
An Extension of the Cobham-Sem�enov TheoremAlexis B�esPublished in J.Symb.Logi 65(1), 201{211 (2000)AbstratLet �, �0 be two multipliatively independent Pisot numbers, and letU , U 0 be two linear numeration systems whose harateristi polynomialis the minimal polynomial of � and �0, respetively. For every n � 1, ifA � INn is U� and U 0�reognizable then A is de�nable in hIN;+i.1. IntrodutionThe Cobham-Sem�enov theorem [6, 19℄ states that for k; l multipliatively in-dependent integers, any setX � INn whih is k� and l�reognizable is de�nablein hIN;+i.Alternative proofs of this result were proposed in [12℄ and [17℄; Mihaux andVillemaire presented in [16℄ a new proof involving the B�uhi-Bruy�ere theorem,whih provides a logial haraterization of k�reognizable sets and enables todeal with problems on words by means of de�nability arguments. In [1℄ we usesome results of [16℄ to solve related de�nability and deidability questions, fromwhih we derived a new proof of the Cobham-Sem�enov theorem.The study of non-lassial numeration systems led to the notion of U�reogni{zable set, whih naturally extends the one of k�reognizable set. Bruy�ereand Hansel have shown reently [3℄ that most of the omputation models fork�reognizability an be generalized to the ase of linear numeration systemswhose harateristi polynomial is the minimal polynomial of a Pisot number.In partiular the B�uhi-Bruy�ere theorem an be extended to these numerationsystems. Thanks to this result, we adapt here some ideas of [1℄ to prove thatthe Cobham-Sem�enov theorem still holds for two numeration systems satisfyingthe previous assumption:Theorem 3.1. Let �, �0 be two multipliatively independent Pisot numbers,and let U , U 0 be two linear numeration systems whose harateristi polynomialis the minimal polynomial of � and �0, respetively. For every n � 1, if A � INnis U� and U 0�reognizable then A is de�nable in hIN; +i.This answers positively a onjeture by Mihaux and Villemaire [15, p.377℄,and improves results by Fabre [8℄ and Point-Bruyre [18℄ where Theorem 3.1is proved in ase one of the Pisot numbers is an integer. In [15℄ it is shownthat it is suÆient to prove Theorem 3.1 for the ase where n = 1 and A is1



a subset of IN whih is expanding. This redution step strongly relies on theresults obtained by Mihaux and Villemaire on (non)de�nability in PresburgerArithmeti (see [14, 15, 16℄). Our proof involves this redution step. Theorem3.1 has been proved independently by Fagnot [9℄ and Hansel [13℄, both usingMihaux-Villemaire's redution step, but with quite di�erent methods. Finallylet us mention that Durand [7℄ proved a similar result for the ase n = 1, withdi�erent assumptions.In Setion 2 we reall de�nitions and results related to �nite automata, linearnumeration systems and U�reognizability. Setion 3 deals with the proof ofthe main result.2. PreliminariesThis setion provides the basi de�nitions, notations, results and tools thatwill be used in the paper.2.1 Finite automataLet � be a �nite alphabet. We denote by �� the set of �nite words over �,inluding the empty word denoted by �. For every u 2 �� we denote by �(u)the length of u. For all u; v 2 ��, we say that u is a right fator (resp. leftfator) of v if there exists w 2 �� suh that v = w � u (resp. v = u � w). Wespeak of strit fator in the ase where w 6= �.We shall work with deterministi �nite �-automata reading words from rightto left. Our notation for suh an automaton A will be A = (Q; q0; Æ; Q0), whereQ is the �nite set of states, q0 2 Q is the initial state, Q0 � Q is the set ofaepting states, and Æ is the transition funtion. We denote by Æ� the funtionfrom Q��� to Q whih extends Æ as follows:Æ�(q; �) = q for every q 2 Q;Æ�(q; a) = Æ(q; a) for all q 2 Q; a 2 �;Æ�(q; aw) = Æ(Æ�(q; w); a) for all a 2 �, w 2 ��.A word w 2 �� is said to be aepted by the �nite �-automaton A ifÆ�(q0; w) 2 Q0. We say that a state q 2 Q is visited during the omputa-tion of w by A if there exists a right fator v of w suh that Æ�(q0; v) = q. Asubset X of �� is said to be �-reognizable if it is the set of aepted words ofsome �nite �-automaton.2.2 Linear numeration systemsWe all numeration system any stritly inreasing sequene of integers U =(Un)n2IN suh that U0 = 1 and fUn+1Un : n 2 INg is bounded. Every positiveinteger x an be represented asx = anUn + an�1Un�1 + : : :+ a0U02



