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 65(1), 201{211 (2000)Abstra
tLet �, �0 be two multipli
atively independent Pisot numbers, and letU , U 0 be two linear numeration systems whose 
hara
teristi
 polynomialis the minimal polynomial of � and �0, respe
tively. For every n � 1, ifA � INn is U� and U 0�re
ognizable then A is de�nable in hIN;+i.1. Introdu
tionThe Cobham-Sem�enov theorem [6, 19℄ states that for k; l multipli
atively in-dependent integers, any setX � INn whi
h is k� and l�re
ognizable is de�nablein hIN;+i.Alternative proofs of this result were proposed in [12℄ and [17℄; Mi
haux andVillemaire presented in [16℄ a new proof involving the B�u
hi-Bruy�ere theorem,whi
h provides a logi
al 
hara
terization of k�re
ognizable sets and enables todeal with problems on words by means of de�nability arguments. In [1℄ we usesome results of [16℄ to solve related de�nability and de
idability questions, fromwhi
h we derived a new proof of the Cobham-Sem�enov theorem.The study of non-
lassi
al numeration systems led to the notion of U�re
ogni{zable set, whi
h naturally extends the one of k�re
ognizable set. Bruy�ereand Hansel have shown re
ently [3℄ that most of the 
omputation models fork�re
ognizability 
an be generalized to the 
ase of linear numeration systemswhose 
hara
teristi
 polynomial is the minimal polynomial of a Pisot number.In parti
ular the B�u
hi-Bruy�ere theorem 
an be extended to these numerationsystems. Thanks to this result, we adapt here some ideas of [1℄ to prove thatthe Cobham-Sem�enov theorem still holds for two numeration systems satisfyingthe previous assumption:Theorem 3.1. Let �, �0 be two multipli
atively independent Pisot numbers,and let U , U 0 be two linear numeration systems whose 
hara
teristi
 polynomialis the minimal polynomial of � and �0, respe
tively. For every n � 1, if A � INnis U� and U 0�re
ognizable then A is de�nable in hIN; +i.This answers positively a 
onje
ture by Mi
haux and Villemaire [15, p.377℄,and improves results by Fabre [8℄ and Point-Bruyre [18℄ where Theorem 3.1is proved in 
ase one of the Pisot numbers is an integer. In [15℄ it is shownthat it is suÆ
ient to prove Theorem 3.1 for the 
ase where n = 1 and A is1



a subset of IN whi
h is expanding. This redu
tion step strongly relies on theresults obtained by Mi
haux and Villemaire on (non)de�nability in PresburgerArithmeti
 (see [14, 15, 16℄). Our proof involves this redu
tion step. Theorem3.1 has been proved independently by Fagnot [9℄ and Hansel [13℄, both usingMi
haux-Villemaire's redu
tion step, but with quite di�erent methods. Finallylet us mention that Durand [7℄ proved a similar result for the 
ase n = 1, withdi�erent assumptions.In Se
tion 2 we re
all de�nitions and results related to �nite automata, linearnumeration systems and U�re
ognizability. Se
tion 3 deals with the proof ofthe main result.2. PreliminariesThis se
tion provides the basi
 de�nitions, notations, results and tools thatwill be used in the paper.2.1 Finite automataLet � be a �nite alphabet. We denote by �� the set of �nite words over �,in
luding the empty word denoted by �. For every u 2 �� we denote by �(u)the length of u. For all u; v 2 ��, we say that u is a right fa
tor (resp. leftfa
tor) of v if there exists w 2 �� su
h that v = w � u (resp. v = u � w). Wespeak of stri
t fa
tor in the 
ase where w 6= �.We shall work with deterministi
 �nite �-automata reading words from rightto left. Our notation for su
h an automaton A will be A = (Q; q0; Æ; Q0), whereQ is the �nite set of states, q0 2 Q is the initial state, Q0 � Q is the set ofa

epting states, and Æ is the transition fun
tion. We denote by Æ� the fun
tionfrom Q��� to Q whi
h extends Æ as follows:Æ�(q; �) = q for every q 2 Q;Æ�(q; a) = Æ(q; a) for all q 2 Q; a 2 �;Æ�(q; aw) = Æ(Æ�(q; w); a) for all a 2 �, w 2 ��.A word w 2 �� is said to be a

