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Abstract

Let 6, 8 be two multiplicatively independent Pisot numbers, and let
U, U' be two linear numeration systems whose characteristic polynomial
is the minimal polynomial of # and 6', respectively. For every n > 1, if
A CIN" is U— and U’ —recognizable then A is definable in (IN; +).

1. Introduction

The Cobham-Seménov theorem [6, 19] states that for k, [ multiplicatively in-
dependent integers, any set X C IN" which is k— and [—recognizable is definable
in (IN; +).

Alternative proofs of this result were proposed in [12] and [17]; Michaux and
Villemaire presented in [16] a new proof involving the Biichi-Bruyere theorem,
which provides a logical characterization of k—recognizable sets and enables to
deal with problems on words by means of definability arguments. In [1] we use
some results of [16] to solve related definability and decidability questions, from
which we derived a new proof of the Cobham-Seménov theorem.

The study of non-classical numeration systems led to the notion of U —recogni—
zable set, which naturally extends the one of k—recognizable set. Bruyere
and Hansel have shown recently [3] that most of the computation models for
k—recognizability can be generalized to the case of linear numeration systems
whose characteristic polynomial is the minimal polynomial of a Pisot number.
In particular the Biichi-Bruyere theorem can be extended to these numeration
systems. Thanks to this result, we adapt here some ideas of [1] to prove that
the Cobham-Seménov theorem still holds for two numeration systems satisfying
the previous assumption:

Theorem 3.1. Let 8, §' be two multiplicatively independent Pisot numbers,
and let U, U' be two linear numeration systems whose characteristic polynomial
is the minimal polynomial of § and ', respectively. For everyn > 1, if A C IN"
is U— and U'—recognizable then A is definable in (IN;+).

This answers positively a conjecture by Michaux and Villemaire [15, p.377],
and improves results by Fabre [8] and Point-Bruyre [18] where Theorem 3.1
is proved in case one of the Pisot numbers is an integer. In [15] it is shown
that it is sufficient to prove Theorem 3.1 for the case where n = 1 and A is



a subset of IN which is expanding. This reduction step strongly relies on the
results obtained by Michaux and Villemaire on (non)definability in Presburger
Arithmetic (see [14, 15, 16]). Our proof involves this reduction step. Theorem
3.1 has been proved independently by Fagnot [9] and Hansel [13], both using
Michaux-Villemaire’s reduction step, but with quite different methods. Finally
let us mention that Durand [7] proved a similar result for the case n = 1, with
different assumptions.

In Section 2 we recall definitions and results related to finite automata, linear
numeration systems and U —recognizability. Section 3 deals with the proof of
the main result.

2. Preliminaries

This section provides the basic definitions, notations, results and tools that
will be used in the paper.

2.1 Finite automata

Let X be a finite alphabet. We denote by ¥* the set of finite words over X,
including the empty word denoted by A. For every u € ¥£* we denote by u(u)
the length of u. For all u,v € ¥*, we say that u is a right factor (resp. left
factor) of v if there exists w € ¥* such that v = w - u (resp. v = u-w). We
speak of strict factor in the case where w # .

We shall work with deterministic finite 3-automata reading words from right
to left. Our notation for such an automaton A will be A = (Q, qo, 9, Q'), where
Q is the finite set of states, go € @ is the initial state, Q' C @ is the set of
accepting states, and ¢ is the transition function. We denote by §* the function
from ) x ¥* to () which extends 4 as follows:

0*(q, \) = q for every q € Q;
0*(q,a) = §(q,a) for all ¢ € Q,a € X;
0*(q,aw) = §(6*(q,w),a) for all a € &, w € ¥*.

A word w € X* is said to be accepted by the finite ¥-automaton A if
0*(qo,w) € Q'. We say that a state ¢ € @ is wisited during the computa-
tion of w by A if there exists a right factor v of w such that 6*(gp,v) = q. A
subset X of ¥* is said to be X -recognizable if it is the set of accepted words of
some finite Y-automaton.

