
Scalable On-Demand Streaming of Non-Linear
Media

Yanping Zhao Derek Eager
Department of Computer Science

University of Saskatchewan
Saskatoon, SK S7N 5A9, Canada

zhao,eager@cs.usask.ca

Mary K. Vernon
Computer Sciences Department

University of Wisconsin-Madison
Madison, WI 53706, USA

vernon@cs.wisc.edu

Abstract— A conventional video file contains a single
temporally-ordered sequence of video frames. Clients requesting
on-demand streaming of such a file receive (all or intervals of)
the same content. For popular files that receive many requests
during a file playback time, scalable streaming protocols based
on multicast or broadcast have been devised. Such protocols
require server and network bandwidth that grow much slower
than linearly with the file request rate.

This paper considers “non-linear” video content in which there
are parallel sequences of frames. Clients dynamically select which
branch of the video they wish to follow, sufficiently ahead of each
branch point so as to allow the video to be delivered without
jitter. An example might be “choose-your-own-ending” movies.
With traditional scalable delivery architectures such as movie
theaters or TV broadcasting, such personalization of the delivered
video content is very difficult or impossible. It becomes feasible,
in principle at least, when the video is streamed to individual
clients over a network. This paper analyzes the minimal server
bandwidth requirements, and proposes and evaluates practical
scalable delivery protocols, for on-demand streaming of non-
linear media.

I. INTRODUCTION

A conventional video file contains a single temporally-
ordered sequence of video frames. Clients that request the
same file receive encodings of (all or intervals of) the same
frames. We hypothesize here that generalizing this structure
to that of a tree or graph, so as to allow parallel sequences
of frames among which clients dynamically select during
playback, may enable new streaming media applications, as
well as enrich existing ones. An example is “choose-your-own-
ending” entertainment videos, analogous to the many choose-
your-own-ending children’s books.

For conventional stored video, a number of scalable
streaming protocols based on (IP or application level) multicast
or broadcast have been developed. Such protocols require
server and network bandwidth that grow much slower than
linearly with the file request rate. These include immediate
service protocols such as patching [3], [7], [9] and hierarchical
stream merging [5], as well as periodic broadcast protocols [1],
[6], [8], [10]–[12], [16]. In the immediate service protocols,
a new stream is allocated for each incoming client request, and

This work was partially supported by the Natural Sciences and Engineering
Research Council of Canada, and by the National Science Foundation under
grants ANI-0117810 and EIA-0127857.

streams serving closely spaced requests for the same file are
dynamically “merged” by having clients also listen to one
or more earlier streams to receive and buffer data that they
will need to play back in the future. In periodic broadcast
protocols, the video file is segmented, and each segment is
repeatedly broadcast/multicast on one of a number of chan-
nels (e.g., IP multicast groups) according to some protocol-
dependent transmission schedule. Unlike with the immediate
service protocols, clients must wait to begin playback, with the
length of the waiting period dependent on the duration of a
transmission of the initial segment. For “whole file” playback
requests, the best of the immediate service protocols use server
bandwidth that grows logarithmically with the file request rate,
while the best of the periodic broadcast protocols have start-
up delay that decreases exponentially with the (fixed) server
bandwidth allotted to the file.

This paper first explores the potential bandwidth savings
from using scalable, multicast-based streaming techniques
for on-demand delivery of non-linear stored video. As the
diversity in the data each client receives increases, the potential
benefits of multicast delivery can be expected to diminish.
A basic question is whether, or under what conditions, the
potential benefits become negligible in this context. This
question is addressed through the development of tight lower
bounds on the server bandwidth required to support a given
file request rate and client start-up delay, for non-linear media
files with varying path diversity. Our results indicate that the
potential bandwidth savings can be substantial, even for videos
with high path diversity.

Scalable streaming protocols achieve bandwidth reductions
by transmitting video file data to multiple clients. For the
shared transmissions to be possible, at least some clients
receive data ahead of when it is needed for playback, buffering
it in memory or on disk until its playback point. With non-
linear video, however, transmitting data ahead of when it is
needed is complicated by uncertainty regarding which branch
a client will follow at each branch point. There is a tradeoff
between receiving data that the client might not need, and the
server bandwidth reduction arising from receiving (needed)
data ahead of its playback point, so as to be able to share the
transmission with other clients. We investigate various points
in this tradeoff using tight lower bounds on the server band-

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

width required for various classes of protocols. Some of the
protocol classes considered make use of advance knowledge
of which branch a client will likely follow at each branch
point. We consider both the use of measured (over all clients)
branch choice frequencies, and client-specific information, as
might result from pre-declaration of intended client paths or
from client classification.

Our results show that fairly precise a priori information
regarding client path selection can dramatically reduce server
bandwidth requirements as well as the client data overhead
of receiving data that is never used. In the absence of such
information, strategies that restrict what data clients will
receive in advance of knowing whether or not it will be needed,
based on how far ahead that data is in the video file rather than
more approximate client path predictions, can greatly reduce
the client data overhead at relatively small bandwidth cost.

Finally, using insights derived from the bounds we design
new immediate service and periodic broadcast protocols for
non-linear video, and evaluate the bandwidth savings that they
provide. Within each class of protocols, variants are developed
that assume the extremes of either no a priori path knowledge,
or full knowledge. In general, as with our lower bounds,
precise a priori information regarding client path selection can
substantively reduce the server bandwidth requirements.

The remainder of the paper is organized as follows. Section
II describes models for non-linear media. Tight lower bounds
on the server bandwidth required for a given file request rate
and client start-up delay, and the corresponding client data
overhead if no a priori client path selection information is
available, are derived in Section III. Section IV derives the
server bandwidth bounds and associated client data overheads
for various policies that restrict the data that clients receive
ahead of when it is needed. Section V presents new stream
merging and periodic broadcast protocols, and comparative
performance results. Conclusions are given in Section VI.

II. NON-LINEAR MEDIA MODELS

A. Non-Linear Media Structures

The simplest interesting structure for non-linear video is that
of a height one tree with root node corresponding to a common
initial portion, and child nodes corresponding to multiple
possible ending portions. In a “complete path” playback of
the video, the client plays the common portion plus one of the
ending portions. If the desired variant of the ending portion
is chosen sufficiently ahead of the end of the common initial
portion (the branch point), the complete path can be played
without jitter. In the following, except when stated otherwise, it
is assumed that clients make navigation decisions soon enough
to avoid jitter, but sufficiently close to the respective branch
point that the gap can be neglected in our analysis.

