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Blind signal separation in noisy environments
using a three-step quantizer
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Abstract

Independent component analysis in noisy channels needs special considerations, since standard
solutions lead to a bias in the estimate of the parameters. We show three di2erent approaches
to mitigate the e2ects of additive noise in the transfer medium. A principal component subspace
method can reduce the noise to more favorable levels, so that any following algorithm shows
reduced bias e2ects. Although stochastic-gradient algorithms for maximum-likelihood solutions
to the problem can easily be found, they are computationally prohibitive. A very successful
approach is, therefore, to assume zero noise power for the derivation of the adaptive algorithm
and subsequently trying to compensate for any bias introduced by such a solution. The thresh-
old nonlinearity (three-step quantizer) is suitable for the blind separation of a large class of
sub-Gaussian distributions. Stability regions are explored followed by algorithmic extensions to
suppress the bias in the estimation of the separation matrix. c© 2002 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Blind signal separation using an adaptive algorithm is a technique that has become
increasingly important for a vast range of applications in acoustics, communications,
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Fig. 1. General blind signal separation model.

biomedical engineering, and so on. The basic issue is to separate a couple of sig-
nals from di2erent mixtures of their instances, without knowing the mixing condi-
tions nor any part of the source signals. Analytically, the problem of blind separation
of an instantaneous mixture of source signals can be described as follows (see also
Fig. 1). Suppose that the information sources generate a number of signals, conve-
niently described by the vector s = [s1; : : : ; sMs ]

T. Through a mixing process, usually
presumed linear, and therefore represented by an unknown scalar matrix A, and an ad-
ditive noise vector n=[n1; : : : ; nMs ]

T, we get the observation vector x=[x1; : : : ; xMs ]
T at

the sensors. Ms here denotes the number of sources as well as the number of sensors.
If fewer sensors than sources are available, the problem gets tougher, and generally, a
complete separation of all the source signals is no longer possible.
On the other hand, if more sensors than sources are available, the noise suppression

capability might be enhanced by using overdetermined separation techniques [5,21,14].
In the communication literature, this situation is referred to as diversity reception.
Naturally, the diversity gain is much higher when channel fading occurs. Nonetheless,
an improvement is also possible in a static additive-white-Gaussian-noise (AWGN)
channel, particularly if some sensors exhibit low signal-to-noise ratios (SNR).
The noisy independent component analysis (ICA) problem has attracted some

interest in the literature. It is, e.g., described in a wider framework of Bayesian
algorithms by Xu [19]. HyvIarinen [13] considered the maximum-likelihood (ML) so-
lution in the presence of Gaussian noise. A similar approach, although more related to
expectation-maximization (EM) algorithms is described by Moulines et al. [18].
Mathematically, we describe the observed signals by

x= As + n: (1)

The problem to solve is to Jnd a scalar matrix W , describing the separation process,
such that the signals in vector u=[u1; : : : ; uMs ]

T are noisy replicas of the original source
signals up to some invariances. 1 These invariances are:

1 The literature often refers to such replicas as wave-preserving signals, as they maintain the original
waveform up to scaling, shifting, and permutation.
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• the order of the signals within vector u (permutation),
• the magnitudes of the original source signals (scaling),
• the phases of the original source signals (the signs for real-valued sources).

These invariances are inherently connected to the problem posed rather than to the
algorithms solving it, and arise if no assumptions on the variance of the source signals
are made. Matrix A may be any invertible square matrix. The assumptions on signals
and channels usually are:

• the source signals are mutually independent,
• at most one source signal is Gaussian distributed,
• the sources are stationary and iid (or the underlying process is unknown),
• A is a time-invariant, invertible, square matrix,
• the noise signals are mutually independent,
• the noise signals are independent of the source signals.

As for the noise, sometimes knowledge of �2
N is assumed. The recovered signals can

be written as

u =Wx=W (As + n) = Ps +Wn: (2)

In order to successfully separate the signals, P =WA should approximate a scaled
permutation matrix as closely as possible.
The separation process can be modeled as a single-layer neural network (see e.g.