2.2 Linear numeration systems

We call numeration system any strictly increasing sequence of integers U =
(Un),,eIN such that Uy = 1 and {U(’}:‘ : n € IN} is bounded. Every positive
integer x can be represented as

€r = (ann + (lnflUnfl + ...+ (loU()



using the Euclidian algorithm: let n be such that U,, < z < Up4+1, and let z,, =
z. Fori =n,n—1,...,1 we compute the Euclidean division x; = a;U; + x;_1.
Doing this we obtain a word ana,_1 ...ag over the canonical alphabet Y =
{0,1,...,¢}, where ¢ is the greatest integer less than sup{ U[’}*‘ :n € IN}. The
word ana,_1...aq is called the normalized U -representation of z, and denoted
by pu(z). We denote by Ny the set of normalized U-representations of integers:

Nuv ={pu(x) : z € N}.

By convention 0 is represented by the empty word.
Conversely for every word w = b,,b,,_1 ... by over Xy we call numerical value
of w the integer

7y (w) = Z b;U;.
i=0

Let < denote the lexicographical ordering. The elements of Ay satisfy the
following property:

Proposition 2.1. For all u,v € Ny,

my(u) < 7y (v) <= u < v.

A linear numeration system is a numeration system U = (U,), N defined
by a linear recurrence relation

Up=dr-1Up_1+ ... +doUp_¢
for all n > k, with d; € ZZ for i = 0,1,...,k — 1, and dy # 0. The polynomial
Py(X)=XF—dp_ X1 —di X —dy
is called the characteristic polynomial of the system U.

For generalities about linear numeration systems we refer the reader to [10].
In the sequel we will be concerned with linear numeration systems whose char-
acteristic polynomial is the minimal polynomial of a Pisot number; they behave
closely to classical numeration systems with respect to recognizability by finite
automata (see e.g. [3, 11]). Recall that a Pisot number is an algebraic inte-
ger § > 1 such that the roots of its minimal polynomial, distinct from 6, have
modulus less than 1.

For the rest of the paragraph U = (U,), .y Will denote a linear numeration
system whose characteristic polynomial Py is the minimal polynomial of a Pisot
number 6.

Under these assumptions, the roots 8; =6, 65,..., 85 of Py are simple and

6] <1 whenever j #1. (1)



Moreover there exist complex constants ¢y, ..., cg such that

k
VnelN U= cib} . (2)
i=1
Let us define the function 7y : ¥}, — € which maps every w = a, ---ag € X,
to

mg(w) = ¢ Z a;ib'.
i=0
From (1) and (2) one easily deduces the following;:

Proposition 2.2. There exists a constant e such that

Yw € Lf, |mp(w) — mp(w)| < e.

Now let u, v, w be words over ¥y such that uvw € Ny and v # X\, It is
easily seen that my (uv"w) — 400 as n — +oo. From this fact and the above
proposition we get:

Proposition 2.3. Let u,v,w € X}, be such that wvw € Ny and v # X. Then

lim 7y (uv™w)

—= =1
n—+oo |mg(uvnw)]
The next proposition follows easily from the previous one and the definition

of Te.

Proposition 2.4. Let u, v, w be words over Xy such that uvw € Ny and v # \.
There exists k € IR such that
7y (uv™w
lim M

n—-+o0o 0”#(”)[{, =1L

2.3 Logic and U —recognizable sets

The notion of U —recognizable set naturally extends the one of p—recognizable
set, which concerns representations in an integer base p > 2, to arbitrary nu-
meration systems.

Since we have to deal with subsets of IN” for an arbitrary integer n > 1, we
shall extend our definition of pr;. Let n be a positive integer; for every n—tuple
x = (z1,22,...,2,) € IN" we define py(z) as the word (of n—tuples)

(0" " pur(1),0 2 pyy (2), ..., 01" pur ()



over X7, where l; = p(pr(z;)) and ! = max{ls,...,l,}. Moreover we will denote
by 0 the n—tuple (0,0,...,0).

