
Couponing Scheme Reduces Computational

Power Requirements for DSS Signatures

[Published in Proc. of CardTech/SecurTech, pp. 99–104, Rockville, MD, USA,
1994, CTST Inc.]

David M’Räıhi and David Naccache

Gemplus Card International
Crypto Team - Information Security Group

1 Place de Navarre, F-95200, Sarcelles CEDEX, France
Email: {100142.3240, 100145.2261}@compuserve.com

Abstract. This paper introduces the new concept of ’use & throw’ DSS

authentication coupons. An authentication coupon is a couple of pre-
calculated certificates provided by a trusted centre during a prior on-line
communication.
Coupons are 28 bytes long and contain r and a cryptogram of the infor-
mation to be used during the computation of s. Coupons can be even
reduced to exactly 20-bytes if only one new common random number is
generated during each loading session.
DSS Certificates embedding information relevant to applications intro-
duce higher security against fraudulent attempt. Certificates are issued
by the authority at the time of loading the related set of coupons. The
signature protocol enables simple 8-bit microcontrollers to generate fully
compatible DSS signatures in less than 200 ms, about 300 ms with the
certificate management, by retrieving r and computing s from the coupon
with only two 160-bit modular multiplications. Couponing assumes that
the signer enters periodically in contact with the authority to refresh the
coupon’s reserve.

1 The DSA Original Scheme

The U.S. government has proposed a new cryptographic algorithm as a standard
to verify electronically the integrity and source of unclassified information. The
process is quite simple in its main goal: it works somewhat like a letter sealed
in a transparent envelope. Any receiver can verify the integrity of the message
and the identity of the sender.

The Digital Signature Standard [1] approval would lead to an efficient in-
formation system where electronic documents would be virtually equivalent to
paper ones. Authentication based on digital signatures not only assures the re-
ceiver that a bank transaction was sent by, say, CityBank from the East Coast
to the West Coast, but also the rightness of the message (the message has not
been modified by a forger or altered due to a problem on the line).

2 David M’Räıhi and David Naccache

The Digital Signature Algorithm (DSA), proposed in August 1991 by the US
National Institute of Standards and Technology, is a DLP-based cryptosystem
which parameters are:

1. A prime modulus p where 2L−1 < p < 2L for 512 ≤ L ≤ 1024 and L mod
64 = 0.

2. A prime q such that 2159 < q < 2160 and p − 1 is a multiple of q.
3. A number g = h(p−1)/q mod p for some h.
4. A 160-bit secret-key x and an L-bit public-key y defined by the relation:

y = gx mod p.

The integers p, q and g are system parameters and can be public and/or
common to a group of users. A 160-bit random k, used by the signer, must be
kept secret and regenerated for each signature.

In order to sign a message m (hashed value of a primitive file M), the signer
computes the signature {r, s} by:

r = (gk mod p) mod q and s =
m + xr

k
mod q

To check {r, s}, the verifier computes:

w =
1

s
mod q, u1 = mw mod q and u2 = rw mod q

And compares if r = (gu1yu2 mod p) mod q to accept or reject the signature
Assuming no algorithmic sophistications,1 the resources necessary for the

implementation of the DSA are:

resources Signer Verifier

of 160 bit mult. 2 2
of 512 bit mult. ≈237 ≈475
modular inverse yes yes
transmission 40 bytes
size of moduli 84 bytes

And the complete process is briefly summarised in figure 1.

2 Couponing Scheme

A well-known feature of the DSA, inherited from its ancestors El-Gamal [3]
and Schnorr [4], is the possibility to pre-compute r and the inverse of k before
the message is known. Then, the effort needed to produce s from m is negligible.

1 Some of which [2] may spectacularly divide all the 512-bit figures by about 6 but
these tools apply exactly in the same manner to our schemes. The important point
is the ratio between the protocols which remains constant whatever exponentiation
strategy is used.

