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Abstract: Consensus and Non-Blocking Atomic Commit (NBAC) are two fundamental distributed prob-
lems. The specifications of both problems may lead one to think that they are very similar. However, a
black-box solution to any of them is not sufficient to solve the other. This paper presents a family of agree-
ment problems called Managed Agreement, which is parameterized by the number of aristocrat nodes in
the system; NBAC is a special case of this family when all nodes are aristocrats while Consensus is a spe-
cial case of this family when there are no aristocrats. The paper also presents a parameterized family of
failure detectors F(A) such that F(A) is the weakest failure detector class that enables solving Managed
Agreement with a set A of aristocrats in an asynchronous environment.
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Accord contrôlé : génaralisation de deux problèmes d’accord fondamentaux

Résumé : Le consensus et la validation atomique non-bloquante sont deux problèmes d’accord fondamen-
taux. Leur spécification relativement proche peut en première approximation laisser penser que ces deux
problèmes sont très similaires. Et pourtant, la solution à l’un d’entre eux ne permet pas de rśoudre l’autre.

Ce rapport technique présente une famille de problèmes d’accord, appelée par la suite Accord contr̂olé,
paramétrée par le nombre d’aristocrates impliqus dans le système, un aristocrate étant un nœud ayant un
statut particulier dans la spécification du problème d’accord considéré. La validation atomique non-blocante
est un cas particulier de cette famille lorsque tous les nœuds impliqués sont des aristocrates, alors que pour le
consensus, aucun des nœuds n’a ce statut. Ce rapport technique présente également une famille de dtecteurs
de défaillances F(A) telle que F(A) soit le plus faible détecteur de défaillances permettant de résoudre le
problème de l’accord contrôlé en présence de A aristocrates dans un environnement asynchrone.

Mots clés : consensus, validation atomique non-blocante, consensus quitable, accord contrôlé, détecteurs
de défaillances



1 Introduction

Distributed systems are composed of a collection of processes (also called nodes) that try to obtain a common
goal. In many applications, this goal may involve reaching an agreement between the participants about
some course of action. For example, if a file system is replicated across multiple servers, the servers need
to agree on which file operations have been executed by the system and in what order, so that the system
remains consistent. If the file system is not fully replicated on all servers, then an operation like moving a
file from one server to another requires both servers to agree on the move in an atomic manner, in order to
avoid loss of files on one hand, and duplications on the other hand.

Consensus [16] and Non-Blocking Atomic Commit (NBAC) [2, 17] are two fundamental distributed
agreement problems. Intuitively, the specification of these problems assumes that each node in a distributed
system starts with a given input value and the goal of each node is to decide on some output value. However,
the decided values are restricted such that: all processes that do not crash eventually decide (termination), the
value decided by all processes is the same (agreement), and the value decided must be related to the initial
input values (validity). The difference between Consensus and NBAC is in their validity requirements.
Specifically, Consensus only requires that a decided value is also a value that was proposed. In NBAC, it
is assumed that the possible initial values are yes and no and the possible decision values are commit and
abort. If the initial value of at least one node is no, then the decision must be abort. On the other hand, if the
initial values of all nodes are yes and there are no crash failures, then the decision value must be commit.

Considering the distributed file system example above, when a file is replicated on all servers, these
servers can use a Consensus black-box implementation in order to decide on which operations to apply and
in what order. On the other hand, if the servers are not identical, then it could happen that one node may not
be able to perform an operation that others can, e.g., due to physical limitations (memory and disk space) or
due to some security attributes that can only be verified on that node. In these cases, it is important to give
a “veto” power to such nodes in order to avoid a situation in which the decided value is one that cannot be
fulfilled. In this case, NBAC is a more appropriate abstraction than Consensus.

Despite the similarity in structure of the definitions of Consensus and NBAC, in asynchronous dis-
tributed systems prone to crash failures, these are two different problems [14]. In particular, neither problem
can be solved in a purely asynchronous system. However, it was shown that the minimal synchrony required
to solve Consensus is strictly weaker than the one required to solve NBAC [8] (we make this statement
more precise below). On the other hand, a black-box implementation of NBAC is not sufficient to solve
Consensus in an otherwise asynchronous environment.

Contributions of this paper: In this paper we propose a family of problems that we call Managed Agree-
ment1, which generalizes both NBAC and Consensus. Specifically, the definition of Managed Agreement is
based on the notion of aristocrat nodes. In Managed Agreement, there exists a value such that if any of the
aristocrats proposes this value, then a corresponding value must be decided. On the other hand, if none of
the aristocrats proposed the special value and none of the aristocrats failed, then any possible decision value
that corresponds to a value that was proposed can be decided on. Thus, NBAC is a special case of Man-
aged Agreement when all nodes are aristocrats, whereas Consensus is a special case of Managed Agreement
when there are no aristocrats.

1The term Managed Agreement is inspired by the term “managed democracy”.
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Interestingly, the motivation for this work comes from a real system we have designed, in which a
parameterized service providing Managed Agreement is a key component. Consider a large scale Internet
wide system that enables an ad-hoc collection of nodes to perform transactions [1]. As the communication
capabilities of various nodes are different, we do not wish to allow any node to veto a transaction, and
moreover, to be in a position that a single failure (and in practice, a single connection timeout), would cause
a transaction to abort. For example, consider a distributed auctioning and transaction system, in which any
node can publish a multi-stage auction, e.g., to build a house. All nodes can send bids for various parts of
the auction, and eventually the auctioneer runs an agreement protocol with the winners in order to sign a
binding multi-party contract. In this case, we cannot force the auctioneer to agree to a contract it does not
want, e.g., if none of the bids were good enough. However, once a contractor sends a bid, we want to avoid
aborting the contract just because this contractor got disconnected. Thus, in this case we can run Managed
Agreement in which the auctioneer (and only the auctioneer) acts as the aristocrat.