Definition 2.5. Let n be a positive integer and U be a numeration system. A
set X C IN" is said to be U—recognizable if the set py(X) is £}, —recognizable.

For every integer p > 2, p—recognizability corresponds to U —recognizability
for U= (p"),,cIN-

The Biichi-Bruyeére theorem ([2], see [4]) states that for every integer k > 2
a set X C IN" is k—recognizable if and only if X is definable! in the structure
(IN; +, Vi) (where Vi (z) denotes the greatest power of k which divides z). In
[3], Bruyere and Hansel generalized this result to the case of linear numeration
systems whose characteristic polynomial is the minimal polynomial of a Pisot
number.

For any numeration system U = (Uy), N, one defines the function Vi :
IN —» IN as follows: Vy(0) = Uy = 1, and for every positive integer z, if
pu(z) = an ...a;07 with a; # 0 then Viy(z) = U; (that is, Viy(z) is the least U;
appearing in the normalized U —representation of z with a non-zero coefficient).

Theorem 2.6. (Bruyére,Hansel) Let U be a linear numeration system whose
characteristic polynomial is the minimal polynomial of a Pisot number. For
every n > 1 a set X C IN" is U—recognizable if and only if X is definable in
the structure (IN; +, Vi7).

2.4 The Cobham-Semeénov theorem

Definition 2.7. Two reals k,l > 1 are said to be multiplicatively dependent if
there exist two positive integers a, b such that k% = 1°. Otherwise k,l are said
to be multiplicatively independent.

Biichi proved [5] that for all multiplicatively dependent integers k.k', and
every set X C IN, X is k—recognizable if and only if X is k'—recognizable.
On the other hand, it is easily shown that any set X C IN which is ultimately
periodic (i.e. definable in (IN;+)) is k—recognizable for every integer k > 2.
The Cobham-Seménov theorem specifies the base-dependence of the notion of
k—recognizable set.

Theorem 2.8. (Cobham,Seménov) Let k, [ be two multiplicatively inde-
pendent integers. For every n > 1 and every set X C IN", if X is k— and
l—recognizable then X is definable in (IN;+).

Iby definable we will always mean first-order definable



The case n = 1 was proved by Cobham in [6]; Seménov extended the result
to higher dimensions in [19].

3. The main result
In this section we prove the following theorem.

Theorem 3.1. Let 8, §' be two multiplicatively independent Pisot numbers,
and let U, U' be two linear numeration systems whose characteristic polynomial
is the minimal polynomial of  and 8', respectively. For everyn > 1, if A C IN"
is U— and U'—recognizable then A is definable in (IN;+).

Remark: it follows from theorem 2.6 that if A is U— and U’'—recognizable
then A is definable in (IN; +, V) and (IN; +, V). Thus every relation definable
in (IN; +, A) is definable in (IN; +, Vi) and (IN; +, Vy») too, and therefore is U—
and U’ —recognizable (by virtue of the same theorem).

We shall make use of the two following theorems, due to Michaux and Ville-
maire [16].

Definition 3.2. Let (I,,), N be a strictly increasing sequence of integers, and
let L ={l, :n € IN}. We say that L is expanding if the set {l,,.1 — I, : n € IN}
is not bounded.

Theorem 3.3. (Michaux,Villemaire) Let K C IN. If K is not definable
in (IN;+) then there exists an expanding set L. C IN which is definable in
(IN; +, K).

Theorem 3.4. (Michaux,Villemaire) A set A C IN" is definable in (IN;+)
if and only if every subset of IN which is definable in (IN;+, A) is definable in
(IN; +).

