Multi-Agent-Systems - A Natural Trend in CIM

Klaus-Peter Keillmann

University of Essen, D-45117, Germany

Abstract. During the last few years Computer Integrated Manufactur-
ing (CIM) became an important aspect in the manufacturing industry.
The different components of CIM - as there are the CAx techniques
on the engineering side and manufacturing planning and control sys-
tems (MPC-systems) on the operational side - now show their influence
on organizational structures and the working environment. Limits and
problems of the fully automated manufactory - often called the ”fac-
tory of the future” - have been recognized. T'wo ongoing trends can be
observed: the decentralization of MPC-systems, leading to distributed
MPC-systems, and the integration of the different modules of CIM, re-
sulting in new requirements for the underlying information systems as
well as for the persons using these integrated systems. The emerging field
of distributed artificial intelligence (DAI) seems to offer interesting solu-
tions to these requirements. Especially multi-agent-systems (MAS) have
shown their feasibility in the area of CIM. The principles of coordina-
tion and communication are central aspects of these systems. Different
prototypes have been implemented, for example HBBS: a hierarchical
blackboard system for concurrent engineering, also used in the area of
distributed manufacturing planning and control.

1 Introduction

Current markets require products that fulfill the specific wishes and needs of
the customers. Therefore it forces the manufacturer to strengthen the customer
orientation and the flexibility of his manufacturing units to fulfill customer de-
mands fast. This enforces more complex information and manufacturing systems.
Current development of computers and sensors supports this direction, but as
more complex these systems are the less is their technical reliability [1]. How to
deal with these complex systems is one more problem. Humans - the people that
have to use and to work with these systems - cannot deal with over complex sys-
tems. Work nowadays can be characterized by a change from physical to psychic
demands. Cause of the black-box character of most of the computational units
the worker does not know what is going on inside. He has to react to instruc-
tions of a systems and therefore his behavior is no longer determined by himself.
Another point is the lack of qualification to deal with these new systems. On
the one side are technical skills - for example the knowledge of the command
language, which button to push under which circumstances- on the other side
knowledge about how to use the system - for example the use of a pointer device
in the area of CAD instead of using a pencil [1].

As an overall postulation there must be the aim that the human has to be
the controlling one in such complex systems. This is only possible if he knows
the programmed functional logic inside his information system and is able to
control it [1]. Segmentation at the manufacturing level and the development of
distributed systems for CIM seem to offer possibilities to achieve this goal.

The conceptual idea behind segmentation of production is to simplify or to
minimize the connections and relationships between the different manufactur-
ing units. The aim is to gain more flexibility and productivity in the area of
manufacturing. Team orientation is one of the important basic ideas. In all man-
ufacturing concepts that follow the idea of team orientation, separated operating
units will be defined, which are responsible for the manufacturing of a specific
group of parts or a specific service. These units operate, within a specific frame-
work autonomous with respect to the planning of the different necessary working
steps. Different kinds of team oriented organizational structures can be seen, as
there are manufacturing islands, flexible manufacturing centers, flexible manu-
facturing cells and flexible manufacturing systems [2]. Distinctions between these
different forms of organization can be made in terms of complexity, the amount
of available operations, the internal kind of material flow and the flexibility of the
underlying transport system [3]. Segmenting the manufacturing is not enough.
Responsibilities (e.g. for resources, scheduling, money, human resources) and de-
cision making have to be delegated to lower levels. Due to increasing integration
and networking capabilities of computerized manufacturing systems functional,
organizational, and social separated units and structures should come to closer
relationships [4]. DAI in our opinion offers technological and organizational pos-
sibilities to implement this new paradigm of manufacturing.

An overview of DAI, a classification of systems and agents and references to
basic literature will be given in chapter two. Chapter three deals with the basic
aspects of cooperation and communication. Chapter four contains a description
of the structure of the hierarchical blackboard-system HBBS and its usage in
the area of distributed manufacturing planning and control systems.

2 Distributed Artificial Intelligence

Distributed Artificial Intelligence (DAT) is a relative new field of research. DAI
i1s aiming to develop methods and techniques for solving complex problems by
means of intelligent behavior of a distributed system. The first workshops and
conferences (DAT workshops) took place in the United States, later in Europe -
the Modeling Autonomous Agents in a Multi-Agent World (MAAMAW) work-
shops. The first monograph on DAI appeared 1987: Distributed Artificial Intel-
ligence edited by M. Huhns [5].

