

Using Sketches to Edit Electronic Documents

Pedro Miguel Coelho Gonçalo França Faria
Instituto Superior Técnico

Av. Rovisco Pais, 1000 Lisboa
{pmc,gfs}@mega.ist.utl.pt

Daniel Gonçalves Joaquim A Jorge
Computer Science Department, IST
Av. Rovisco Pais, 1049-001 Lisboa

djvg@gia.ist.utl.pt, jorgej@acm.org

Abstract
Calligraphic interfaces mimic the interaction of users with pen and paper, to which most persons are used to
from an early age. This makes them a privileged way of interacting with computers in efficient and natural ways.
One of the tasks more often made with pen and paper is to write and correct text documents. This is done resort-
ing to several symbols with specific meanings, representing the changes to be made in the document. It should
be possible to correct electronic texts in a similar way, using calligraphic interfaces. In this paper, we describe
the CaliEdit text editor, currently being developed for PalmOS devices with that goal in mind. In its develop-
ment, we followed a user-centered design approach. The task analysis phase, with the help of questionnaires,
identified the most common symbols for the most common text-correcting tasks. The editor itself uses the CALI
shape and gesture recognizer, ported to PalmOS, to help recognize those symbols. Several porting and imple-
mentation problems were overcome. Currently, heuristic and usability evaluation studies are underway to help
validate the editor.

Keywords
Calligraphic interfaces, gesture recognition, mobile devices, text editing, user-centred design.

1. INTRODUCTION
Calligraphic interfaces are a novel way of interacting with
computing devices. They try to mimic the ways in which
users interact with paper documents, allowing them to
enter and manipulate data simply by drawing or sketch-
ing. Several heuristics and constraints can then be used to
correctly interpret the users’ wishes. This allows a more
efficient, streamlined and natural interaction. Indeed,
most persons are used to interacting with pen and paper
from an early age. Also, paper allows a more flexible
interaction than usual computer peripherals, such as key-
boards and mice. Furthermore, even computer-unskilled
persons can use pen and paper efficiently. This makes
calligraphic interfaces suitable for a wide range of users
and situations where the limited traditional interaction
ways could pose serious problems.

Calligraphic interfaces have been used successfully in
several applications in the past. The Java SketchIt project
[CAETANO'02] allows dialogue boxes to be created
from rough sketches of their composing elements. GIDeS
[PEREIRA’03] provides a mechanism for the creation of
technical drawings from sketches, with the help of spatial
constraints. They have also been used for the retrieval of
technical drawings, from rough sketches of what is to be
found [FONSECA'03].

Until recently, special hardware such as touch screens or
digitizing tablets was required to use calligraphic inter-
faces. However, with the dissemination of Personal Digi-
tal Assistants (PDAs) and the appearance of Tablet PCs,
that hardware is now becoming commonplace. Those

devices have interfaces based on direct manipulation of
elements on the screen using a special pen or stylus (al-
though often mimicking a mouse). The infrastructure for
the use of calligraphic interfaces is already in place.

One of the most usual tasks on those devices is text edit-
ing. However, common text editors are based on tradi-
tional interaction modes, such as sequential text entry,
which requires a cursor to be set on the right position.
Also, the edition of the text itself is done, for the most
part, resorting to menu options or toolbars. Since PDAs
and Tablet PCs are much closer, in terms of portability
and format, to paper pads, it would benefit users to allow
them to manipulate their texts using in the same way they
use when working on paper.

The CaliEdit system is an application under development
as a year long undergraduate project at IST that combines
calligraphic interfaces with a traditional text editor. It
allows users to manipulate texts by directly drawing over
it symbols representing the most common editing tasks. It
recognizes several common symbols users draw on paper
to represent desired changes to a text, and effects those
changes. CaliEdit uses the CALI gesture recogniser
[FONSECA’00], freely available on the Web [CALI] to
identify the symbols.

Users played a central role throughout the development of
CaliEdit. In an early task analysis phase, several user
studies were conducted to discover what are the most
common and natural text-editing symbols. Currently, they
have been actively engaged in the project through the
performance of heuristic and usability evaluations. User-

centred design is of capital importance due to the novel
approach to text editing embodied by CaliEdit.