epted by the �nite �-automaton A ifÆ�(q0; w) 2 Q0. We say that a state q 2 Q is visited during the 
omputa-tion of w by A if there exists a right fa
tor v of w su
h that Æ�(q0; v) = q. Asubset X of �� is said to be �-re
ognizable if it is the set of a

epted words ofsome �nite �-automaton.2.2 Linear numeration systemsWe 
all numeration system any stri
tly in
reasing sequen
e of integers U =(Un)n2IN su
h that U0 = 1 and fUn+1Un : n 2 INg is bounded. Every positiveinteger x 
an be represented asx = anUn + an�1Un�1 + : : :+ a0U02



using the Eu
lidian algorithm: let n be su
h that Un � x < Un+1, and let xn =x. For i = n; n� 1; : : : ; 1 we 
ompute the Eu
lidean division xi = aiUi + xi�1.Doing this we obtain a word anan�1 : : : a0 over the 
anoni
al alphabet �U =f0; 1; : : : ; 
g, where 
 is the greatest integer less than supfUn+1Un : n 2 INg. Theword anan�1 : : : a0 is 
alled the normalized U -representation of x, and denotedby �U (x). We denote by NU the set of normalized U-representations of integers:NU = f�U (x) : x 2 INg:By 
onvention 0 is represented by the empty word.Conversely for every word w = bnbn�1 : : : b0 over �U we 
all numeri
al valueof w the integer �U (w) = mXi=0 biUi:Let � denote the lexi
ographi
al ordering. The elements of NU satisfy thefollowing property:Proposition 2.1. For all u; v 2 NU ,�U (u) < �U (v)() u � v:A linear numeration system is a numeration system U = (Un)n2IN de�nedby a linear re
urren
e relationUn = dk�1Un�1 + : : :+ d0Un�kfor all n � k, with di 2 ZZ for i = 0; 1; : : : ; k � 1, and d0 6= 0. The polynomialPU (X) = Xk � dk�1Xk�1 � : : :� d1X � d0is 
alled the 
hara
teristi
 polynomial of the system U .For generalities about linear numeration systems we refer the reader to [10℄.In the sequel we will be 
on
erned with linear numeration systems whose 
har-a
teristi
 polynomial is the minimal polynomial of a Pisot number; they behave
losely to 
lassi
al numeration systems with respe
t to re
ognizability by �niteautomata (see e.g. [3, 11℄). Re
all that a Pisot number is an algebrai
 inte-ger � > 1 su
h that the roots of its minimal polynomial, distin
t from �, havemodulus less than 1.For the rest of the paragraph U = (Un)n2IN will denote a linear numerationsystem whose 
hara
teristi
 polynomial PU is the minimal polynomial of a Pisotnumber �.Under these assumptions, the roots �1 = �; �2; : : : ; �k of PU are simple andj�j j < 1 whenever j 6= 1: (1)3



Moreover there exist 
omplex 
onstants 
1; : : : ; 
k su
h that8n 2 IN Un = kXi=1 
i�ni : (2)Let us de�ne the fun
tion �� : ��U ! CI whi
h maps every w = an � � � a0 2 ��Uto ��(w) = 
1 nXi=0 ai�i:From (1) and (2) one easily dedu
es the following:Proposition 2.2. There exists a 
onstant e su
h that8w 2 ��U ; j�U (w)� ��(w)j < e:Now let u; v; w be words over �U su
h that uvw 2 NU and v 6= �. It iseasily seen that �U (uvnw) ! +1 as n ! +1. From this fa
t and the aboveproposition we get:Proposition 2.3. Let u; v; w 2 ��U be su
h that uvw 2 NU and v 6= �. Thenlimn!+1 �U (uvnw)j��(uvnw)j = 1:The next proposition follows easily from the previous one and the de�nitionof ��.Proposition 2.4. Let u; v; w be words over �U su
h that uvw 2 NU and v 6= �.There exists � 2 IR su
h that limn!+1 �U (uvnw)�n�(v)� = 1:2.3 Logi
 and U�re
ognizable setsThe notion of U�re
ognizable set naturally extends the one of p�re
ognizableset, whi
h 
on
erns representations in an integer base p � 2, to arbitrary nu-meration systems.Sin
e we have to deal with subsets of INn for an arbitrary integer n � 1, weshall extend our de�nition of �U . Let n be a positive integer; for every n�tuplex = (x1; x2; : : : ; xn) 2 INn we de�ne �U (x) as the word (of n�tuples)(0l�l1�U (x1); 0l�l2�U (x2); : : : ; 0l�ln�U (xn))4