using the Eulidian algorithm: let n be suh that Un � x < Un+1, and let xn =x. For i = n; n� 1; : : : ; 1 we ompute the Eulidean division xi = aiUi + xi�1.Doing this we obtain a word anan�1 : : : a0 over the anonial alphabet �U =f0; 1; : : : ; g, where  is the greatest integer less than supfUn+1Un : n 2 INg. Theword anan�1 : : : a0 is alled the normalized U -representation of x, and denotedby �U (x). We denote by NU the set of normalized U-representations of integers:NU = f�U (x) : x 2 INg:By onvention 0 is represented by the empty word.Conversely for every word w = bnbn�1 : : : b0 over �U we all numerial valueof w the integer �U (w) = mXi=0 biUi:Let � denote the lexiographial ordering. The elements of NU satisfy thefollowing property:Proposition 2.1. For all u; v 2 NU ,�U (u) < �U (v)() u � v:A linear numeration system is a numeration system U = (Un)n2IN de�nedby a linear reurrene relationUn = dk�1Un�1 + : : :+ d0Un�kfor all n � k, with di 2 ZZ for i = 0; 1; : : : ; k � 1, and d0 6= 0. The polynomialPU (X) = Xk � dk�1Xk�1 � : : :� d1X � d0is alled the harateristi polynomial of the system U .For generalities about linear numeration systems we refer the reader to [10℄.In the sequel we will be onerned with linear numeration systems whose har-ateristi polynomial is the minimal polynomial of a Pisot number; they behavelosely to lassial numeration systems with respet to reognizability by �niteautomata (see e.g. [3, 11℄). Reall that a Pisot number is an algebrai inte-ger � > 1 suh that the roots of its minimal polynomial, distint from �, havemodulus less than 1.For the rest of the paragraph U = (Un)n2IN will denote a linear numerationsystem whose harateristi polynomial PU is the minimal polynomial of a Pisotnumber �.Under these assumptions, the roots �1 = �; �2; : : : ; �k of PU are simple andj�j j < 1 whenever j 6= 1: (1)3



Moreover there exist omplex onstants 1; : : : ; k suh that8n 2 IN Un = kXi=1 i�ni : (2)Let us de�ne the funtion �� : ��U ! CI whih maps every w = an � � � a0 2 ��Uto ��(w) = 1 nXi=0 ai�i:From (1) and (2) one easily dedues the following:Proposition 2.2. There exists a onstant e suh that8w 2 ��U ; j�U (w)� ��(w)j < e:Now let u; v; w be words over �U suh that uvw 2 NU and v 6= �. It iseasily seen that �U (uvnw) ! +1 as n ! +1. From this fat and the aboveproposition we get:Proposition 2.3. Let u; v; w 2 ��U be suh that uvw 2 NU and v 6= �. Thenlimn!+1 �U (uvnw)j��(uvnw)j = 1:The next proposition follows easily from the previous one and the de�nitionof ��.Proposition 2.4. Let u; v; w be words over �U suh that uvw 2 NU and v 6= �.There exists � 2 IR suh that limn!+1 �U (uvnw)�n�(v)� = 1:2.3 Logi and U�reognizable setsThe notion of U�reognizable set naturally extends the one of p�reognizableset, whih onerns representations in an integer base p � 2, to arbitrary nu-meration systems.Sine we have to deal with subsets of INn for an arbitrary integer n � 1, weshall extend our de�nition of �U . Let n be a positive integer; for every n�tuplex = (x1; x2; : : : ; xn) 2 INn we de�ne �U (x) as the word (of n�tuples)(0l�l1�U (x1); 0l�l2�U (x2); : : : ; 0l�ln�U (xn))4