The following section describes how the relevant symbols
were identified. Then, the choice of the platform on
which CaliEdit was implemented will be described. In the
next section several relevant implementation issues will
be discussed, followed by some conclusions and refer-
ences to current and future work.

2. SYMBOLS
Attempts to find a set of standard symbols for text editing
both in libraries and on the Internet proved to be unsuc-
cessful. It soon became apparent that there isn’ t a stan-
dard, universal, symbol set for that the correction of paper
documents. However, it was desirable to mimic the usual
forms of interaction as closely as possible. Determining
the most commonly used symbols was of capital impor-
tance. Two questionnaire-based studies specially de-
signed to collect the desired information were conducted.
Although the first provided interesting results, sometimes
a high level of ambiguity (two or three symbols for the
same function) didn’ t allow conclusive results to be ex-
tracted. The second questionnaire was created with those
ambiguities in mind in order to solve them. The symbols
thus obtained are the ones currently in use in CaliEdit.

Before the design of the questionnaires, the set of func-
tions that CaliEdit should perform was defined. Those
functions are the most common in text editing:

x delete text

x move text

x insert characters in the middle of words

x insert words in the middle of sentences

x insert paragraphs

x insert tabs

x insert spaces

Evidently, this was an open set that could be changed in
the course of the analysis of the questionnaires, if some
new relevant tasks came up. As it turned out, it no
changes were necessary.

The design of the questionnaires was based on the guide-
lines available on the web site of the Human Machine
Interface course at IST [IHM]. They were composed by
two small texts. The first text was flawless and the second
was a copy of the first in which several common typing
and spelling errors were introduced. The user was asked
to correct those errors. In theory, the errors in the text
would require the use of all the previously chosen editing
functions. Furthermore, all errors were introduced in a
way in which correcting one wouldn’ t affect the correc-
tion of others. This was done to avoid confusing the us-
ers, and because we were trying to identify symbols asso-
ciated to only one correcting task.

After analysing both questionnaires, the following sym-
bols were found to be the most common when correcting
texts in paper documents:

x To delete text

x To move text

x To insert new character

x To insert new words

x To insert a new paragraph

x To insert a space

/

x To insert a Tab

3. CHOOSING THE PLATFORM
In order to decide in which platform to implement
CaliEdit, a comparative study of the three most likely
candidates (Palm OS, Pocket PC, and Emacs on a Tablet
PC) was performed. This study consisted of an in-depth
comparison of all three platforms in order to help choose
the one that best fitted the CaliEdit requirements.

The study focused on the text editing capabilities made
available by the APIs of the three platforms. The ability
to integrate the CALI gesture recognizer into whichever
platform was chosen was also studied. The recognizer
itself is written in C++ but portability issues could arise,
mainly for the PDA platforms, due to their special hard-
ware restrictions. Furthermore, the CALI library receives
a set of coordinates, corresponding to the places travelled
by the stylus during the drawing of a gesture, returning a
list of gesture names, ordered by the probability of corre-
sponding to the given set of the points. The point coordi-
nates must be captured by our application and passed to
the recognizer. Hence, the comparison also took into ac-
count the capability of each platform to capture high-
resolution screen coordinates.

In this study, the Internet was an invaluable source of
information, allowing access to relevant documents,
manuals, developer environments and code samples. A
technical report where more detailed results of this study
can be found is located at http://mega.ist.utl.pt/~pmc.

3.1 The PalmOS Platform
The PalmOS is an event driven operating system. As
such, all applications have three stages in their execution
cycle: the startup, the event loop and the finish. The inter-
action with the user generates events that are processed in
the event loop. Some events are directly related with the
pen movements. Using those events it is possible to col-
lect a sample of point coordinates and therefore recognize
the gesture/symbol drawn by the user. PalmOS also pro-
vides a complete API to manipulate text. Those functions
are useful in the implementation of CaliEdit. This plat-
form has some disadvantages mainly because of its small
screen size and the need to implement a basic text editor
in which to include the calligraphic interface.

Some further experiments were made. A simple applica-
tion that paints on the screen the points where the stylus
touches it was implemented. This small application pro-
vided insights on both how to program in the PalmOS
system in general, and how to collect and store a set of
coordinates to later pass to the recognizer. A version of
CALI to the PalmOS system as also developed.