over �nU , where li = �(�U (xi)) and l = maxfl1; : : : ; lng. Moreover we will denoteby 0 the n�tuple (0; 0; : : : ; 0).De�nition 2.5. Let n be a positive integer and U be a numeration system. Aset X � INn is said to be U�re
ognizable if the set �U (X) is �nU�re
ognizable.For every integer p � 2, p�re
ognizability 
orresponds to U�re
ognizabilityfor U = (pn)n2IN.The B�u
hi-Bruy�ere theorem ([2℄, see [4℄) states that for every integer k � 2a set X � INn is k�re
ognizable if and only if X is de�nable1 in the stru
turehIN;+; Vki (where Vk(x) denotes the greatest power of k whi
h divides x). In[3℄, Bruy�ere and Hansel generalized this result to the 
ase of linear numerationsystems whose 
hara
teristi
 polynomial is the minimal polynomial of a Pisotnumber.For any numeration system U = (Un)n2IN, one de�nes the fun
tion VU :IN ! IN as follows: VU (0) = U0 = 1, and for every positive integer x, if�U (x) = an : : : aj0j with aj 6= 0 then VU (x) = Uj (that is, VU (x) is the least Uiappearing in the normalized U�representation of x with a non-zero 
oeÆ
ient).Theorem 2.6. (Bruy�ere,Hansel) Let U be a linear numeration system whose
hara
teristi
 polynomial is the minimal polynomial of a Pisot number. Forevery n � 1 a set X � INn is U�re
ognizable if and only if X is de�nable inthe stru
ture hIN; +; VU i.2.4 The Cobham-Sem�enov theoremDe�nition 2.7. Two reals k; l > 1 are said to be multipli
atively dependent ifthere exist two positive integers a; b su
h that ka = lb. Otherwise k,l are saidto be multipli
atively independent.B�u
hi proved [5℄ that for all multipli
atively dependent integers k,k0, andevery set X � IN, X is k�re
ognizable if and only if X is k0�re
ognizable.On the other hand, it is easily shown that any set X � IN whi
h is ultimatelyperiodi
 (i.e. de�nable in hIN;+i) is k�re
ognizable for every integer k � 2.The Cobham-Sem�enov theorem spe
i�es the base-dependen
e of the notion ofk�re
ognizable set.Theorem 2.8. (Cobham,Sem�enov) Let k, l be two multipli
atively inde-pendent integers. For every n � 1 and every set X � INn, if X is k� andl�re
ognizable then X is de�nable in hIN; +i.1by de�nable we will always mean �rst-order de�nable5



The 
ase n = 1 was proved by Cobham in [6℄; Sem�enov extended the resultto higher dimensions in [19℄.3. The main resultIn this se
tion we prove the following theorem.Theorem 3.1. Let �, �0 be two multipli
atively independent Pisot numbers,and let U , U 0 be two linear numeration systems whose 
hara
teristi
 polynomialis the minimal polynomial of � and �0, respe
tively. For every n � 1, if A � INnis U� and U 0�re
ognizable then A is de�nable in hIN; +i.Remark: it follows from theorem 2.6 that if A is U� and U 0�re
ognizablethen A is de�nable in hIN;+; VU i and hIN;+; VU 0i. Thus every relation de�nablein hIN;+; Ai is de�nable in hIN;+; VU i and hIN;+; VU 0i too, and therefore is U�and U 0�re
ognizable (by virtue of the same theorem).We shall make use of the two following theorems, due to Mi
haux and Ville-maire [16℄.De�nition 3.2. Let (ln)n2IN be a stri
tly in
reasing sequen
e of integers, andlet L = fln : n 2 INg. We say that L is expanding if the set fln+1 � ln : n 2 INgis not bounded.Theorem 3.3. (Mi
haux,Villemaire) Let K � IN. If K is not de�nablein hIN; +i then there exists an expanding set L � IN whi
h is de�nable inhIN; +;Ki.Theorem 3.4. (Mi
haux,Villemaire) A set A � INn is de�nable in hIN; +iif and only if every subset of IN whi
h is de�nable in hIN; +; Ai is de�nable inhIN; +i.The proof of theorem 3.1 is organized as follows: assuming for a 
ontradi
tionthat there exists A � INn whi
h is U� and U 0�re
ognizable and not de�nable inhIN;+i, we use theorems 3.3 and 3.4 to de�ne in hIN;+; Ai a set M = (mn)n2INsu
h that mn+1 �mn � n for every n 2 IN. From this property of (mn)n2INwe then dedu
e (lemmas 3.5 and 3.6) that �U (M) is a �nite disjoint union of a�nite set and of sets of the form favnb : n 2 INg. Now using the remark of thebeginning of the se
tion, M should be U 0�re
ognizable too; we prove (by anappli
ation of the pumping lemma) that this 
ontradi
ts the previous propertyon �U (M). 6