[2] or [17]) with an equal number of input and output nodes, where the coeKcients
wij of the separation matrix W are simply the weights from the input to the output
nodes. The activation functions at the output nodes are used for the training mode
only, while the problem itself is linear (since the mixing is a linear process, its inverse
operation is linear, too), so that for a successful separation of a linear mixture, a linear
combination of the available input signals is adequate. This is particularly important for
acoustic applications, where nonlinear signal processing might generate unacceptable
audible distortion. In the case of substantial noise, a nonlinear transformation might
yield better results (as far as MSE criteria are concerned). In this paper, we restrict
ourselves to the linear case.

2. Overdetermined source separation

As mentioned in the last section, overdetermined source separation is a very e2ec-
tive technique to mitigate channel noise, when more mixture observations than source
signals are available. Both Douglas [10] and Joho et al. [14] suggest a two-stage blind
approach to solve this separation problem. Fig. 2 shows an example of a setup of
such a two-stage algorithm with two sources and Jve sensors. Matrix A is now no
longer square but transforms the original source signals into a higher number of mix-
tures. At this point, sensor noise—or measurement noise—is added. The signals then
become the input to the algorithm. In a Jrst stage—the preprocessing step—the orig-
inal number of source signals is retrieved by a principal component analysis (PCA).
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Fig. 2. Overdetermined source separation model using a two-stage approach.

Note that we assume here the signals to be unknown, but the number of source sig-
nals to be known in advance. In principle, this might be any subspace decomposition
technique, see for example [10], to extract a higher SNR mixture of the signals of
interest. The resulting signals v are now treated as signals coming from virtual sen-
sors, so that any ICA technique will separate the signals. Of course, noise is still
present after the PCA step, albeit at lower levels, and needs to be addressed by the
following stage. As a consequence of a nonsquare matrix A, matrix Wd will have
the transposed dimension of A. The ICA stage is represented by the square matrix
Ws with the dimension of the original number of sources. Simulation results in [14]
show that diversity gains close to the theoretical optimum of MMSE solutions are
possible.

3. Maximum-likelihood solution

One possible solution to the blind signal separation problem can be found by an-
swering the question of what mixing matrix has most likely led to the current obser-
vation x. Our goal is to Jnd the inverse of the mixing matrix, W = A−1. This is a
zero-forcing solution, since it nulls any contribution from other sources than the source
of interest. We assign as the likelihood the probability of the observation, parameter-
ized by A, pX (x;A). If the noise signals were known, we could write the conditional
probability

pX |N (x|n) = pS(s)
|detA| =

pS(A−1(x− n))
|detA| = pS(W (x− n))|detW |: (3)
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The noise vector n is a latent variable we want to get rid of. By integrating over it
we get the unconditional probability

pX (x) =
∫ ∞

−∞
pX |N (x|n)pN (n) dn

=
∫ ∞

−∞
pS(u −Wn)|detW |pN (n) dn: (4)

Owing to the mutual independence assumption of the sources, we can factorize the
probability density function (pdf) of the source signals pS(s)=

∏Ms
i=1 pSi(si) with pSi(·)

denoting the pdf of the ith source. Likewise, for the noise vector we have pN (n) =∏Ms
k=1 pNk (nk) with pNk (·) being the pdf of the noise source at sensor k. In many

communication applications, the dominant noise is thermal noise, whose distribution is
known. The log-likelihood function L is then given by the logarithm of this probability
density

L= lnpX (x)

= ln|detW |+ ln
∫ ∞

−∞
: : :
∫ ∞

−∞

Ms∏
i=1

pSi(ui − wT
i n)

Ms∏
k=1

pNk (nk) dn1 : : : dnMs ; (5)

where wT
i is the ith row of matrix W . As with most ML-related solutions, Eq. (5)

is diKcult to solve directly. An adaptive solution using a gradient-search method is
usually sought to overcome this problem. In order to Jnd a gradient leading to the ML
solution, we have to di2erentiate L w.r.t. matrix W . We write this gradient elementwise
9L
9wmn

= [W−T]mn

+

∫∞
−∞ : : :

∫∞
−∞ p′

Sm(um−wT
mn) · (xn−nn)

∏Ms
i=1
i �=m

pSi(ui−wT
i n)
∏Ms

k=1 pNk (nk)dn1 : : : dnMs

∫∞
−∞ : : :

∫∞
−∞

Ms∏
i=1

pSi(ui−wT
i n)

Ms∏
k=1

pNk (nk)dn1 : : : dnMs

;