A more general structure is an arbitrary tree, where each
node corresponds to a portion of the video, and child nodes
correspond to variant subsequent portions. A complete path
playback would consist of the common root portion, plus all
other portions on a path up to and including a leaf node.
This structure can be further generalized to a directed acyclic

graph (i.e., paths can converge at shared portions), or a general
graph structure. In the latter case, the notion of a “complete
path” playback may have no meaning; clients simply start
playback at some client-selected video portion and the graph
links determine the possible subsequent portions.

The bounds in Sections III and IV are developed for
tree structures, although the analysis can be generalized.
The immediate service protocols developed in Section V.A
are applicable to non-linear media having a general graph
structure, while our periodic broadcast protocols in Section
V.B are applicable to directed acyclic graphs in which the path
lengths to any video portion with multiple parents are identical,
and to general tree structures. For clarity, however, we present
numerical results only for balanced binary trees in which all
video portions have identical playback time, and assuming that
each client request is for a complete path playback.

We assume constant bit rate video. Generalizations for vari-
able bit rate video can be developed using similar approaches
as for linear media [13], [14], [18].

B. Client Branch Selections

A key issue concerns the relative frequencies with which
clients select among alternative portions of the video at branch
points. In the context of balanced binary tree structures,
we have explored several alternative popularity models. The
model for which numerical results will be presented assigns
selection probabilities to leaves according to a Zipf distribu-
tion, as follows. First, the leaf that will be the most popular is
chosen randomly, and assigned the corresponding probability.
Then, out of the remaining leaves, a second most popular
is chosen randomly, and so on. Once all of the leaves have
been given selection probabilities, selection probabilities for
all interior video portions can be computed by working up
from the leaves.

Other models that were considered include a model in which
the leaves are assigned Zipf-distributed selection probabilities
in order, with the leftmost leaf the most popular and the
rightmost the least popular, and a model in which the selection
probabilities at each branch point are Zipf-distributed (specif-
ically, for a branch point with two branches, one branch is
selected with probability 2/3, and the other with probability
1/3). Although these other models would appear to differ
significantly from the chosen model (in particular, they give
more skewed selection probabilities at the branch points near
the root of the tree and less skewed probabilities at those near
the leaves), they were found to yield very similar results.

C. An Example

Fig. 1 shows a sample non-linear video file structure. Each
portion of the video is denoted by a line segment, with branch
points denoted by solid black circles. As a tree structure with
nodes representing portions of the video, the structure in Fig. 1
corresponds to a balanced binary tree of height 3. In the figure
each video portion is labelled by its selection probability, as
computed by choosing leaf selection probabilities according to
a Zipf distribution, and then working up the tree. Also shown

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

0.56

1.0

0.44

0.0610.12

0.18

0.052

0.18 0.260.410.14

0.0740.046 0.37

0.092

Fig. 1. Example of a Non-Linear Media Structure

is the path selected by a particular client, who made the most
popular selection at the first branch point (followed in 56% of
all client playbacks), and who chose a complete path that is
selected in 4.6% of all client playbacks.

D. Server Knowledge of Client Preferences

Of interest are three cases: (1) no a priori knowledge is
available of the likely path through the video that a partic-
ular client will take, (2) only the overall average selection
probabilities are known, and (3) more accurate client-specific
path prediction is possible, as when the previous behavior
of clients is measured, either individually or in aggregate
according to some client classification. In the second case,
the system might predict that the client will choose the most
popular branch at each branch point, in which case the client’s
choice is correctly predicted with probability equal to the
(conditional) selection frequency of the most popular branch.
In the third case, we consider in Section IV.B a simple model
of client-specific path prediction accuracy in which sufficiently
popular branch choices are always successfully predicted, and
the other, unpopular branch choices are never predicted. This
analytically tractable model has the key advantage, for binary
tree structures, of covering a spectrum from path prediction
in which only choices of the most popular branch at each
branch point are successfully predicted (i.e., the same as if
only overall average selection probabilities are employed),
to fully accurate prediction in which all branch choices are
successfully predicted, depending on the quantification of
“sufficiently popular”. When an incorrect prediction is made,
it is assumed that the prediction is for each of the paths that
could have been predicted with probability proportional to its
relative popularity.

III. POTENTIAL FOR SCALABLE DELIVERY

With unicast delivery, server and network bandwidth re-
quirements for on-demand streaming are linear in the client
request rate. This section analyzes the extent to which server
bandwidth requirements might be reduced through use of
multicast-based protocols in the context of non-linear media,
and the associated client data overheads. Section III.A defines

TABLE I

NOTATION FOR TREE-STRUCTURED NON-LINEAR MEDIA

Symbol Definition
V number of portions of the video file
T complete path playback time
Ti playback time of ith portion (root numbered as portion 1)
ti ith portion relative start time (t1 = 0)
pi probability the selected path includes portion i
α parameter of Zipf distribution

(popularity of j’th most popular item ∝ 1/jα)
λ client request rate
λi request rate for ith portion (λi = piλ)
N average number of client requests during a playback time

(N = λT)
Ni average number of client requests for portion i during

time Ti (Ni = λiTi)
d maximum client start-up delay

Bmin required server bandwidth lower bound, in units of the
playback data rate

these performance metrics and outlines the analysis approach.
In Section III.B, a tight lower bound on the server bandwidth
requirement is derived. Section III.C derives the client data
overhead required to achieve the server bandwidth bound
when no a priori information is available regarding client
path selection. Classes of policies that restrict the client data
overhead are considered in Section IV.

A. Metrics and Analysis Approach

The primary performance metric that is considered is the
average server bandwidth used for “complete path” playbacks
of a single video file, for given client start-up delay and request
rate. Our analysis can be extended to network bandwidth in a
similar fashion as for linear media [19]. Also of interest is the
average client data overhead, defined as the average amount
of data a client receives from video portions on different paths
than that taken by the client, and therefore not used, expressed
in units of the amount of video data on a complete path.