To that end, in this paper we also present a generic protocol for solving Managed Agreement, which is
based on a transformation from Consensus to NBAC by Guerraoui [13]. The protocol we present utilizes
any known Consensus protocol as a black-box and a new class of failure detector that we denote ?PAr(A),
which is an extension of the known ?P to detect crashes of aristocrats only (?P was also introduced in [13]).
Finally, we introduce a failure detector class ΨAr(A), again, an extension of the known class Ψ [8], and show
that a corresponding family of failure detectors, denoted F(A) = (?PAr(A),ΨAr(A)), is the weakest class
of failure detectors that enables solving Managed Agreement for a given A.

2 Asynchronous Distributed Systems with Process Crashes

The computation model follows the one described in [4, 9]. The system consists of a finite set Π of n > 1
processes, namely, Π = {p1, . . . , pn}. A process can fail by crashing, i.e., by prematurely halting. At most
f < n processes can fail by crashing. A process behaves correctly (i.e., according to its specification) until
it (possibly) crashes. By definition, a correct process is a process that does not crash. A faulty process is
one that is not correct. Until it (possibly) crashes, a process is alive.

Processes communicate and synchronize by sending and receiving messages through channels. Every
pair of processes is connected by a channel. Channels are assumed to be reliable. There is no assumption
about the relative speed of processes nor on message transfer delays: the system is asynchronous.

3 Managed Agreement problem

3.1 Problem Specification

In the Managed Agreement problem, the set of possible proposed values, P-VALS, can be different from
the set of possible decided values, D-VALS. However, we require a one-to-one mapping M from the set
P-VALS to the set D-VALS. In particular, for each value pv ∈ P-VALS and value dv ∈ D-VALS such that
dv = M(pv), we say that dv is the value that corresponds to pv. Moreover, we identify one special value in
P-VALS as the default value and denote it Default.2 We also identify a set A of aristocrats among the entire
set of nodes (this subset is a parameter). Managed agreement is then defined by the following properties:

2To clarify, Default is just a generic symbol; for example, in the case of NBAC, the value no is the Default.
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• (Uniform) Agreement: No two processes decide differently.

• Termination: Every correct process eventually decides on some value.

• Managed-Obligation: If the decision value is M(Default), then either one of the aristocrats proposes
Default or crashes.

• Managed-Justification: If the decision value v is different from M(Default), then v corresponds to
a proposed value and all aristocrats propose a non default value.

Notice that a decision on a value other than M(Default) requires all aristocrats to propose a value
different from Default. In particular, in runs in which at least one of the aristocrats have crashed even before
the beginning of the protocol, the only possible decision value is M(Default).

3.2 Consensus, Quitable Consensus, and NBAC

The Quitable Consensus problem was introduced in [8] as an intermediate step in showing the weakest
failure detector for solving NBAC. In this paper, we make a similar use of a generalized problem, and
therefore we define Quitable Consensus here along with Consensus and NBAC.

In Consensus, Quitable Consensus, and NBAC, every correct process pi proposes a value vi and all
correct processes have to decide on the same value v. This is captured by the Termination and Agreement
properties as defined above [4, 9].

In addition, in Consensus, the decided value has to be one of the proposed values. More precisely,
Consensus has to satisfy the following property:

• Cons-Validity: If a process decides v, then v was proposed by some process.

Quitable consensus is a weaker version of consensus where, if a failure has occurred, processes can also
agree on a special value Q. The set of possible decided values belongs to v,Q:

• Quitable Cons-Validity: (a)If a process decides v, then v was proposed by some process. (b) If
v =Q, then a failure has previously occurred.

On the other hand, in NBAC, the set of possible proposed values is { yes, no }whereas the set of possible
decided values is { commit, abort }. These values are related by the following validity properties:3

• NBAC-Justification: If a process decides commit, then all processes propose yes.

• NBAC-Obligation: If all processes are correct and every process proposes yes, then the decision
value is commit.

When the set of proposed values for Consensus is {0, 1}, this problem is sometimes referred to as Binary
Consensus. However, the solvability of Consensus and Binary Consensus is the same for all PV for which
|PV | > 1. The following observations relate Managed Agreement with Consensus and NBAC:

3To the best of our knowledge, the names “NBAC-Justification” and “NBAC-Obligation” were first proposed by M. Raynal for
these properties.
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Observation 1 (Managed Agreement and Consensus) Consensus is equivalent to Managed Agreement
with an empty set of aristocrats.

Observation 2 (Managed Agreement and Quitable Consensus) Quitable Consensus is equivalent to Man-
aged Agreement when all processes are aristocrats but they are not allowed to propose Default.

Observation 3 (Managed Agreement and NBAC) NBAC is equivalent to Managed Agreement when all
the processes are aristocrats.

4 Solving Managed Agreement

4.1 Relevant Failure Detectors

We further enhance the environment, denoted E , by assuming that each process has access to (one or more)
failure detector(s) [4]. A failure detector is a module that provides each process with possibly inaccurate
information about the occurrence of failures in the system. Below, we list three known types of failure
detectors that enable solving Consensus and NBAC in an otherwise asynchronous distributed system.

The class quorum failure detector Σ: Specifically, Σ outputs at each process a set of processes such that
any two sets intersect, and eventually every set output at correct processes consists only of correct processes.
It was shown in [8] that Σ is the weakest failure detector to implement atomic registers.

The class leader failure detector Ω: The failure detector Ω outputs the id of some process at each process.
There is a time after which it outputs the id of the same correct process at all correct processes [3]. It was
shown in [8] that (Ω,Σ) is the weakest failure detector to solve Consensus for all environments.4

The class ?P: A failure detector that belongs to the class ?P provides a boolean value to each process
while maintaining the following property [13]:

• Anonymous Accuracy: The failure detector eventually returns true if and only if some process in
the system has crashed.

