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The estimation of variance-covariance matrices in situations that involve the optimization of an ob-
jective function (e.g. a log-likelihood function) is usually a difficult numerical problem, since the
resulting estimates should be positive semi-definite matrices. We can either use constrained opti-
mization, or employ a parameterization that enforces this condition. We describe here five different
parameterizations for variance-covariance matrices that ensure positive definiteness, while leaving
the estimation problem unconstrained. We compare the parameterizations based on their computa-
tional efficiency and statistical interpretability. The results described here are particularly useful in
maximum likelihood and restricted maximum likelihood estimation in mixed effects models, but are
also applicable to other areas of statistics.
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1. INTRODUCTION

The estimation of variance-covariance matrices through opti-
mization of an objective function, such as a log-likelihood func-
tion, is usually a difficult numerical problem, since one must en-
sure that the resulting estimate is positive semi-definite. This
kind of estimation problem occurs, for example, in the analysis
of linear and nonlinear mixed-effects models, when one is inter-
ested in obtaining maximum likelihood, or restricted maximum
likelihood, estimates of the random effects variance-covariance
matrix (Lindstrom and Bates, 1988 and 1990). In these models,
because the random effects are unobserved quantities, no sam-
ple variance-covariance matrix type of estimator, that would au-
tomatically be positive semi-definite, is available. Indirect es-
timation methods must be used. The estimation of a variance-
covariance matrix through optimization of a log-likelihood func-
tion may occur even when a sample variance-covariance estima-
tor is available, if, for example, one is interested in using maxi-
mum likelihood asymptotic results to assess the variability in the
resulting estimates.

Two approaches can be used to ensure positive semi-
definiteness of a variance-covariance matrix estimate: con-
strained optimization, where the natural parameterization for
the upper-triangular elements in the variance-covariance matrix
is used and the estimates are constrained to be positive semi-
definite matrices; and unconstrained optimization, where the
upper-triangular elements in the variance-covariance matrix are
reparameterized in such way that the resulting estimate must be
positive semi-definite.

The first approach, constrained optimization using the non-
redundant entries of the matrix � as parameters, would be very
difficult. As Dennis, Jr. and Schnabel (1983) point out, attempts
to solve a constrained optimization problem usually boil down to
repeated unconstrained problems or to solving a nonlinear sys-
tem of equations. The simplest cases are those where there are
simple inequality constraints on the parameters and even in those
cases constrained solutions can require several times as much

effort as an unconstrained solution. In addition, the statistical
properties of constrained estimates, such as asymptotic proper-
ties, can be difficult to characterize.

In this case, the constraints themselves are quite complicated
to express. Verifying that a given symmetric matrix is positive
semi-definite is essentially as difficult as employing one of the
unconstrained parameterizations we will describe later.

For these reasons, we recommend the use of unconstrained
optimization with a parameterization that enforces the positive
semi-definite constraint.

An unconstrained estimation approach for variance-
covariance matrices in a Bayesian context using matrix
logarithms can be found in Leonard and Hsu (1993). Lindstrom
and Bates (1988, 1990) describe the use of Cholesky factors
for implementing unconstrained estimation of random effects
variance-covariance matrices in linear and nonlinear mixed
effects models using likelihood and restricted likelihood.

Since a variance-covariance matrix is positive semi-definite,
but not positive definite, only in the rather degenerate situation
of linear combinations of the underlying random variables taking
constant values, we will restrict ourselves here to positive defi-
nite variance-covariance matrices.

In addition to enforcing the positive definiteness constraints,
the choice of the parameterization can be influenced by compu-
tational efficiency and by the statistical interpretability of the in-
dividual elements. In general, we can use numerically or analyt-
ically determined second derivatives of the objective function to
approximate standard errors and derive confidence intervals for
the individual parameters. To assess the variability of the vari-
ances and covariances estimates, it is desirable that they can be
expressed as simple functions of the unconstrained parameters.
More detailed techniques, such as profiling the likelihood (Bates
and Watts, 1988, chapter 6), also work best for functions of the
variance-covariance matrix that are expressed in the original pa-
rameterization.

We describe in Section 2 five different parameterizations for
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transforming the estimation of unstructured (general) variance-
covariance matrices into an unconstrained problem. In Section 3
we compare the parameterizations with respect to their computa-
tional efficiency and statistical interpretability. Our conclusions
and suggestions for further research are presented in Section 4.