Using the notation defined in Table I, our lower bound
analysis follows the same basic approach as has been used
previously for linear media [2], [5], [6], [15]. For a linear
media file, and an arbitrary client request that arrives at time
t, the file data at each play position x must be delivered no
later than time t+d+x. If this data is multicast at time t+d+x,
then (at best) those clients that request the file between time
t and t + d + x can receive the same multicast. Assuming
Poisson arrivals, the average time from t+d+x until the next
request for the file is 1/λ. Therefore, the minimum frequency
of multicasts of the data at time offset x is 1/(d + x + 1/λ),
which yields a bound on required server bandwidth, in units
of the playback data rate, of

Blinear
min =

∫ T

0

dx

d + x + 1
λ

= ln

(
N

N d
T

+ 1
+ 1

)
. (1)

This bound can be generalized to a broad class of non-Poisson
arrival processes, yielding a similar result with difference
bounded by a constant [5]. Bounds for non-linear media are
derived below by applying similar analysis.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

0

10

20

30

40

50

1 10 100 1000

S
er

ve
r

B
an

dw
id

th

Normalized Request Arrival Rate (N)

Portion
Path

Non-Linear
Linear

Fig. 2. Server Bandwidth for Non-Linear Media
(balanced binary tree with height 3, α = 1, d = 0)

0

25

50

75

100

125

150

175

200

0 1 2 3 4 5 6 7 8 9 10

S
er

ve
r

B
an

dw
id

th

Tree Height

Portion
Path

Non-Linear

Fig. 3. Impact of Tree Height (α = 1, N = 1000, d = 0)

B. Minimum Required Server Bandwidth

Server bandwidth is minimized when a client listens to
every multicast of data that it may need in the future. Note
that without a priori knowledge of client path selection, this
requires that the client listen to any multicast of data in the
subtree below its current play point, implying possibly large
client data overhead. With perfect a priori knowledge of client
path selection, the client listens only to all multicasts of data
that it will actually use in the future. In either case, noting
that the file data at a position x within a video portion i is
at (overall) play position ti + x, the above analysis approach
yields the tight lower bound

Bnon−linear
min =

V∑
i=1

∫ Ti

0

dx

d + ti + x + 1
λi

=

V∑
i=1

ln

(
Ni

Ni
d+ti
Ti

+ 1
+ 1

)
. (2)

Fig. 2 shows this bound as a function of the normalized
request arrival rate N , for immediate service (d = 0) and for
a non-linear media file with a balanced binary tree structure
of height 3 and Zipf-distributed leaf selection probabilities as
described in Section II with Zipf distribution parameter α = 1.
(Alternative random assignments to leaves of the Zipf selection
probabilities yield very similar results.)

For comparison purposes, the figure also shows the bound
for linear media from eq. 1, and bounds for two approaches
in which delivery techniques for linear media are applied to
non-linear media. In one of these (portion), each portion of
the non-linear media file is treated as a separate linear media
file, yielding a tight lower bound on required server bandwidth
of

Bportion
min =

V∑
i=1

∫ Ti

0

dx

di + x + 1
λi

=
V∑

i=1

ln

(
Ni

Ni
di
Ti

+ 1
+ 1

)
. (3)

Here d1 = d, and the terms di for i > 1 admit the possibility
that with this approach, a client selection of video portion
i would be required to be made time di prior to the end

of its parent portion (or, alternatively, that there would be
interruption in playback of duration di). For the results in the
figure it is assumed that di = 0 for all i. In the other approach
(path), the client path selection is required to be known a
priori. Video data is replicated so that each complete path
through the tree structure can be stored as a separate file. For
each client request, one of these files is selected according
to the path selection probabilities, and delivered as if it were
an ordinary linear media file. The corresponding tight lower
bound on the required server bandwidth is given by

Bpath
min =

∑
i∈L

∫ T

0

dx

d + x + 1
λi

=
∑
i∈L

ln

(
piN

piN
d
T

+ 1
+ 1

)
, (4)

where L denotes the set of indices of the portions of the
video file that are leaves in the tree structure, and where for
notational convenience it is assumed that each complete path
has the same playback time T .

The key observations from Fig. 2 are that: (1) multicast-
based delivery techniques for non-linear media have the poten-
tial to yield large reductions in bandwidth requirements (note
that with unicast, the required server bandwidth is N), and
(2) techniques that exploit the particular non-linear structure,
rather than treating each portion or path as a separate linear
media file, have the greatest potential.

The potential bandwidth reductions from multicast-based
delivery are dependent on the non-linear media structure.
Fig. 3 shows the impact of increasing the height of a balanced
binary tree structure, for fixed normalized request rate. As
the height increases, the number of portions of the video
file increases exponentially, as does the number of possible
paths that clients may select from. Furthermore, relative to
the total length of a path the length of each video portion
decreases; i.e., branch points become more closely spaced. Not
surprisingly, the potential benefits of multicast-based delivery
decrease. (Similarly, these benefits also decrease when the
branching factor is increased at each branch point, with fixed
height, owing to the resulting increase in the number of
paths.) However, even with a height of 10 and more than

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

a thousand possible paths, multicast-based delivery still has
the potential for an order-of-magnitude reduction in server
bandwidth, assuming immediate service and the request rate
considered in the figure. These potential bandwidth savings
are explained largely by the potential for shared delivery of
the video portions with the highest selection probabilities (i.e.,
those along popular paths or near the root).

C. Maximum Client Data Overhead

Without a priori knowledge that would rule out some path
choices, achieving the lower bound of eq. 2 requires that a
client listen to any multicast of data from a video portion that
(at the time of the multicast) could still be on the client’s
eventual path. Since data is being multicast at minimum
frequency, it is guaranteed that the same data is not multicast
multiple times during the time that a client can obtain it.
Thus, on average, the amount of data received from each video
portion not on the client’s eventual path is given by the rate
at which data from that portion is multicast, times the length
of the period over which the client can obtain such multicasts.
The latter quantity for a client that follows the path to a leaf
video portion i and for a video portion j that is not on this
path (i.e., is not i or an ancestor of i), is equal to the sum of
the start-up delay d and the playback durations of all video
portions on the chosen path that are also on the path to j. This
yields an average client data overhead, in units of the amount
of video data on a complete path, of
∑

i∈L
pi

∑
j∈A(i)

d +

∑
k∈A(i,j)

Tk

 ln

 Nj

Nj
d+tj

Tj
+ 1

+ 1

 / T,

where A(i) denotes the set of indices of those portions that are
not portion i or an ancestor of portion i, and A(i, j) denotes
the set of indices of those portions that are ancestors of both
i and j.

Fig. 4 shows the average client data overhead incurred to
achieve the lower bound of eq. 2 for balanced binary tree
structures of various heights, immediate service, and no a
priori knowledge of client path choices. Note that, for a given
height tree, as the request rate increases the average client
data overhead initially increases and then levels off since
the lower bound server bandwidth for portion j has finite
asymptote for all j > 1. Similarly, for fixed arrival rate,
as the height increases the average client data overhead also
increases. Finally, the data overhead when clients snoop on
all portions that could still be on their eventual path can be
significant, particularly when the tree height is greater than
four and the normalized request rate is greater than 100.

IV. RESTRICTED SNOOP-AHEAD

Owing to client reception rate and/or buffer space limi-
tations, the client data overheads shown in Fig. 4 may be
infeasible. This section considers approaches in which clients
snoop less aggressively on multicasts from video portions
ahead of their current play point, thus reducing this overhead.