Research in DATI can be split in Distributed Problem Solving (DPS) and
Multi-Agent-Systems (MAS) [6]. In contrast to distributed systems the different
modules have to cooperate, therefore DPS and MAS have to be separated from
Parallel AT [7].

Parallel AI: These are systems that use parallelism as a possibility for faster
computation. The decomposition of the problem is done by defining separate
subproblems where no cooperation is necessary to solve them. Consequently
parallel AT is no field of research inside DAT [7].

Distributed Problem Solving: Research in the area of DPS is concerned
with the question how a problem can be divided into subproblems such that
distributed, cooperating agents can act together to solve it by solving the sub-
problems. The task of problem solving is collaborative in the sense that sharing
information and knowledge is essential to solve the overall problem [8]. DPS-
systems are ”a kind of top-down designed system, since agents are designed to
conform to the requirements specified at the top” [9].

Multi-Agent-Systems: In multi-agent-systems agents are designed first,
the solution strategy is defined later - depending on the problem. Agents are
therefore pre-existing, autonomous and often heterogeneous [9], working coop-
eratively towards individual goals that interact. MAS are able to develop their
coordination structure by themselves and to rearrange their roles if the context
has changed. ” A MAS can also be viewed as a bottom-up designed system” [9].

DPS and MAS can be seen as two extremes of the same spectrum [9]. This
point is also expressed in the definition of Dezentralized Artificial Intelligence
(DzAi). DAT deals ”with the cooperative solution of problems by a decentral-
ized group of agents” [5], whereas DzAT is ”concerned with the activity of an
autonomous agent in a multi agent world” [8]. Following Demazeau and Miiller
DPS can be stated as the main issue of DAI, MAS as the one for DzAI. It has
to be said that the term multi-agent-system has to be used carefully, cause this
term 1s often also used for a collection of agents that do not fulfill the aspects of

MAS [7].
2.1 Classification of Systems

Work in DAT can be classified by eight dimensions; first introduced in [10], as
shown in Tab. 1:

Dimension Spectrum of Values
System Model Individual Commitee Society
Grain Fine Medium Coarse
System Scale Small0... Medium Large
Agent Dynamism |FixedProgrammableTeachableAutodidactic
Agent Autonomy |Controlled Interdependent Independent
Agent Resources |Restricted il Ample
Agent Interactions|Simple Complex
Result Formation |By Synthesis By Decomposition

Table 1. Dimensions for categorizing DAI Systems

The dimensions are [9]:

System Model: Is the system represented as one single agent, consisting of
distributed components, or are there multiple agents, forming committees or
societies?

Granularity: How detailed can the problem be decomposed?

System Scale: The number of processing units. Is there one large system or is
the computation done by many smaller units?

Adaptiveness: Do the units of the system have the ability to learn? Simple
units are often programmed and therefore static, whereas others may have
the ability to learn.

Control Distribution: How independent are the elements of the system. Is
there a master-slave relation or are they autonomous? Are there units that
have control over others? To which extend do elements need others to solve
their local problems?

Resource Availability: Who has access to which resources and which access
restrictions exist? Are there limited resources?

Communication: How complex are the interactions between elements? Is there
a simple or standardized communication or do complex interactions exist?

Problem solving: How is problem solving done? Are the problems decomposed
(top-down) or are solutions found due to synthesizing results from different
elements (bottom-up)?

2.2 Classification of Agents

There exist multiple points of view, what an agent is or what an agent should
be. To avoid the definition of a universal agent usable for all kinds of problems,
a hierarchy of agents as shown in Fig. 1 seems to be useful [11].

social agent

cognitive agent

technical-intelligent agent

technical agent

primitive agent

Fig. 1. Agent hierarchy

Primitive agent: Sensor-actor system that reacts on information kept by its
sensors in a fixed manner.

Technical agent: Robots and flexible transport-systems, as they are available
nowadays. They often include some sort of programmable control.

Technical-intelligent agent: Autonomous systems that are capable of solving
a class of defined problems on their own under circumstances that do not
have to be known a priori.