(6)

where [W−T]mn is the (m; n)th entry in W−T. In practice, Eq. (6) is too complicated
for a real-time implementation. If the noise is negligible, however, Eq. (6) turns into
a much easier form

9L
9wmn

= [W−T]mn +
p′
Sm(um)

pSm(um)
· xn (7)

= [W−T]mn − gm(um)xn; (8)

where

gi(ui) =−9 logpSi(ui)
9ui

=−p′
Si(ui)

pSi(ui)
; i = 1; : : : ; Ms (9)

with pSi(ui) and p′
Si(ui) being the source pdf and its derivative, respectively. g(·) is

called the score function associated with a certain pdf. A possible update equation for
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the separation matrix using a stochastic gradient can now be formulated from Eq. (8)
as

Wt+1 =Wt + �(W−T
t − g(u)xT); (10)

where � is a small step size, and g(u) = [g1(u1); : : : ; gMs (uMs )]
T is the vector of score

functions. The direct derivation of Eq. (10) in the noiseless case was also given by
Yang [20] using an ML approach. Rather interestingly, other approaches, such as the
InfoMax [4] or the minimization of the mutual information [3] lead to the same solu-
tion.
The convergence of Eq. (10) is not very fast and depends on the mixing matrix

A as well as on the initial Wt=0. Besides, the implementation of Eq. (10) involves
a matrix inversion, an operation that should be avoided for fast real-time algorithms.
Possible ways out of these problems were presented by Amari [1] and Cardoso [7] by
using the natural gradient and the relative gradient, respectively. The natural gradient
corrects for the nonisotropic gradient magnitude structure—called Riemannian structure
in information geometry—in the parameter space of the standard-gradient adaptation,
but at the same time preserves local minima of the cost function. For the blind sepa-
ration problem the natural gradient (as well as the relative gradient) method involves
a post-multiplication of the matrix update by WTW , hence Eq. (10) becomes

Wt+1 =Wt + �(I − g(u)uT)Wt ; (11)

thereby getting rid of the matrix inversion. Moreover, the convergence speed of
Eq. (11) is considerably improved over the original update equation, Eq. (10). A
comparison between Eqs. (10) and (11) and further details on the natural gradient and
its properties are given in [11].

4. The threshold nonlinearity

4.1. Derivation

Many source signals, particularly in communications are modeled by a uniform dis-
tribution. In the following, we derive a suitable nonlinearity for uniformly distributed
source signals. The uniform distribution is a special case of a larger family of distri-
butions, the generalized Gaussian distributions, whose pdf is given by

pS(ui) =
�

2��( 1� )
e−(|ui|=�)� : (12)

pS(ui) models super-Gaussian distributions for 0¡�¡ 2 and sub-Gaussian distribu-
tions for �¿ 2, respectively.
Di2erentiating Eq. (12) with respect to ui leads to

p′
S(ui) =−�

( |ui|
�

)�−1 sign(ui)
�

�
2��

(
1
�

) e−(|ui|=�)� : (13)
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If we divide Eq. (13) by Eq. (12) and Oip the sign we get

gi(ui) =−p′
S(ui)

pS(ui)
= �

( |ui|
�

)�−1 sign(ui)
�

=
�
�� |ui|�−1 sign(ui): (14)

For unit variance, we can Jnd � from the general expression for the nth-order moment
of a generalized Gaussian signal

E{|X |m}= �((m+ 1)=�)
�(1=�)

�m: (15)

�(·) is the gamma function given by �(a) =
∫∞
0 xa−1e−x dx, and shows a recursive

property similar to the factorial function, �(a+1)= a�(a). For m=2, Eq. (15) yields

� =

√
�(1=�)
�(3=�)

: (16)

Inserting this value for � into Eq. (14) yields the nonlinear function

gi(ui) = �
(
�(3=�)
�(1=�)

)�=2
sign(ui) · |ui|�−1: (17)

Eq. (17) is the score function for any generalized unit-variance Gaussian distribution.
Using �(x) · �(1− x) = !=sin(!x) (see for example [6]) leads to

gi(ui) = �
(
!=sin 3!=�
!=sin !=�

· �(1− 1=�)
�(1− 3=�)

)�=2
sign(ui) · |ui|�−1: (18)