Couponing Scheme Reduces Computational Power Requirements 3

{q, p, g, y, M} in public domain

Signer's secret : x

Generate randomly k

r = g mod p mod q

Send {r, s}

s = (SHS(M)+x*r)/k mod q

k

w = 1/s mod q

u[2] = r*w mod q

u[1] = SHS(M)*w mod q

Verifier's test :

r = g y mod p mod q
u[1] u[2]

�VERIFIER�SIGNER

(accept if equal)

Fig. 1. The Digital Signature Algorithm

This section introduces a coupon-based protocol exploiting this property for
helping the signer to generate signatures very quickly. In our model, a trusted
authority sends public data packets (Use & Throw coupons) to the signer who
stores them for future use.

Each coupon is only 28-byte long and enables its owner to generate one DSA
signature (if a coupon is used twice, the signer’s x is revealed). Two noteworthy
advantages of this method are that the signer has only to possess x and q (the
storage of g and p, which represents 1024 bits at minimum, can be avoided) and
only a couple of multiplications is needed to transform a coupon to a signature.

The system is based on a retro-calculation of k from an easily compressible
inverse and is ideally suited to electronic-purse applications where card-holders
interact periodically with a trusted authority for loading money into their purses
(refreshing the coupon’s reserve):

This scheme was implemented on a 68HC05-based prototype2 which gener-
ates s in less than 150 ms (4 MHz clock) and can contain up to 91 coupons in
EEPROM. A heavy-duty version (now under development) will be 30% faster
and tailored to contain about 400 coupons.

Note that when Montgomery’s algorithm [5] is used (let Q = 2−size(q) mod
q), the signer can shortcut his calculations by using the key: x′ = xQ−1 mod q

if the authority compensates:

r = (Q
√

g mod p)
k

mod p mod q

The coupon-owner will then compute s by two Montgomery rounds (in-
stead of four):

1. z = Montgomeryq(x
′, r) ≡ x′rQ ≡ xQ−1rQ ≡ xr mod q

2. s = Montgomeryq(z + m, SHA(J |x)) ≡ (z + m)SHA(J |x)Q mod q

The signature is still DSA-compatible and the storage of 4size(q) mod q (40
bytes normally needed for converting results from Montgomery’s format to
the conventional number system) has been avoided.
2 ST16623 (no crypto-engine aboard).

4 David M’Räıhi and David Naccache

AUTHORITY

Loading a coupon

�
SIGNER

send a random Jk=1/SHA(x|J) mod q

send r=g mod p mod q
k

store {r,J}

VERIFIER

send {r,s}, erase {r,J}

s=(m+xr)SHA(x|J) mod q

check {r,s}

send the message m

Signing with a coupon

Fig. 2. Couponing Scheme

3 Improvements Regarding Coupon Size

Coupons can be reduced to exactly 20-bytes if only one new common 20-byte
long J is generated during each loading session and inverses are diversified by
SHA(J |x|i) where i is the coupon’s number.

With such a solution a typical EEPROM map of a coupon-card supporting
the Diversified Couponing Scheme will be:

secret x

modulus q

common J

coupon 1
coupon 2
...
coupon n

where n, (the number of coupons that can be held in a card) is typically:

n =
EEPROM Capacity (in bytes)

20
− 3

The gain in terms of coupons when compared to the simple couponing scheme
is:

Gain =

(

E − 60

20

)

−
(

E − 40

28

)

=
7E − 420 − 5E + 200

140
=

2E − 220

140

≈
⌊

E − 110

70

⌋

coupons

Couponing Scheme Reduces Computational Power Requirements 5

AUTHORITY

send {r[i] ,s} and erase r[i]

s=(m+xr[i])SHA(x|J|i) mod q

k[i]=1/SHA(x|J|i) mod q

r[i]=g mod p mod q
k[i]

Loading a coupon

�
SIGNER

send a random J

for i=1 to n :

VERIFIER

check {r[i] ,s}

send the message m

Signing with a coupon

get J

send r[1],...,r[n] store r[1],...,r[n]

Fig. 3. The diversified Couponing Scheme

thus the Gain is 41 coupons when the EEPROM capacity (denoted E) is 3000
bytes, a second characteristic instance (ST16F48) is {E = 8000, Gain = 112}.