2. PARAMETERIZATIONS

Let � denote a symmetric positive definite n � n variance-
covariance matrix corresponding to a random vector X =(X1; : : : ; Xn). We do not assume any further structure for �.
Because� is symmetric, only n(n+1)=2 parameters are needed
to represent it. We will denote by � any such minimal set of pa-
rameters to determine�. The rationale behind all parameteriza-
tions considered in this section is to write� = LTL (2.1)

where L = L (�) is an n� n matrix of full rank obtained from
a n(n + 1)=2-dimensional vector of unconstrained parameters�. It is clear that any � defined from a full rank L as in (2.1) is
positive definite.

Different choices of L lead to different parameterizations of�. We will consider here two classes of L: one based on
the Cholesky factorization (Thisted, 1988, x3�3) of � and an-
other based on the spectral decomposition of � (Rao, 1973,x1c�3). The first three parameterizations presented below use the
Cholesky factorization of �, while the last two are based on its
spectral decomposition.

In some of the parameterizations there are particular compo-
nents of the parameter vector � that have meaningful statistical
interpretations. These can include the eigenvalues of �, which
are important in considering when the matrix is ill-conditioned,
the individual variances or standard deviations, and the correla-
tions.

The following variance-covariance matrix will be used
throughout this section to illustrate the use of the various
parameterizations. A = 24 1 1 11 5 51 5 14 35 (2.2)

2.1 Cholesky Parameterization

Because � is positive definite, it may by factored as � =LTL, where L is an upper triangular matrix. Setting � to be
the upper triangular elements of L gives the Cholesky param-
eterization of �. Lindstrom and Bates (1988) use this param-
eterization to obtain derivatives of the log-likelihood of a lin-
ear mixed effects model for use in a Newton-Raphson algorithm.
They reported that the use of this parameterization dramatically
improved the convergence properties of the optimization algo-
rithm, when compared to a constrained estimation approach.

One problem with the Cholesky parameterization is that the
Cholesky factor is not unique. In fact, if L is a Cholesky factor
of � then so is any matrix obtained by multiplying a subset of
the rows of L by �1. This has implications on parameter iden-
tification, since up to 2n different � may represent the same �.
Numerical problems can arise in the optimization of an objec-
tive function when different optimal solutions are close together
in the parameter space.

Another problem with the Cholesky parameterization is the
lack of a straightforward relationship between � and the ele-
ments of �. This makes it hard to interpret the estimates of �
and to obtain confidence intervals for the variances and covari-
ances in � based on confidence intervals for the elements of �.
One exception is j[L]11j = p[�]11, so confidence intervals on[�]11 can be obtained from confidence intervals on [L]11, where[A]ij denotes the ijth element of the matrixA. By appropriately
permuting the columns and rows of�we can in fact derive con-
fidence intervals for all the variance terms based on confidence
intervals for the elements of L.

The main advantage of this parameterization, apart from the
fact that it ensures positive definiteness of the estimate of �, is
that it is computationally simple and stable.

The Cholesky factorization of A in (2.2) isA = 24 1 0 01 2 01 2 3 3524 1 1 10 2 20 0 3 35
By convention, the components of the upper triangular part of L
are listed column-wise to give � = (1; 1; 2; 1; 2; 3)T .

2.2 Log-Cholesky Parameterization

If one requires the diagonal elements of L in the Cholesky
factorization to be positive then L is unique. To avoid con-
strained estimation, one can use the logarithms of the diagonal
elements of L. We call this parameterization the log-Cholesky
parameterization. It inherits the good computational properties
of the Cholesky parameterization, but has the advantage of be-
ing uniquely defined. As in the Cholesky parameterization the
parameters lack direct interpretation in terms of the original vari-
ances and covariances, except for L11.

The log-Cholesky parameterization of A is� = (0; 1; log(2); 1; 2; log(3))T :
2.3 Spherical Parameterization

The purpose of this parameterization is to combine the compu-
tational efficiency of the Cholesky parameterization with direct
interpretation of � in terms of the variances and correlations in�.