Both terms �(1− 1=�) and �(1− 3=�) are close to �(1) = 1 for large values of �, so
that simpliJcation of Eq. (18) yields

gi(ui)|��1 ≈ �
(

sin(!=�)
sin(3!=�)

)�=2
sign(ui) · |ui|�−1: (19)

The Jrst term of the Taylor expansion of a sine function for a small argument is just
the argument itself, leading to

gi(ui)|��1 ≈ �
(
1
3

)�=2
sign(ui) · |ui|�−1 = �

1
ui

(
u2i
3

)�=2
: (20)

We are now interested in the form of gi(·) as � approaches inJnity, in which case
Eq. (12) corresponds to a uniform distribution. As a consequence of the behavior of
limb→∞ ab depending on |a| being less or greater than one, we can write the threshold
nonlinearity as

lim
�→∞ gi(ui) =

{
0; |ui|¡

√
3;

∞ · sign(ui); |ui|¿
√
3:

(21)
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The normalized uniform distribution only has a Jnite probability density for |ui|¡
√
3;

outside it is zero. With g(ui) being zero for small ui, Wt+1 in Eq. (11) grows gradually,
thereby increasing ui. When ui ‘hits’ the threshold, it is pushed back hard (inJnite gain)
into the region where g(ui) = 0, so that the amplitude of ui is clearly controlled. The
inJnite gain in Eq. (21) will of course cause convergence problems for a Jnite learning
rate parameter �. The gain can, therefore, be traded o2 against a lower threshold # for
a speciJed output power. Again, if we aim at unity output power, we need to scale
the nonlinearity. Hence, for every component ui of the vector u; i=1; : : : ; Ms, we need
to scale gi(ui) such that the scaling constraint of the nonlinearity∫ ∞

−∞
pS(u)g(u)u du= 1 (22)

is satisJed if pS(·) is a source distribution with unit variance �2
S = 1. By satisfying

Eq. (22), the output power of u will become normalized after convergence

E{uuT}= I : (23)

Replacing Eq. (21) with

gi(ui) =

{
0; |ui|¡#;

a sign(ui); |ui|¿#
(24)

we get the gain a of the threshold nonlinearity for uniform distributions by solving
Eq. (22) as

a=
2
√
3

3− #2 (25)

for 06#¡
√
3. The resulting threshold nonlinearity is depicted in Fig. 3. Its form

represents a three-step quantizer. Note that a is always positive for the assigned range
of #. Although the threshold nonlinearity has been derived for the uniform distribution,
[17] shows that, in fact, all sub-Gaussian signals can be separated using this nonlin-
earity. By adapting the threshold parameter, even super-Gaussian distributions might
be separated. Moreover, it can be shown [15] that the threshold nonlinearity separates
any non-Gaussian distribution, provided the threshold value is set correctly.

4.2. Stability regions of the threshold nonlinearity

The local stability of the threshold nonlinearity has only been proven explicitly for
continuous distributions [17]. In the following, this local stability analysis is extended
to discrete distributions. The condition for local stability for the threshold nonlinearity
under the assumption of equal source distribution and nonlinearities is [17]

pUi(#)∫∞
# pUi(ui)ui dui

¿ 1; i = 1 : : : Ms (26)

with Ms denoting the number of sources. Whereas the integral in the denominator of
Eq. (26) can be written as a sum for discrete distributions∫ ∞

#
pUi(ui)ui dui =

∑
k;Ak¿#

Pr(ui = Ak)Ak; (27)
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Fig. 3. Threshold nonlinearity with parameter #.

the evaluation of a probability density, as appearing in the numerator of Eq. (26), needs
a closer look. Close to an equilibrium point we may model the output distribution as
a convolution of the discrete probability model of the source signals by some mixing
noise distribution, which is Gaussian distributed. The probability density at a certain
constellation point is, therefore, the discrete probability of that point multiplied by the
mode of the Gaussian kernel 1=