Snoop-ahead can be restricted in at least two basic ways.
First, as considered in Section IV.A, restrictions may be

0

2

4

6

8

10

1 10 100 1000

C
lie

nt
 D

at
a

O
ve

rh
ea

d

N

Height=10
Height=8
Height=6
Height=4
Height=2

Fig. 4. Client Data Overhead for Unrestricted Snoop-ahead
(α = 1, d = 0, no a priori knowledge of client path selection)

based on distance from the current play point. Second as
considered in Section IV.B, restrictions can be based on (a)
overall path selection probabilities, or (b) client-specific path
prediction, according to the past behavior of that client, client
classification, and/or advance selection by the client.

A. Distance-based Restricted Snoop-ahead

A simple approach that restricts snoop-ahead based on
distance is to only snoop on multicasts from the current video
portion (but ahead of the current play point), and from all
portions following the next branch point.1 Thus, with this
approach, clients snoop on multicasts from each video portion
i during playback of that portion, and, if not the initial, root
portion (i.e., i ≥ 2), during the playback of i’s parent in
the tree structure. A tight lower bound on the required server
bandwidth for any technique utilizing this approach is given
by

Bnext
min =

∫ T1

0

dx

d + x + 1
λ

+

V∑
i=2

∫ Ti

0

dx

Ta(i) + x + 1
λi

= ln

(
N1

N1
d

T1
+ 1

+ 1

)
+

V∑
i=2

ln

 Ni

Ni
Ta(i)

Ti
+ 1

+ 1

, (5)

where a(i) denotes the index of the immediate ancestor
(parent) of i. Achieving this bound would incur an average
client data overhead of

 V∑
i=2

piTa(i)

∑
j∈S(i)

ln

 Nj

Nj
Ta(j)

Tj
+ 1

+ 1

 / T,

where S(i) denotes the set of indices of the siblings of i
in the tree structure. Corresponding results can be derived
for approaches in which clients snoop on transmissions from
future video portions up to k branch points ahead, for some
fixed k > 1.

1For clarity of presentation, we assume here and for the subsequent
restricted snoop-ahead approaches, that prior to beginning playback, in the
case of d > 0, clients only listen to multicasts from the initial, root portion
of the video. The same analysis approach can be employed with alternative
assumptions.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

B. Client Path Prediction Approaches

With skewed branch selection probabilities, it may be possi-
ble to substantially reduce the client data overhead, with only
a small cost in increased server bandwidth, by snooping on
multicast transmissions from only the most popular portion of
the video following the next branch point. The corresponding
tight lower bound is given by

Bpopnext
min =

∫ T1

0

dx

d + x + 1
λ

+
∑
i∈P

∫ Ti

0

dx

Ta(i) + x + 1
λi

+
∑
i∈P

∫ Ti

0

dx

x + 1
λi

= ln

(
N1

N1
d

T1
+ 1

+ 1

)
+
∑
i∈P

ln

 Ni

Ni
Ta(i)

Ti
+ 1

+ 1

+
∑
i∈P

ln (Ni + 1) , (6)

where P and P denote the set of indices of those portions
of the video file that are the most popular, or are not the
most popular, video portions among their siblings, respectively
(excluding the root portion, which has no siblings). Achieving
this bound would incur an average client data overhead of

∑
i∈P

piTa(i) ln

 Ns(i)

Ns(i)
Ta(i)
Ts(i)

+ 1
+ 1

 / T,

where s(i) denotes the index of the most popular sibling of
video portion i.

Rather than just snooping on transmissions from the most
popular video portion after the next branch point, clients
could snoop on transmissions from all video portions on the
most popular path from the current position to a leaf. The
corresponding tight lower bound is given by

Bpoppath
min =

∫ T1

0

dx

d + x + 1
λ

+
∑
i∈P

∫ Ti

0

dx∑
j∈U(i)

Tj + x + 1
λi

+
∑
i∈P

∫ Ti

0

dx

x + 1
λi

= ln

(
N1

N1
d

T1
+ 1

+ 1

)
+
∑
i∈P

ln

 Ni

Ni

∑
j∈U(i) Tj

Ti
+ 1

+ 1

+
∑
i∈P

ln (Ni + 1) , (7)

where U(i) denotes the set of indices of ancestors on the path
back towards the root from i (not including i itself), up to
and including the first portion that is not the most popular
among its siblings. (If there is no such portion on this path,
the set includes the indices of all ancestors on the path back
to and including the root.) Achieving this bound would incur
an average client data overhead of
∑

i∈P
pi(

∑
j∈U(i)

Tj)
∑

j∈D(a(i))

ln

 Nj

Nj

∑
k∈U(j) Tk

Tj
+ 1

+ 1

 / T,

where D(a(i)) denotes the set of indices of video portions on
the most popular path down to a leaf from (but not including)
the parent of portion i.

Consider now the case in which more accurate client-
specific path prediction is possible, and clients snoop on
multicasts from all video portions on their predicted (rather
than the overall most popular) path from the current position
to a leaf. Analysis of this approach requires a model of path
prediction accuracy. Here we use a very simple model in
which branch choices with selection frequency (conditional
on reaching the respective branch point) at least equal to
a parameter f are always successfully predicted, and less
popular branch choices are never predicted. The corresponding
tight lower bound is given by

Bpred
min =

∫ T1

0

dx

d + x + 1
λ

+
∑
i∈F

∫ Ti

0

dx∑
j∈W(i)

Tj + x + 1
λi

+
∑
i∈F

∫ Ti

0

dx

x + 1
λi

= ln

(
N1

N1
d

T1
+ 1

+ 1

)
+
∑
i∈F

ln

 Ni

Ni

∑
j∈W(i) Tj

Ti
+ 1

+ 1

+
∑
i∈F

ln (Ni + 1) , (8)

where F and F denote the set of indicies of those portions of
the video file whose conditional selection frequency is at least
f , or less than f , respectively, and W(i) denotes the set of
indicies of ancestors on the path back towards the root from
i (not including i itself), up to and including the first portion
that is a member of the set F . (If there is no such portion
on this path, the set includes the indices of all ancestors on
the path back to and including the root.) Achieving this bound
would incur an average client data overhead of∑

i∈F
pi(

∑
j∈W(i)

Tj)
∑

l∈L(S(i))

pl∑
m∈L(S(i)) pm

∑
j∈D(a(i),l)

Bpred
j min

T
,

where L(S(i)) denotes the set of indices of leaf video portions
in the collection of subtrees rooted at siblings of i for which
the path from that sibling includes only video portions in the
set F , D(a(i), l) denotes the set of indices of video portions
on the path down to leaf portion l beginning from (but not
including) the parent of i, Bpred

j min denotes the bandwidth used
for multicasts of video portion j, as given by the term for
video portion j on the right-hand side of eq. 8, and where
we have assumed that an incorrect path prediction is for each
of the paths that could have been predicted with probability
proportional to its relative popularity.

