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Abstract
The invention and evolution of the Dense Wavelength Division

Multiplexing (DWDM) technology has brought a breakthrough to
high-speed networks, and it has put a lot of pressure on research
in the area of IP routers to catch up. Besides, with up-coming
Quality of Service (QoS) requirements raised by a wide range of
communication-intensive, real-time multimedia applications, the
next-generation IP routers should be QoS-capable. Limited by the
Moore’s Law, one possible solution is to introduce parallelism as
well as the Differentiated Service (DiffServ) scheme [5, 11] into the
router architecture to provide QoS provision at a high speed and a
low cost. In this paper, we propose a novel architecture called the
High-Performance QoS-capable IP Router (HPQR). We address one
key design issue in our architecture - the distribution of IP packets to
multiple independent routing agents so that the workload at routing
agents is balanced and the packet ordering is preserved. We introduce
the Enhanced Hash-based Distributing Scheme (EHDS) as the solution.
Simulations are carried out to study the effectiveness of EHDS. The
results show that EHDS does meet our design goals very well.

I. INTRODUCTION

The traffic in the Internet is exploding as it is doubling every
year [10]. Emerging multimedia applications, especially the two-way
HDTV (High Definition TV) video applications, will make the
explosion even faster in the future. With the invention and evolution
of fiber-optic technologies, such as the DWDM [8] in the backbone
networks, the carrying capacity of fiber links is doubling every 12
months and provides high speed network fabric to meet the future
bandwidth demands. However, according to the Moore’s Law, the
computing power will only double every 18 months, hence the access
IP routers will inevitably become bottleneck in the Internet. Moreover,
multimedia and realtime applications require timing and other Quality
of Service (QoS) guarantees, besides bandwidth, which puts even more
burden on the routers. Therefore, the future growth of the Internet
requires design and development of high-speed IP edge routers that
forward exponentially increasing volume of traffic and provide QoS
guarantees at the same time.

In order to bridge the gap between the increase of computing power
and the explosion of bandwidth demand, parallelism has been intro-
duced into the routers design. From the viewpoint of the degree of the
parallelism, the routers have evolved into the fourth generation [12, 15].
The first generation routers used centralized routing unit and its internal
data path was a bus. The line cards and the routing unit communicated
with each other through the bus. Obviously the routing unit and the
bus were bottlenecks. The second generation routers used distributed
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routing units instead of the centralized one. Each line card had its own
routing unit. But the bus was still the bottleneck. The third generation
routers used a switch fabric instead of the bus. In order to meet the future
requirements, the fourth generation routers are expected to be the next
generation of high-performance QoS-capable routers. By using new ar-
chitectures, based on parallel and scalable switch fabrics, higher degree
of parallelism and scalability will be brought into the new system.

Extensive research has been done on the next generation
high-speed routers. Tzi-cker Chiueh and Prashant Pradhan proposed a
cluster-based scalable packet router prototype, called Suez [4]. Suez
is built on a hardware platform consisting of a cluster of commodity
PCs connected by a Myrinet switch with a 10-Gbps backplane. Nick
McKeown’s group at Stanford University did intensive research on
high-speed switching [9, 14, 16]. E. Basturk proposed a design
and implementation of a QoS capable switch router based on RSVP
protocol [2]. Many other papers and proposals are dealing with some
key issues in high-speed routing [10], such as high-speed routing table
lookups [7, 21], real-time packet scheduling [13], fine grain QoS
control [17], high-speed switches for the data path [3, 14], and so on.

Some companies have focused on this topic too. BBN’s MGR
project [18] proposed a high-speed router architecture that achieves
packet forwarding rate at tens of millions of packets per second, and
the router has a backplane speed of 50 Gbps. Avici’s TSR and Pluris’s
Teraplex20 high speed switch routers have been pushed into today’s
market [1, 19].

Our work has been influenced by these existing systems. However,
comparing to these architectures, our prototype focuses on the control
plane and QoS issues. This paper presents a novel, highly-scalable
architecture, the HPQR (High-Performance QoS-capable IP Router) ar-
chitecture. Based on this architecture, a specific key design issue -
distribution of IP packets to multiple independent routing agents in an
efficient manner - is addressed, using Enhanced Hash-based Distribu-
tion Algorithm (EHDA) 3. Efficient EHDA means that (1) packets are
distributed in a load-balanced fashion, and (2) EHDA preserves packet
ordering for individual TCP flows.