The class Ψ: For an initial period of time, the output of Ψ at each process is false. Eventually Ψ behaves
either like the failure detector (Ω,Σ) at all processes, or, in case a failure previously occurred, it may behave
like the failure detector ?P at all processes. The switch from false to ?P is allowable only if a failure
previously occurred. In [8] it is proved that (Ψ, ?P) is the weakest failure detector to solve NBAC, while Ψ
is the weakest failure detector to solve Quitable Consensus.

4Let us state for completeness that the class known as Pf [7] has been shown to be equivalent to Σ [11]. Also, each of the
classes known as �W and �S have been shown to be equivalent to Ω [4, 6].
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4.2 Some Observations Regarding Consensus, Quitable Consensus, and NBAC

As mentioned before, solving NBAC requires a strictly stronger environment, in terms of failure detection
capabilities, than solving Consensus [8]. Moreover, Guerraoui et al. have shown a simple protocol that
solves NBAC based on a black-box implementation of Consensus and the failure detector ?P [13]. On the
other hand, it is known that a black-box implementation of NBAC cannot be used to solve Consensus in an
environment that is otherwise too weak to solve Consensus [13].

When examining the definitions of these problems, we make the following observations: First, in NBAC,
there is some value (no) such that if anyone proposes it, then its corresponding decision value (abort) must
be decided on (unless there is a crash) regardless of the other values proposed. This means that one value
vetoes the other, while in Consensus all values have the same significance. Second, in NBAC and in Quitable
Consensus, as soon as there is a single crash, it is permissible to decide (abort or Q) regardless of the values
proposed, whereas in Consensus the decided value must always correspond to the values that were proposed.
Additionally, NBAC is equivalent to the combination of Quitable Consensus and ?P [8].

4.3 The F(A) Failure Detectors

First, we introduce the class of failure detectors ?PAr(A). Specifically, given a set of aristocrats A, a failure
detector in ?PAr(A) provides a boolean value to each process while maintaining the following property:

• Aristocratic Accuracy: The failure detector eventually returns true if and only if some process in A
has crashed.

Second, we can similarly extend the definition of Ψ to ΨAr(A) in the obvious way. That is, ΨAr(A)
initially outputs false at all processes. Then it either behaves as (Ω,Σ), or if one of the aristocrats in A has
crashed, it may behave as ?PAr(A). However, its behavior has to be consistent at all processes. Notice that
when A = ∅, then ?PAr(A) always return false and ΨAr(A) degenerates to (Ω,Σ). Finally, we define the
class F(A) = (?PAr(A),ΨAr(A)).

5 The Weakest Failure Detector to Solve Managed Agreement

5.1 Sufficiency: Managed Agreement Through Consensus

A generic protocol for solving Managed Agreement based on the availability of a failure detector F(A)
appears in Figure 1. This protocol is a simple variant of the protocol of Guerraoui [13]. In our variant of
the protocol, every aristocrat first sends its proposed value to all other processes. Every process then waits
until either it has received the proposed values of all aristocrats, or ?PAr(A) part of its F(A) failure detector
told it that one of the aristocrats has crashed. The latter is used to avoid blocking forever in case one of
the aristocrats has crashed before sending its value to all other processes. Then, if a node received at least
one Default value, or detected one aristocrat failure, it starts a Consensus protocol by proposing the value
that corresponds to Default in the Managed Agreement specification. Otherwise, it starts the Consensus
with a value that corresponds to its own proposed value. Yet, before starting the Consensus protocol, the
process must wait until the ΨAr(A) failure detector makes up its mind on whether it behaves as ?PAr(A) or
as (Ω,Σ). In the former case, this means that one of the aristocrats has failed, and this has been observed
by all correct processes. Thus, it is safe to decide M(Default). Otherwise, the consensus is invoked, since
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Function ManagedAgreement(A,v i, ki)

% ki is a parameter aimed as distinguishing between different instantiations of the protocol
if I am an aristocrat (in A) then

send (VOTE,vi, ki) to everyone;
endif;
wait until either (VOTE,-,ki) messages have been received from every aristocrat or ?PAr(A) returns true;
if received a (VOTE,Default,ki) message from at least one aristocrat or ?PAr(A) returned true then

let ui := M(Default)
else

let ui := M(vi)
endif;
while (ΨAr(A) = false) do nop done
if ΨAr(A) = true then /* ΨAr(A) behaves as ?P(A)

return M(Default)
else

val:=consensus(ui, ki); /* ΨAr(A) behaves as (Ω,Σ)
return val

endif

Figure 1: A Managed Agreement Protocol Based on F(A) and a Consensus Subroutine

it is known that the failure detector’s output obeys (Ω,Σ), and thus the Consensus protocol will terminate
correctly. In particular, the use of Consensus ensures agreement between all nodes while verifying that the
agreed value also maintains validity. Let us note that when there are no aristocrats, this protocol trivially
degenerates to invoking Consensus with the initial values.

Lemma 1 The protocol in Figure 1 solves the Managed Agreement problem in asynchronous environments
in which processes are equipped with a failure detector from the class F(A) and a Consensus subroutine.

Proof: It is easy to see that the agreement property trivially holds. If a process decides M(Default) due
to finding ΨAr(A) = true, then by definition, all correct processes do the same and decide M(Default).
Otherwise, if Consensus is invoked, then all processes decide the output of Consensus, and thus agreement
follows from the correctness of the Consensus protocol. Similarly, the termination property holds due to
the termination property of the Consensus protocol and the use of the ?PAr(A) part of F(A) in the wait
statement. Thus, we only need to show validity.