C. Policy Comparisons

Figs. 5 and 6 graph the bandwidth expressions given above
as functions of the request rate (for the same binary tree
structure assumed for Fig. 2), and the tree height (for fixed
request rate), respectively. Also shown is the server bandwidth
for the approach (nexttwo) in which clients snoop on multicasts

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

0

10

20

30

40

50

1 10 100 1000

S
er

ve
r

B
an

dw
id

th

N

Portion
Next

Nexttwo
Lower Bound

(a) Distance-based Policies

0

10

20

30

40

50

1 10 100 1000

S
er

ve
r

B
an

dw
id

th

N

Portion
Popnext
Poppath

Pred (f=0.35)
Lower Bound

(b) Prediction-based Policies

Fig. 5. Performance with Restricted Snoop-ahead (balanced binary tree with height 3, α = 1, d = 0)

0

25

50

75

100

125

150

175

200

0 1 2 3 4 5 6 7 8 9 10

S
er

ve
r

B
an

dw
id

th

Tree Height

Portion
Next

Nexttwo
Lower Bound

(a) Distance-based Policies

0

25

50

75

100

125

150

175

200

0 1 2 3 4 5 6 7 8 9 10

S
er

ve
r

B
an

dw
id

th

Tree Height

Portion
Popnext
Poppath

Pred (f=0.35)
Lower Bound

(b) Prediction-based Policies

Fig. 6. Impact of Tree Height on Restricted Snoop-ahead Performance (α = 1, N = 1000, d = 0)

from the current video portion plus from all portions following
the next and next two branch points, which is derived similarly
to eq. 5. For comparison purposes, the figures also show the
server bandwidth for unrestricted snooping (i.e., the lower
bound of eq. 2), and for the approach in which each portion is
treated as a separate linear video file (portion). Corresponding
results for the client overhead are given in Figs. 7 and 8.

Consider first the results for portion, next, nexttwo, and
unrestricted snooping. With portion, clients only listen to mul-
ticasts of data from the video portion currently being played.
Snooping of multicasts of data from beyond the next branch
point (next) yields a large reduction in server bandwidth.
Snooping farther ahead, as in nexttwo, yields diminishing
returns. As seen by the results in Fig. 6(a), for trees of
low to moderate height nexttwo has minimal required server
bandwidth fairly close to the lower bound of eq. 2. The results
in Figs. 5(a), 6(a), 7, and 8 show that the next and nexttwo
approaches can often achieve large reductions in average client
data overhead compared to the unrestricted snooping approach,
at fairly modest cost in server bandwidth.

The popnext, poppath, and pred (f=0.35) approaches use a
priori information regarding client path selection in an attempt

to achieve a better tradeoff between server bandwidth and
client overhead. Although popnext and poppath achieve low
client overhead, as seen in Figs. 7 and 8, they achieve poorer
server bandwidth scalability than next and nexttwo. These
results show that very approximate client path prediction, such
as occurs with popnext and poppath at branch points at which
the branch selection probabilities are not highly skewed, is
not as effective in reducing server bandwidth as is snooping
on all multicasts of data that could be needed soon, as in
next. In contrast, the more accurate pred (f=0.35) approach
achieves lower client data overhead than next and comparable
server bandwidth scaling. Finally, note that the approaches in
which clients snoop on multicasts from all video portions on
a path from the current position to a leaf (poppath and pred)
become relatively more attractive with respect to their server
bandwidth usage, and relatively less attractive with respect to
client data overhead, for high tree heights.

Hybrid approaches may perform even somewhat better
under some conditions. For example, consider a branch point
at which one choice is highly popular and the other is much
less popular. Clients could snoop on multicasts from both
of these video portions (as in next), while also predicting a

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

0

0.4

0.8

1.2

1.6

2

1 10 100 1000

C
lie

nt
 D

at
a

O
ve

rh
ea

d

N

Unrestricted Snoop-ahead
Nexttwo
Next
Poppath
Popnext
Pred (f=0.35)

Fig. 7. Client Overhead with Restricted Snoop-ahead
(balanced binary tree with height 3, α = 1, d = 0)

0

0.4

0.8

1.2

1.6

2

0 1 2 3 4 5 6 7 8 9 10

C
lie

nt
 D

at
a

O
ve

rh
ea

d

Tree Height

Unrestricted Snoop-ahead
Nexttwo

Next
Poppath
Popnext

Pred (f=0.35)

Fig. 8. Impact of Tree Height on Overhead (α = 1, N = 1000, d = 0)

0

10

20

30

40

50

60

0.1 1 10

S
er

ve
r

B
an

dw
id

th

Parameter of Zipf Distribution

Portion
Poppath
Pred (73% in set F)
Next
Unrestricted Snoop-ahead

(a) Server Bandwidth

0

0.4

0.8

1.2

1.6

2

0.1 1 10

C
lie

nt
 D

at
a

O
ve

rh
ea

d

Parameter of Zipf Distribution

Unrestricted Snoop-ahead
Next
Poppath
Pred (73% in set F)

(b) Client Overhead

Fig. 9. Sensitivity to Skewness in Selection Probabilities (balanced binary tree with height 3, N = 1000, d = 0)

path that includes the highly popular choice and snooping on
multicasts from subsequent video portions (as in poppath or
pred). Preliminary investigations of a hybrid of the next and
pred approaches confirm this intuition.

Fig. 9 shows the sensitivity of the above results to skewness
in the leaf selection probabilities, specifically to the Zipf pa-
rameter α. (Curves for nexttwo and popnext have been omitted
but have similar form.) For pred, the parameter f has been
varied so that the percentage of video portions in the set F is
constant, equal to that with f = 0.35 and α = 1. Thus, for pred
(as well as for poppath), the number of relatively popular video
portions whose selection is successfully predicted remains
constant as α varies. Note that there is relatively little variation
in the required server bandwidth and client data overhead for
each approach for α ≤ 1 (i.e., for no skew to moderately high
skew). As α increases beyond one, the server bandwidth and
client data overhead for each approach decrease substantially.
A key conclusion is that the simple next approach, and the
pred approach with correct path predictions for at least 75%
of the video portions, achieve an attractive trade-off between
required server bandwidth and client data overhead, over a
wide range of α values.