The rest of this paper is organized as follows. Section II gives an
overview of our HPQR architecture. Based on the architecture, the
packet distribution issue and the EHDA are described in detail. Section
III presents the simulation results. Finally, the concluding remarks are
given in Section IV.

II. HIGH-PERFORMANCE, SCALABLE,
QOS-CAPABLE CONTROL FRAMEWORK FOR

NEXT-GENERATION IP ROUTERS

The basic idea of an IP router is to route IP packets. However, a
QoS-capable IP router should have the following basic functionalities:

3In our context, the “distribution” means dissemination of IP packets from a
line card to multiple independent routing agents.



(1) Receiving IP packets from incoming links; (2) IP header analysis
(such as packet classification, QoS analysis); (3) Routing table lookup;
(4) QoS-aware packet scheduling; (5) Transmitting packets to outgoing
links. All these functionalities must be parallelized in order to make this
router a high-performance and scalable next-generation IP router, which
is a non-trivial task.

A. HPQR Architecture
Our HPQR architecture belongs to the fourth generation of switch

routers.
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Figure 1: Architecture of HPQR

The architecture of HPQR is shown in Figure 1. It consists of the
following components

� Line Cards (LC) are responsible for receiving packets from the
incoming links and sending packets to the outgoing links. The
link cards should be very high-speed to keep up with the high-
speed links.

� Routing Agents (RA) perform routing table lookups in a parallel
manner.

� Control Agents (CA) handle routing table computation and QoS
control tasks.

� High Speed Switch Fabric is the underlying data path which con-
nects LCs, RAs and CAs together. The switch fabric itself can be
parallelized.

� Bus is dedicated for broadcast, for example, routing table up-
dates, between RAs and CAs.

In our architecture, we separate the IP header analysis (IP packets
classification and filtering in case of DiffServ) and the routing table
lookups, which usually reside in the same line card in a conventional
router. The separation of two functionalities is necessary because:

� With the separation, the routing table lookup (which is the bottle-
neck due to memory accesses) and QoS control will move out of
the line cards, hence the line cards become more light-weighted.
A light-weighted line card can achieve higher forwarding speed
and therefore accommodate higher-speed link interfaces.

� With the separation, we achieve better load-balancing and there-
fore higher performance. The reason is that: (a) we relieve the
routing table lookup bottleneck by adding more routing agents
into the system without affecting the number of line cards, (b) we
distribute the incoming traffic from the line cards to the routing
agents in a load-balanced manner since the routing agents are
shared by all line cards.

B. Design of Line Cards and Routing Agents
Figure 2 shows the design of line cards and routing agents.
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Figure 2: Structure of Line Cards and Routing Agents

After receiving a packet from the incoming link, the packet is put
into the Inbound Buffer. Its IP header is removed and forwarded to
the Classifier where DiffServ classification and other policy check are
performed. If the packet is a “bad” one (e.g., it is out-of-profile in the
DiffServ case, or it does not conform to the access policy, or its TTL
expires), it is dropped directly (or might be remarked in the DiffServ
case). If the packet passes through, its header goes into the Distributor,
where it is determined which RA it will go to, by using our EHDA.
As soon as the RA is determined, the IP header is put into a Lookup
Request message. The request goes through the High Speed Switch
Fabric and is put into the RA’s Lookup Request Queue. The Lookup
Engine gets the request from the buffer and performs high-speed routing
table lookup. After that, the IP header is modified accordingly and
sent back to its original LC through the switch fabric, together with the
appropriate output port number. After receiving the output port number,
the Distributor picks up the original packet from the Inbound Buffer,
attaches the new IP header, and forwards the whole packet to the output
LC through the switch fabric.

For the outgoing path, outgoing packets are queued into the Out-
bound Buffer before being scheduled. There might be multiple queues
in the Outbound Buffer with different priorities. QoS-aware scheduling
schemes are used to enforce the differentiation between different service
classes (e.g., PS-queue and RIO-queue in the DiffServ model).