Let Li denote the ith column of L in the Cholesky factoriza-
tion of� and li denote the spherical coordinates of the first i el-
ements of Li. That is[Li]1 = [li]1 cos ([li]2)[Li]2 = [li]1 sin ([li]2) cos ([li]3)� � �[Li]i�1 = [li]1 sin ([li]2) � � � cos ([li]i)[Li]i = [li]1 sin ([li]2) � � � sin ([li]i)
It then follows that �ii = [li]21 and �1i = cos([li]2); i =2; : : : ; n, where �ij denotes the correlation coefficient betweenXi and Xj . The correlations between other variables can be ex-
pressed as linear combinations of products of sines and cosines
of the elements in l1; : : : ; ln, but the relationship is not as
straightforward as those involving X1. If confidence intervals
are available for the elements of li; i = 1; : : : ; n then we can
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also obtain confidence intervals for the variances and the corre-
lations �1i. By appropriately permuting the rows and columns of�, we can in fact obtain confidence intervals for all the variances
and correlations of X1; : : : ; Xn. The exact same reasoning can
be applied to derive profile traces and profile contours (Bates and
Watts, 1988) for variances and correlations of X1; : : : ; Xn based
on a likelihood function.

To ensure uniqueness of the spherical parameterization we
must have[li]1 > 0; i = 1; : : : ; n and[li]j 2 (0; �) ; i = 2; : : : ; n; j = 2; : : : ; i
Unconstrained estimation is obtained by defining � as follows�i = log ([li]1) ; i = 1; : : : ; n and�n+(i�2)(i�1)=2+(j�1) =log [li]j� � [li]j! ; i = 2; : : : ; n; j = 2; : : : ; i

The spherical parameterization has about the same computa-
tional efficiency as the Cholesky and log-Cholesky parameteri-
zations, is uniquely defined, and allows direct interpretability of� in terms of the variances and correlations in �.

The spherical parameterization of A is� = (0; log(5)=2; log(14)=2;�0:608;�0:348;�0:787)T :
2.4 Matrix Logarithm Parameterization

This and the next parameterization are based on the spectral
decomposition of�. Because� is positive definite, it has n pos-
itive eigenvalues �. Letting U denote the orthogonal matrix of
orthonormal eigenvectors of � and � = diag (�), we can write� = U�UT (2.3)

By setting L = �1=2UT (2.4)

in (2.1), where�1=2 denotes the diagonal matrix with [�1=2]ii =p[�]ii, we get a factorization of� based on the spectral decom-
position.

The matrix logarithm of � is defined as log (�) =U log (�)UT , where log (�) = diag [log (�)]. Note that� and log (�) share the same eigenvectors. The matrix log (�)
can take any value in the space of n � n symmetric matrices.
Letting � be equal to its upper triangular elements gives the
matrix logarithm parameterization of �.

The matrix logarithm parameterization defines a one-to-one
mapping between� and� and therefore does not have the identi-
fication problems of the Cholesky factorization. It does involve
considerable calculations, as � produces log (�) whose eigen-
structure must be determined before L in (2.4) can be calcu-
lated. Similarly to the Cholesky and log-Cholesky parameteriza-
tions, the vector � in the matrix logarithm parameterization does
not have a straightforward interpretation in terms of the origi-
nal variances and covariances in �. We note that even though
the matrix logarithm is based on the spectral decomposition of�, there is not a straightforward relationship between � and the
eigenvalues-eigenvectors of �

The matrix logarithm of A islog (A) = 24 �0:174 0:392 0:1040:392 1:265 0:6500:104 0:650 2:492 35
and therefore the matrix logarithm parameterization of A is� = (�0:174; 0:392; 1:265; 0:104; 0:650; 2:492)T :
2.5 Givens Parameterization

The eigenstructure of � contains valuable information for
determining whether some linear combination of X1; : : : ; Xn
could be regarded as nearly constant. This is useful, for example,
in model building for mixed-effects models, as near zero eigen-
values may indicate overparameterization (Pinheiro and Bates,
1995). The Givens parameterization uses the eigenvalues of �
directly in the definition of the parameter vector �.