V. SCALABLE DELIVERY PROTOCOLS

A. Hierarchical Stream Merging

Hierarchical stream merging (HSM) protocols [5], as ap-
plied to linear media, start a new transmission of the media
file for each client request. In the simplest type of HSM, each
client also listens to the closest active earlier stream, so that
its own stream can terminate after transmitting the data that
was missed in the earlier stream. At that point, the clients
associated with the two streams are said to be “merged” into
a single “group”, which can then go on to merge with other
groups.

Extending HSM to non-linear media requires a more dy-
namic notion of client group, since clients that merge while
listening to one video portion may take different paths at
the next branch point, thus splitting the group. Also, a more
complex policy may be required for determining what stream a
client listens to, in the case where the closest earlier stream is
beyond the next branch point. It would seem that, in this case,
the client should listen to the closest earlier stream currently
delivering data from the path that the client will select, should
such a stream exist and should the branch choice be known
or accurately predicted.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

E7

S

E1

B1

E3E2

B3B2

E5E4 E6

Fig. 10. OPB-KP Segment Partitioning for an Example Media Structure
(“S” label is for start of media, “Bi” labels are for branch points, “Ei” labels

are for segment end points, dashed lines indicate segment boundaries,
K = 3, s = 2, r = 1)

S

E1

E2

E2

E5

E4

E7

E3

E1

Channel 3b

Channel 3a

Channel 2

Channel 1

E3

E6

B1

B2

B3

Fig. 11. OPB-KP Channels for Structure of Fig. 10
(shaded areas are listening periods of example client, K = 3, s = 2, r = 1)

The results from Section IV suggest that using overall path
selection probabilities to guide which earlier stream a client
listens to when the closest earlier stream has past the next
branch point may not be the best strategy. This intuition is
confirmed by simulation results showing that listening to the
closest earlier stream (on or past the same video portion,
regardless of which branch it may be on if beyond a branch
point) yields slightly better performance than listening to the
closest stream on the most popular branch [17]. Section V.C
presents simulation results for both this HSM-Unknown Path
(HSM-UP) protocol in which clients listen to the closest
earlier stream, and for HSM-Known Path (HSM-KP) in which
it is assumed that precise client-specific path prediction is
possible, and thus clients can listen to the closest earlier
stream delivering data from the path they will select. Note that
with HSM-KP, clients belonging to the same “group” may be
listening to different earlier streams. With both protocols, a
group may split as the clients within a group reach a branch
point, in which case the server will need to start additional
stream(s) so that there is one stream per path followed.
These characteristics also complicate merging behavior. In
the simulations from which results are presented here, it is
assumed that when a client or group of clients merges with an
earlier group, all clients in the earlier group restart listening to
earlier stream(s), as in HSM for linear media. Other options
are investigated in [17].

B. Optimized Periodic Broadcast

The periodic broadcast protocols that we develop here for
non-linear media are based on the optimized periodic broad-
cast (OPB) protocols described in [12]. In these protocols, as
applied to linear media, the media file is partitioned into K
segments, with each segment being repeatedly multicast on a
separate channel at rate r. Clients are assumed able to simulta-
neously listen to a maximum of s channels. The segment size
progression is computed such that each segment is received
just in time for playback if clients begin listening to the s

channels delivering the first s segments immediately, begin
listening to the channel for segment k (k > s) immediately
after fully receiving segment k − s, and begin playback after
reception of the first segment is complete.

For the case in which client path selection is known a
priori, we propose a variant of OPB called OBP-Known Path
(OPB-KP). Each complete path through the non-linear media
file is partitioned using the same segment size progression as
in OBP for linear files. Shared portions of paths share the
corresponding segments. (We assume here that if the file has
a directed acyclic graph structure, then the path lengths to any
video portion with multiple parents are identical.) If a segment
crosses a branch point, the data from each media portion after
the branch point is delivered on a separate sub-channel, each
at rate r. Thus, for such a segment, the server will repeatedly
first transmit the data from before the branch point (at rate
r), and then transmit the data from after the branch point
(at total rate r times the number of portions after the branch
point). Each client listens to the channels and sub-channels
appropriate to its path. Fig. 11 shows the channels used in the
OPB-KP protocol for the example non-linear video structure
shown in Fig. 10, assuming each path is partitioned into three
segments (K = 3), clients listen to two channels concurrently
(s = 2), and segments are transmitted at the playback data rate
(r = 1). Also shown are the periods during which an example
client listens to the transmissions on each channel, assuming
the client request arrives at the point indicated and that the
client takes the path shown in Fig. 10. As shown by the results
in Section V.C, if it is assumed that the server can detect if
there are any listeners on a channel (or sub-channel), and stop
transmitting on the channel if not, this scheme is efficient.

For the case in which client path selection decisions are
known only when they are made at the respective branch
points, our key insight is that periodic broadcast is still feasible
as long as any segment that a client begins to download prior
to a branch point, and that includes data from after the branch
point, includes the respective data from all of the branches.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

E11

E1

E3

S

E5E4

E7E6

E8

E12 E13 E14 E15

E2

E10E9

Fig. 12. OPB-UP Segment Partitioning for an Example Media Structure
(“S” label is for start of media, “Ei” labels are for segment end points,

dashed lines indicate segment boundaries, K = 6, s = 2, r = 1)

S

Channel 6b

Channel 6a

Channel 5b

Channel 5a

Channel 4

Channel 3

Channel 2

Channel 1
E1

E2/3

E7

E6

E4/5

E10/11 E14/15

E12/E13E8/9

E8/9

E6/7

E4/5

E10/11

E2/3

E1

Fig. 13. OPB-UP Channels for Structure of Fig. 12
(shaded areas are listening periods of example client, striped areas indicate

multiplexed transmissions, K = 6, s = 2, r = 1)

Specifically, suppose that between when a client begins to
listen to the transmission of a particular segment k and the
beginning of playback of that segment, video playback does
not cross a branch point. If segment k itself also does not
cross a branch point, then it must be part of the same video
portion that was being played back during its reception. If, on
the other hand, segment k does cross a branch point, then it
must include some of the video portion prior to the branch
point (as determined by the segment starting position), plus
a fraction of each video portion after the branch point (as
determined by the segment ending position). Note that the
playback duration of such a segment will be less than what
its size in bytes (and corresponding transmission time) would
suggest, since the client will playback only the data on its
chosen path. Suppose now that between when a client begins
to listen to the transmission of a segment and the beginning of
playback of that segment, video playback does cross a branch
point. In this case, the entire segment multiplexes data from
multiple paths, as the segment begins after the branch point
and it is unknown which branch a client will take.

Fig. 13 shows the channels used in this OBP-Unknown Path
(OPB-UP) protocol for the example non-linear video structure
shown in Fig. 12, assuming each path is partitioned into six
segments (K = 6), clients listen to two channels concurrently
(s = 2), and segments are transmitted at the playback data rate
(r = 1). Also shown are the periods during which an example
client listens to the transmissions on each channel, assuming
the client request arrives at the point indicated in the figure
and that the client takes the path shown in Fig. 12.