Proof of theorem 3.1.Let � and �0 be two multipli
atively independent Pisot numbers. Assume fora 
ontradi
tion that there exists A � INn whi
h is U� and U 0�re
ognizable,and not de�nable in hIN;+i, for U and U 0 two linear numeration systems whose
hara
teristi
 polynomial is the minimal polynomial of � and �0, respe
tively.By theorem 3.4 there exists a setK � IN whi
h is de�nable in hIN;+; Ai and notde�nable in hIN;+i. Then by theorem 3.3 we get an expanding set L whi
h isde�nable in hIN;+;Ki. Let (ln)n2IN be the sequen
e of elements of L arrangedin in
reasing order. Consider the fun
tion f : L ! IN whi
h maps every ln to(ln+1 � ln). Now let M be the subset of L de�ned byM = fln : 8i < n; f(li) < f(ln)g:The set L is expanding, thus M is in�nite. Let (mn)n2IN be the sequen
eof elements of M arranged in in
reasing order. From the de�nition of f and Mone 
he
ks that 8n 2 IN; mn+1 �mn � f(mn) � mn � n: (P )Moreover M is de�nable in hIN;+; Li by the formulaM(x)() �L(x) ^ 9x0�L(x0) ^ x < x0 ^ :9z[x < z < x0 ^ L(z)℄^8yf[y < x^L(y)℄ =) 9y0[L(y0)^x < y0^:9z[y < z < y0^L(z)℄^y0+x < x0+y℄g	�(the relation x < y is obviously de�nable in hIN;+i).Therefore M is de�nable in hIN;+; Ai, and thus U -re
ognizable. Hen
e�U (M) is �U - re
ognizable. For the remainder of the proof letA = (Q; q0; Æ; Q0)be a deterministi
 �U -automata that re
ognizes �U (M).The following lemma states an interesting 
onsequen
e of property (P ) forthe set �U (M).Lemma 3.5. Let u; v; w1; w2 2 ��U , v 6= �. If �(w1) = �(w2), and furthermoreif for every n 2 IN, uvnw1 and uvnw2 belong to �U (M), then w1 = w2.Proof. Assume for a 
ontradi
tion that w1 6= w2. By our hypothesis uw1 anduw2 belong to �U (M), thus to NU ; sin
e w1 6= w2 by proposition 2.1 we have�U (uw1) 6= �U (uw2). Now �(w1) = �(w2) thus �U (w1) 6= �U (w2). Assume, forexample, �U (w2) > �U (w1). Let a = �U (w2)��U (w1), and let N be an integersu
h that �U (uvNw1) � ma+1 (su
h an integer exists sin
e v 6= �). There exist7



i1; i2 � a + 1 su
h that �U (uvNw1) = mi1 and �U (uvNw2) = mi2 . Then if 
denotes the length of w1 and w2,mi2 �mi1 = �U (uvNw2)� �U (uvNw1)= (�U (uvN0
) + �U (w2))� (�U (uvN0
) + �U (w1))= �U (w2)� �U (w1)= aNow mi2 �mi1 � mi1+1 �mi1and it follows from (P ) thatmi1+1 �mi1 � i1 � a+ 1whi
h 
annot be true. 2We now intend to show that that the set �U (M) is a �nite disjoint union ofa �nite set and of sets of the form favnb : n 2 INg. To this end let us introdu
esome notations.Let S � ��U be the set of words w su
h that(1) w is a

epted by A(2) There do not exist two distin
t right fa
tors of w, say w1 and w2, su
h thatÆ�(q0; w1) = Æ�(q0; w2)(that is, no state is visited several times during the 
omputation of w by A).It is easily seen that S is nonempty, and �nite. Now let B � ��U be the setof words w su
h that(1) w is a right fa
tor of some element in S;(2) there exists a word u 6= � su
h that Æ�(q0; w) = Æ�(q0; uw);(3) there is no stri
t right fa
tor of w, say w0, for whi
h there exists a wordu0 6= � su
h that Æ�(q0; w0) = Æ�(q0; u0w0):The set �U (M) is in�nite, thus B is nonempty. We denote by b1; : : : ; b� thedistin
t elements of B. For i = 1; : : : ; �, let vi be a word of minimal length su
hthat Æ�(q0; bi) = Æ�(q0; vibi):We denote by �(i) the number of distin
ts words a su
h that abi 2 S; thesewords will be denoted by ai;1; ai;2; : : : ; ai;�(i).8