over �nU , where li = �(�U (xi)) and l = maxfl1; : : : ; lng. Moreover we will denoteby 0 the n�tuple (0; 0; : : : ; 0).De�nition 2.5. Let n be a positive integer and U be a numeration system. Aset X � INn is said to be U�reognizable if the set �U (X) is �nU�reognizable.For every integer p � 2, p�reognizability orresponds to U�reognizabilityfor U = (pn)n2IN.The B�uhi-Bruy�ere theorem ([2℄, see [4℄) states that for every integer k � 2a set X � INn is k�reognizable if and only if X is de�nable1 in the struturehIN;+; Vki (where Vk(x) denotes the greatest power of k whih divides x). In[3℄, Bruy�ere and Hansel generalized this result to the ase of linear numerationsystems whose harateristi polynomial is the minimal polynomial of a Pisotnumber.For any numeration system U = (Un)n2IN, one de�nes the funtion VU :IN ! IN as follows: VU (0) = U0 = 1, and for every positive integer x, if�U (x) = an : : : aj0j with aj 6= 0 then VU (x) = Uj (that is, VU (x) is the least Uiappearing in the normalized U�representation of x with a non-zero oeÆient).Theorem 2.6. (Bruy�ere,Hansel) Let U be a linear numeration system whoseharateristi polynomial is the minimal polynomial of a Pisot number. Forevery n � 1 a set X � INn is U�reognizable if and only if X is de�nable inthe struture hIN; +; VU i.2.4 The Cobham-Sem�enov theoremDe�nition 2.7. Two reals k; l > 1 are said to be multipliatively dependent ifthere exist two positive integers a; b suh that ka = lb. Otherwise k,l are saidto be multipliatively independent.B�uhi proved [5℄ that for all multipliatively dependent integers k,k0, andevery set X � IN, X is k�reognizable if and only if X is k0�reognizable.On the other hand, it is easily shown that any set X � IN whih is ultimatelyperiodi (i.e. de�nable in hIN;+i) is k�reognizable for every integer k � 2.The Cobham-Sem�enov theorem spei�es the base-dependene of the notion ofk�reognizable set.Theorem 2.8. (Cobham,Sem�enov) Let k, l be two multipliatively inde-pendent integers. For every n � 1 and every set X � INn, if X is k� andl�reognizable then X is de�nable in hIN; +i.1by de�nable we will always mean �rst-order de�nable5



The ase n = 1 was proved by Cobham in [6℄; Sem�enov extended the resultto higher dimensions in [19℄.3. The main resultIn this setion we prove the following theorem.Theorem 3.1. Let �, �0 be two multipliatively independent Pisot numbers,and let U , U 0 be two linear numeration systems whose harateristi polynomialis the minimal polynomial of � and �0, respetively. For every n � 1, if A � INnis U� and U 0�reognizable then A is de�nable in hIN; +i.Remark: it follows from theorem 2.6 that if A is U� and U 0�reognizablethen A is de�nable in hIN;+; VU i and hIN;+; VU 0i. Thus every relation de�nablein hIN;+; Ai is de�nable in hIN;+; VU i and hIN;+; VU 0i too, and therefore is U�and U 0�reognizable (by virtue of the same theorem).We shall make use of the two following theorems, due to Mihaux and Ville-maire [16℄.De�nition 3.2. Let (ln)n2IN be a stritly inreasing sequene of integers, andlet L = fln : n 2 INg. We say that L is expanding if the set fln+1 � ln : n 2 INgis not bounded.Theorem 3.3. (Mihaux,Villemaire) Let K � IN. If K is not de�nablein hIN; +i then there exists an expanding set L � IN whih is de�nable inhIN; +;Ki.Theorem 3.4. (Mihaux,Villemaire) A set A � INn is de�nable in hIN; +iif and only if every subset of IN whih is de�nable in hIN; +; Ai is de�nable inhIN; +i.The proof of theorem 3.1 is organized as follows: assuming for a ontraditionthat there exists A � INn whih is U� and U 0�reognizable and not de�nable inhIN;+i, we use theorems 3.3 and 3.4 to de�ne in hIN;+; Ai a set M = (mn)n2INsuh that mn+1 �mn � n for every n 2 IN. From this property of (mn)n2INwe then dedue (lemmas 3.5 and 3.6) that �U (M) is a �nite disjoint union of a�nite set and of sets of the form favnb : n 2 INg. Now using the remark of thebeginning of the setion, M should be U 0�reognizable too; we prove (by anappliation of the pumping lemma) that this ontradits the previous propertyon �U (M). 6