C. IP Packet Distribution Approach
We present an IP packet distribution approach, performed by LCs

and RAs, satisfying two requirements:

� the RAs should be working in a load-balanced manner, which is
the main reason to separate the RAs from the LCs;

� the packets from the same flow should be transmitted in the order
they arrive, especially packets belonging to TCP connections.
This is because out-of-order packet transmissions may result in
TCP retransmits or even timeouts which deteriorates the overall
performance of those TCP connections.

Both requirements are necessary because otherwise, one could opti-
mize the load-balancing at the expense of in-order packet transmission
(for example, the packet-based round-robin scheme), and vise versa.
Therefore, the packet distribution approach should be carefully designed
to tradeoff between these two requirements. One direct solution is the
Flow-based Distribution Algorithm (FDA), which distributes packets on



a per-flow basis. But FDA is too coarse-grained because the time-scale
at which load balancing is done (the time-scale of flow inter-arrivals)
may be much larger than the time-scale of packet inter-arrivals. There-
fore, the FDA has the following disadvantages: (1) it may result in
unbalanced traffic distribution with respect to the individual packets; (2)
it requires the packet distributor on each LC to keep track of individual
flows so that high overhead may be introduced in case of large number
of flows.

As we know, the Internet traffic includes TCP/IP flows and UDP/IP
flows. The TCP flows are much more sensitive to packet ordering than
UDP flows are. Our novel packet distribution approach, called Enhanced
Hash-based Distribution Algorithm (EHDA), will take advantage of this
feature to achieve both load-balancing and in-order packet transmission
simultaneously. In our approach, packets belonging to TCP flows are
assigned to the RAs in a way that the packet ordering is the first consider-
ation, while packets from UDP flows are distributed among all available
RAs dynamically to achieve a high measure of the load balancing.

1) Enhanced Hash-based IP Packet Distribution Algorithm

To identify each entity, we assume that each RA, LC and CA has a
unique name in the system, i.e., a unique internal identification number
(ID#). A simple way of using hash value to distribute packets, called the
basic Hash-based packet Distribution Algorithm (HDA), is to generate
a hash value for each IP packet, based on its destination IP address, and
then use this hash value directly as the ID# of the RA it is forwarded
to [17]. Since packets with the same destination address are forwarded
to the same RA (the hash value of the same IP address remains the
same), packet ordering is naturally preserved. But there are two dis-
advantages to this method: (1) Although the hash values are pseudo
random numbers and therefore supposed to be uniformly distributed,
there is no guarantee for that, especially when the destination addresses
are not uniformly distributed; (2) The ID#s are bound to destination
addresses and there is no way to adapt them, therefore the workload at
each RA cannot be tuned dynamically even when the workload is not
balanced.

Instead of using the RA ID#s as hash values directly, EHDA uses
indirect hashing - the hash values are used as indices to a hash table
which contains ID#s of those RAs. The contents of the hash table
(RA ID#s) can be dynamically changed according to the instantaneous
workload of each RA. The basic idea is, if one RA that is currently being
used, say RA-x, is known to be too busy, another idle one, say RA-y, will
be found to replace it. The corresponding value in the hash table (RA-
x) will be updated to RA-y. Figure 3 shows the structure of the hash
table and the brief workflow of the EHDA, implemented at the LC site.
Notice that we use different entries for TCP packets from UDP packets.
It means the TCP packets and UDP packets may use different RAs for
routing table lookup, even they have the same destination addresses.

At each RA, the workload is defined as the average length of its
Lookup Request Queue (Figure 2). The current average queue length
can be quantized into a 2-bit or 3-bit value (see Equation 1, where 3-bit
values are used) and sent back to LCs as piggybacks of Lookup Result
messages.
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In order to keep track of the workload at each RA, there is a “Usage”
table at each LC (Figure 3), in which the latest quantized workload value
for each RA is stored. For example, in Figure 3, the first entry of the
“Usage” table is 3, meaning that the current quantized workload value
at RA-1 is 3 (out of 8). Once a LC receives a Lookup Result message,

it extracts the quantized workload value as well as the RA ID# from the
piggyback. The Usage table can then be updated accordingly.

RA ID# (TCP) RA ID# (UDP)

12

00
08

03
01
15

Hash Function

dst addr DiffServ CP

Usage
3
1

Yes

No
6

Update ID# ?

