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Abstract. This paper introduces the new concept of ’use & throw’ DSS

authentication coupons. An authentication coupon is a couple of pre-
calculated certificates provided by a trusted centre during a prior on-line
communication.
Coupons are 28 bytes long and contain r and a cryptogram of the infor-
mation to be used during the computation of s. Coupons can be even
reduced to exactly 20-bytes if only one new common random number is
generated during each loading session.
DSS Certificates embedding information relevant to applications intro-
duce higher security against fraudulent attempt. Certificates are issued
by the authority at the time of loading the related set of coupons. The
signature protocol enables simple 8-bit microcontrollers to generate fully
compatible DSS signatures in less than 200 ms, about 300 ms with the
certificate management, by retrieving r and computing s from the coupon
with only two 160-bit modular multiplications. Couponing assumes that
the signer enters periodically in contact with the authority to refresh the
coupon’s reserve.

1 The DSA Original Scheme

The U.S. government has proposed a new cryptographic algorithm as a standard
to verify electronically the integrity and source of unclassified information. The
process is quite simple in its main goal: it works somewhat like a letter sealed
in a transparent envelope. Any receiver can verify the integrity of the message
and the identity of the sender.

The Digital Signature Standard [1] approval would lead to an efficient in-
formation system where electronic documents would be virtually equivalent to
paper ones. Authentication based on digital signatures not only assures the re-
ceiver that a bank transaction was sent by, say, CityBank from the East Coast
to the West Coast, but also the rightness of the message (the message has not
been modified by a forger or altered due to a problem on the line).
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The Digital Signature Algorithm (DSA), proposed in August 1991 by the US
National Institute of Standards and Technology, is a DLP-based cryptosystem
which parameters are:

1. A prime modulus p where 2L−1 < p < 2L for 512 ≤ L ≤ 1024 and L mod
64 = 0.

2. A prime q such that 2159 < q < 2160 and p − 1 is a multiple of q.
3. A number g = h(p−1)/q mod p for some h.
4. A 160-bit secret-key x and an L-bit public-key y defined by the relation:

y = gx mod p.

The integers p, q and g are system parameters and can be public and/or
common to a group of users. A 160-bit random k, used by the signer, must be
kept secret and regenerated for each signature.

In order to sign a message m (hashed value of a primitive file M), the signer
computes the signature {r, s} by:

r = (gk mod p) mod q and s =
m + xr

k
mod q

To check {r, s}, the verifier computes:

w =
1

s
mod q, u1 = mw mod q and u2 = rw mod q

And compares if r = (gu1yu2 mod p) mod q to accept or reject the signature
Assuming no algorithmic sophistications,1 the resources necessary for the

implementation of the DSA are:

resources Signer Verifier

# of 160 bit mult. 2 2
# of 512 bit mult. ≈237 ≈475
modular inverse yes yes
transmission 40 bytes
size of moduli 84 bytes

And the complete process is briefly summarised in figure 1.

2 Couponing Scheme

A well-known feature of the DSA, inherited from its ancestors El-Gamal [3]
and Schnorr [4], is the possibility to pre-compute r and the inverse of k before
the message is known. Then, the effort needed to produce s from m is negligible.

1 Some of which [2] may spectacularly divide all the 512-bit figures by about 6 but
these tools apply exactly in the same manner to our schemes. The important point
is the ratio between the protocols which remains constant whatever exponentiation
strategy is used.
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{q, p, g, y, M} in public domain

Signer's secret : x

Generate randomly k

r = g mod p mod q

Send {r, s}

s = (SHS(M)+x*r)/k mod q

k

w = 1/s mod q

u[2] = r*w mod q

u[1] = SHS(M)*w mod q

Verifier's test :

r = g y mod p mod q
u[1] u[2]

�VERIFIER�SIGNER

(accept if equal)

Fig. 1. The Digital Signature Algorithm

This section introduces a coupon-based protocol exploiting this property for
helping the signer to generate signatures very quickly. In our model, a trusted
authority sends public data packets (Use & Throw coupons) to the signer who
stores them for future use.

Each coupon is only 28-byte long and enables its owner to generate one DSA
signature (if a coupon is used twice, the signer’s x is revealed). Two noteworthy
advantages of this method are that the signer has only to possess x and q (the
storage of g and p, which represents 1024 bits at minimum, can be avoided) and
only a couple of multiplications is needed to transform a coupon to a signature.

The system is based on a retro-calculation of k from an easily compressible
inverse and is ideally suited to electronic-purse applications where card-holders
interact periodically with a trusted authority for loading money into their purses
(refreshing the coupon’s reserve):

This scheme was implemented on a 68HC05-based prototype2 which gener-
ates s in less than 150 ms (4 MHz clock) and can contain up to 91 coupons in
EEPROM. A heavy-duty version (now under development) will be 30% faster
and tailored to contain about 400 coupons.

