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Abstract. This paper introduces the new concept of use & throw’ DSS
authentication coupons. An authentication coupon is a couple of pre-
calculated certificates provided by a trusted centre during a prior on-line
communication.

Coupons are 28 bytes long and contain r and a cryptogram of the infor-
mation to be used during the computation of s. Coupons can be even
reduced to exactly 20-bytes if only one new common random number is
generated during each loading session.

DSS Certificates embedding information relevant to applications intro-
duce higher security against fraudulent attempt. Certificates are issued
by the authority at the time of loading the related set of coupons. The
signature protocol enables simple 8-bit microcontrollers to generate fully
compatible DSS signatures in less than 200 ms, about 300 ms with the
certificate management, by retrieving r and computing s from the coupon
with only two 160-bit modular multiplications. Couponing assumes that
the signer enters periodically in contact with the authority to refresh the
coupon’s reserve.

1 The DSA Original Scheme

The U.S. government has proposed a new cryptographic algorithm as a standard
to verify electronically the integrity and source of unclassified information. The
process is quite simple in its main goal: it works somewhat like a letter sealed
in a transparent envelope. Any receiver can verify the integrity of the message
and the identity of the sender.

The Digital Signature Standard [1] approval would lead to an efficient in-
formation system where electronic documents would be virtually equivalent to
paper ones. Authentication based on digital signatures not only assures the re-
ceiver that a bank transaction was sent by, say, CityBank from the East Coast
to the West Coast, but also the rightness of the message (the message has not
been modified by a forger or altered due to a problem on the line).
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The Digital Signature Algorithm (DSA), proposed in August 1991 by the US
National Institute of Standards and Technology, is a DLP-based cryptosystem
which parameters are:

1. A prime modulus p where 2271 < p < 2F for 512 < L < 1024 and L mod
64 = 0.

2. A prime ¢ such that 2'%° < ¢ < 2160 and p — 1 is a multiple of q.
3. A number g = h?=1/4 mod p for some h.
4. A 160-bit secret-key = and an L-bit public-key y defined by the relation:

y = ¢* mod p.

The integers p, ¢ and g are system parameters and can be public and/or
common to a group of users. A 160-bit random k, used by the signer, must be
kept secret and regenerated for each signature.

In order to sign a message m (hashed value of a primitive file M), the signer
computes the signature {r, s} by:

r = (¢ mod p) mod ¢ and s= m—;xr mod ¢

To check {r, s}, the verifier computes:

1
w=-modgq, u; =mwmodgq and wuz =7rw modgq
S

And compares if r = (g**y“2 mod p) mod ¢ to accept or reject the signature
Assuming no algorithmic sophistications,! the resources necessary for the
implementation of the DSA are:

resources Signer| Verifier
# of 160 bit mult.|2 2

# of 512 bit mult.|~237 |=475
modular inverse |yes yes
transmission 40 bytes
size of moduli 84 bytes

And the complete process is briefly summarised in figure 1.

2 Couponing Scheme

A well-known feature of the DSA, inherited from its ancestors El-Gamal [3]
and Schnorr [4], is the possibility to pre-compute 7 and the inverse of k before
the message is known. Then, the effort needed to produce s from m is negligible.

! Some of which [2] may spectacularly divide all the 512-bit figures by about 6 but
these tools apply exactly in the same manner to our schemes. The important point
is the ratio between the protocols which remains constant whatever exponentiation
strategy is used.
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& {9, p, 9, y, M} in public domain §>

~N

Signer's secret : x w = 1/s mod q

Generate randomly k u[l] = SHS(M)*w mod q

r = gkmod p mod g u2] = rrw mod q

s = (SHS(M)+x*r)/k mod ¢ Verifier's test :

Send {r, s} > r= g“m 35’[2] mod p mod g
\(accept if equal)

Fig. 1. The Digital Signature Algorithm

This section introduces a coupon-based protocol exploiting this property for
helping the signer to generate signatures very quickly. In our model, a trusted
authority sends public data packets (Use & Throw coupons) to the signer who
stores them for future use.

Each coupon is only 28-byte long and enables its owner to generate one DSA
signature (if a coupon is used twice, the signer’s x is revealed). Two noteworthy
advantages of this method are that the signer has only to possess z and ¢ (the
storage of g and p, which represents 1024 bits at minimum, can be avoided) and
only a couple of multiplications is needed to transform a coupon to a signature.

The system is based on a retro-calculation of k from an easily compressible
inverse and is ideally suited to electronic-purse applications where card-holders
interact periodically with a trusted authority for loading money into their purses
(refreshing the coupon’s reserve):

This scheme was implemented on a 68HC05-based prototype? which gener-
ates s in less than 150 ms (4 MHz clock) and can contain up to 91 coupons in
EEPROM. A heavy-duty version (now under development) will be 30% faster
and tailored to contain about 400 coupons.

Note that when Montgomery’s algorithm [5] is used (let Q = 9-52¢(2) mod
q), the signer can shortcut his calculations by using the key: 2’ = Q! mod q
if the authority compensates:

7“:(4\?/5_7modp)]’C mod p mod ¢
The coupon-owner will then compute s by two Montgomery rounds (in-
stead of four):
1. z = Montgomery,(z',r) = 2'rQ = 2Q 'rQ = zr mod ¢

2. s = Montgomery,(z + m,SHA(J|z)) = (z + m)SHA(J|2)Q mod g

The signature is still DSA-compatible and the storage of 4*#¢(4) mod ¢ (40
bytes normally needed for converting results from Montgomery’s format to
the conventional number system) has been avoided.