Proof of theorem 3.1.Let � and �0 be two multipliatively independent Pisot numbers. Assume fora ontradition that there exists A � INn whih is U� and U 0�reognizable,and not de�nable in hIN;+i, for U and U 0 two linear numeration systems whoseharateristi polynomial is the minimal polynomial of � and �0, respetively.By theorem 3.4 there exists a setK � IN whih is de�nable in hIN;+; Ai and notde�nable in hIN;+i. Then by theorem 3.3 we get an expanding set L whih isde�nable in hIN;+;Ki. Let (ln)n2IN be the sequene of elements of L arrangedin inreasing order. Consider the funtion f : L ! IN whih maps every ln to(ln+1 � ln). Now let M be the subset of L de�ned byM = fln : 8i < n; f(li) < f(ln)g:The set L is expanding, thus M is in�nite. Let (mn)n2IN be the sequeneof elements of M arranged in inreasing order. From the de�nition of f and Mone heks that 8n 2 IN; mn+1 �mn � f(mn) � mn � n: (P )Moreover M is de�nable in hIN;+; Li by the formulaM(x)() �L(x) ^ 9x0�L(x0) ^ x < x0 ^ :9z[x < z < x0 ^ L(z)℄^8yf[y < x^L(y)℄ =) 9y0[L(y0)^x < y0^:9z[y < z < y0^L(z)℄^y0+x < x0+y℄g	�(the relation x < y is obviously de�nable in hIN;+i).Therefore M is de�nable in hIN;+; Ai, and thus U -reognizable. Hene�U (M) is �U - reognizable. For the remainder of the proof letA = (Q; q0; Æ; Q0)be a deterministi �U -automata that reognizes �U (M).The following lemma states an interesting onsequene of property (P ) forthe set �U (M).Lemma 3.5. Let u; v; w1; w2 2 ��U , v 6= �. If �(w1) = �(w2), and furthermoreif for every n 2 IN, uvnw1 and uvnw2 belong to �U (M), then w1 = w2.Proof. Assume for a ontradition that w1 6= w2. By our hypothesis uw1 anduw2 belong to �U (M), thus to NU ; sine w1 6= w2 by proposition 2.1 we have�U (uw1) 6= �U (uw2). Now �(w1) = �(w2) thus �U (w1) 6= �U (w2). Assume, forexample, �U (w2) > �U (w1). Let a = �U (w2)��U (w1), and let N be an integersuh that �U (uvNw1) � ma+1 (suh an integer exists sine v 6= �). There exist7



i1; i2 � a + 1 suh that �U (uvNw1) = mi1 and �U (uvNw2) = mi2 . Then if denotes the length of w1 and w2,mi2 �mi1 = �U (uvNw2)� �U (uvNw1)= (�U (uvN0) + �U (w2))� (�U (uvN0) + �U (w1))= �U (w2)� �U (w1)= aNow mi2 �mi1 � mi1+1 �mi1and it follows from (P ) thatmi1+1 �mi1 � i1 � a+ 1whih annot be true. 2We now intend to show that that the set �U (M) is a �nite disjoint union ofa �nite set and of sets of the form favnb : n 2 INg. To this end let us introduesome notations.Let S � ��U be the set of words w suh that(1) w is aepted by A(2) There do not exist two distint right fators of w, say w1 and w2, suh thatÆ�(q0; w1) = Æ�(q0; w2)(that is, no state is visited several times during the omputation of w by A).It is easily seen that S is nonempty, and �nite. Now let B � ��U be the setof words w suh that(1) w is a right fator of some element in S;(2) there exists a word u 6= � suh that Æ�(q0; w) = Æ�(q0; uw);(3) there is no strit right fator of w, say w0, for whih there exists a wordu0 6= � suh that Æ�(q0; w0) = Æ�(q0; u0w0):The set �U (M) is in�nite, thus B is nonempty. We denote by b1; : : : ; b� thedistint elements of B. For i = 1; : : : ; �, let vi be a word of minimal length suhthat Æ�(q0; bi) = Æ�(q0; vibi):We denote by �(i) the number of distints words a suh that abi 2 S; thesewords will be denoted by ai;1; ai;2; : : : ; ai;�(i).8