The Givens parameterization is based on the spectral decom-
position of� given in (2.3) and the fact that the eigenvector ma-
trix U can be represented by n(n� 1)=2 angles, used to gener-
ate a series of Givens rotation matrices (Thisted, 1988, x3�1�6�6)
whose product reproduce U as followsU = G1G2 � � �Gn(n�1)=2; whereGi [j; k] = 8>>>>>>>><>>>>>>>>:

cos(�i); if j = k = m1(i)
or j = k = m2(i)sin(�i); if j = m1(i); k = m2(i)� sin(�i); if j = m2(i); k = m1(i)1; if j = k 6= m1(i)
and j = k 6= m2(i)0; otherwise

and m1(i) < m2(i) are integers taking values in f1; : : : ; ng and
satisfying i = m2(i)�m1(i)+(m1(i)� 1) (n�m1(i)=2). To
ensure uniqueness of the Givens parameterization we must have�i 2 (0; �) ; i = 1: : : : ; n(n� 1)=2.

The spectral decomposition (2.3) is unique up to a reorder-
ing of the diagonal elements of � and columns of U and up
to switching of signs in each column of U . Uniqueness can
be achieved by forcing the eigenvalues to be sorted in ascend-
ing order. This can be attained, within an unconstrained estima-
tion framework, by using a parameterization suggested by Jupp
(1978) and defining the first n elements of � as�i = log (�i � �i�1) ; i = 1; : : : ; n
where �i denotes the ith eigenvalue of� is ascending order and
with the convention that �0 = 0. The remaining elements of �
in the Givens parameterization are defined by the relation�n+i = log� �i� � �i� ; i = 1; : : : ; n(n� 1)=2

The main advantage of this parameterization is that the first n
elements of � give information about the eigenvalues of � di-
rectly. Another advantage of the Givens parameterization is that
it can be easily modified to handle general (not necessarily posi-
tive definite) symmetric matrices. The only modification needed
is to set �1 = �1 and�i = �1 + iXj=2 exp (�i) ; i = 2; : : : ; n
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The main disadvantage of this parameterization is that it in-
volves considerable computational effort in the calculation of�
from the parameter vector �. Another problem with the Givens
parameterization is that one cannot relate � to the elements of�
in a straightforward manner, so inferences about variances and
covariances require indirect methods.

The eigenvector matrix U in (2.3) can also be expressed as a
product of a series of Householder reflection matrices (Thisted,
1988, x3�1�2) and these in turn can be derived from n(n� 1)=2
parameters used to obtain the directions of the Householder re-
flections (Pinheiro, 1994). This Householder parameterization is
essentially equivalent to the Givens parameterization in terms of
statistical interpretability, but it is less efficient, since the deriva-
tion of the Householder reflection matrices involves even more
computation than the Givens rotations. We have not considered
it here.

The Givens parameterization of A is� = (�0:275; 0:761; 2:598;�0:265;�0:562;�0:072)T :
3. COMPARING THE PARAMETERIZATIONS

In this section we compare the parameterizations described in
Section 2 in terms of their computational efficiency and the sta-
tistical interpretability of the individual parameters.

The computational efficiency of the different parameteriza-
tions is assessed by simulation. First we analyze the average time
needed to calculate L (�) from � for each parameterization and
for different eigenstructures and for varying sizes of �. Then
we compare the performance of the different parameterizations
in computing the maximum likelihood estimate of the variance-
covariance matrix in a linear mixed effects model (Laird and
Ware, 1982).

To investigate the effect of the eigenstructure of � on the
computational efficiency of the parameterizations, six different
eigenvalue structures, described in Table 1, were considered in
the simulation study presented below.

Structure Eigenvalues
I f1; 1; : : : ; 1; 1g
II f1000; 1; 1; : : : ; 1; 1g
III f1; 1; : : : ; 1; 0:001g
IV

8><>:1000; : : : ; 1000| {z }
n=2 ; 0:001; : : : ; 0:001| {z }

n=2 9>=>;
V f1000; 1; : : : ; 1; 0:001g
VI f10; 20; 30; : : : ; (n� 1)� 10; n� 10g

Table 1: Different eigenvalue structures for n�nmatrices� used
in the simulation study.

Random � matrices of dimension n, for a given eigenvalue
structure (�1; : : : ; �n), were generated according to the follow-
ing algorithm.

1. Select a random n-dimensional orthogonal matrix U uni-
formly on the group of orthogonal matrices, using the algo-
rithm proposed by Anderson, Olkin and Underhill (1987).
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Figure 1: Average user time to calculate L as a function of n, for
the different parameterizations and eigenstructures of �.