3.2 The Pocket PC Platform
Windows CE is the operating system of the Pocket PC
and, like PalmOS, it is an event driven system. Windows
CE also provides events that reflect the movements of the
pen, and functions that manipulate text. Both platforms
are very similar in what can be implemented in them.

The Pocket PC has the same limitations of PalmOS. Ad-
ditionally, some experimentation showed that it’ s impos-
sible, apparently, to draw inside a text box. This could
pose a serious difficulty in the implementation of
CaliEdit, since drawing the symbols provides an impor-
tant feedback to users and cannot be discarded. Although
this problem might have a solution, we didn’ t spend too
many resources to find it.

A Windows CE version of the simple point painting ap-
plication we created for PalmOS was implemented. This
allowed the direct comparisons between the two, to better
identify the relevant differences. We concluded that in
Windows CE and using the .Net platform to implement
applications prototypes can be build much faster than for
PalmOS. To integrate the CALI into Windows CE appli-
cations, a dynamic link library (dll) was built, allowing
applications to easily access the CALI API.

3.3 Emacs on Tablet PC Platform
With Emacs there is no need to implement the text editor.
Emacs is extensible thought a special Lisp dialect
(Emacs-LISP). To implement CaliEdit, it is fundamental
to known the position of the pen. Emacs-LISP, however,
only gives access to the coordinates of the text cursor.
Those coordinates are measured in characters. The cursor

is considered to be located between two characters and
not in a specific pixel. So, with Emacs, the major problem
is the inability to obtain the information of the pointer
device on the pixel level. Several modifications of
Emacs’ source code to provide the capacity to collect
high-resolution coordinates were tried, but all were un-
successful. Extending Emacs-LISP with a special-purpose
function to obtain those coordinates seems impossible, or,
at least, not feasible given the resource constraints of this
project.

3.4 The Chosen Platform
Overall, the PalmOS platform seemed the best and was
chosen to implement CaliEdit. Emacs on Tablet PC was
the initial preferred option (mainly due to the versatility
provided by a bigger screen) but had to be put aside due
to the inability to capture high-resolution point coordi-
nates. Without this capability we can’ t collect a good
sample that represents the symbols drawn by the user.
CALI was ported to both the Pocket PC and PalmOS
platforms. So, the choice of the PalmOS system was made
mainly due to the difficulties in mixing text and drawings
on the Pocket PC. Also, more support is available through
the PalmOS community.

4. IMPLEMENTATION
Some of the symbols CaliEdit recognizes had to be dif-
ferent from those collected during task analysis. For ex-
ample, on paper when a character is missing in the middle
of a word, people use an arrow with the missing character
on top. While on paper this sounds good, in a text editor
it’ s much simpler to use a tap to place the cursor at the
desired position and then simply write the character. On
paper users can’ t directly change the text we can do so on
a computer. In order to achieve not only a natural inter-
face but also an efficient one, a compromise between
what users can do on paper and what they can do on a
computer was made.

All text modifying capabilities of CaliEdit were imple-
mented with the PalmOS API as a basis. The CaliEdit
itself collects the coordinates of the points that define a
gesture, invokes the CALI recognizer to identify that ges-
ture and then chooses the appropriate API calls. The por-
tion of text to be affected by the gesture is computed
automatically from special coordinate sets, such as the
gesture’ s bounding box, and the font metrics.

4.1 Adapting CALI to CaliEdit
The algorithm implemented in CALI recognizes simple
geometric shapes like triangles or rectangles. The shapes
are recognized independently of changes in rotation, size
or number of individual strokes. This library was written
in C++. The source files of CALI were used instead of the
existing pre-compiled library, since it was necessary to
port it to other platforms.

There were some problems porting CALI to PalmOS.
One of the biggest resulted from the memory limitations
inherent to that operating system. The application experi-
enced several stack overflows, especially when recogniz-
ing ellipses. This turned out to be the result of the large

number of interpolated ellipse points calculated by the
CALI recognizer. These points allow applications that so
desire to replace the rough sketch drawn by the user with
a more accurate shape. CaliEdit doesn’ t need this to hap-
pen. As a result, the CALI library was altered to stop do-
ing those calculations. Some memory leaks were also
found, made visible by PalmOS’ s memory limitations.
Eventually, all known memory leaks were solved, al-
though some may still remain undiscovered.