Clearly, if processes find ΨAr(A) = true, then this means that one of the aristocrats has crashed. In
this case, they all decide M(Default) and therefore validity if preserved. Therefore, for the rest of this
proof we concentrate only on runs in which the ΨAr(A) part of the failure detector acts like (Ω,Σ). Let
us first consider runs of the protocol in which none of the aristocrats crashes. In these runs, at the end of
the wait statement, every alive process has all the proposed values of all the aristocrats. Thus, if any of
the aristocrats has proposed the default value, then all processes (that do not crash beforehand) start the
Consensus with the corresponding value u. By the validity of Consensus, the returned value by Consensus
must also be u. Therefore, in these cases Managed-Obligation is observed. Alternatively, if none of the
aristocrats proposes Default, then every process (that does not crash beforehand) starts the Consensus with
a value ui that corresponds to its proposed value vi. By the validity of Consensus, the decided value must
be one of these ui values. Consequently, Managed-Justification is observed in these runs.
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The only thing left to show now is that in runs in which at least one aristocrat proposes Default and at
least one aristocrat crashes (either the same aristocrat or a different one), then the decided value corresponds
to the default value. When considering such a run, at the end of the wait statement, every alive process
either has received at least one Default value, or has had its ?PAr(A) return true. In either case, the process
starts Consensus with M(Default). By the validity of Consensus, this is also the decided value.

outputpi := false;
ki := 1;
select vi ∈ P-VALS \{Default}
repeat

ti := ManagedAgreement(A,vi, ki);
ki := ki + 1;

until ti = M(Default);
outputpi := true;

Figure 2: From Managed Agreement to ?PAr(A)

5.2 Necessity: the Minimal Failure Detector for Solving Managed-Agreement

In the following, we show that any failure detector D that enables solving Managed Agreement can be
transformed into both ?PAr(A) and ΨAr(A). Consequently, it implements F(A).

5.2.1 From Managed-Agreement to ?PAr(A)

In the following, we show that any failure detector D that enables solving Managed Agreement in any
environment can be transformed into ?PAr(A). The transformation algorithm that we use is similar to the
one proposed in [13] for emulating ?P from NBAC. The algorithm works as follows. Each process pi
has a local boolean variable outputpi , which provides the information that should be returned by its local
failure detector ?PAr(A). We assume the existence of the function ManagedAgreement() that solves
the Managed Agreement problem. Each process pi initiates outputpi to false and then repeatedly invokes
the Managed Agreement function with a non default value. This is done forever, unless the returned value
is M(Default), in which case pi changes outputpi to true and exits. The idea is that by the definition
of Managed Agreement, M(Default) can only be returned in this case if and only if at least one of the
aristocrats has failed. The exact pseudo-code appears in Figure 2 and the proof is given below.

Lemma 2 The transformation algorithm in Figure 2 emulates the failure detector ?PAr(A).

Proof: We prove that the transformation algorithm verifies the Aristocratic Accuracy property, i.e., it even-
tually returns true if and only if some process in A has crashed. Suppose the transformation algorithm
outputs true at some point. This can happen only if some invocation of the ManagedAgreement() func-
tion returns M(Default). By definition, this can happen either if one of the aristocrats proposes Default
or crashes. The first scenario is impossible since all processes invoke ManagedAgreement() with a non
Default value. Therefore, the output can be true only due to an aristocrat’s crash.
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Let us consider now an execution of the protocol where an aristocrat crashes, and assume w.l.o.g. that
it crashes before invoking the kth instance of ManagedAgreement(). Also, let pi be a correct pro-
cess executing the transformation algorithm. By the Termination property, the kth invocation by pi of
ManagedAgreement() in the transformation algorithm eventually returns; by the Managed-Obligation
property, the returned value in this case must be M(Default). Therefore, the transformation algorithm
terminates by setting the output to true.

5.2.2 From Managed Agreement to ΨAr(A)

The transformation from Managed Agreement to ΨAr(A) is inspired by the transformation that was first
proposed in [3], and then in [8], to extract Ψ from any failure detector D that solves Quitable Consensus.
Specifically, let D be an arbitrary failure detector that can be used to solve Managed Agreement in some
environment E . Let Alg be an algorithm that uses D to solve Managed Agreement in E . We must prove that
ΨAr(A) can be “extracted” from D in environment E , i.e., processes can run in E a transformation algorithm
that uses D and Alg to generate the output of ΨAr(A)— a failure detector that initially outputs ⊥ and later
behaves either like (Ω,Σ) or like ?PAr(A). The reduction algorithm TD→ΨAr(A) is shown in Figure 3, and is
now explained. Since Alg solves Managed Agreement, we can assume, w.l.o.g., that it solves this problem
when {0, 1, Default} ∈ P-VALS and M(i) = i for i ∈ {0, 1}. In the construction, each process p starts by
outputting ⊥. Then, p runs two tasks in parallel whose goal is to determine whether (Ω,Σ) or ?PAr(A) has
to be extracted and then perform the corresponding extraction. In the first task (Task 1), p simulates runs of
Alg that could have occurred in the current failure pattern F and the current failure detector history of D,
exactly as in [3] (see below for extended definitions). It does this by “sampling” its local failure detector D
and exchanging failure detector samples with the other processes (Line 5 in Figure 3). Process p organizes
these samples into ever-increasing DAG Gp whose edges are consistent with the order in which the failure
detectors samples were taken. Using Gp, p simulates ever-increasing partial runs of Alg that are compatible
with paths in Gp. A path from the root of a tree to a node x in the tree corresponds to the schedule of a
partial run of the algorithm, where every edge along the path corresponds to a step of some process.