The proof of theorem 3.1 is organized as follows: assuming for a contradiction
that there exists A C IN" which is U— and U’ —recognizable and not definable in
(IN; +), we use theorems 3.3 and 3.4 to define in (IN; +, A) a set M = (m,),, N
such that m,41 —m, > n for every n € IN. From this property of (my), N
we then deduce (lemmas 3.5 and 3.6) that pyy (M) is a finite disjoint union of a
finite set and of sets of the form {av"b: n € IN}. Now using the remark of the
beginning of the section, M should be U’—recognizable too; we prove (by an
application of the pumping lemma) that this contradicts the previous property
on pyy(M).



Proof of theorem 3.1.

Let 6 and 6’ be two multiplicatively independent Pisot numbers. Assume for
a contradiction that there exists A C IN" which is U— and U'—recognizable,
and not definable in (IN; +), for U and U’ two linear numeration systems whose
characteristic polynomial is the minimal polynomial of § and 6', respectively.
By theorem 3.4 there exists a set K C IN which is definable in (IN; 4+, A) and not
definable in (IN;+). Then by theorem 3.3 we get an expanding set L which is
definable in (IN; +, K). Let (In), .y be the sequence of elements of L arranged
in increasing order. Consider the function f : L — IN which maps every [, to
(lnt1 — In). Now let M be the subset of L defined by

M = {l, :Vi<n, f(l;) < f(la)}

The set L is expanding, thus M is infinite. Let (m,), .y be the sequence
of elements of M arranged in increasing order. From the definition of f and M
one checks that

Vn €N, mppq —m, > f(mn) > My > N. (P)

Moreover M is definable in (IN;+, L) by the formula

M(z) <= |L(z) A Fo'{L(z") Az < z' A—Fz[z < 2 < 2’ A L(2)]A

Vy{ly < 2AL(y)] = Fy'[L(y")Ax < y'A—3z[y < 2z < y'AL(2)]Ay'+2 < 2'+y]}}

(the relation z < y is obviously definable in (IN; +)).
Therefore M is definable in (IN;+, A), and thus U-recognizable. Hence
pu (M) is Xy~ recognizable. For the remainder of the proof let

"’4 = (Q, qo, 6: QI)
be a deterministic Xj-automata that recognizes pyy (M).

The following lemma states an interesting consequence of property (P) for
the set py(M).

Lemma 3.5. Let u,v,w1,ws € X5, v # A. If p(w1) = p(ws), and furthermore
if for every n € IN, uv™w; and uwv™ws belong to pyy (M), then wy = wa.

Proof. Assume for a contradiction that w; # ws. By our hypothesis uw; and
uws belong to py (M), thus to Ny; since w; # wy by proposition 2.1 we have
7y (uwy) # w1y (uws). Now p(wy) = p(we) thus my(wy) # 7y (wse). Assume, for
example, 7y (we) > my(wy). Let a = myy(we) — 7wy (wy), and let N be an integer
such that my (uv™w,) > mgy1 (such an integer exists since v # ). There exist



N N

i1,42 > a + 1 such that 7y (uv™ wy) = m;, and 7y (wv™ we) = my,. Then if ¢

denotes the length of w; and w,,
mi, —mi, = 7wy wy) —my(uvNw,)
= (my(uo™N0°) + 7y (ws)) — (my (ww™N0¢) + my(wr))
= 7y(we) — my(w)
= a
Now
My — My 2> My 41 — My,

and it follows from (P) that
Mi 41 — M, 241 2 a+1

which cannot be true. O

We now intend to show that that the set p7(M) is a finite disjoint union of
a finite set and of sets of the form {av"b: n € IN}. To this end let us introduce
some notations.

Let S C Xj; be the set of words w such that

(1) w is accepted by A
(2) There do not exist two distinct right factors of w, say wy and ws, such that

8" (qo, w1) = 0" (qo, w2)
(that is, no state is visited several times during the computation of w by A).