Cognitive agent: Agents that are able to learn.

Social agents: The discussion which capabilities are necessary to characterize
a social agent 1is still open. Therefore no definite description could be given.

This hierarchy does not imply, that the capabilities of an included agent must
be available for all upper agents. Every agent has features that are not of interest
for others - for example an agent responsible for some kind of optical control in
manufacturing has the capability to decide quickly if the current piece of work is
in a regular condition. This ability is not mandatory for social or even cognitive
agents [11].

2.3 Bibliography

Literature concerning Distributed Artificial Intelligence as a new field of research
is not as easy to find as for other research directions (for example theoretical
computer science, artificial intelligence, ...), therefore a bibliography of good
introductory texts and overview of DAI will be given. The work of Huhns, Bond
and Gasser can be seen as the basic literature in the area of DAT (Huhns pub-
lished 1987 the first book in DAT) [5, 6, 12]. The series ”Dezentralized Artificial
Intelligence” edited by Yves Demazeau et al. contains the proceedings of the
European Workshop on Modeling Autonomous Agents in a Multi-Agent World
! held every year in a different city in Europe. Therefore these publications give
a good overview of the ongoing research in Europe in the field of DAI.
Surveys of research can also be found in the following journals:

(Special Tssue on Intelligent and Cooperative Problem Solving) International
Journal of Intelligent & Cooperative Information Systems, vol.1, no. 2, June
1992

(Special Issue on Distributed AT) Group Decision and Negotiation, vol.2, no. 3,
1993

(Special Issue on Mathematical and Computational Models of Organizations:
Models and Characteristics of Agent Behaviour) International Journal of
Intelligent Systems in Accounting, Finance, and Management, vol. 2, no. 4,

1993

An overview of current work in DAT can also be found in [13, 14]. The book of
Miiller [14] concerns on the german map of research. An annotated bibliography

! The title of the wokshops differs slightly over the years. For example in 1991: Mod-
eling Autonomous Agents and Multi-Agent Worlds

is also given in [15], a bibliography indexed by application domains and authors
could be found in chapter two of [6].

3 Cooperation and Communication

Cooperation and communication are basic aspects of DAI (among others like
representation and reasoning about plans, recognizing and reconciling conflicting
intentions) [6]. Bond and Gasser define coordination as ”a property of interac-
tion among some set of agents performing some collective activity” [6] whereas
cooperation is stated as ”a special case of coordination among nonantagonis-
tic agents”. In our case we will make use of a definition given by Demazeau
and Muller: ”Cooperation: in order to perform a personal task, an agent will
have to cooperate with others either because it is not able to accomplish it it-
self (restricted possible solutions), or because others successfully accomplish it
more efficiently (e.g. within a shorter interval of time).” [8] The field of com-
munication deals with the specification of protocols, messages, and the kind of
information exchange between agents. Different languages have been defined for
DAI purposes so far.

3.1 Cooperation

Agents or distributed problemsolvers can coordinate in many different ways -
they often have to cooperate to solve complex problems. One question now is
why should they cooperate or what are the goals of cooperation? Durfee, Lesser
and Corkill [16] state the following goals:

Performance: Working in parallel could improve the performance of the prob-
lem solving task. The grade of improvement depends on the structure of the
problem to be solved.

Alternatives: Allowing agents to form local solutions without being influenced
by others increases the variety of solutions.

Confidence: Agents can verify results of other agents, possibly using own data
and problem solving strategies.

Fault tolerance: Assigning important tasks to multiple agents increases the
probability of finding a solution, even if some agents fail.

Less effort: Letting agents recognize and avoid useless redundant activities re-
duces the amount of unnecessary tasks (computations).

Improvement: Permitting agents to exchange predictive information improves
the general problem solution.

Less communication: The selection of types of messages to be exchanged re-
duces the amount of communication.

Balance computation: Agents that are allowed to exchange tasks between
computational units can make better use of these resources through balanc-
ing the load.

Select agents: The individual agent expertise can be used better if the agents
are able to exchange tasks with the purpose that the task is performed by
the most capable agent.

Time: Coordinating activity with respect to the time agents are waiting for
results from each other.

Cause these goals conflict with each other, agents could not achieve the goals
simultaneously [16]. Depending on the task to be performed and the structure of
the problem to be solved the concrete form of cooperation has to be determined
for each system uniquely.