Each process p organizes these runs in a forest induced by T =

(
n + p − 1

n

)
configurations, with

n the number of processes, and p the number of different input values, i.e., p = 3. This forest, denoted
Υp, contains T trees. We can order these configurations in an order that guarantees that configurations Ii

and Ii−1, with 0 ≤ i < T differ only in the value of one proposition. These trees are ordered such that
Υ0

p corresponds to simulated runs of Alg in which all the processes propose 0, Υk
p, with some k > 0,

corresponds to simulated runs of Alg in which all the processes propose 1, and ΥT−1
p in which all the

processes propose Default. Note that it exists an ordering that guarantees that there is no k′ with 0 ≤ k′ ≤ k
such that some process proposes Default in Υk′

p .
Processes periodically query their failure detectors. The results of these queries include failure and

temporal information. Each process exchanges the results of its queries with all the other processes. Upon
receipt of such information, a process construct a DAG [3] by incorporating the received information to its
own DAG. (Each process exchanges its whole DAG with all the other processes. The temporal information
enables to incorporate the received DAG with the local one.) Thus every (correct) process can construct
ever-increasing finite approximations of the same infinite limit DAG G. This DAG is then used to simulate
runs of managed agreement. Specifically, each path g within the DAG G can be used to simulate schedules
of runs of managed agreement. That is, a path g represents several possible schedules and failure detectors
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Initially:

(1) T :=

(
n + p − 1

n

)
(2) ΨAr(A) − outputp := ⊥ {ΨAr(A) − outputp is the output of module ΨAr(A) at p}

Task 1:
(3) do forever { same construction as in [3]}
(4) cobegin
(5) p builds an ever-increasing DAG Gp of failure detectors samples by repeatedly sampling its failure detector D and

exchanging these samples with the other processes
(6) ‖
(7) p uses Gp and the T initial configurations to construct a forest Υp of ever-increasing simulated runs of Alg using D

that could have occurred with the current failure pattern F and the current failure detector history.
(8) coend

Task 2:
(9) wait until (for each tree Υi

p, with 1 ≤ i ≤ T , p decides in one of the runs of Υi
p)

(10) if (∃ i such that p decides M(Default) in Υi
p and Ii does not contain any Default value proposed by an aristocrat) then

(11) p runs Alg with Default as input value
(12) else {in each tree Υi

p, there exists a run in which the decision value is either 0, 1, or M(Default) but in the latter case,
Ii contains the Default value}

(13) select two configurations Ii−1 and Ii, with 1 ≤ i ≤ (T − 1) and two schedules S and S′ such that in S(Ii−1) p decides u,
in S′(Ii) p decides v, with u, v ∈ {0, 1} and u �= v

(14) p runs Alg with (I, I ′, S, S′) as input value
(15) wait until (p decides in Alg)
(16) if (p decides M(Default)) then
(17) ΨAr(A) − outputp := true {ΨAr(A) behaves as ?PAr(A) }
(18) else {p decides (I0, I1, S0, S1)}
(19) Ω − outputp := p
(20) Σ − outputp := Π
(21) cobegin

{ extraction of Ω }
(22) do forever
(23) Ω − outputp ← q such that p extracts q following the procedure in [3]
(24) ‖

{ extraction of Σ }
(25) let C be the set of configurations reached by applying all prefixes of S0 to I0 and S1 to I1

(26) do forever
(27) Σ − outputp ← ⋃

C∈C set of processes that p extracts following the procedure in [8]
(28) ‖
(29) do forever
(30) ΨAr(A) − outputp := (Ω − outputp, Σ − outputp)
(31) coend
(32) endif
(33) endif

Figure 3: Extraction of ΨAr(A) from D and Managed Agreement algorithm Alg – code for process p
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values for the processes during their execution of managed agreement. There are many different schedules
that match a path in DAG G because each schedule depends on the order in which messages are received.
Thus, if we consider each initial configuration Ii (that is the tuples of initial values), then one can construct
a tree rooted at Ii. The set of vertices of the tree rooted at Ii is the set of all possible schedules that can
occur from the given configuration Ii. An edge corresponds to an event “receipt by a process p of a message
m, and the failure detector value seen by the sender of the message when it sent m to p”. By considering the
T different configurations, one obtains a forest of simulated runs of managed agreement. Thus the infinite
limit DAG G induces an infinite limit forest, Υ. The limit tree of Υi

p is denoted Υi. Each node S of the
limit forest Υ is tagged by the set of decisions that correct processes reach in the partial runs that are the
descendants of S. These tags can be either univalent, i.e., 0-valent or 1-valent or M(Default)-valent, or
multi-valent (i.e., with more than one tag). We use the same definition for a critical index as in [8]: Index
i ∈ {0, . . . , T − 1} is critical if the root of Υi is multivalent or the root of Υi is u-valent and the root of
Υi−1 is v-valent, with u, v ∈ {0, 1,M(Default)} and u �= v.

In task 2, p waits until it decides in some simulated run of every tree of the forest Υp (Line 9 in Figure 3).
If p decides M(Default) in any of these runs and the initial configuration of this run does not contain any
Default value proposed by an aristocrat then a failure must have occurred (in the current failure pattern).
Note that this condition is stronger than the one in [8] because of the Managed Obligation property of
Managed Agreement. Thus p knows that it is legitimate to propose the extraction of ?PAr(A). Otherwise, p’s
decision values in the simulated runs are 0s, 1s or M(Default) but in this latter case, the initial configuration
contains the Default value (proposed by an aristocrat), and thus does not tell anything regarding failures.
Thus p determines that it is possible to extract (Ω,Σ). Note that by the validity properties of Managed
Agreement (Obligation and Justification), starting from an initial configuration in which there is no Default
values (proposed by an aristocrat), the decision value may be either M(Default) if an aristocrat has failed
after having voted and this failure has been detected before the receipt of his vote, or a decision value
v �= M(Default), otherwise.

At this point, p executes the given Managed Agreement algorithm Alg to agree with all the processes
on whether to extract ?PAr(A) (because at least p has detected an aristocrat failure) or to extract (Ω,Σ).
Specifically, in the former case, process p invokes an instance Alg of Managed Agreement by proposing
Default. In the latter case, it invokes Alg with (I, I′, S, S′) value, where I and I′ are initial configurations
that differ only in the proposal of one process while S and S′ are schedules in the simulated forest so that
the process decides u in S(I) and v in S′(I ′), where u, v ∈ {0, 1} and u �= v. The existence of such
configurations and schedules is shown in Lemma 3 below.