It is easily seen that S is nonempty, and finite. Now let B C X}, be the set
of words w such that

(1) w is a right factor of some element in S;
(2) there exists a word u # A such that §*(qo, w) = 6*(qo, uw);
(3) there is no strict right factor of w, say w', for which there exists a word
u' # X such that
8*(qo, w") = 8*(qo, v'w").

The set pyy (M) is infinite, thus B is nonempty. We denote by bq,. .., b¢ the

distinct elements of B. Fori = 1,...,(, let v; be a word of minimal length such
that

0*(qo, bi) = 6" (qo, vib;).

We denote by ¢(i) the number of distincts words a such that ab; € S; these
words will be denoted by a; 1,ai2,...,a;43)-



For all integers 4, j such that 1 <i < ( and 1 < j < ¢(i), let us introduce
the set
E;j ={a;j0,"b; : n € IN}.

We denote by Fy the elements s of S for which there are no words w,u,
with u # A, such that w is a right factor of s and 6*(qp, w) = §*(qo, uw).
Finally let 7 = {(i,j) i = j = 0V1 <i < (1< j < ¢@)}, and

t= Y 00).
Lemma 3.6. The family (F; ;) j)ez is a partition of py(M).

Proof. We first proceed to show that for all distinct couples (¢q,r),(¢',r") € Z
the sets E,;, and E, , are disjoint. The result is obvious in the case where
one of the couple is (0,0). Now if ¢, q" are positive, assume that E,, N Ey . is
nonempty. In this case there exist two integers n,n’ such that

1
n _ n
Aq,rVq" by = ag v 0" by (3)

This equality implies that among the words b, and b,/, one is a right factor of
the other; but it cannot be a strict right factor since it would contradict point
(3) in the definition of B. Thus b, = by, that is ¢ = ¢'. Assume now that
n > n'; from the previous equality it follows that

’

AgrVg" " = Qg (4)

The word a,,,v," ™ b, belongs to S, since the word a,, b, does; it follows from
the definition of S that we must have n — n’ = 0. Therefore n = n/, and
ag,r = Qg ; thus r = 7', which cannot be.

Now there remains to prove that

U Eij=pu(M).
(i,4)€T
If w € Epp then w € S, hence w € py(M). Now suppose that w belongs to
some F;, with ¢ > 0. There exists n € IN such that w = a4 ,v,"b,. We have
6"(q0, aq,rvg"bg) = 6"(qo, ag,rby),

thus the fact that a, b, belongs to S yields a4 ,v,"by € pu(M). We have proved
the inclusion {J; ; ez Fij C pu(M).

For the converse inclusion, let u € py(M). If there is no right factor u’ of u
for which there exists a word v’ # X such that

6*(q07 ’U’U’) = 6*(q07 ’U,’)7



then u € Epo. Otherwise let b be a right factor of u of minimal length such
that there exists some word v’ # X for which

5*(qo,v'b) = 8*(qo, b).

The word u belongs to py (M), thus b must be a right factor of some word of S;
it follows that b € B, that is b = b; for some positive integer j < (. Now there
exist a € ¥j; and n € IN, such that « = av;"b; and v; is not a right factor of a.
Let us show that ab; belongs to S, which will ensure us that u belongs to some
E; ;. The word av;"b; is accepted by A, and

0*(go, av;"b;) = 6" (qo, ab;);

therefore ab; is accepted by A. Thus there remains to show that no state is
visited several times during the computation of ab; by A. Assume the contrary.
Let b be the smallest right factor of ab; for which there exists w right factor of
ab; and distinct from b’ such that

8*(qo,b") = 8*(qo, w).
Then there exist a’,z € £}, z # X such that ab; = a’2b' and
5*(qo,b") = 6*(qo, 2b").

The word b; is a right factor of b, otherwise " would be strict right factor of
b;, and the fact that
6*((107 bl) =4" (QO: Zbl)

would imply &’ € B, which contradicts the minimality of b;. By setting o' = a"'b;
we then have ab; = a’za"'b; with

8" (go,a"b;) = 6" (qo, za''b;).