Feasible segment sizes for OPB-UP can be computed using
the algorithm outlined in Fig. 14. Although this algorithm is
designed for balanced binary trees, it can be extended for more
general types of media structures. Here lk denotes the playback
duration of segment k, uk denotes the time when a client
begins reception of the segment, measured relative to the start
of the video file playback, ek denotes the latest time by which
a client can end reception of the segment, measured relative to
the start of video playback (also equal to the playback point

corresponding to the beginning of the segment), yk denotes the
segment transmission time when the segment is of maximal
length, and wk denotes the playback point corresponding to
the end of the segment in the case in which the segment does
not encounter a branch point. The outer loop attempts to find
the start-up delay (transmission time of the first segment) such
that the cumulative length of K segments (where K is given as
an input) matches the length of a complete path. The algorithm
makes the simplifying restriction that no segment can have a
multiplexing level of more than two (i.e., include data from
more than two paths), and the assumption that the first segment
does not cross any branch points. It further assumes that branch
points are never sufficiently close together that a zero length
is computed for a segment (as would occur in case 2.2 when
the branch point B is at ek), although it could be extended
to handle this case by simply delaying beginning reception of
the segment until after the next branch choice has been made.
Such delays could be more generally beneficial, as well, but
the algorithm in Fig. 14 simply assumes that a client begins
reception of a new segment (if any remain) immediately after
reception of a previous segment completes. The design of
optimal periodic broadcast protocols for various types of non-
linear media structures is left for future work.

C. Performance Comparisons

Figs. 15, 16, and 17 show the server bandwidth used by
the HSM and OPB protocols for non-linear media streaming,
together with the analytic lower bound from eq. 2. HSM results
are from simulation. The results for the OPB variants are
obtained under the assumption that transmission on a channel
is stopped whenever no client is listening to that channel. (The
probability that no client is listening to a channel can be easily
computed under the assumption of Poisson request arrivals,
which are also assumed in the simulation of HSM.)

For HSM-KP and OPB-KP, path prediction is assumed to
be perfect. For HSM, imperfect path prediction would yield
results intermediate between the results for HSM-UP and
HSM-KP. For OPB-KP, an error in path prediction would be
more difficult to recover from. All data is received prior to

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

Function Partition(K, s, r)
1. For (i = 0; i ≤ M ; i++)
2. d = ε1 + i(T1/r − ε1)/M
3. Compute Segsize(K, d, s, r)
4. If (

∣∣∣∑K
j=1 lk − T

∣∣∣ ≤ ε2)

5. Return Success
6. End For
7. Return Failed
End Function

Procedure Compute Segsize(K, d, s, r)
8. l1 = dr
9. For (k = 2; k ≤ K; k++)
10. uk = −d, k ≤ s;

uk = s’th latest of { uj + lj/r | 1 ≤ j < k }, k ≥ s + 1
11. ek =

∑k−1
j=1 lj ; yk = ek − uk

12. Case 1: no branch point in (uk, ek)
13. wk = ykr + ek

14. Case 1.1: no branch point in [ek, wk)
15. lk = ykr
16. Case 1.2: first branch point in [ek, wk) is at B and no

branch point in (B,B + (ykr − (B − ek)) /2)
17. transmit interleaved data after branch point
18. lk = B − ek + (ykr − (B − ek)) /2
19. Case 1.3: first branch point in [ek, wk) is at B, and first

branch point in (B,B + (ykr − (B − ek)) /2) is at B2

20. segment ends at branch point B2

21. lk = B2 − ek

22. Case 2: one branch point in (uk, ek)
23. transmit interleaved data
24. wk = ykr/2 + ek

25. Case 2.1: no branch point in [ek, wk)
26. lk = ykr/2
27. Case 2.2: first branch point in [ek, wk) is at B
28. segment ends at branch point
29. lk = B − ek

30. End For
End Procedure

Fig. 14. Algorithm for OPB-UP Segment Sizes (balanced binary tree)

its playback time. A client whose path is mispredicted will
have listened to transmissions of the wrong data from after
the mispredicted branch point. Recovery would require either
interruption in playback (so as to allow time for the client
to receive the data that it would have received by this point,
had the branch choice been correctly predicted), or use of a
unicast stream that would deliver data sequentially from the
branch point at rate at least equal to the playback data rate.

The key observations from these figures are: (1) stopping
transmission on a channel when there are no clients listening
allows periodic broadcast performance to be competitive even
under light load, (2) precise path prediction yields a large
improvement in performance, (3) OPB-KP yields performance
essentially as close to the lower bound from eq. 2 as could
be expected, given that the former assumes that each client
can only receive data at each point in time at a total aggregate
rate of twice the streaming rate (r×s = 2), whereas the latter
places no such restriction (see [5], [12] regarding the impact

0

10

20

30

40

50

1 10 100 1000

S
er

ve
r

B
an

dw
id

th

N

HSM-UP
OPB-UP
HSM-KP
OPB-KP

Lower Bound

Fig. 15. Performance of Scalable Delivery Protocols
(balanced binary tree with height 3, α = 1, d = 0.01 for OPB and lower

bound, r = 0.25, s = 8)

0

25

50

75

100

125

150

175

200

0 1 2 3 4 5 6 7 8

S
er

ve
r

B
an

dw
id

th

Tree Height

HSM-UP
OPB-UP
HSM-KP
OPB-KP

Lower Bound

Fig. 16. Performance with Varying Height
(α = 1, N = 1000, d = 0.01 for OPB and lower bound, r = 0.25, s = 8)

of client receive rate limitations), and (4) the precise relative
performance of the HSM and OPB variants depends on request
arrival rate and the client start-up delay used in OPB (note
that HSM provides immediate service, although variants that
use a batching start-up delay have also been proposed [4]).
The results for HSM-UP and HSM-KP suggest that it may
be fruitful to investigate HSM variants in which clients may
snoop on multiple earlier streams (e.g., one for each possible
choice at the next branch point, similar to next), or in which
client-specific path prediction is employed (as in pred).

D. Prototype Implementation

A rudimentary implementation of scalable non-linear media
streaming has been added to the SWORD prototype streaming
system [12]. The SWORD system consists of server and client
components, built using the open source Apache proxy server
code as a base. These interpose between Windows Media
players and servers, and replace the normal unicast delivery
with multicast delivery using hierarchical stream merging.