Cooperation can be done with or without communication. There exist dif-
ferent opinions whether communication is necessary or not - depending on the
underlying definition of agents. Following Martial [17] communication is a neces-
sity for coordination in the multi-agent planning area. Genesereth, Ginsberg and
Rosenschein claim that ”intelligent agents must be able to interact even without
the benefit of communication” [18].

Cooperation without communication. Cooperation is no problem if there
are common, non-conflicting goals valid for all agents. This is an optimistic point
of view. In a world of limited resources conflicts have to be considered. The basic
question is therefore how can two or more agents work together (achieve their
goals) such that both (all) are able to reach their goals? Two approaches can be
seen here: intuitive and the theory of games.

Intuitive: Rosenschein [19] states, that often people choose the same solution
even if there are a lot of equivalent ones available. The assumption is that if there
are multiple solutions every person chooses the one that seems to differ a little bit
from the others. For example [11]: Two persons are sent in different rooms. Both
have to split a staple of 100 pieces of paper (banknotes) in two staples. They
know that, if they choose the same solution, every one will get a mercedes. Most
people split the staple in two staples with 50 pieces each. The 50-50 solution
is the only one where the two staples are equal. This seems to be the slightly
different one from all other solutions.

Game theory: To solve problems together agents have to know that there
are other ones, have to assume what these agents know and how they behave.
They have to have common knowledge: knowledge of the payoff-functions and
some sort of common knowledge about the behavior of the other agents (behavior
in the context of selection of possible actions). Payoff functions represent the
evaluation of the result of each course of action an agent can follow, this includes
the assumption that every agent knows enough to evaluate the results of his
possible actions [5].

Cooperation with communication. Cooperation using communication can
also be seen as a way to reduce the amount of data being exchanged between
agents. If agents cooperate they do not have to exchange information about
their current state, how they solve a problem or doing a computational task.

Communication to provide cooperation is used as well to transmit some kind of
meta-level information. For example: If someone agrees with another that he will
phone Mr. X, he will not have to tell him, that he takes some coins out of the
pocket, throw them into the slot, etc. The term ”phone to” includes implicitly
all these actions: meta-level information or knowledge. Three kinds of message
transfer to support cooperation can be seen: actors, contract-nets and black-
boards. The underlying communication has great influence how coordination
can be realized in the system.

Actors. Actors have been defined first from Hewitt and Agha [22]. An actor is
”a computational agent that carries out its actions in response to processing a
communication” [22]. Therefore message-passing is used as the base for concur-
rent computation. Every actor has its own mail address and they work (carry
out their actions) in parallel. The current state of an actor can be described by
his internal variables, which can change over time, and their values. A proto-
col defines to which types of messages the actor reacts and in which manner.
Possible actions of an actor are:

— send messages to other actors or to itself
— create actors
— change state or protocol of actor

The behavior of each mail-address (actor) can be described by specifying a local
behavior function. The combination of a communication and the target (the mail-
address) is called a task. An actor processes each message sent accordingly to
his protocol. A message which type is not known by the protocol of the recipient
(no method exists in the protocol for this type) will be rejected. To response
to a message an actor may send different messages to other actors it knows.
Reconfiguring the system of actors dynamically is possible through changing the
mail-address of a communication.

Contract-net. The contract-net protocol was first introduced by Reid G. Smith
[20]. A contract-net consists of a set of nodes (agents) which negotiate with
one another using asynchronous message passing. Contracts exist between two
nodes. Each agent can play different roles during the act of problem solving.
These roles can be changed dynamically over time. Roles - also mentioned as
classes of nodes - are:

Manager: He identifies tasks to be done, decomposes these tasks and dis-
tributes the subtask within the net. Monitoring the execution of the tasks
and processing their results is also in his responsibility.

Bidder: This is a node that offers to perform a task.

Contractor: A successful Bidder. He 1s responsible for the execution of the
task for which his bid has been accepted. He is allowed to split his ask and
award contracts to others.

Communication between agents consists of different types of messages. The mes-
sages and the processing of each message are as follows:

Task announcement: A manager announces a task to be processed. The
message consists of a description of the task, a bid specification and expira-
tion time.