2 8T16623 (no crypto-engine aboard).
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o @
SIGNER

Loadi ng a coupon

k=1/SHA(x|J) mod ¢ send a random J
send r=g ir<nod p mod ¢ store {r,J}

AUTHORITY

Signing with a coupon

send the message m s=(m+xr)SHA(x|J) mod ¢
check {r,s} send {r,s}, erase {r,J}

\
VERIFIER

Fig. 2. Couponing Scheme

3 Improvements Regarding Coupon Size

Coupons can be reduced to exactly 20-bytes if only one new common 20-byte
long J is generated during each loading session and inverses are diversified by
SHA(J|x|i) where i is the coupon’s number.

With such a solution a typical EEPROM map of a coupon-card supporting
the Diversified Couponing Scheme will be:

secret x
modulus q
common J
coupon 1
coupon 2

coupon n

where n, (the number of coupons that can be held in a card) is typically:

- EEPROM Capacity (in bytes)
B 20

-3

The gain in terms of coupons when compared to the simple couponing scheme
is:

Gain = E—-60\ (E-40\ T7E-420-5E+200 2FE —220
o 20 28 a 140 T 140
_ {E— 110

0 J coupons
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o @
SIGNER

Loadi ng a coupon

get J «——— send a random J

AUTHORITY for i=1 to n :
K[i]=1/SHA(x|Jli) mod g

rlil=g k[qnod p mod q

send r[1],...,r[n] | store r1],...,1[n]

Signing with a coupon

send the message m —>| s=(m+xr[i))SHA(x|J]i) mod q

check {r[i] ,s} <«—— send {r[i] ,s} and erase ri]

VERIFIER

Fig. 3. The diversified Couponing Scheme

thus the Gain is 41 coupons when the EEPROM capacity (denoted E) is 3000
bytes, a second characteristic instance (ST16F48) is {E = 8000, Gain = 112}.
The characteristics of a coupon system can be summarised as the combination
of:
EEPROM Capacity (in bytes) = 60 + 20n and

Transmission (in bytes) = ISO bytes + size(m) + 60 ~ 115

Assuming a 3000 byte EEPROM (ST16623) and a 115.200 baud interface
these relations yield:
n = 147 coupons and

Time ~ Transmission(115; 155,200) + Processing + Writing in EEPROM
~ 200ms
Asuming a 8000 byte EEPROM and the same transmission time we get:

n_800—6
T2

= 397 coupons

4 Security Improvement

It is suitable to limit the validity of a coupon to a certain date or geographical
area. For doing so, the authority associates to a set of coupons a DSA signature
(40 bytes) which has to be checked first by the verification terminal before going
further on. This increases the size of the coupons to L20 + i—OJ bytes and the
memory map becomes:
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secret x
modulus q
common J
coupon 1
coupon 2

coupon n
certif 1,...,n

This solution introduces an additional transmission overhead since the card
has to present (without signing) n coupons along with the signature. The prob-
lem is therefore to get the balance right, regarding transmission and memory
requirements.

If coupons are certified by groups of ¢ and the card contains n coupons we

have:
4
EEPROM Capacity (in bytes) = 60 + 20n + -2 and
C

Transmission (in bytes) = ISO bytes + size(m) + 8¢+ 12+ 60 ~ 8¢+ 115

Assuming a 3000 byte EEPROM (ST16623) and a 115.200 baud interface
these relations become:

2
147 =n <1—|— E) and

Time ~ Transmission(8¢ + 115; 155, 200) + Processing + Writing in EEPROM
~ 0.85¢ + 200ms

If we assume in advance a global transaction time of 300 ms (SHA is included
therein), we get ¢ &~ 70 which yields n = 142 coupons. An interesting instance of
the system for implementation on a smartcard would therefore be a two coupon
set version, with each set containing 70 coupons and a certificate for a total of
140 coupons.

The same evaluation on a bigger component with a 8000 byte EEPROM,
assuming a transaction time of 300 ms and so ¢ < 120, gives the following
relations:

¢ € [1,120] ¢ € [1,120]
8000 = 60 + 20n + 222 n = 2% = n e [132,390]

Let ¢|n then a couple of integer solutions to maximize n is {¢,n} = {118, 354}.

5 Conclusion

As a conclusion, it is possible to design a coupon-system (capacity: about 140
coupons) which computes fully-compatible DSA signatures in less than 200 ms
within only a 3K byte EEPROM. The choice of bigger components such as the
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ST16F48 (8K EEPROM) leads to heavy-duty versions, with 279 coupons for a
28-byte coupon implementation, more than 400 coupons for a 20-byte coupon
solution, depending on time, memory and security requirements.

Besides, generating a signature from a coupon is much more restrictive than
doing the same freely with the basic DSA as coupons has to be presented with
a certificate that may limit their validity in time or territory. As coupon-based
signatures are fully DSA-compatible but restricted, employing them limits the
risk of breaking a card and extracting from it the coupons and the secret for
double-spending.
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