2. Generate n independent random variables X1; : : : ; Xn,
such that Xi � N (log (�i) ; 0:01), and form a diagonal
matrix of random eigenvalues, �, with [�]ii = exp (Xi).
This ensures that the relative variability of the random
eigenvalues is the same.

3. Obtain� = U�UT .

To evaluate the average time needed to calculateL, we gener-
ated, for each of the eigenvalue structures in Table 1, 25 randomn�nmatrices� according to the above algorithm, with n vary-
ing from 6 to 100. For each � we obtained � and recorded the
average time to calculateL. The time quoted is the time the CPU
spent evaluating the user’s program for the calculation. Because
these user times were too small for accurate evaluation when us-
ing matrices of dimension less than 10, we used 5 evaluations ofL for each user time calculation. Figure 1 presents the average
user time as a function of n for each of the parameterizations of� and for each of the eigenvalue structures in Table 1.

The computational performances of the parameterizations are
essentially the same for all eigenvalue structures considered.
The Cholesky, the log-Cholesky, and the spherical parameter-
izations have similar performances, considerably better than
the other two parameterizations. The Cholesky and the log-
Cholesky parameterizations have slightly better performances
than the spherical parameterization, especially for n � 25. The
matrix logarithm had the worst performance, followed by the
Givens parameterization. These results are essentially reflecting
the computational complexity of each parameterization, as de-
scribed in Section 2.

To compare the different parameterizations in an estimation
context, we conducted a small simulation study using the linear
mixed effects modelyi =Xi (� + bi) + �i; i = 1; : : : ;M (3.1)
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Figure 2: Box-plots of user time and number of iterations to con-
vergence for 300 random samples of model (3.1) with� of dimen-
sion 3.

where the bi are independent, identically distributed random ef-
fects with commonN (0; �2�) distribution and the �i are inde-
pendent and identically distributed error terms with common dis-
tribution Nni(0; �2I), independent of the bi, with ni represent-
ing the number of observations on the ith cluster. Lindstrom and
Bates (1988) have shown that the log-likelihood in (3.1) can be
profiled to produce a function of � alone. In the simulation, we
used�matrices of dimensions 3 and 6. These were defined such
that the nonzero elements of the ith column of the corresponding
Cholesky factor were equal to the integers between 1 and i. Forn = 3 we have � = A, as given in (2.2). For n = 3 we usedM = 10, ni = 15; i = 1; : : : ; 10, �2 = 1, and � = (10; 1; 2)T ,
while for n = 6 we used M = 50, ni = 25; i = 1; : : : 50,�2 = 1, and � = (10; 1; 2; 3; 4; 5)T . In both cases, the elements
of the first column of X were set equal to 1 and the remaining
elements were independently generated according to a U (1; 20)
distribution. A total of 300 and 50 samples were generated re-
spectively for n = 3 and n = 6, and the number of iterations
and the user time to calculate the maximum likelihood estimate
of� for each parameterization recorded.

Figures 2 and 3 present box-plots of the number of iterations
and of the user times for the various parameterizations. The
Cholesky, the log-Cholesky, the spherical, and the matrix log-
arithm parameterizations had similar performances for n = 3,
considerably better than the Givens parameterization. For n = 6
the Cholesky and the matrix logarithm parameterizations gave
the best performances, followed by the log-Cholesky and spher-
ical parameterizations, all considerably better than the Givens
parameterization. Because � is relatively small in these exam-
ples, the numerical complexity of the different parameterizations
did not play a major role in their performances. It is interesting
to note that even though the matrix logarithm is the least effi-
cient parameterization in terms of numerical complexity, it had
the best performance in terms of number of iterations and user
time to obtain the maximum likelihood estimate of �, suggest-
ing that this parameterization is most numerically stable.

Another important aspect in which the parameterizations
should be compared is their behavior as � approaches singular-
ity. All parameterizations described in Section 2 require � to
be positive definite, though the Givens parameterization can be
modified to handle general symmetric matrices. It is usually an
important statistical issue to test whether � is of less than full
rank, in which case the dimension of the parameter space can be
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Figure 3: Box-plots of user time and number of iterations to con-
vergence for 50 random samples of model (3.1) with� of dimen-
sion 6.

reduced.