Bid: Bidders send this message to show their willingness and availability
to process the announced task. The message contains a node abstraction
showing the relevant capabilities of the node with respect to the announced
task. The manager receives these bids and ranks them relatively. A contract
is awarded to the bidder that has sent the most satisfactory bid.

Award: Manager sends the award message to the node with the successful
bid. This node 1s now called contractor.

Acknowledgment: The contractor acknowledges the award to the manager.
This acknowledgement can be either rejecting or accepting. Every node can
bid to several announcements, therefore it is possible, that a bid sent is not
longer valid if the award for this bid arrives.

Report: This message is used by a contractor to inform the manager about
the current status of task execution (interim report) or the termination of a
task (final report). The result of the execution is part of this message.

Termination: A manager makes use of this message type if the contractor
should interrupt or terminate task processing prematurely. A contractor re-
ceiving this message stops task execution and all outstanding subcontracts.

Availability Announcement: A node that is idle and searching the tasks
broadcasts this message giving specifications of tasks and own capabilities.

This protocol, defined through the type and processing of each message, shows
the dynamic character of contract-nets. Cause of the direct agent-to-agent com-
munication there is no need for an overall control structure allowing a finer
degree of control than possible with traditional mechanisms [20].

Blackboards. The basic idea of blackboards was first published by Newell
[21]. ”Metaphorically we can think of a set of workers, all looking at the same
blackboard: each is able to read everything that is on it, and to judge when
he has something worthwhile to add to it. This conception is just that of Self-
ridges Pandemonium: a set of demons, each independently looking at the total
situation and shrieking in proportion to what they see that fits their nature.”
[21].Blackboards are a special kind of data structure, often separated in dif-
ferent levels or regions. Knowledge Sources (KS), as the independent processes
are called, use this data structure as shared memory. KS write messages and
partial results of their computations to the blackboard where other KS’s are
able to read them. The levels allow different representations or different levels
of abstraction of a problem. Agents which work on different levels see the cor-
responding blackboard-level and their neighbor levels. Therefor generated data
could be given to upper levels whereas goals can be written to lower levels of

the blackboard [7]. Often a control system is used to supervise the blackboard
systems, for example to synchronize access or to avoid or recover deadlocks.
The different experts (agents in our case) monitor the blackboard that con-
tains the current state of problem solving. Each agent recognizes if it is able
to support the problem solving task, solves the specific subproblem if possible
and writes back the result - which can be a solution of the problem or some
decomposed subproblems. The following assumptions have to be made:

Independence of expertise: Every agent solves its problem without help
of others. It does not even know that there exist other agents. Communica-
tion i1s only done using the blackboard. As a consequence it 1s easy to add
or remove agents from the system.

Different problem solving techniques: Cause each agent behaves inde-
pendently it could choose its own problem solving technique. Therefor it
could use different methods for every subproblem.

Flexible representation: The form of problem representation can be de-
fined different for every application.

3.2 Communication

After the decomposition and distribution of a problem and instantiating different
tasks, one has to make considerations how agents interact and communicate to
solve their subproblems. Following Gasser [23] DAT designers have to consider:

Unit of interaction: Problems can be decomposed in different levels of gran-
ularity. Talking about strategic goals needs other forms of communication
than interchanging pure facts, for example machine dependent data or con-
struction details.

Structures and processes of interaction: There exist different modes of in-
teraction as there are marketplace transactions, forum-based discussion or
master-slave relationship. Organizational structures influence interaction too.

Protocols and languages: How communication takes place is highly depen-
dent on the protocols and languages used. Protocols describe the semantics
and rules of the communication between agents. The language used for com-
munication can have a small amount of message types and small vocabulary
-therefor needing a highly structured syntax- or can be more flexible allowing
dialogues with rich semantic. Another point we have to mention is the kind
of information we want to communicate - the content of a message.

Demazeau and Miiller distinguish among three types of information [8]:

Knowledge: Agents interchange knowledge to come to a consistent and com-
plete (with respect to the problem to be solved) description of the current
situation. Cause of their different points of view there could exist contradic-
tory descriptions of the environment. In this case a decision has to be made
which description matches better.