√
2!�N, with �2

N being the variance of the mixing
noise. In other words, the discrete-level distribution is convolved with the probabil-
ity density function (pdf) of a Gaussian noise signal. Examples of such discrete-level
distributions are M -ary pulse amplitude modulation (M -PAM), essentially data commu-
nication signaling schemes, which have an alphabet size of M di2erent, equally spaced,
and equally probable amplitudes (cf. top of Fig. 4). The resulting pdf for a 4-PAM
(pulse amplitude modulation) signal with an SNR=25 dB is depicted at the bottom of
Fig. 4. The stability regions are thus dependent on the mixing noise. Figs. 5 and 6
show the stable regions as derived from the evaluation of Eq. (26) for binary phase
shift keying (BPSK) and 4-PAM, respectively. It is interesting to note that in addition
to the region around the outer symbols, which looks similar for BPSK and 4-PAM,
there is a further stable region around the inner symbols in the case of 4-PAM.
It becomes apparent that for a stable update equation for BPSK signals, the threshold

# has to be in the neighborhood of the symbol amplitude, otherwise the algorithm
becomes unstable. A closer look at Eq. (26) reveals that the mixing noise keeps the
algorithm stable through a Jnite pdf in the neighborhood of the symbol amplitude. In
other words, if the threshold # is chosen too far away from the symbol amplitude,
more mixing noise is needed to satisfy Eq. (26). For BPSK, the threshold # should,
therefore, be chosen directly at the symbol amplitude A1 = 1. For this choice, with
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Fig. 4. Top: discrete distribution of 4-PAM signal with unit variance. Bottom: pdf of 4-PAM signal with
additive Gaussian noise, SNR=25 dB. The shaded regions indicate the stable region of the threshold parameter
# as derived from Fig. 6.

probability 0.5 the signal will be larger (smaller) than the threshold, enforcing a choice
of the scaling factor a = 2 in order to satisfy the scaling condition, Eq. (22). For all
choices of the threshold # smaller than A1=1 and low residual mixing, a scaling factor
of a=1 is needed. For larger threshold values, the gain gets impractically high due to
Eq. (22). For M -PAM signals with M ¿ 2, stable algorithms can be obtained by setting
the threshold to the outermost symbol amplitude

#=

√
3(M − 1)
M + 1

: (28)

The corresponding gain is

a=M

√
M + 1

3(M − 1)
: (29)

4.3. Bias removal for the threshold nonlinearity

Algorithms of the form given by Eq. (11) lead to a biased solution, if additive noise
is present at the sensors. Particularly in communication environments we often have
this situation of additive noise. By linearly combining the signals in order to separate
them, the noise signals get correlated at the output, introducing dependencies between



H. Mathis, M. Joho /Neurocomputing 49 (2002) 61–78 71

Fig. 5. Stable region (shaded) for noisy BPSK signals and the threshold nonlinearity.

the sensor signals. Any criterion that searches for the minimum dependence among the
output signals will therefore deviate from this solution, thereby introducing a bias. A
combined learning process involving unsupervised learning for the separation and su-
pervised learning for noise reduction was presented in [9]. The lack of a noise reference
in practice, however, makes this approach inapplicable to most common problems. It is
possible to devise an update equation with an additional term in the update equation,
which involves either some expectation of the signal derivatives [8] or their stochastic
versions [12]

Wt+1 =Wt + �(I − g(u)uT + BW tRNWT
t )Wt ; (30)

where B is a diagonal matrix with entries

bii = E
{
dg(ui)
dui

}
(31)

and RN is the covariance matrix of the noise contribution. To see the mechanism
behind Eq. (30), we deJne an unbiased estimate of the source signal as

û =WAs: (32)

If we use the original algorithm, Eq. (11), to separate a noisy mixture of signals, we
get an equilibrium point when the expectation of the parenthesis is zero, hence

E{I − g(u)uT}= 0: (33)
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Fig. 6. Stable regions (shaded) for noisy 4-PAM signals and the threshold nonlinearity.

But since the output is noisy, i.e.,

u = û +Wn; (34)

we get from Eq. (33)

E{I − g(û +Wn)(û +Wn)T}= 0: (35)

A Jrst-order truncated Taylor series expansion of the nonlinearity around û yields

g(û +Wn) = g(û) + diag(g′(û))Wn; (36)

where diag(g′(û)) is a diagonal matrix with the elements g′(û i) located on the diagonal.
Inserted into Eq. (35), this results in

E{I − g(û +Wn)(û +Wn)T}
= I − E{g(û)ûT} − E{diag(g′(û))WnûT}

−E{g(û)nTWT} − E{diag(g′(û))WnnTWT}= 0: (37)