The characteristics of a coupon system can be summarised as the combination
of:

EEPROM Capacity (in bytes) = 60 + 20n and

Transmission (in bytes) = ISO bytes + size(m) + 60 ≈ 115

Assuming a 3000 byte EEPROM (ST16623) and a 115.200 baud interface
these relations yield:

n = 147 coupons and

Time ≈ Transmission(115; 155, 200) + Processing + Writing in EEPROM

≈ 200ms

Asuming a 8000 byte EEPROM and the same transmission time we get:

n =
800 − 6

2
= 397 coupons

4 Security Improvement

It is suitable to limit the validity of a coupon to a certain date or geographical
area. For doing so, the authority associates to a set of coupons a DSA signature
(40 bytes) which has to be checked first by the verification terminal before going
further on. This increases the size of the coupons to

⌊

20 + 40
n

⌋

bytes and the
memory map becomes:

6 David M’Räıhi and David Naccache

secret x

modulus q

common J

coupon 1
coupon 2
...
coupon n

certif 1, ..., n

This solution introduces an additional transmission overhead since the card
has to present (without signing) n coupons along with the signature. The prob-
lem is therefore to get the balance right, regarding transmission and memory
requirements.

If coupons are certified by groups of c and the card contains n coupons we
have:

EEPROM Capacity (in bytes) = 60 + 20n +
40n

c
and

Transmission (in bytes) = ISO bytes + size(m) + 8c + 12 + 60 ≈ 8c + 115

Assuming a 3000 byte EEPROM (ST16623) and a 115.200 baud interface
these relations become:

147 = n

(

1 +
2

c

)

and

Time ≈ Transmission(8c + 115; 155, 200)+ Processing + Writing in EEPROM

≈ 0.85c + 200ms

If we assume in advance a global transaction time of 300 ms (SHA is included
therein), we get c ≈ 70 which yields n = 142 coupons. An interesting instance of
the system for implementation on a smartcard would therefore be a two coupon
set version, with each set containing 70 coupons and a certificate for a total of
140 coupons.

The same evaluation on a bigger component with a 8000 byte EEPROM,
assuming a transaction time of 300 ms and so c < 120, gives the following
relations:

{

c ∈ [1, 120]
8000 = 60 + 20n + 40n

c

⇐⇒
{

c ∈ [1, 120]
n = 397c

c+2 ⇒ n ∈ [132, 390]

Let c|n then a couple of integer solutions to maximize n is {c, n} = {118, 354}.

5 Conclusion

As a conclusion, it is possible to design a coupon-system (capacity: about 140
coupons) which computes fully-compatible DSA signatures in less than 200 ms
within only a 3K byte EEPROM. The choice of bigger components such as the

Couponing Scheme Reduces Computational Power Requirements 7

ST16F48 (8K EEPROM) leads to heavy-duty versions, with 279 coupons for a
28-byte coupon implementation, more than 400 coupons for a 20-byte coupon
solution, depending on time, memory and security requirements.

Besides, generating a signature from a coupon is much more restrictive than
doing the same freely with the basic DSA as coupons has to be presented with
a certificate that may limit their validity in time or territory. As coupon-based
signatures are fully DSA-compatible but restricted, employing them limits the
risk of breaking a card and extracting from it the coupons and the secret for
double-spending.

References

1. FIPS PUB XX, February 1, 1993, Digital Signature Standard.
2. E. Brickell, D. Gordon and K. McCurley, Fast exponentiation with precomputation,

technical report no. SAND91-1836C, Sandia National Laboratories, Albuquerque,
New-Mexico, October 1991.

3. T. El-Gamal, A public-key cryptosystem and a signature scheme based on discrete

logarithms, IEEE TIT, vol. IT-31:4, pp 469–472, 1985.
4. C. Schnorr, Efficient identification and signatures for smart-cards, Advances in

Cryptology: Proceedings of Eurocrypt’89 (G. Brassard ed.), LNCS, Springer-Verlag,
Berlin, 435 (1990), pp. 239–252.

5. P. Montgomery, Modular multiplication without trial division, Mathematics of Com-
putation, vol. 44(170), pp. 519–521, 1985.