Our implementation of non-linear media streaming stores

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

0

10

20

30

40

50

0.0001 0.001 0.01

S
er

ve
r

B
an

dw
id

th

Client Start-up Delay (d)

HSM-UP
OPB-UP
HSM-KP
OPB-KP

Lower Bound

Fig. 17. Impact of OPB Start-up Delay
(balanced binary tree with height 3, α = 1, N = 1000, r = 0.25, s = 8)

each portion of the non-linear structure as a separate file.
Modification of header fields and spoofing of requests by the
SWORD client component allow this structure to be invisible
to the client player, to which it appears that only a single video
file is being played (transitions between the video portions are
seamless). Dynamic client path selection is currently supported
through a web page interface. The present implementation uses
built-in knowledge of the media file structure; on-going work
concerns description of non-linear media structures in meta
files. Our implementation has demonstrated that non-linear
media streaming can be implemented relatively easily, even
in the context of commercial media streaming systems.

VI. CONCLUSIONS

This paper has considered “non-linear” video content in
which clients can tailor their video stream according to in-
dividual preferences, within the constraints of a predefined
tree or graph structure. Tight lower bounds on server band-
width were developed that show the potential for bandwidth
reduction using multicast delivery in the context of non-linear
media, as well as illuminate the advantages/disadvantages of
various approaches to client snoop-ahead and the benefits of
a priori path knowledge. The key insights from the bounds
analysis are (1) correct client path predictions for more than
75% of the video portions greatly reduces the required server
bandwidth with very modest client data overhead, and (2) in
the absence of fairly precise a priori information about client
path selections, a simple policy in which clients only listen
to transmissions from their current video portion and those
immediately following the next branch point, achieves better
server bandwidth scalability than using overall path selection
probabilities to determine which transmissions to listen to.

New stream merging and periodic broadcast protocols were
devised, in part using insight from our bounds analysis, and
shown to achieve much of the potential bandwidth savings.
The new periodic broadcast protocols were found to be
competitive with the new stream merging protocols at all
request rates, assuming that in the former protocols the server

transmits on a channel only when at least one client is
listening. On-going research is focussed on further analysis
of hybrid protocol classes, improved stream merging and
periodic broadcast protocols, and further development and
experimentation with a prototype delivery system.

ACKNOWLEDGEMENTS

We thank David Sundaram-Stukel and Jeremy Parker for
their work on the SWORD prototype, Peter O’Donovan for
his work on implementing seamless playback of non-linear
media, Brian Gallaway for his assistance with the prototype
software and hardware, and Wenguang Wang and the anony-
mous referees for their constructive feedback on the paper.

REFERENCES

[1] C. C. Aggarwal, J. L. Wolf, and P. S. Yu. A permutation-based pyramid
broadcasting scheme for video-on-demand systems. In Proc. IEEE
ICMCS’96, pages 118–126, Hiroshima, Japan, June 1996.

[2] Y. Birk and R. Mondri. Tailored transmissions for efficient near-video-
on-demand service. In Proc. IEEE ICMCS’99, pages 226–231, Florence,
Italy, June 1999.

[3] S. W. Carter and D. D. E. Long. Improving video-on-demand server
efficiency through stream tapping. In Proc. IEEE ICCCN’97, pages
200–207, Las Vegas, NV, Sept. 1997.

[4] D. L. Eager, M. K. Vernon, and J. Zahorjan. Bandwidth skimming:
A technique for cost-effective video-on-demand. In Proc. IS&T/SPIE
MMCN’00, pages 206–215, San Jose, CA, Jan. 2000.

[5] D. L. Eager, M. K. Vernon, and J. Zahorjan. Minimizing bandwidth
requirements for on-demand data delivery. IEEE Trans. on Knowledge
and Data Engineering, 13(5):742–757, Sept./Oct. 2001.

[6] L. Gao, J. Kurose, and D. Towsley. Efficient schemes for broadcasting
popular videos. In Proc. NOSSDAV’98, pages 317–329, Cambridge, UK,
July 1998.

[7] L. Gao and D. Towsley. Supplying instantaneous video-on-demand
services using controlled multicast. In Proc. ICMCS’99, pages 117–
121, Florence, Italy, June 1999.

[8] A. Hu. Video-on-demand broadcasting protocols: A comprehensive
study. In Proc. IEEE INFOCOM’01, pages 508–517, Anchorage, AL,
Apr. 2001.

[9] K. A. Hua, Y. Cai, and S. Sheu. Patching: A multicast technique for
true video-on-demand services. In Proc. ACM MULTIMEDIA’98, pages
191–200, Bristol, U.K., Sept. 1998.

[10] K. A. Hua and S. Sheu. Skyscraper broadcasting: A new broadcasting
scheme for metropolitan video-on-demand systems. In Proc. ACM
SIGCOMM’97, pages 89–100, Cannes, France, Sept. 1997.

[11] L. Juhn and L. Tseng. Harmonic broadcasting for video-on-demand
service. IEEE Trans. on Broadcasting, 43(3):268–271, Sept. 1997.

[12] A. Mahanti, D. L. Eager, M. K. Vernon, and D. Sundaram-Stukel. Scal-
able on-demand media streaming with packet loss recovery. IEEE/ACM
Trans. on Networking, 11(2):195–209, Apr. 2003.

[13] I. Nikolaidis, F. Li, and A. Hu. An inherently loss-less and bandwidth-
efficient periodic broadcast scheme for VBR video. In Proc. ACM
SIGMETRICS’00, pages 116–117, Santa Clara, CA, June 2000.

[14] J.-F. Pâris. A broadcasting protocol for compressed video. In Proc.
EUROMEDIA’99, pages 78–84, Munich, Germany, Apr. 1999.

[15] S. Sen, L. Gao, and D. Towsley. Frame-based periodic broadcast and
fundamental resource tradeoffs. Technical Report 99-78, Comp. Sci.
Dept., Univ. of Massachusetts Amherst, 1999.

[16] S. Viswanathan and T. Imielinski. Metropolitan area video-on-demand
service using pyramid broadcasting. ACM Multimedia Systems J.,
4(3):197–208, Aug. 1996.

[17] Y. Zhao. Scalable Streaming of Stored Complex Multimedia. Ph.d.
dissertation, Univ. of Saskatchewan, 2004.

[18] Y. Zhao, D. L. Eager, and M. K. Vernon. Efficient delivery techniques
for variable bit rate multimedia. In Proc. IS&T/SPIE MMCN’02, pages
142–155, San Jose, CA, Jan. 2002.

[19] Y. Zhao, D. L. Eager, and M. K. Vernon. Network bandwidth require-
ments for scalable on-demand streaming. In Proc. IEEE INFOCOM’02,
pages 1119–1128, New York, NY, June 2002.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

	INFOCOM 2004
	Return to Previous View

