE 92, pp.105–118. ACM, 1992.

[18] Olin Shivers. Control-Flow Analysis of Higher-Order
Languages. PhD thesis, CMU, May 1991.

[19] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and
precise WCET prediction by separated cache and path
analyses. Journal of Real-Time Systems,
18(2/3):157–179, 2000.

[20] K. W. Tindell, A. Burns, and A. J. Wellings. An
extendible approach for analysing fixed priority hard
real-time tasks. Journal of Real-Time Systems,
6(2):133–152, Mar 1994.

[21] E. Vivancos, C. Healy, F. Mueller, and D. Whalley.
Parametric timing analysis. In Proc. LCTES 01,
pp.88–93. ACM, 2001.

[22] Z. Xu, B. P. Miller, and T. Reps. Safety checking of
machine code. In Proc. PLDI 2000, pp.70–82, 2000.