If processes decide to extract (Ω,Σ), they continue the simulation of runs of Alg to do this extraction.
Note that the extraction of (Ω,Σ) cannot start if the decision value in every simulated run is M(Default).
Notice that the failure of an aristocrat may not be detected. Hence the necessity of the algorithm shown in
Figure 2 that emulates ?PAr(A) with Managed Agreement. If Alg returns M(Default), then the transfor-
mation algorithm starts to behave like ?PAr(A): p stops outputting ⊥ and outputs true from that time on
(Line 17). If Alg returns a value of the form (I, I0, S, S0), then p stops outputting ⊥ and starts extracting Ω
(Line 22) and Σ (Line 25). The extraction of Ω is done using the procedures of both [3] and [8]. To extract
Ω, p must continuously output the identifier of a process such that eventually, correct processes output the
identifier of the same correct process. The existence of a correct process relies on the existence of a critical
index (see Lemma 4 below). Finally, the extraction of Σ is done exactly as in [8] and detailed in [15].
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Lemma 3 If any process reaches Line 12, then there are initial configurations I and I′, and schedules S
and S′ in Υp, such that (a) I and I′ differ in only one proposition, and (b) p decides u in S(I) and p decides
v in S′(I ′), with u, v ∈ {0, 1} and u �= v.

Proof: (Similar to Lemma 2 in [12]). If any process p reaches Line 12, then in each tree of Υp, there is
a run in which p decides u with u ∈ {0, 1,M(Default)} (but in the latter case, some process must have
proposed Default). By construction of the forest, Υ0

p corresponds to the tree in which all the processes
proposed value 0, thus p’s decison value must be 0. Similarly, there is a k such that in tree Υk

p , all the
processes proposed value 1, thus p’s decision value must be 1. Furthermore, there is no k′ with 0 ≤ k′ ≤ k
such that some process proposes Default in Υk′

p . The result immediately follows.

Lemma 4 If any process reaches Line 22, then the limit forest Υ has a critical index.

Proof: (Adaptation of Lemma 3 in [8]). If a process reaches Line 22, then it must have previously decided
a tuple (I0, I1, S0, S1). By the Managed-Justification of Managed Agreement, some process q must have
proposed this tuple to algorithm Alg. Since q proposed this tuple, it must have decided some value v
different from M(Default) in some run of Υq (this follows from the choice of tuple (I0, I1, S0, S1)). By
construction of the limit forest, all the correct processes are aware of the partial run that allowed q to
decide value v, and include this partial run to their own forest. By Termination and Agreement of Managed
Agreement, all the correct processes decide v �= M(Default) in some run of Υ.

From above, the root of some tree Υi is tagged with v �= M(Default). Two cases are possible. Either
the root is uni-valent, i.e., it it tagged with only value v, or it is multi-valent, i.e., it is tagged with both v
and other tags (1 − v, and/or M(Default)). In the latter case, we are done by the definition of a critical
index. In the former case, all the roots are uni-valent. We consider two cases: Suppose first that v = 1.
Two sub-cases are possible. Either a) i is less than or equal to k (recall that index k corresponds to the tree
in which all the processes propose value 1), or b) i is greater than k. In sub-case a), by considering the
sequence Υ0, . . . ,Υi, . . . ,Υk, there must exist some index k′ with 0 < k′ ≤ i such that the root of Υk′−1 is
0-valent while the root of Υk′

is 1-valent. By definition k′ is a critical index. In sub-case b), by considering
the sequence Υk, . . . ,Υi, . . . ,ΥT−1, there must exist some index k

′′
with i < k

′′ ≤ T − 1 such that the

root of Υk
′′−1 is 1-valent while the root of Υk′′

is u-valent, with u ∈ {0,M(Default)}. By definition k′′ is
a critical index. The case for v = 0 is similar to the case v = 1. Briefly, for sub-case a), by considering the
sequence Υ0, . . . ,Υi, . . . ,Υk, there must exist some index k′ with i < k′ ≤ i such that the root of Υk′−1 is
0-valent while the root of Υk′

is 1-valent. By definition k′ is a critical index. In sub-case b), by considering
the sequence Υk, . . . ,Υi, . . . ,ΥT−1, there must exist some index k

′′
with k < k

′′ ≤ i such that the root

of Υk
′′−1 is u-valent, with u ∈ {1,M(Default)} while the root of Υk′′

is 0-valent. By definition k′′ is a
critical index. This concludes the proof.

Theorem 1 For all environments E , if failure detector D can be used to solve Managed Agreement in E ,
then the algorithm shown in Figure 3 transforms D into ΨAr(A) in E .

Proof: The proof follows the lines of Theorem 6 in [8]. The only difference concerns the validity property.
Specifically, for each process p, if ΨAr(A)−outputp is true then it must be the case that some aristocrat has
crashed during the current run. Suppose that process p outputs true in Line 17 in Figure 3, then p decided
M(Default) in the current execution of algorithm Alg (see Line 16). Thus, by Managed-Obligation of
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Managed Agreement, it must be the case that some process q invoked Alg with value Default as initial
proposition (see Line 11) or that some aristocrat crashed during the current execution of Alg. In the latter
case, we are done. In the former case, q invoked Alg with value Default only if q decided M(Default) in
one of the simulated runs of Alg and if the initial configuration of this run did not contain any Default value
proposed by some aristocrat. Thus, by Managed-Obligation of Managed Agreement, it must be the case that
some aristocrat crashed during this run. The rest of the proof of this theorem is exactly the same as in [8].

Theorem 2 F(A) is the weakest class of failure detectors that enables solving Managed Agreement.

Proof: The theorem follows directly from Lemma 1, Lemma 2 and Theorem 1.