4.2 Making CaliEdit a Palm-like Application
At first, CaliEdit’ s user interface was structured as the
ones found on text editors on desktop PCs. It soon be-
came obvious that this wasn’ t the best way to develop a
Palm application. Both the the hardware constraints and
the ways of interaction are different. A PC-like would be
fraught with usability problems and be perceived as
strange by a Palm user. Instead, we looked closely at a
standard PalmOS text editor, MemoPad, modifying
CaliEdit to make it similar to that application.

Overall, the user interface is structured as follows: the
first screen presents a list of documents already present
on the PDA, from which the user can choose one to mod-
ify. Alternatively, a new document can be created with
the help of a button. Once a document is selected, the
application moves on to the text-editing screen. Again,
this is similar to MemoPad. However, two extra buttons
inexistent in MemoPad were added to this screen. The
first allows users leave the document without saving and
the second maintains the original text and saves the modi-
fied text in new document, just like the ‘Save as…’ func-
tion in desktop text editors.

Some standard PalmOS functionalities are present in
CaliEdit. It is the case of tapping on a word twice to se-
lect the whole word, and thrice to select the line the word
is on. The usual PalmOS menus (copy, paste, etc.) were
also implemented in CaliEdit. Finally, text can be written
using Graffiti, as usual for PalmOS applications.

5. CONCLUSIONS AND FUTURE WORK
A text editor where symbols commonly used on paper to
signal required corrections can be used was implemented.
One of our goals is to achieve a more natural interaction
with text documents. Hence, the next steps in our research
will be to perform heuristic and usability evaluations
[DIX’ 97]. Those evaluations will help us find interface
problems, and will validate the choices made so far re-
garding its design.

In the heuristic tests, a Palm with our editor will be made
available to 4 persons with knowledge in the HCI field.

All errors found by the evaluators will be corrected be-
fore the usability tests. In the usability tests we will give
users some time to get acquainted with the editor. Then,
we will ask them to perform some editing tasks, both us-
ing MemoPad then CaliEdit: creating a document, writing
something and then saving it, and correcting several er-
rors in a pre-determined text. We intend to interview
around 30 persons, half of which will use MemoPad first,
while the other half will start with CaliEdit. With this, we
hope to prevent biasing the results due to previous
knowledge of the texts to correct. Our goal is to show that
CaliEdit has better performance than conventional editors
like MemoPad. We’ ll collect information on both the
speed and number of errors made by users while perform-
ing the tasks. We will also try to discover if users are sub-
jectively more satisfied with CaliEdit than with ordinary
editors and with paper and pen. We’ ll compare the satis-
faction levels with the time gained or lost by using
CaliEdit. Finally, changes to the interface prompted by
the tests will be implemented and validated iteratively.

6. REFERENCES
[CAETANO'02] A. T. Caetano, N. Goulart, M J. Fonseca

and J. A. Jorge. JavaSketchIt: Issues in Sketching the
Look of User Interfaces. AAAI Spring Symposium on
Sketch Understanding, 25-27 March, 2002, Palo Alto,
California.

[CALI] The CALI Homepage: http://immi.inesc.pt/cali/

[DIX’ 97] Alan J. Dix, Janet Finlay, Gregory Abowd and
Russel Beale. Human-Computer Interaction, second
edition. Prentice Hall, 1997, ISBN 0-13-239864-8

 [FONSECA’ 00] M. J. Fonseca and J. A. Jorge. Using
Fuzzy Logic to Recognize Geometric Shapes Interac-
tively. In Proceedings of the 9th Int. Conference on
Fuzzy Systems (FUZZ-IEEE 2000). San Antonio,
USA, May 2000.

[FONSECA'03] M. J. Fonseca and J. Jorge. Indexing
High-Dimensional Data for Content-Based Retrieval
in Large Databases. 8th International Conference on
Database Systems for Advanced Applications
(DASFAA ’ 03), Kyoto, Japan, March 2003.

[IHM] The Human Machine Interface Course at IST site:
http://mega.ist.utl.pt/~ic-ihm/

 [PEREIRA’ 03] J. P. Pereira, J. A. Jorge, V.A. Branco, F.
N. Ferreira. Calligraphic Interfaces: Mixed Metaphors
for Design. Tenth Workshop on the Design, Specifica-
tion and Verification of Interactive Systems, DSV-IS
2003, Funchal, Portugal, 4-6 June 2003.