Moreover
3%(go,b;) = 0" (qo,vjb;).

Thus for all mq,ms € IN, the word a'z™ a"v;"2b; is accepted by A. Let r =

p(v;) and s = p(z). For every m € IN, the words a’'z™z"a"b; and a'2™a"v;°b;

are accepted by 4. But
p(z"a"b;) = s v+ p(a”) + p(b;) = p(a"v;*b;). (5)
From lemma 3.5 we get z"a"b; = a''v;°b;, that is
zTaII — alI,UjS (6)

If p(v;) > p(za') then from (6) the word za" is a strict right factor of v;;
but
8*(go,a"b;) = 6*(qo, za"'b;),

10



and this contradicts the minimality of v;. It follows that p(v;) < p(za') and
by (6), v; is a right factor of za", a fortiori of a = a’za", which contradicts the
hypothesis on a. O

The set A is U'—recognizable and M is definable in (IN;+, A), hence M
is U'—recognizable too. We shall prove that this contradicts the property on
pu (M) expressed by the previous lemma.

The set pg (M) is infinite thus by the pumping lemma there exist u, v, w €
Y7, such that v # A and for every n € IN the word uv™w belongs to pyr (M). Set
X = {my(w"w) : n € IN}. X is an infinite subset of M; moreover if (z,), N
denotes the strictly increasing sequence of elements of X then by Proposition
2.4 we get

lim 2okl _ gre (7)
n——+oo Tn

where e = u(v).

t= 30, ).

min{|0"' —i|:1<i<et,j>1}

Set € = We have € > 0 since 6 and

f' are multiplicatively independent. Moreover let ¢ be an integer such that
67 > 0" + 2e.
From (7) we can deduce the existence of an integer Ny such that

Tnd-d N oled

Vn >Ny Vd<t <e. (8)

Tn

On the other hand by Proposition 2.4 we have

otk
V(i,j) € T\ (0,0) Vk<gq ngrfm% _ phuvy)
i,j Vi Vi

thus there exists N1 € IN such that

my (ai ol ;)

my(a; ;uh;)

Vn >N, VY(i,j) €T\ (0,0) Vk<gq A ()

Let R = max{my(z) : * € Eoo} and R' = max{my(a; ;vl'b;) : (i,5) € T\

(0,0) , n < Ny}. Fix an integer n such that n > Ny and z,, > max(R, R"). By

lemma 3.6 and using the hypothesis z,, > R, every word among py (%), pu(Znt1), - - -, pu(Tnat)
belongs to a unique set among (Ej ;)i j)er\(0,0) ; thus by the pigeon-hole princi-

ple there exist at least two distinct elements among pi/ (1), pu (Tn+1), -« -5 pU(Tntt),

say puy(xnti,) and py(rpts,) with 0 < 13 < Iy < t, which belong to the same
set F; ; for some (4,j) € 7\ (0,0). That is,

1
n
Tnti, = m(a;;vi b;)

11



and
n'+k
Tnti, = mu(a; ;jv; " b;)

where kK € IN and n’ > N;.
Now n > Ny thus by (8)

Intls _ grella=l))| (10)
Tn+1,

Let us now prove that k < ¢q. Assume the contrary; we have

! 1
Tnily _ my(a; jvi +kbi) my(ai jv; +qb,;)
Trti, mu(a;,jvi bi) mu(a;,jvi bi)

Now @44, > R’ thus n’ > Ny, hence by (9)

n'+q
WU(aiJUi bl) _ aqu(vi) <e

mu(ai v} b;)

therefore

.'Ifn+l2 > oqﬂ(vi) e 2 0(] > 0/€t +e Z 9[6(l2711) +e
Tn+1,

which contradicts (10).
Thus k < g, so that we deduce from (9) and n' > N; that

Intls  ghu(vi)| < ¢, (11)
T+,
Finally (10) and (11) contradict the very definition of e. O
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