6 Quitable Aristocratic Consensus

6.1 The Quitable Aristocratic Agreement Problem

The proof about the weakest failure detector required to solve the NBAC problem [8] has utilized the
Quitable Consensus (QC) intermediate problem. In this section, we extend the definition of Quitable Con-
sensus to incorporate aristocrats, resulting in the Quitable Aristocratic Consensus (QAC). We then show
that the following results about QAC: (1) QAC can be implemented using a ΨAr(A) failure detector and
Consensus protocol, (2) QAC can be used to derive a failure detector in ΨAr(A), and (3) Managed Agree-
ment can be derived from QAC and a ?PAr(A) failure detector. Clearly, (1) and (2) imply that ΨAr(A) is the
weakest failure detector for solving QAC. This mimics the results in [8] about QC, indicating the generality
of the aristocrat nodes model.

Specifically, in the Quitable Aristocrat Agreement problem, denoted also QAC, D-VALS = P-VALS∩{Q}.
It is defined by the Agreement and Termination properties as defined in Section 3.1 and the following validity
property:

• Quitable Aristocrat Cons-Validity: (a) If a process decides v ∈ P − VALS , then v was proposed
by some process. (b) If v =Q, then a failure of an aristocrat has previously occurred.

6.2 The Weakest Failure Detector for Solving QAC

We now show (Figure 4) that QAC can be solved using a ΨAr(A) failure detector assuming we have access
to a protocol implementing Consensus that can be used as a subroutine. Since Consensus can be solved with
any failure detector from the class (Ω,Σ), this implies that QAC can be solved with any failure detector
from the class ΨAr(A).

The protocol in Figure 4 is a generalization of a similar protocol for implementing Quitable Consensus
from Consensus and Ψ that appeared in [8]. In this protocol, nodes wait until the output of the failure
detector becomes different from false. Then, if it becomes true, this means that an aristocrat has failed, and
all surviving processes will output this same value, not necessarily at the same moment. Hence, it is safe
to return Q. Otherwise, the failure detector decided to behave like (Ω,Σ), and thus we can run Consensus,
which is solvable with (Ω,Σ).

Lemma 5 The protocol in Figure 1 solves the QAC problem in asynchronous environments in which pro-
cesses are equipped with a failure detector from the class ΨAr(A).
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Function QAC(A,vi, ki)

% ki is a parameter aimed as distinguishing between different instantiations of the protocol
while ΨAr(A) = false do nop done
if ΨAr(A) = true then

% ΨAr(A) behaves like ?PAr(A) and an aristocrat has failed
return Q

else
val := consensus(vi, ki);
% the consensus subroutine can be implemented with any (Ω, Σ) based protocol
return val

endif

Figure 4: A ΨAr(A)-Based QAC Protocol

Proof: It is easy to see that the agreement property trivially holds due to the use of Consensus. Similarly,
the termination problem holds due to the termination property of the Consensus protocol and the use of
ΨAr(A) in the wait statement. In particular, if any node starts executing the Consensus subroutine, then
all alive nodes will do so. Moreover, in this case, the failure detector has decided to behave like (Ω,Σ),
meaning that the Consensus protocol will terminate. Thus, we only need to show validity.

Let us first consider runs of the protocol in which none of the aristocrats crashes. In these runs, at the
end of the while statement, all processes that have not crashed by then continue to invoke the Consensus
subroutine and will return its decision value. By the validity of Consensus, the returned value must be a
proposed value, and thus Quitable Aristocrat Cons-Validity is preserved.

Thus, the only thing left to show now is that in runs in which at least one aristocrat aristocrat crashes.
Here, due to the properties of ΨAr(A), all processes that are alive by the end of their while statement either
execute the Consensus subroutine or return Q. If they all return Q, then since a failure of an aristocrat has
occurred, then Quitable Aristocrat Cons-Validity is maintained. Otherwise, if they all execute the Consensus
subroutine, then by the validity of Consensus, the value all processes return is also a value that was proposed,
which is again in line with the Quitable Aristocrat Cons-Validity requirement.

Next, we need to show that any failure detector that enables implementing Quitable Aristocratic Consen-
sus is at least as strong as ΨAr(A). For this, we use the transformation proposed in [8] that extracts Ψ from
any failure detector D and Quitable Consensus. In fact, the extraction protocol is verbatim the same, and the
only difference is in the invocation of Quitable Aristocratic Consensus instead of Quitable Consensus.

Intuitively, the transformation algorithm executes two parallel tasks — a simulation task and an extrac-
tion task. The simulation task aims at simulating runs of Quitable Aristocratic Consensus that could have
occurred in the current failure pattern with a failure detector D. Each process organizes these runs in a forest
of n + 1 trees. The runs in the i-th tree correspond to the simulation of Quitable Aristocratic Consensus
where processes p1, . . . , pi propose 1 and pi+1, . . . pn propose 0. The extraction task, on the other hand,
aims at deciding (based on the information provided by the simulation task) the failure detector that has to
be extracted, i.e., ?PAr(A) or (Ω,Σ). A process starts this task by waiting for the decision in some run in
each tree constructed by the simulation task. If the decision is Q, i.e., an aristocrat failure has occurred, then
the process proposes the extraction of ?PAr(A). Otherwise, if every tree has a run where the decision is 0 or
1, it proposes the extraction of (Ω,Σ). More precisely, in the former case, the process invokes an instance
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A of Quitable Aristocratic Consensus by proposing 0. In the latter case, it invokes A with a special non
zero value, initial. This value has the form (I, I′, S, S′) where I and I′ are initial configurations that differ
only in the proposal of one process while S and S′ are schedules in the simulated forest so that the process
decides 0 in S(I) and 1 in S′(I ′). If A returns 0 or Q, then the transformation algorithm starts to behave
like ?PAr(A). If the decided value is one of the proposed initial values, (I, I′, S, S′), then it proceeds to the
extraction of (Ω,Σ) following exactly the same procedure as proposed in [8] and using as input the set of
configuration reached in S(I) and S′(I ′).