1

2

4

1

3

5

Figure 3: Enhanced Hash-based Distribution Algorithm
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In order to differentiate the
distribution of TCP and UDP
requests, different hash table
update strategies are used. Assume
that 3-bit quantized values ( 3
to 4 ) are used to measure the
workload at RAs. One example
of the update probability curves
is shown in Figure 4. As we can
see in this example, when the
quantized workload value at an
RA reaches 5 , all LCs will update
their corresponding UDP entries
with probability of 3!6 5 and the probability will increase to 7 when the
workload value reaches 8 . On the other hand, the update probability
of TCP entries remains 3 until the workload value is 8 . Even when
the queue is full, the TCP entries will be updated only with 396 5
probability so that TCP flows remain more stable compared to UDP
flows. Therefore, the packet ordering is preserved as well as high
load-balancing is expected. Notice that the actual probability values
and workload thresholds can be tuned in a real system.

Another major reason, why we introduce probability into the hash
table update, is to avoid the dramatic workload fluctuations at RAs. For
example, when the workload at RA-1 reaches the threshold, if all LCs
update their hash table and switch to another RA, the workload at RA-1
will suddenly drop to zero. And later on it may be overwhelmed again
suddenly because all LCs find out its workload is zero and change back
to it immediately. This is certainly an undesirable effect.

Figure 3 also illustrates the workflow of EHDA.

Step 1: Get the hash value. The destination address is hashed by
using a hash function. Other fields in a IP header, such as the DiffServ
CodePoint (DSCP) [6] if the DiffServ model is adopted, may also
be used to generate the hash value. A typical hash function uses the
division method. If the number (

�
) of RAs is a power of 2, for example,�:�<;#=

, where
$?> 7 , then we can: 1) use the CRC code (the generator

polynomial @?A .�BC�D.�=FEG.HE 7 ) [20] or 2) just randomly select
$

bits
from the destination address to form the hash value. Otherwise, we can
use the result of destination address modulo

�
as the hash value. The-

oretically, we can prove that the hash values are uniformly distributed,



given that the destination addresses are uniformly distributed, and the
hash function can be implemented at high speed.

Step 2: Get the RA ID#. Using the hash value from Step 1 as the
index to the hash table, a RA ID# can be obtained. Notice that we
differentiate TCP packets from UDP packets - they use separate parts
of the table entry to store the ID# since different update strategies will
be used for them.

Step 3: Check the workload and make a decision if the hash table
is updated or not. After having the RA ID#, its current workload is
checked by looking up the “Usage” table. By using the quantized work-
load value got from the “Usage” table, a decision is made whether the
hash value needs to be updated in the hash table or not, based on the hash
table update probability curves the LC is currently using. As described
above in Figure 4, different curves are used for TCP and UDP flows. If
a positive decision is made, go to Step 4, otherwise go to Step 6.

Step 4: Update the hash table. The RA ID# with the lowest work-
load value is chosen from the Usage table. The original entry in the hash
table is updated with the new RA ID#.

Step 5: After updating the hash table, the new RA ID# is used as the
final result.

Step 6: The hash table is not updated, so the original RA ID# is
returned as the final result.

In a real implementation, both the hash table and the usage table can
be put into a cache memory at the LC site to achieve high speed since
they are small.

III. SIMULATIONS AND RESULTS

In order to examine the effectiveness of our design, simulations are
conducted and the results are analyzed. We have developed a basic
event-driven simulator and some intensive simulations have been carried
out on it. The simulation results prove that our design goals are met very
well.

A. Simulation Model
We model the input traffic as TCP and UDP flows. Each flow has its

own starting time
��� ������� , ending time

���	��

and sending rate

�
. Flows

arrivals follow Poisson distribution and the duration of each flow is
exponentially distributed. The sending rates are randomly picked within
a certain range. In most of our simulations, we fix the number of LCs
(
����

) to be 4 and the number of RAs (
� ��� ) to be 8, without losing

generality. The basic HDA is used as the comparison to our EHDA.

B. Simulation Results and Analysis
The first set of simulations is conducted to investigate the effective-

ness of EHDA. The curves in Figure 4 are used as the hash table update
strategy. Figure 5 illustrates the results under balanced input traffic and
Figure 6 gives the results under unbalanced input traffic 4.