Possible solution: If agents have to agree to a common solution or plan they
have to exchange their solutions. Cause of different problem solving capa-
bilities and strategies there may be no common solution acceptable for all
agents. In this case the agents have to exchange knowledge to find other
solutions.

Choice and result: If there are multiple possible solutions agents have to ne-
gotiate about the ”common” solution. Choosing the first avoids this problem,
but is sometimes not optimal. Every agent makes his own ranking of solu-
tions, where the high ranking of one agent may be rejected by others that do
not accept this solution. In the case where agents offer tasks to others choice
has to be communicated too. If there exists a common choice the selected
result has to be transmitted.

We also have to think about how communication can take place in multi-
agent-systems. Two basic principles have to be considered:

Shared memory: Every agent is able to write the information it wants to share
with others to a specific place to which every agent in the system has access
to. Blackboards, as mentioned above, make use of this principle. The agents
do not know who uses this information and therefore there i1s no need for
them to know the other agents (or their addresses) in the system. To avoid
inconsistency some kind of access coordination is needed - like in operating
or database systems. This control can be done explicitly by one separate
agent, acting like a gate keeper, or implicit through the system using shared
memory (some kind of access rule). One problem of blackboard systems is
the dependency of the system from one specific node - the blackboard. If
the processing unit running the blackboard goes down, the whole system is
unable to work. One great advantage can be seen in the anonymous character
of the information exchange. No agent needs to know the addresses of the
others, simplifying the management of the communication. To remove or to
add other agents to those systems is therefor easy.

Message passing: Communication can also take place using message passing.
Agents communicate through receiving and sending messages to each other.
To do this they have to know either the addresses of the other agent or
the address of a port the designated agent is listening to. One port can
be used from multiple agents. Contract nets and actor systems make use
of this principle. The theory of speech acts [24] deals with the semantic
of messages. It distinguishes between sending a message, the intention of
the sender and the effects of the sending of a message to the environment.
The last point is only visible through the behavior of the receiving agent
that can be observed from outside. One problem of systems using message
passing for communication is the reconfiguration of these systems (add or
remove agents) cause new agents (their addresses) have to be inserted in the
list of addresses of each agent which has to communicate with them (or one
of them) resulting in lots of update activities. The same has to be done if an
agent has been removed. On the other side the system is more fault tolerant.
Communication is not dependant on one specific agent.

Clearly these two basic principles can be mixed. One possibility are teams
of agents that use shared memory internally and message passing for communi-
cation between teams. Information exchange can also be done using mailboxes.
Messages can be send to agents and roles. These roles can be played by different
agent. A mailbox stores the messages addressed to roles. Agents performing the
addressed role could read these messages later [25].

4 The Hierarchical Blackboard-System HBBS

Weif} introduces in his PhD-thesis a hierarchical, distributed blackboard system
for concurrent engineering [7]. In the area of concurrent engineering experts of
different disciplines often geographically distributed and using different tools
have to work together. Standardization and unification of schemes for data and
processes would lead to an overwhelming amount of work. Main issues of concur-
rent engineering are therefore communication and coordination of engineering
agents. Two directions can be identified: DAT that deals among other things with
the integration of human and artificial (computational) agents, and Computer
Supported Cooperative Work (CSCW) which deals with interactions between
humans. Table 2 illustrates the embedding of DAI.

Concurrent Engineering

CAD DAI CSCW

Artificial Human
agents agents

Table 2. Embedding of DAI

HBBS is designed as an infrastructure for the development of multi-agent-
systems. The infrastructure should simplify the development and implementation
of agents [26]. The knowledge and details of communication are separated from
the agents and therefore no longer part of the agent definition task. Elements of
HBBS are meta-agents that do not have, in contrast to agents that are connected
to HBBS, any application knowledge. They only provide coordination knowledge.
Each meta-agent consists of a blackboard, an agenda, a scheduler and designated
”ambassadors”, which themselves are represented as knowledge sources [27].

HBBS basically consists of four layers:

Application layer: This layer contains the whole application knowledge but
no knowledge about control. Agents in this layer are all computational units

or humans, which communicate with meta-agents of the underlying control
layer. From the point of view of the agents they work together via a common
virtual working area; communication and HBBS are transparent for them.
Information exchange between agents is defined by an interaction language,
providing rules and syntax of messages. Agents that do not know the inter-
action language make use of front- end systems. These translate the internal
knowledge representation of the agents to the format of the interaction lan-
guage.