Since the noiseless estimate is uncorrelated to the noise, the third and the fourth term
of the RHS of Eq. (37) are zero, hence

E{I − g(û +Wn)(û +Wn)T}
= I − E{g(û)ûT} − E{diag(g′(û))WRNWT}= 0: (38)
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The equilibrium point is therefore the point where the above equation is satisJed, and
not the point at which the unbiased estimate of the source signals û are independent.
The third term of the RHS of Eq. (38) is now identiJed as the bias term and has to
be subtracted in the original update equation, leading to Eq. (30). If we then make the
same analysis on Eq. (30), for which we know that at the equilibrium we have

E{I − g(u)uT + BW tRNWT
t }= 0; (39)

we get

E{I − g(u)uT + BW tRNWT
t } (40)

=E{I − g(û +Wn)(û +Wn)T + BWtRNWT
t }

= I − E{g(û)ûT} − E{diag(g′(û))WRNWT}+ BWtRNWT
t

= I − E{g(û)ûT}= 0: (41)

Hence, the equilibrium means that the elements of û will be mutually independent.
Although the threshold nonlinearity is nondi2erentiable, its expectation can be ex-

pressed by integration over a Dirac impulse

E{g′(û i)}=
∫ ∞

−∞
pÛi

(û i)g′(û i) dû i

=
∫ ∞

−∞
pÛi

(û i)a('(ui + #) + '(û i − #)) dû i

= 2a · pÛi
(#): (42)

In the following we assume equal noise power �2
N at each of the sensors, but uncorre-

lated noise signals, so that the sensor noise vector is described by N(0; �2
N · I), or by

RN = �2
N · I . This is a reasonable assumption, as very often noise is of thermal origin,

therefore, given by temperature and noise Jgure and as such of equal variance but mu-
tually uncorrelated for all the channels. Furthermore, the noise power �2

N is presumed
to be known, be that from theoretical calculations of thermal noise or by estimating it,
e.g., using minor component analysis in an overdetermined separation case [14].
For identical distributions of all source signals, Eq. (30) can be simpliJed to

Wt+1 =Wt + �(I − g(u)uT + �2
NbWtWT

t )Wt ; (43)

where

b= E{g′(û)}: (44)

For the uniform distribution, which is a good approximation for M -ary distributions
where M is high, with unit variance, implying that the threshold function is properly
scaled according to Eq. (25) we get

b= E{g′(û)}= 2
3− #2 : (45)

If the source signals have discrete distributions rather than continuous ones, the up-
date equation, Eq. (43), is not accurate, as it is based on the assumption of uni-
form distribution. Owing to its discrete distribution, pŨi

(·), which should be used in
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Eq. (42), is a probability mass function (pmf) rather than a pdf. However, close to
the real solution we may approximate pŨi

(·) by pUi(·), which is a true pdf. Since the
noise carried through to the outputs determines the probability density at the threshold
level #, pUi(#) depends on the separation matrix. For an M -ary signaling scheme (e.g.,
M -PAM) we can write for the probability density at the ith output

pUi(#) =
1
M

1√
2!�N

1√∑Ms
k=1w

2
ik

(46)

with wik being the i; kth element of the separation matrix W , describing the path from
the kth sensor to the ith output and # given by Eq. (28). For M -PAM signals, using
Eqs. (29) and (46) in Eq. (42) and the update equation, Eq. (30), we get

Wt+1 =

Wt + �

(
I − g(u)uT +

√
2(M + 1)
3!(M − 1)

�N(diag(WtWT
t ))

−1=2WtWT
t

)
Wt ;

(47)

where diag (WtWT
t ) means here the matrix WtWT

t with suppressed o2-diagonal terms
and may also be written by the use of the Hadamard or Schur product: diag(WtWT

t )=
I ◦ (WtWT

t ), where ◦ denotes elementwise multiplication.