Note that when Montgomery’s algorithm [5] is used (let Q = 2−size(q) mod
q), the signer can shortcut his calculations by using the key: x′ = xQ−1 mod q

if the authority compensates:

r = ( Q
√

g mod p)
k

mod p mod q

The coupon-owner will then compute s by two Montgomery rounds (in-
stead of four):

1. z = Montgomeryq(x
′, r) ≡ x′rQ ≡ xQ−1rQ ≡ xr mod q

2. s = Montgomeryq(z + m, SHA(J |x)) ≡ (z + m)SHA(J |x)Q mod q

The signature is still DSA-compatible and the storage of 4size(q) mod q (40
bytes normally needed for converting results from Montgomery’s format to
the conventional number system) has been avoided.
2 ST16623 (no crypto-engine aboard).
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AUTHORITY

Loading a coupon

�
SIGNER

send a random Jk=1/SHA(x|J) mod q

send r=g mod p mod q
k

store {r,J}

VERIFIER

send {r,s}, erase {r,J}

s=(m+xr)SHA(x|J) mod q

check {r,s}

send the message m

Signing with a coupon

Fig. 2. Couponing Scheme

3 Improvements Regarding Coupon Size

Coupons can be reduced to exactly 20-bytes if only one new common 20-byte
long J is generated during each loading session and inverses are diversified by
SHA(J |x|i) where i is the coupon’s number.

With such a solution a typical EEPROM map of a coupon-card supporting
the Diversified Couponing Scheme will be:

secret x

modulus q

common J

coupon 1
coupon 2
...
coupon n

where n, (the number of coupons that can be held in a card) is typically:

n =
EEPROM Capacity (in bytes)

20
− 3

The gain in terms of coupons when compared to the simple couponing scheme
is:

Gain =

(

E − 60

20

)

−
(

E − 40

28

)

=
7E − 420 − 5E + 200

140
=

2E − 220

140

≈
⌊

E − 110

70

⌋

coupons
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AUTHORITY

send {r[i] ,s} and erase r[i]

s=(m+xr[i])SHA(x|J|i) mod q

k[i]=1/SHA(x|J|i) mod q

r[i]=g mod p mod q
k[i]

Loading a coupon

�
SIGNER

send a random J

for i=1 to n :

VERIFIER

check {r[i] ,s}

send the message m

Signing with a coupon

get J

send r[1],...,r[n] store r[1],...,r[n]

Fig. 3. The diversified Couponing Scheme

thus the Gain is 41 coupons when the EEPROM capacity (denoted E) is 3000
bytes, a second characteristic instance (ST16F48) is {E = 8000, Gain = 112}.

The characteristics of a coupon system can be summarised as the combination
of:

EEPROM Capacity (in bytes) = 60 + 20n and

Transmission (in bytes) = ISO bytes + size(m) + 60 ≈ 115

Assuming a 3000 byte EEPROM (ST16623) and a 115.200 baud interface
these relations yield:

n = 147 coupons and

Time ≈ Transmission(115; 155, 200) + Processing + Writing in EEPROM

≈ 200ms

Asuming a 8000 byte EEPROM and the same transmission time we get:

n =
800 − 6

2
= 397 coupons

4 Security Improvement

It is suitable to limit the validity of a coupon to a certain date or geographical
area. For doing so, the authority associates to a set of coupons a DSA signature
(40 bytes) which has to be checked first by the verification terminal before going
further on. This increases the size of the coupons to

⌊

20 + 40
n

⌋

bytes and the
memory map becomes:
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secret x

modulus q

common J

coupon 1
coupon 2
...
coupon n

certif 1, ..., n

This solution introduces an additional transmission overhead since the card
has to present (without signing) n coupons along with the signature. The prob-
lem is therefore to get the balance right, regarding transmission and memory
requirements.

If coupons are certified by groups of c and the card contains n coupons we
have:

EEPROM Capacity (in bytes) = 60 + 20n +
40n

c
and

Transmission (in bytes) = ISO bytes + size(m) + 8c + 12 + 60 ≈ 8c + 115

Assuming a 3000 byte EEPROM (ST16623) and a 115.200 baud interface
these relations become:

147 = n

(

1 +
2

c

)

and

Time ≈ Transmission(8c + 115; 155, 200)+ Processing + Writing in EEPROM

≈ 0.85c + 200ms

If we assume in advance a global transaction time of 300 ms (SHA is included
therein), we get c ≈ 70 which yields n = 142 coupons. An interesting instance of
the system for implementation on a smartcard would therefore be a two coupon
set version, with each set containing 70 coupons and a certificate for a total of
140 coupons.

The same evaluation on a bigger component with a 8000 byte EEPROM,
assuming a transaction time of 300 ms and so c < 120, gives the following
relations:

{

c ∈ [1, 120]
8000 = 60 + 20n + 40n

c

⇐⇒
{

c ∈ [1, 120]
n = 397c

c+2 ⇒ n ∈ [132, 390]

Let c|n then a couple of integer solutions to maximize n is {c, n} = {118, 354}.

5 Conclusion

As a conclusion, it is possible to design a coupon-system (capacity: about 140
coupons) which computes fully-compatible DSA signatures in less than 200 ms
within only a 3K byte EEPROM. The choice of bigger components such as the
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ST16F48 (8K EEPROM) leads to heavy-duty versions, with 279 coupons for a
28-byte coupon implementation, more than 400 coupons for a 20-byte coupon
solution, depending on time, memory and security requirements.

Besides, generating a signature from a coupon is much more restrictive than
doing the same freely with the basic DSA as coupons has to be presented with
a certificate that may limit their validity in time or territory. As coupon-based
signatures are fully DSA-compatible but restricted, employing them limits the
risk of breaking a card and extracting from it the coupons and the secret for
double-spending.
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