Control layer: This layer contains the meta-agents. Each knowledge source is
defined by a condition part and an event action part. The condition part con-
sists of a trigger that defines the goal the ambassador reacts to, a precondi-
tion, which has to hold after the trigger was successful, and a post-condition
which holds after performing the designated action. The event part defines
the action to take place if the condition part holds. There are two kinds of
information exchange between agents and blackboards: the transmission of
solutions to other blackboards and the transmission of goals to start some
problem solving process on another blackboard. We can also distinguish be-
tween local and non-local actions, which effect remote blackboards.

Cooperation layer: This layer consists of mechanisms for the coordination of

agents and meta-agents, and the construction of hierarchical multi-black-
board structures. If the agenda contains goals, the one with the highest
priority will be selected and the condition parts of all knowledge sources will
be tested. If one holds the corresponding action part will be executed. As
the result of an action local goals could be generated which will be inserted
into the agenda. If the agenda is empty, the meta-agent waits for incoming
messages that may contain a goal. To avoid deadlocks meta-agents are al-
lowed to wait for determined messages or events and to store events, which
should not be handled in a buffer, where they have to wait until some lock
is raised.
Hierarchies of meta-agents can be reached by exchanging agents with meta-
agents. Knowledge sources make no distinction between the different kind
of agents. Therefore agents can be replaced by whole blackboard- systems
easily [7].

Communication layer: The communication layer is responsible for the phys-
ical communication. To support naming and location transparency every
agent is known only by his logical name. The mapping of logical names to
physical addresses is done using a central name database (also called config-
uration database). Physical communication is based on TCP/IP.

Phillip and Wei8 [26] implemented a prototype for distributed MPC-systems.
Manufacturing planning is done in units of manufacturing orders. Machine orders
are the units of manufacturing control. In their model similar manufacturing ma-
chines, those which are able to perform the same machine orders, form machine
groups. Planning and control is done using well known, traditional algorithms.

For each machine there exists one machine agent. It gets orders from the
higher level machine group blackboard. This blackboard receives orders for the

machine group and organizes the cooperative work of the machine agents to
perform the tasks. Every machine group blackboard is supported by a scheduling
agent that schedules the different orders. The next higher level is build by the
machine order blackboards and blackboards responsible for transport, human
resource planning and inventory. To have access to these resources the machine
order blackboard creates corresponding orders. Manufacturing planning is done
by material requirements planning and capacity planning agents. The resulting
orders are given to the manufacturing orders blackboard. There the orders are
decomposed by another agent and scheduled, resulting in machine orders which
are forwarded to machine order agents.

Cooperation and competition take place in this prototype. Machine, trans-
port, and scheduling agents have to cooperate to fulfill their tasks (the right
material at the right time on the right place). Material requirement planning
and capacity management agents cooperate to formulate valid manufacturing
orders and schedules. Competition exists between machine order blackboards
cause of limited resources. Every blackboard wants to solve its own problems,
leading probably to deadlocks in the manufacturing system. The prototype uses
queues to avoid deadlocks.

References

1. Martin, Hans: Auswirkungen auf die Arbeitssituation, in: Geitner, Uwe W. (ed.):
CIM-Handbuch, Braunschweig, Vieweg 1991, pp. 645-652

2. Kurbel, Karl: Produktionsplanung und -steuerung, Miunchen ..., Oldenburg 1993

3. Lenke, Christian: Zukunftsorientierte Konzepte zur Produktionsplanung und -
steuerung auf der Basis moderner Informationstechnologien und flexibler Ferti-
gungsstrukturen, Diplomarbeit, Universitat Essen 1994

4. Beckenbach, Niels; van Treeck, Werner: Betriebliche und soziale Auswirkungen, in:
Geitner, Uwe W. (ed.): CIM-Handbuch, Braunschweig, Vieweg 1991, pp. 653-661

5. Huhns, Michael N. (ed.): Distributed Artificial Intelligence, Los Altos, Morgan
Kaufmann 1987

6. Bond, Alan H.; Gasser, Les (eds.): Readings in Distributed Artificial Intelligence,
San Mateo, Morgan Kaufmann 1988

7. Weifl, Michael: HBBS: Ein hierarchisches Blackboard-System fir den Verteilten
Entwurf, Dissertation, Universitat Mannheim 1993