From Figure 5 we can learn that the loss rates due to the RA buffer
overflow 5 are 3.91% for the basic HDA and almost 0% for our EHDA,
which proves that even in the case of balanced input traffic, the EHDA

4“Unbalanced” here means the destination addresses of input traffic are NOT
uniformly distributed. For example, in Figure 6, nearly 80% input traffic is
directed to RA-1 and RA-2, thereby causing large loss rate at RA-1 and RA-2,
while the other RAs are relatively idle.

5The dropped requests include both TCP and UDP requests.

(a) Basic HDA (b) EHDA

Figure 5: Distribution of lookup requests under balanced input

(a) Basic HDA (b) EHDA

Figure 6: Distribution of lookup requests under unbalanced input

outperforms the basic HDA. In the case of unbalanced input traffic,
which is shown in Figure 6, the EHDA is superior to the basic HDA
because it makes the workload at RAs balanced so that the loss rate due
to buffer overflow is reduced significantly from 54.75% to 0%.

In order to study the expense of achieving more balanced workloads
and lower loss rates at the RAs, the second set of simulations is carried
out. In this set of simulations, we evaluate the number of the hash table
changes or updates. The hash table updates imply the changes of the
assigned RA of some flows, so that the packets from such flows might
be transmitted out of order. Therefore, the smaller the number of the
hash table updates, the better ordering of the packet transmission. Since
the packet ordering is much more important to TCP flows than to UDP
ones, TCP flows should have higher priority in the sense of the packet
ordering. For example, in the case of Figure 5, the total number of hash
table updates for TCP and UDP flows is 1079 and 5561 respectively.
And in the case of Figure 6, the number is 1178 and 5460 respectively.
From these numbers we can conclude that the EHDA gives TCP flows
higher priority over UDP flows in the sense of the packet ordering, since
TCP flows have less number of hash table updates than UDP flows. By
conducting more simulations we also know that the number of hash
table updates is independent of the input traffic pattern (balanced or
unbalanced). But it does depend on the hash table update strategies (for
example, the one was used in the past two sets of simulations is shown
in Figure 4). In fact, we can even tune the update strategies (or curves)
to achieve different degrees of ordering guarantees for TCP flows.

Figure 7 shows an example of a hard guarantee for TCP flows, in
which no hash table update is allowed to occur for TCP flows except
during intervals when no TCP flow is active. For UDP flows, the number
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Figure 7: A hard guarantee for TCP packet ordering

of updates surprisingly decreases from 5460 to 4105 6. Meanwhile, the
loss rate increases slightly from 0% to 0.16%.

The last set of simulations is conducted to study the scalability of
our architecture. Because of the separation of the routing table lookups
and the distributed structure of RAs, our architecture is supposed to be
scalable to accommodate higher volume of input traffic, which means
when the volume of input traffic increases and the existing RAs can no
longer handle it, the problem can be solved by adding more RAs into the
system. The simulation results suggest that this goal has been achieved.

(a) EHDA with 8 RAs (b) EHDA with 15 RAs

Figure 8: Upgrade the system from 8 RAs to 15 RAs

Figure 8(a) shows the result with 8 RAs and doubled volume of
input traffic. It is clear that the computing power of RAs are no long
sufficient to handle the high volume of input traffic (the loss rate due to
RA buffer overflow is as high as 44.14%). After adding 7 more RAs into
the system, with the result shown in Figure 8(b), the upgraded system
with totally 15 RAs is capable to handle the input traffic again (the loss
rate is back to 0%).

Therefore, from the three sets of simulations, our results show
clearly that:

� The workload at the RAs is balanced, no matter what the input
traffic pattern is (for example, the original input traffic at the LCs
might be unbalanced and the destination addresses of IP packets
may not be uniformly distributed).

� The packet ordering for TCP flows is preserved and the degree of
guarantee can be tuned.

� High scalability is provided. In the case that the workload is too
heavy so that the computing power at RAs becomes insufficient,
the system can be upgraded by adding more RAs.

6In this example, balanced input traffic is used. It is the same as the input
traffic used in Figure 5.

IV. CONCLUSION

This paper presents a novel, parallelized and highly-scalable control
framework for next-generation IP routers. The HPQR architecture is
introduced and justified. Based on the architecture, the IP packet distri-
bution algorithm is addressed. As a key element of the HPQR architec-
ture, the EHDA algorithm is studied in detail. Intensive simulations are
carried out and the simulation results and analysis are introduced. The
results prove that our original design goals for HPQR have been met
very well.
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