4.4. MMSE vs. zero-forcing solution

Very often in data communications we are not interested in the solution of W that
directly inverts A—the so-called zero-forcing solution—due to problems associated with
noise enhancement at frequencies close to zeros of the system transfer function. In terms
of signal purity—the essence of low bit-error rates—we do not care where unwanted
contributions to the signal comes from; signals from other channels or thermal noise.
This is of course only the case if channels are not jointly detected. For single-channel
detection, the proper criterion to choose is the minimum mean squared error (MMSE).
If we have a zero-forcing solution WZF we can, by looking at the MMSE solution for
unit-power source signals [14]

WMMSE = AT(AAT + �2
nI)

−1 (48)

reformulate the MMSE solution in terms of the zero-forcing solution. To this end, we
note that the zero-forcing solution is the inverse of the system matrix but for some
permutation and sign Oippings

WZF = JPA
−1: (49)

J is a matrix of ±1s and P is a permutation matrix. Using Eq. (49) in Eq. (48) leads
to

WMMSE = PTJTW−T
ZF (W−1

ZF JPP
TJTW−T

ZF + �2
nI)

−1: (50)
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JPPTJT=I , and by premultiplying the solution in Eq. (50) by JP we do not challenge
its validity, so we get

WMMSE =W−T
ZF (W−1

ZF W
−T
ZF + �2

nI)
−1: (51)

4.5. Computer simulations

In the following, results of computer simulations of the blind separation using the
bias-removal method suggested above are shown. Some important parameters inOuenc-
ing the performance were taken from [12], such as the number of sources and sensors
Ms = 3, the mixing matrix

A=


 0:4 1:0 0:7
0:6 0:5 0:5
0:3 0:7 0:2


 (52)

and the condition WoWT
o =0:25 ·I (implying that Wo is a scaled orthogonal matrix) for

the one hundred trials with a di2erent initial separation matrix. In the Jrst experiment
three uniformly distributed source signals were mixed, and noise was added at the
sensors with �2

N = 0:01. The noise level was assumed to be known to the algorithm.
The mixed noisy signals were then separated using the threshold nonlinearity with
# = 1:5 and the update equation, Eq. (11). The step size was adjusted without noise
to obtain an interchannel interference level of −35 dB and then Jxed to � = 0:00032
for the other simulations. The performance measure used in the plots is calculated as
a function of the global system matrix P = [pik ]

JICI(P) =
1
Ms

(
Ms∑
i=1

∑Ms
k=1 p

2
ik

maxk p2
ik

)
− 1 (53)

and expresses the average interchannel interference. Fig. 7 reveals the convergence
improvement of the modiJed algorithm compared to the standard algorithm without bias
removal. Since mixing matrix and noise power are identical to the parameters chosen
in [8,12], we can compare the convergence with those results directly. The curves
shown in Fig. 7 look almost identical to the curves given in [8,12]. The advantage in
this method here lies in the application of a much simpler nonlinearity, essentially a
three-step quantizer.
Still better results were obtained for binary-distributed source signals. Three binary-

distributed source signals were mixed using the same mixing matrix as above. To
show clearer di2erences between the algorithms, the noise was increased by 5 dB,
resulting in �2

N = 0:0316. Fig. 8 shows that the modiJed algorithm is in fact capable
of completely removing any bias, albeit at a lower convergence speed. Again, step
sizes were chosen equal (�=0:0018) for all three cases. It was also observed that the
modiJed algorithm with certain noise levels (e.g., �2

N=0:01) consistently outperformed
the standard algorithm with no noise. This surprising e2ect is due to an increased
stability region (see Fig. 5) for lower SNRs. The additive noise has then a positive
dithering e2ect. With other nonlinearities (e.g., g(u)= au3) or other distributions (e.g.,
uniform distribution), this e2ect cannot be observed. It is only the special arrangement
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of high derivative of the nonlinearity at the level of spikes in the pdf that beneJts
from additional noise.

5. Conclusions

We have presented ways of overcoming the problems associated with excessive
noise on the transfer channel of an instantaneous mixture of signals, when trying to
blindly separate them. When more mixture observations are available, the noise space
should be suppressed using preprocessing steps such as PCA. Algorithms based on
simple nonlinearities such as a three-step quantizer can be extended to take into account
additive noise, resulting in solutions of the estimate of the separation matrix with
suppressed bias. Simulation results support the theory presented. From an unbiased
separation solution, which satisJes a zero-forcing criterion, an MMSE solution can be
readily obtained by simple matrix operations. The methods for bias removal shown can
easily be extended to complex quadrature signals. Mathis et al. [16] give some hints
as to how the update equations have to be modiJed.
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