8. Demazeaun, Yves; Miller, Jean-Pierre: Decentralized Artificial Intelligence, in: De-
mazeau, Yves; Miller, Jean-Pierre (eds.): Decentralized A.L.: Proceedings of the
First European Workshop on Modelling Autonomous Agents in a Multi-Agent
World, Cambridge, England, August 16-18, 1989, Amsterdam, North-Holland 1990,
pp. 3-17

9. von Martial, Frank: Coordinating Plans of Autonomous Agents, Berlin ...,
Springer 1992

10. Sridharan, N. S.: Workshop on Distributed Al, AT Magazine, Fall 1987, pp. 75-85

11. Fischer, Klaus: Verteiltes und kooperatives Planen in einer flexiblen Fertigungs-
umgebung, Sankt Augustin, Infix 1993

12. Gasser, Les; Huhn, Michael N.(eds.): Distributed Artificial Intelligence II, Los Al-
tos, Morgan Kaufmann 1989

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Avouris, Nicholas M.; Gasser, Les (eds.): Distributed Artificial Intelligence: Theory
and Praxis, Dordrecht ..., Kluwer Academic 1992, pp. 9-30

Miller, Jirgen (ed): Verteilte Kiinstliche Intelligenz - Methoden und Anwendun-
gen, Mannheim ..., BI-Wissenschaftsverlag 1993

Jagannathan, V.; Dodhiawala, Rajendra: Distributed Artificial Intelligence: An
Annotated Bibliography, in: [5], pp. 341-390

Durfee, Edmund H.; Lesser, Victor R.; Corkill, Daniel D.: Cooperation Through
Communication in a Distributed Problem Solving Network, in [5], pp. 29-58

von Martial, Frank: Planen in Multi-Agenten Systemen, in: [14], pp. 92-121
Genesereth, Michael R.; Ginsberg, Matthew L.; Rosenschein, Jeffrey S.: Coopera-
tion without Communication, in [6], pp. 220-226

Rosenschein, Jeffrey S.; Kraus, Sarit: The Role of Representation in Interaction:
Discovering Focal Points among Alternative Solutions, in: Steiner, Donald D.;
Miller, Jirgen (eds.): MAAMAW’91: Pre-Proceedings of the 3rd European Work-
shop on ”Modeling Autonomous Agents and Multi-Agent Worlds”, Kaiserslautern,
August 5-7, 1991, pp.

Smith, Reid G.: The Contract Net Protocol: High-Level Communication and Con-
trol in a Distributed Problem Solver, in [6], pp. 357-366

Newell, A.:Some Problems of Basic Organization in Problem Solving Programs,
in: Yovits, Jacobi, Goldstein (eds.): Proc. Conference on Self Organizing Systems,
Washington, Spartan Books 1962, pp. 393-423

Agha, Gul; Hewitt, Carl: Concurrent Programming Using Actors: Exploiting
Large-Scale Parallelism, in: [6], pp. 398-407

Gasser, Les: An Overview of DAT, in: [13], pp. 9-30

in: Muiller, Jirgen: Beitrage zum Grindungsworkshop der Fachgruppe verteilte
Kinstliche Intelligenz, Saarbricken, 1993, DFKI Document D-93-06, pp. 77-89
Austin, J. L.: How to do things with words, Oxford, University Press 1962
Tomalla, Alf: Verteilte Kunstliche Intelligenz in der Produktion, Diplomarbeit,
Universitat Essen 1994

Philipp, Mathias; Weif}, Michael: Ein hierarchischer Blackboard-Ansatz fir Ver-
teilte PPS-Systeme, in: Miller, Jurgen: Beitrage zum Griundungsworkshop der
Fachgruppe verteilte Kiunstliche Intelligenz, Saarbricken, 1993, DFKI Document
D-93-06, pp. 77-89

Weif}, Michael: HBBS: Object-Oriented Design of a Distributed Blackboard Kernel,
in: Engineering SEKE-93, San Francisco, IEEE Press, 1993, pp. 285-287

This article was processed using the #TEX macro package with LLNCS style