For all integers i; j su
h that 1 � i � � and 1 � j � �(i), let us introdu
ethe set Ei;j = fai;jvinbi : n 2 INg:We denote by E0;0 the elements s of S for whi
h there are no words w; u,with u 6= �, su
h that w is a right fa
tor of s and Æ�(q0; w) = Æ�(q0; uw).Finally let I = f(i; j) : i = j = 0 _ 1 � i � �; 1 � j � �(i)g, andt =P�i=1 �(i).Lemma 3.6. The family (Ei;j)(i;j)2I is a partition of �U (M).Proof. We �rst pro
eed to show that for all distin
t 
ouples (q; r); (q0; r0) 2 Ithe sets Eq;r and Eq0;r0 are disjoint. The result is obvious in the 
ase whereone of the 
ouple is (0; 0). Now if q; q0 are positive, assume that Eq;r \ Eq0;r0 isnonempty. In this 
ase there exist two integers n; n0 su
h thataq;rvqnbq = aq0;r0vq0n0bq0 : (3)This equality implies that among the words bq and bq0 , one is a right fa
tor ofthe other; but it 
annot be a stri
t right fa
tor sin
e it would 
ontradi
t point(3) in the de�nition of B. Thus bq = bq0 , that is q = q0. Assume now thatn � n0; from the previous equality it follows thataq;rvqn�n0 = aq;r0 ; (4)The word aq;rvqn�n0bq belongs to S, sin
e the word aq;r0bq does; it follows fromthe de�nition of S that we must have n � n0 = 0. Therefore n = n0, andaq;r = aq;r0 ; thus r = r0, whi
h 
annot be.Now there remains to prove that[(i;j)2IEi;j = �U (M):If w 2 E0;0 then w 2 S, hen
e w 2 �U (M). Now suppose that w belongs tosome Eq;r with q > 0. There exists n 2 IN su
h that w = aq;rvqnbq. We haveÆ�(q0; aq;rvqnbq) = Æ�(q0; aq;rbq);thus the fa
t that aq;rbq belongs to S yields aq;rvqnbq 2 �U (M). We have provedthe in
lusion S(i;j)2I Ei;j � �U (M).For the 
onverse in
lusion, let u 2 �U (M). If there is no right fa
tor u0 of ufor whi
h there exists a word v0 6= � su
h thatÆ�(q0; v0u0) = Æ�(q0; u0);9



then u 2 E0;0. Otherwise let b be a right fa
tor of u of minimal length su
hthat there exists some word v0 6= � for whi
hÆ�(q0; v0b) = Æ�(q0; b):The word u belongs to �U (M), thus b must be a right fa
tor of some word of S;it follows that b 2 B, that is b = bj for some positive integer j � �. Now thereexist a 2 ��U and n 2 IN, su
h that u = avjnbj and vj is not a right fa
tor of a.Let us show that abj belongs to S, whi
h will ensure us that u belongs to someEj;k. The word avjnbj is a

epted by A, andÆ�(q0; avjnbj) = Æ�(q0; abj);therefore abj is a

epted by A. Thus there remains to show that no state isvisited several times during the 
omputation of abj by A. Assume the 
ontrary.Let b0 be the smallest right fa
tor of abj for whi
h there exists w right fa
tor ofabj and distin
t from b0 su
h thatÆ�(q0; b0) = Æ�(q0; w):Then there exist a0; z 2 ��U , z 6= � su
h that abj = a0zb0 andÆ�(q0; b0) = Æ�(q0; zb0):The word bj is a right fa
tor of b0, otherwise b0 would be stri
t right fa
tor ofbj , and the fa
t that Æ�(q0; b0) = Æ�(q0; zb0)would imply b0 2 B, whi
h 
ontradi
ts the minimality of bj . By setting b0 = a00bjwe then have abj = a0za00bj withÆ�(q0; a00bj) = Æ�(q0; za00bj):Moreover Æ�(q0; bj) = Æ�(q0; vjbj):Thus for all m1;m2 2 IN, the word a0zm1a00vjm2bj is a