For all integers i; j suh that 1 � i � � and 1 � j � �(i), let us introduethe set Ei;j = fai;jvinbi : n 2 INg:We denote by E0;0 the elements s of S for whih there are no words w; u,with u 6= �, suh that w is a right fator of s and Æ�(q0; w) = Æ�(q0; uw).Finally let I = f(i; j) : i = j = 0 _ 1 � i � �; 1 � j � �(i)g, andt =P�i=1 �(i).Lemma 3.6. The family (Ei;j)(i;j)2I is a partition of �U (M).Proof. We �rst proeed to show that for all distint ouples (q; r); (q0; r0) 2 Ithe sets Eq;r and Eq0;r0 are disjoint. The result is obvious in the ase whereone of the ouple is (0; 0). Now if q; q0 are positive, assume that Eq;r \ Eq0;r0 isnonempty. In this ase there exist two integers n; n0 suh thataq;rvqnbq = aq0;r0vq0n0bq0 : (3)This equality implies that among the words bq and bq0 , one is a right fator ofthe other; but it annot be a strit right fator sine it would ontradit point(3) in the de�nition of B. Thus bq = bq0 , that is q = q0. Assume now thatn � n0; from the previous equality it follows thataq;rvqn�n0 = aq;r0 ; (4)The word aq;rvqn�n0bq belongs to S, sine the word aq;r0bq does; it follows fromthe de�nition of S that we must have n � n0 = 0. Therefore n = n0, andaq;r = aq;r0 ; thus r = r0, whih annot be.Now there remains to prove that[(i;j)2IEi;j = �U (M):If w 2 E0;0 then w 2 S, hene w 2 �U (M). Now suppose that w belongs tosome Eq;r with q > 0. There exists n 2 IN suh that w = aq;rvqnbq. We haveÆ�(q0; aq;rvqnbq) = Æ�(q0; aq;rbq);thus the fat that aq;rbq belongs to S yields aq;rvqnbq 2 �U (M). We have provedthe inlusion S(i;j)2I Ei;j � �U (M).For the onverse inlusion, let u 2 �U (M). If there is no right fator u0 of ufor whih there exists a word v0 6= � suh thatÆ�(q0; v0u0) = Æ�(q0; u0);9



then u 2 E0;0. Otherwise let b be a right fator of u of minimal length suhthat there exists some word v0 6= � for whihÆ�(q0; v0b) = Æ�(q0; b):The word u belongs to �U (M), thus b must be a right fator of some word of S;it follows that b 2 B, that is b = bj for some positive integer j � �. Now thereexist a 2 ��U and n 2 IN, suh that u = avjnbj and vj is not a right fator of a.Let us show that abj belongs to S, whih will ensure us that u belongs to someEj;k. The word avjnbj is aepted by A, andÆ�(q0; avjnbj) = Æ�(q0; abj);therefore abj is aepted by A. Thus there remains to show that no state isvisited several times during the omputation of abj by A. Assume the ontrary.Let b0 be the smallest right fator of abj for whih there exists w right fator ofabj and distint from b0 suh thatÆ�(q0; b0) = Æ�(q0; w):Then there exist a0; z 2 ��U , z 6= � suh that abj = a0zb0 andÆ�(q0; b0) = Æ�(q0; zb0):The word bj is a right fator of b0, otherwise b0 would be strit right fator ofbj , and the fat that Æ�(q0; b0) = Æ�(q0; zb0)would imply b0 2 B, whih ontradits the minimality of bj . By setting b0 = a00bjwe then have abj = a0za00bj withÆ�(q0; a00bj) = Æ�(q0; za00bj):Moreover Æ�(q0; bj) = Æ�(q0; vjbj):Thus for all m1;m2 2 IN, the word a0zm1a00vjm2bj is aepted by A. Let r =�(vj) and s = �(z). For every m 2 IN, the words a0zmzra00bj and a0zma00vjsbjare aepted by A. But�(zra00bj) = s r + �(a00) + �(bj) = �(a00vjsbj): (5)From lemma 3.5 we get zra00bj = a00vjsbj , that iszra00 = a00vjs (6)If �(vj) > �(za00) then from (6) the word za00 is a strit right fator of vj ;but Æ�(q0; a00bj) = Æ�(q0; za00bj);10