As � approaches singularity its determinant goes to zero and
so at least one of the diagonal elements of its Cholesky factor
goes to zero too. The Cholesky parameterization would then be-
come numerically unstable, since equivalent solutions would get
closer together in the estimation space. At least one element of �
in the log-Cholesky parameterization would go to �1 (the log-
arithm of the diagonal element of L that goes to zero). In the
spherical parameterization we would also have at least one el-
ement of � going in absolute value to 1: if the first diagonal
element ofL goes to zero, �1 ! �1; otherwise at least one an-
gle of the spherical coordinates of the column ofLwhose diago-
nal element approaches 0 would either approach 0 or �, in which
cases the corresponding element of � would go respectively to�1 or 1.

Singularity of � implies that at least one of its eigenvalues
is zero. The Givens parameterization would then have at least
the first element of � going to �1. To understand what hap-
pens with the matrix logarithm parameterization when � ap-
proaches singularity we note that letting (�1;u1); : : : ; (�n;un)
represent the eigenvalue-eigenvector pairs corresponding to �
we can write � = Pni=1 �iuiuTi . As �1 ! 0 all entries oflog(�) corresponding to nonzero elements of u1uT1 would con-
verge in absolute value to 1. Hence in the matrix logarithm pa-
rameterization we could have all elements of � going either to�1 of 1 as � approached singularity.

Finally we consider the statistical interpretability of the pa-
rameterizations of �. The least interpretable parameterization
is the matrix logarithm — none of its elements can be directly
related to the individual variances, covariances, or eigenvalues
of �. The Cholesky and log-Cholesky parameterizations have
the first component directly related to the variance of X1, the
first underlying random variable in�. By permuting the order of
the random variables in the definition of�, one can derive mea-
sures of variability and confidence intervals for all the variances
in�, from corresponding quantities obtained for the parameters
in the Cholesky or log-Cholesky parameterizations. The Givens
parameterization is the only one considered here that uses the
eigenvalues of� directly in the definition of �. It is a very use-
ful parameterization for identifying ill-conditioning of �. None
of its parameters, though, can be directly related to the variances
and covariances in �. Finally, the spherical parameterization is
the one that gives the largest number of interpretable parameters
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of all parameterizations considered here. Measures of variability
and confidence intervals for all the variances in � and the corre-
lations with X1 can be obtained from the corresponding quanti-
ties calculated for �. By permuting the order of the underlying
random variables in the definition of �, one can in fact derive
measures of variability and confidence intervals for all the vari-
ances and correlations in �.

4. CONCLUSIONS

The parameterizations described in Section 2 allow the es-
timation of variance-covariance matrices using unconstrained
optimization. This has numerical and statistical advantages
over constrained optimization, since the latter is usually a much
harder numerical problem. Furthermore unconstrained estimates
tend to have better inferential properties.

Of the five parameterizations considered here, the spherical
parameterization presents the best combination of performance
and statistical interpretability of individual parameters. The
Cholesky and log-Cholesky parameterizations have comparable
performances, similar to the spherical parameterization, but lack
direct parameter interpretability. The Givens parameterization
is considerably less efficient than these parameterizations, but
has the feature of being directly based on the eigenvalues of the
variance-covariance matrix. This can be used, for example, to
identify nonrandom linear combinations of the underlying ran-
dom variables. The matrix logarithm parameterization is very
inefficient as the dimension of the variance-covariance matrix
increases, but seems to be most stable parameterization. It also
lacks direct interpretability of its parameters.

Different parameterizations can be used at different stages of
the data analysis. The matrix logarithm parameterization seems
to be the most efficient for the optimization step, at least for mod-
erately large�. The spherical parameterizations is probably the
best one to derive measures of variability and confidence inter-
vals for the elements of�, while the Givens parameterization is
the most convenient to investigate rank deficiency of�.

Only unstructured variance-covariance matrices were consid-
ered here but in many situations that involve the optimization
of an objective function, structured matrices are used instead
(Jennrich and Schluchter, 1986). It is therefore important to de-
rive parameterizations for structured variance-covariance matri-
ces that allow unconstrained estimation of the associated param-
eters.

The asymptotic properties of the different parameterizations
considered here have not yet been studied and certainly consti-
tute an interesting research topic. It may be that some of the pa-
rameterization give faster rates of convergence to normality than
others and this could be used as a criterion for choosing among
them.
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