Note that the extraction of (Ω,Σ) cannot start if the decision value in every simulated run is Q. Moreover,
the transformation algorithm behaves like ?PAr(A) if and only if the failure of an aristocrat has previously
occurred.

Claim 1 ΨAr(A) is the minimal failure detector for solving Quitable Aristocratic Consensus.

The formal proof of correctness, which is quite long, follows almost verbatim the proof in [8], with the
exception of relying on Quitable Aristocratic Consensus instead of Quitable Consensus. For this reason, we
skip the details here.

6.3 QAC vs. Managed Agreement

We now show that Managed Agreement is equivalent to the combination of Quitable Aristocrat Agreement
with ?PAr(A). To this end, we first propose a generic protocol for solving Managed Agreement that uses
any solution to QAC as a subroutine, as appears in Figure 5.

Lemma 6 The protocol in Figure 5 solves the Managed Agreement problem in any environment E in which
processes are equipped with a failure detector from the class F(A).

Proof: It is easy to see that the agreement property trivially holds due to the use of a QAC subroutine.
Similarly, the termination problem holds due to the termination property of the QAC protocol and the use of
?PAr(A) in the wait statement. Thus, we only need to show validity.

Let us first consider runs of the protocol in which none of the aristocrats crashes. In these runs, at
the end of the wait statement, every alive process has all the proposed values of all the aristocrats. Thus,
if any of the aristocrats has proposed the default value, then all processes (that do not crash beforehand)
start the QAC protocol with the corresponding value u. By the validity of QAC, the returned value of this
invocation must also be u (no aristocrat crashes during this run by the assumption of this case). Therefore, in
these cases Managed-Obligation is observed. Alternatively, if none of the aristocrats proposes Default, then
every process (that does not crash beforehand) starts the QAC subroutine with a value ui that corresponds
to its proposed value vi. By the validity of QAC, the decided value must be one of these ui values since
no aristocrat crashes during this run (by assumption in this case). Consequently, Managed-Justification is
observed in these runs.

The only thing left to show now is that in runs in which at least one aristocrat proposes Default and at
least one aristocrat crashes (either the same aristocrat or a different one), then the decided value corresponds
to the default proposed value. When considering such a run, at the end of the wait statement, every alive
process either has received at least one Default value, or has had its ?PAr(A) return true. In either case, such
a process invokes the QAC subroutine with a value that corresponds to Default. By the validity of QAC, the
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decided value is either Q or M(Default). Thus the decision value returned by our protocol is M(Default).
Therefore, in these cases Managed-Obligation is also observed.

Function ManagedAgreement(A,vi, ki)

% ki is a parameter aimed as distinguishing between different instantiations of the protocol
if I am an aristocrat (in A) then

send (VOTE,vi,ki) to everyone;
endif;
wait until either (VOTE,-,ki) message has been received from every aristocrat or ?PAr(A) returns true;
if received a (VOTE,Default,ki) message from at least one aristocrat or ?PAr(A) returned true then

let ui := M(Default)
else

let ui := M(vi)
endif;
val := QAC(A,ui, ki);

% the the QAC subroutine can be implemented with a ΨAr(A) based protocol
if val = Q then

return M(Default)
else

return val

Figure 5: From QAC(A) + ?PAr(A) to Managed Agreement

Function QAC(A, vi, ki) % vi is 1 or 0

% ki is a parameter aimed as distinguishing between different instantiations of the protocol
send < vi, ki > to all
d:=ManagedAgreement(A,Yes,ki) % vi use of the given Managed Agreement algorithm
if d = M(Default) then

return Q
else

wait until received a value from each aristocrat q ∈ A
return the smallest proposal value sent by an aristocrat

Figure 6: From Managed Agreement to QAC(A)

Lemma 7 The protocol in Figure 6 transforms any protocol the solves the QAC problem into a solution for
the Managed Agreement problem.

The proof of Lemma 7 is straightforward and is thus omitted. Note that this transformation is a simple
variant of the similar transformation from NBAC to QC presented in [8].
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7 Related Problems

The k-TAG family of problems, which generalizes both binary Consensus and NBAC, was introduced by
Charron-Bost and Fessant [5]. The specification of k-TAG includes the same termination and agreement
properties as Consensus and NBAC, as well as the following validity property, called k-Validity: 1)

If at least k processes start with 0, then 0 is the only possible decision value, and 2) If all processes start
with 1 and at most k − 1 failures occur, then 1 is the only possible decision value.

Other than being defined only for binary agreement problems, k-TAG is different than Managed Agree-
ment on three accounts (all related to the fact that Managed Agreement gives special treatment to aristocrats
while k-TAG has a symmetric flavor): First, in k-TAG, any subset of k processes can force 0 to be decided
on, so there is no way to favor a specific subset of nodes. Second, in k-TAG, only if all k (or more) processes
propose 0, then 0 has to be decided. On the other hand, in Managed Agreement even if only one aristocrat
starts with Default, then the corresponding value has to be decided on. Third, in k-TAG, a failure of k − 1
arbitrary nodes is required to allow deciding on a value that was not proposed. Differently, in Managed
Agreement any failure of an aristocrat (and only failures of aristocrats) allow deciding on the special value.

Finally, the generic class of problems called �-veto was introduced in [10]. A given problem is charac-
terized as �-veto if the minimal number of processes that can force a change in the allowed decision values
is � in fail free runs. For example, Consensus is an n-veto problem, while NBAC is 1-veto. The notion
of �-veto is different than Managed Agreement since �-veto does not care about runs with failures and also
treat all processes the same. On the other hand, Managed Agreement allows a specific subset of processes
to control the decision value and also cares about the decided value in run-prone errors.

8 Discussion

In this paper we introduced the family of Managed Agreement problems, which is based on the notion of
aristocrat nodes. This family generalizes both the problems of Consensus and NBAC into a single family of
problems. In particular, we have shown a family of weakest failure detectors to solve Managed Agreement,
and a generic protocol for solving such problems.
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