and this ontradits the minimality of vj . It follows that �(vj) � �(za00) andby (6), vj is a right fator of za00, a fortiori of a = a0za00, whih ontradits thehypothesis on a. 2The set A is U 0�reognizable and M is de�nable in hIN;+; Ai, hene Mis U 0�reognizable too. We shall prove that this ontradits the property on�U (M) expressed by the previous lemma.The set �U 0(M) is in�nite thus by the pumping lemma there exist u; v; w 2��U 0 suh that v 6= � and for every n 2 IN the word uvnw belongs to �U 0(M). SetX = f�U 0(uvnw) : n 2 INg. X is an in�nite subset of M ; moreover if (xn)n2INdenotes the stritly inreasing sequene of elements of X then by Proposition2.4 we get limn!+1 xn+1xn = �0e (7)where e = �(v).Let us reall that I = f(i; j) : i = j = 0 _ 1 � i � �; 1 � j � �(i)g, andt =P�i=1 �(i).Set � = minfj�0i � �j j : 1 � i � et ; j � 1g2 . We have � > 0 sine � and�0 are multipliatively independent. Moreover let q be an integer suh that�q > �0et + 2�.From (7) we an dedue the existene of an integer N0 suh that8n � N0 8d � t ����xn+dxn � �0ed���� < �: (8)On the other hand by Proposition 2.4 we have8(i; j) 2 I n (0; 0) 8k � q limn!+1 �U (ai;jvn+ki bi)�U (ai;jvni bi) = �k�(vi)thus there exists N1 2 IN suh that8n � N1 8(i; j) 2 I n (0; 0) 8k � q �����U (ai;jvn+ki bi)�U (ai;jvni bi) � �k�(vi)���� < �: (9)Let R = maxf�U (x) : x 2 E0;0g and R0 = maxf�U (ai;jvni bi) : (i; j) 2 I n(0; 0) ; n � N1g. Fix an integer n suh that n > N0 and xn > max(R;R0). Bylemma 3.6 and using the hypothesis xn > R, every word among �U (xn); �U (xn+1); : : : ; �U (xn+t)belongs to a unique set among (Ei;j)(i;j)2In(0;0) ; thus by the pigeon-hole prini-ple there exist at least two distint elements among �U (xn); �U (xn+1); : : : ; �U (xn+t),say �U (xn+l1 ) and �U (xn+l2 ) with 0 � l1 < l2 � t, whih belong to the sameset Ei;j for some (i; j) 2 I n (0; 0). That is,xn+l1 = �U (ai;jvn0i bi)11



and xn+l2 = �U (ai;jvn0+ki bi)where k 2 IN and n0 > N1.Now n > N0 thus by (8)����xn+l2xn+l1 � �0e(l2�l1)���� < �: (10)Let us now prove that k � q. Assume the ontrary; we havexn+l2xn+l1 = �U (ai;jvn0+ki bi)�U (ai;jvn0i bi) > �U (ai;jvn0+qi bi)�U (ai;jvn0i bi) :Now xn+l1 > R0 thus n0 > N1, hene by (9)�����U (ai;jvn0+qi bi)�U (ai;jvn0i bi) � �q�(vi)���� < �therefore xn+l2xn+l1 > �q�(vi) � � � �q � � > �0et + � � �0e(l2�l1) + �whih ontradits (10).Thus k � q, so that we dedue from (9) and n0 > N1 that����xn+l2xn+l1 � �k�(vi)���� < �: (11)Finally (10) and (11) ontradit the very de�nition of �. 2AknowledgementsI thank Roger Villemaire for his areful reading of a preliminary versionof this paper. I am also grateful to V�eronique Bruy�ere, Christiane Frougny,Christian Mihaux and Franoise Point for many disussions.Referenes[1℄ A.B�es, Undeidable extensions of B�uhi Arithmeti and Cobham-Sem�enovTheorem, this Journal, vol.62 no.4 (1997), 1280{1296.[2℄ V.Bruy�ere, Entiers et automates �nis, U.E. Mons, m�emoire de liene,1984-85. 12
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