epted by A. Let r =�(vj) and s = �(z). For every m 2 IN, the words a0zmzra00bj and a0zma00vjsbjare a

epted by A. But�(zra00bj) = s r + �(a00) + �(bj) = �(a00vjsbj): (5)From lemma 3.5 we get zra00bj = a00vjsbj , that iszra00 = a00vjs (6)If �(vj) > �(za00) then from (6) the word za00 is a stri
t right fa
tor of vj ;but Æ�(q0; a00bj) = Æ�(q0; za00bj);10



and this 
ontradi
ts the minimality of vj . It follows that �(vj) � �(za00) andby (6), vj is a right fa
tor of za00, a fortiori of a = a0za00, whi
h 
ontradi
ts thehypothesis on a. 2The set A is U 0�re
ognizable and M is de�nable in hIN;+; Ai, hen
e Mis U 0�re
ognizable too. We shall prove that this 
ontradi
ts the property on�U (M) expressed by the previous lemma.The set �U 0(M) is in�nite thus by the pumping lemma there exist u; v; w 2��U 0 su
h that v 6= � and for every n 2 IN the word uvnw belongs to �U 0(M). SetX = f�U 0(uvnw) : n 2 INg. X is an in�nite subset of M ; moreover if (xn)n2INdenotes the stri
tly in
reasing sequen
e of elements of X then by Proposition2.4 we get limn!+1 xn+1xn = �0e (7)where e = �(v).Let us re
all that I = f(i; j) : i = j = 0 _ 1 � i � �; 1 � j � �(i)g, andt =P�i=1 �(i).Set � = minfj�0i � �j j : 1 � i � et ; j � 1g2 . We have � > 0 sin
e � and�0 are multipli
atively independent. Moreover let q be an integer su
h that�q > �0et + 2�.From (7) we 
an dedu
e the existen
e of an integer N0 su
h that8n � N0 8d � t ����xn+dxn � �0ed���� < �: (8)On the other hand by Proposition 2.4 we have8(i; j) 2 I n (0; 0) 8k � q limn!+1 �U (ai;jvn+ki bi)�U (ai;jvni bi) = �k�(vi)thus there exists N1 2 IN su
h that8n � N1 8(i; j) 2 I n (0; 0) 8k � q �����U (ai;jvn+ki bi)�U (ai;jvni bi) � �k�(vi)���� < �: (9)Let R = maxf�U (x) : x 2 E0;0g and R0 = maxf�U (ai;jvni bi) : (i; j) 2 I n(0; 0) ; n � N1g. Fix an integer n su
h that n > N0 and xn > max(R;R0). Bylemma 3.6 and using the hypothesis xn > R, every word among �U (xn); �U (xn+1); : : : ; �U (xn+t)belongs to a unique set among (Ei;j)(i;j)2In(0;0) ; thus by the pigeon-hole prin
i-ple there exist at least two distin
t elements among �U (xn); �U (xn+1); : : : ; �U (xn+t),say �U (xn+l1 ) and �U (xn+l2 ) with 0 � l1 < l2 � t, whi
h belong to the sameset Ei;j for some (i; j) 2 I n (0; 0). That is,xn+l1 = �U (ai;jvn0i bi)11



and xn+l2 = �U (ai;jvn0+ki bi)where k 2 IN and n0 > N1.Now n > N0 thus by (8)����xn+l2xn+l1 � �0e(l2�l1)���� < �: (10)Let us now prove that k � q. Assume the 
ontrary; we havexn+l2xn+l1 = �U (ai;jvn0+ki bi)�U (ai;jvn0i bi) > �U (ai;jvn0+qi bi)�U (ai;jvn0i bi) :Now xn+l1 > R0 thus n0 > N1, hen
e by (9)�����U (ai;jvn0+qi bi)�U (ai;jvn0i bi) � �q�(vi)���� < �therefore xn+l2xn+l1 > �q�(vi) � � � �q � � > �0et + � � �0e(l2�l1) + �whi
h 
ontradi
ts (10).Thus k � q, so that we dedu
e from (9) and n0 > N1 that����xn+l2xn+l1 � �k�(vi)���� < �: (11)Finally (10) and (11) 
ontradi
t the very de�nition of �. 2A
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